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Abstract Dynamic pricing depends on the under-
standing of uncertain demand. We ask the question
whether a stochastic system is sufficient to model this
uncertainty.We propose a novel paradigm based on sta-
tistical analysis of recurrence quantification measures.
The paradigm fits nonlinear dynamics by simultane-
ously optimizing both the determinism and the trap-
ping time in recurrence plots and identifies an optimal
time delay embedding. We firstly apply the paradigm
on well-known deterministic and stochastic systems
including Duffing systems and multi-fractional Gaus-
sian noise. We then apply the paradigm to optimize
the sampling of empirical point process data from
RideAustin, a company providing ride share service in
the city of Austin, Texas, the USA, thus reconstruct-
ing a period-7 attractor. Results show that in deter-
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ministic systems, an optimal embedding exists under
which recurrence plots exhibit robust diagonal or ver-
tical lines. However, in stochastic systems, an opti-
mal embedding often does not exist, evidenced by the
inability to shrink the standard deviation of either the
determinism or the trapping time. By means of surro-
gate testing, we also show that a Poisson process or a
stochastic system with periodic trend is insufficient to
model uncertainty contained in empirical data. By con-
trast, the period-7 attractor dominates and well models
nonlinear dynamics of empirical data via irregularly
switching of the slow and the fast dynamics. Findings
highlight the importance of fitting and recreating non-
linear dynamics of data inmodeling practical problems.

Keywords Econophysics · Time delay embedding ·
Recurrence quantification analysis · State space
reconstruction

Mathematics Subject Classification 70K70 ·
70K75 · 91B84 · 91B42 · 60K10

1 Introduction

Dynamic pricing is a strategy in which demand-based
knowledge and optimization technology are applied to
continuously update the price of a service or goods [2,
28,37,51]. The key is to relate the demand of a service
or goods to optimal prices via mathematical formulas
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or functions [6,10]. However, uncertainty in demand
poses a challenge in modeling that relationship.

This challenge is widely addressed by incorporat-
ing stochastic terms into functions [7,11,19]. Three
types of models are proposed to address the problem
[7], including a stochastic process [2,61], a parametric
demand function [9,59], and a nonparametric demand
function [11,56]. For models that assume a stochastic
process, the uncertainty can be addressed by a Poisson
process [2], or by a heterogeneity in Poisson processes
to improve the fitting of empirical demand data [61].

Quantity demanded can be regarded as a stochas-
tic variable as well. Parametric and nonparametric
approaches are utilized to quantify the relationship
between the variable, demand, and prices. Paramet-
ric approach assumes that stochastic demand follows
a known distribution function with unknown parame-
ters to address uncertainty. Demand is assumed to fol-
low Gaussian distribution with unknown parameters in
Ref. [9]. Maximum likelihood estimation is applied to
update the parameters, which established the relation-
ship between demand and optimal price [9]. Gaussian
noise can also be assumed to capture uncertain demand
[59]. Stochastic optimization methods are deployed to
tackle optimal prices [59]. A nonparametric approach
does not build on a parametric demand function, thus
generally maximizing expected revenue (price multi-
plies expected demand) in the worst-case scenario [7].
The idea is that demand is an unknown function of
price and therefore is revenue. Optimal prices can then
be addressed by convex optimization [11,56].

However, a nonlinear deterministic relationship
between two or more variables can also be respon-
sible for increased irregularity and hence uncertainty
[16,46]. For dynamic pricing problems, Rump and
Stidham [41] based upon a Poisson process and showed
that consumers’ nonlinear adaptations to prices theo-
retically result in uncertain arrivals. From a parametric
model, Lu et al. [28] and Hu et al. [17] demonstrated
that demand function with discontinuity can also cause
uncertainty.

The two different mechanisms to model uncertainty
create a basis for a discussion of the dynamics that a
demand process underlies in real-life dynamic pricing
settings [55]. An understanding of demand dynamics
would show whether the above-mentioned three types
of models that only consider stochasticity can capture
the nature and the essence of uncertainty.Knowledge of
that would allow us to verify a Poisson process orGaus-

sian noise as an underlying process widely assumed in
dynamic pricing problems [6,10,11,37,51].

Here we hypothesize that uncertainty in empir-
ical demand processes can be described by low-
dimensional deterministic dynamics rather than stochas-
ticity. A reconstruction of an attractor, a set of states
towardwhich adeterministic dynamical systemevolves
[16,46], is our tool to validate the hypothesize. We also
aim to show the differences between low-dimensional
attractors and stochastic dynamics, thus improving the
modeling of dynamic pricing problems.

A fundamental difference between an attractor and
stochastic dynamics remains in recurrence [13,32],
which can be visualized by recurrence plots. A recur-
rence plot is a plot that shows whether a state at time i
recurs at time j . An attractor is well organized in recur-
rence plots [32]; however, disorganizations occur for
stochastic dynamics. According to Takens’ embedding
theorem [43,50], under some parameter set, embed-
ding dimensionm and time delay τ , an attractor can be
reconstructed from a time series {xi } of a deterministic
dynamical system via

XXXi = (xi , xi+τ , · · · , xi+(m−1)τ ) (1)

Here, xi is a scalar and anobservation of the system, and
XXXi is a vector and a state of the attractor. A difficulty
in the application of recurrence plots and time delay
embedding (Eq. 1) is the choice ofm and τ [30,52]. Tan
et al. [52] reviewedmethods to selectm or τ . A standard
approach is to firstly select τ under whichmutual infor-
mation reaches its first minimum and then select m by
false nearest neighbor approach [26]. One can simulta-
neously select m and τ by optimization algorithms as
well. The optimization can be defined over a statistics
of nearest neighbors [25,26,35,47] or average distance
of reconstructed points in phase space [48,52],

We propose a novel recurrence-based reconstruction
approach that optimizes m and τ simultaneously. The
reconstruction utilizes recurrence plots and the statis-
tics of recurrence quantification measures to define an
optimal embedding. We then apply the reconstruction
on benchmarking systems with well-known dynam-
ics and empirical data in a real-life dynamic pricing
setting where noise and non-stationarity cause addi-
tional uncertainty. Our results will provide new insights
into the applicability of the widely assumed stochastic
demand and into an optimal time delay embedding by
recurrence quantification analysis.
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2 Methods

Recurrence-based reconstruction requires to find an
optimal m and an optimal τ (Eq. 1). We apply Pareto
optimality on recurrence plots and allow m and τ to
simultaneously travel through a feasible set. Pareto
optimality describes an optimization having at least
two objectives [23,29]. A solution is Pareto optimal
if and only if any of its objectives cannot be improved
without a deterioration in at least one objective [23,29].
A Pareto front is a set of Pareto optimal solutions. In
an objective space, plotting the optimum of the corre-
sponding objectives leads to a Pareto front.

2.1 Recurrence-based reconstruction

A recurrence plot [32] is a visualization of nonlinear
dynamics captured in a binary recurrence matrix by

Ri, j =
{
1 for ||XXXi − XXX j || ≤ ε

0 for ||XXXi − XXX j || > ε
(2)

where Ri, j is an entry of the matrix, XXXi and XXX j

are a vectorial state of an attractor. Here, i, j ∈{
1, 2, · · · , N

}
, N is the order of the matrix and rep-

resents the length of a time series taken in a recurrence
quantification analysis, ε is a threshold, and ||·|| is a dis-
tance measure. Our calculation is based on Euclidean
distance || · ||2.

A recurrence plot depends on three parameters, ε

that defines a recurrence (Eq. 2) and m and τ for a
reconstruction of a vectorial state XXXi from a time series
via Eq. (1). Here, we fix the recurrence rate (RR) of
recurrence plots, thus allowing ε to be adaptive to the
percentage of neighborhood points (RR=10%). Recur-
rence rate is a recurrence quantification measure that
quantifies the density of recurrence points in a recur-
rence matrix [32], satisfying RR = 1

N2

∑N
i, j=1 Ri, j .

We then let (m, τ ) be adjustable and travel through all
feasible choices. Pareto optimality is introduced to find
an optimal parameter set (m∗, τ ∗) under which recur-
rence plots yield more robust results. The diagonal and
the vertical lines in a recurrence matrix together are
used as a measure to quantify the robustness.

Among recurrencequantificationmeasures, the deter-
minism DET quantifies the dynamics of a system by
diagonal lines. The trapping time TT quantifies the
dynamics of a system by vertical lines. Here, DET and

TT are calculated via

DET =
∑N

l=lmin
l P(l)∑N

l=1 l P(l)
(3)

TT =
∑N

v=vmin
vP(v)∑N

v=vmin
P(v)

(4)

At a given length l, P(l) is a histogramof diagonal lines
of which the length is equal to l in a recurrence matrix
(Eq. 2). At a given length v, P(v) is a histogram of ver-
tical lines of which the length is equal to v. Also, lmin

and vmin represent the minimal length for correspond-
ing calculations. A diagonal line of length l is closely
related to the divergence of a trajectory segment [32].
During l time steps, the trajectory segment of length
l is close under the time evolution. A vertical line of
length v implies that the consecutive l points are close
[32], thus being trapped in an identical state. Without
explicit mentioning, we set lmin = 2 and vmin = 2.

A recurrence-based reconstruction can be described
by the following equation and shown in Fig. 1.

min
(m,τ )

(
SDDET(m, τ ), SDTT(m, τ )

)

SDDET(m, τ ) =
√√√√ 1

Nw − 1

Nw∑
t=1

(DETt − μDET)2

SDTT(m, τ ) =
√√√√ 1

Nw − 1

Nw∑
t=1

(TTt − μTT)2

μDET = 1

Nw

Nw∑
t=1

DETt (m, τ )

μTT = 1

Nw

Nw∑
t=1

TTt (m, τ )

DETt = DETt (m, τ ), TTt = TTt (m, τ )

m ∈ {
2, 3, · · · , 20

}
, τ ∈ {

2, 3, · · · , 20
}

(5)

where Nw depends on the length of a time series and
represents the total number of slidingwindows to calcu-
late recurrence plots, and DETt is the determinism that
is calculated via Eq. (3) at a given (m, τ ) and a given
t−th window (Fig. 1A–C). Similarly, TTt is the trap-
ping time calculated via Eq. (4) at a given (m, τ ) and
a given window. An increase of t leads to a time series
with determinism {DETt } and that with trapping time
{TTt } (Fig. 1D). Also, μDET and SDDET correspond
to the mean and the standard deviation of {DETt }Nt=1
(Fig. 1D), respectively. Similarly, μTT and SDTT cor-
respond to those of {TTt }Nt=1, respectively. All sliding
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Fig. 1 Aworkflow of recurrence-based attractor reconstruction.
A The reconstruction starts from a univariate time series. B At
time t and a given parameter set (m, τ ), we look at the the t−th
window including point sets {xi }(m−1)τ+S

i=t and get S number
of reconstructed states via Eq. (1). C We obtain a recurrence
plot of those S states via Eq. (2) and calculate DETt (m, τ ) and
TTt (m, τ ) via Eqs. (3) and (4), respectively.D Increasing t leads

to a time series {DETt } of DET and that {TTt } of TT. At a given
(m, τ ), we calculate the standard deviation SDDET of {DETt }
and that SDTT of {TTt }. E We let (m, τ ) travel through a grid,
leading to variations of SDDET and SDTT.FWeminimize SDDET
and SDTT together by Pareto optimizations (Eq. 5). G We man-
ually select an optimal parameter set (m∗, τ ∗) by comparing the
maximum of local maxima with the global maximum in the (m,
SDTT)-plane

windows have an equal number (S) of states under dif-
ferent m or τ (Fig. 1B). We set S = 500, which is
enough to cover the dynamics of one day in our exper-
iments. However, the value of S should be application
dependent and ensure a sliding window covering the
dynamics that matters.

Two considerations exist in using both DET and
TT for a recurrence-based reconstruction. The mea-
sure DET shows the ability to disambiguate between
stochastic and deterministic dynamics [31,58]. The
degree of determinism (predictability) of a system can
bequantifiedbyDET [32,33].AuseofDET is thus con-
sistent with our goal to identify deterministic dynam-
ics in a real-life signal. In addition, the measure TT

shows the ability to signal a change of dynamics from
recurrence plots [36]. How long a system is trapped
in a specific state can be determined by TT [32]. We
thus utilize TT to identify changes related to dynamical
states.

2.2 Pareto optimal solution

We define a rule to manually select a unique optimal
parameter set (m∗, τ ∗) from Pareto optimal solutions.
The rule is that at (m∗, τ ∗) recurrence plots should yield
a large SDTT at the cost of a smallm.We select (m∗, τ ∗)
by the features of solutions in the Pareto and the
reordered fronts. Plotting SDDET against SDTT yields
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Fig. 2 A flowchart to select the Pareto optimal parameter set,
(m∗, τ ∗). Scenario C2 is exemplified. The maximum of local
maxima is the global maximum, (m∗, τ ∗) thus exists and corre-
spond to (m, τ ) where the coincidence ocurrs

the (SDDET, SDTT)-plane. Plotting m against SDTT

yields the (m, SDTT)-plane. In the (SDDET, SDTT)-
plane, all feasible solutions to Eq. (5), which cannot
be dominated by each other, outline a border repre-
senting the Pareto front (Fig. 1F). A reordered front is
outlined by all feasible solutions and their correspond-
ing objectives in the (m, SDTT)-plane (Fig. 1G). All
Pareto optimal solutions and their objectives presented
in the (SDDET, SDTT)-plane result in the Pareto front
(Fig. 1F). All those solutions and corresponding objec-
tives presented in the (m, SDTT)-plane result in the
reordered front (Fig. 1G). More information related to
the Pareto front and the reordered front can be found
in Sect. 2, Supplementary Information (SI, Section 2).
Finally, we focus on the reordered front and compare
the local maxima with the global maxima, leading to
four scenarios in selecting (m∗, τ ∗), cf. Fig. 2.

(C1) If none of local maxima is observed, then
(m∗, τ ∗) is ambiguous, and we should be skep-
tical about the existence of (m∗, τ ∗).

(C2) If the maximum of the local maxima corre-
sponds to the global maximum, then (m∗, τ ∗)
exists and corresponds to the (m, τ ) under

which the maximum of the local maxima
and the global maximum are simultaneously
reached.

(C3) If the maximum of local maxima is close to
the global maximum, then we select (m, τ ) that
corresponds to the maximum of local maxima
as (m∗, τ ∗).

(C4) If themaximumof localmaxima is distant from
the global maximum, then we select the (m, τ )

with the smallest of m that leads SDTT to be
close to the global maximum as (m∗, τ ∗).

In our experiments, we select the parameter (m, τ )

underwhich theglobalmaximumis reached as (m∗, τ ∗)
in two scenarios. The maximum of local maxima cor-
responds to the global maximum, or no local maxima
exists.

2.3 Surrogate data testing

An alternative tool to tell the difference between
stochastic and deterministic dynamics is to conduct sur-
rogate data testing [18,27,44,53]. One defines a null
hypothesis and then resamples an original time series
to construct a surrogate. The construction ensures that
the surrogate exhibits stochastic dynamics and satis-
fies the defined null hypothesis. Comparisons between
the original time series and its surrogate allow reject-
ing or accepting the corresponding null hypothesis
[18,27,44,53]. We utilize three surrogates to test the
underlying dynamics of a real-life demand process,
addressing certain critical properties, such as indepen-
dent and identical distribution, linearity, and irregu-
larity. The three surrogates are shuffle-based, Fourier-
based, and truncated amplitude-adjusted Fourier trans-
form (AAFT) surrogates.

Shuffle-based surrogate randomly shuffles an orig-
inal time series [27,53]. The null hypothesis (H0,1) is
that the time series underlies an independent and iden-
tically distributed process [27,53]. Shuffle-based sur-
rogate can test that whether uncorrelated noise such
as Gaussian noise is responsible for the underlying
dynamics.

Fourier-based surrogate and truncatedAAFT resam-
ple an original time series by the complex numbers
derived from Fourier analysis. Fourier-based surrogate
applies Fourier analysis on an original time series and
then shuffles either the phase or the amplitudes of the
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resulting complex numbers [27,53]. The null hypoth-
esis (H0,2) is that the time series does not contain any
nonlinearity [27,53]. By shuffling the phase angles in
the Fourier-based method, we can test whether a sta-
tionary linear Gaussian process is responsible for the
underlying dynamics.

Truncated AAFT shuffles the frequency of the
amplitudes of the complex numbers calculated from
an original time series and, however, preserves the dis-
tribution of the amplitudes [27,53]. The null hypothesis
(H0,3) is that the time series represents a rescaled lin-
ear Gaussian process [27,34,53]. Truncated AAFT can
test whether a stationary linear process is responsible
for irregular fluctuations [34].

Many surrogate data methods exist in testing a null
hypothesis, such as a pseudo-periodic test [49] and a
wavelet-based surrogate [21]. The reader may refer to
a recent review about surrogate data in [27]. We use a
package from Julia [4], TimeseriesSurrogate.jl [12,54]
to shuffle a real-life demand process, generating the
three types of surrogates.

3 Empirical data

RideAustin [38], a nonprofit enterprise providing ride
share service in the city of Austin, Texas, the USA,
released a dataset [39], point process data (an event
time series) that records the arrivals of every transac-
tion from 4 June 2016 to 13 April 2017. The release
of the dataset [39] is to promote research in data anal-
ysis and transparent transportations [2,22,57]. A ride-
sharing market is a representative case of the growing
on-demand economics [45]. We thus apply recurrence-
based reconstruction and surrogate data testing on that
empirical dataset [39].

Three reasons exist for us to exemplify demand
dynamics in a ride-sharingmarket. Firstly, non-equilibrium
prices occur [45], and implementing a dynamic pricing
strategy is profitable for both consumers and a driver
(seller) [45]. Secondly, in a ride-sharing market, the
three variables, price, demand, and supply, highly inter-
act in time and also in space [5], yielding a dynamical
system with strong interactions. Thirdly, a ride-sharing
market provides a testing ground for nonlinear time-
series analysis of heterogeneous dynamics, since on-
peak and off-peak patterns are important features in a
traffic system [1,22,42].

In total, the dataset [39] has 1,494,125 entries (trans-
actions). Each transaction includes information related
to the time when a ride is created and starts (Fig. 3A),
and when a ride is completed, as well as the localiza-
tion data such as the longitude and the latitude [39].
Information related to prices such as base fares and
total fares is also included. We take four procedures to
aggregate the point process data (Fig. 3A–D) and then
find an optimal parameter p∗ to yield a time series of
demand via Eq. (6).

P1: Aggregate transactions every p minutes. Here,
p is a parameter that relates to the sampling
rate and determines the frequency of aggre-
gations. One counts the number of transac-
tions every p minutes. Each transaction has
the field “started_on” to record the arriving
time of a consumer. We order the dataset
by the field “started_on”. The dataset thus
starts at 2016/06/04T00:18:49Z1 and ends at
2017/04/13T18:59:43Z (Fig. 3A). For example,
at p = 20, we count the total number of trans-
actions whose field “started_on” is between
2016/06/04T00:00:00Z and 2016/06/04T00:2
0:00Z, yielding y1. We then count the number
number of transactionswhose field “started_on”
is between2016/06/04T00:20:00Zand2016/06/
04T00:40:00Z, yielding y2. In a similar man-
ner, we thus get a time series of raw demand,{
y1, y2, · · · , yNp

}
. Here, yNp depends on p and

represents the total length of raw demand.
P2: Obtain a raw demand. At p, an aggregation

yields a time series of raw demandwith yNp data
points (Fig. 3B). At p = 20, yNp = 22, 593. At
p = 100, yNp = 4, 518.

P3: Apply a linear regression for a detrendeddemand.
At time t , we make a linear regression on the
point set

{
yt−10, yt−9, · · · , yt , y1, · · · , yt+10

}
and then find the linear fitting value ŷt that fits
the point yt (Fig. 3C). A detrended demand rep-
resents the time series,

{
yt − ŷt

}
. In SI, Sec-

tion 3 (SI-3) provides an algorithm describing
the regression and the detrending procedures.

P4: Apply the Pareto optimality for an optimal
parameter p∗. We let p ∈ {5i : i =
4, 5, · · · , 40}. At an individual p, procedures

1 “− 05:00” in Fig. 3A indicates an adjustment to UTC-5 (East-
ern Time in the USA), which is different from the visualization
in the original dataset [39].
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P1 to P3 are applied. This yields 37 time series
of detrended demand. For a given p and the
corresponding detrended demand, we follow
the workflow of conducting sliding windowed
recurrence analysis (Fig. 1A–E). This leads
to the minimum of SDDET and that of SDTT

(Fig. 1E). Varying the parameter p yields two
sets that contain the minimum of SDDET and
that of SDTT, respectively. Pareto optimality
is applied on those SDDET and SDTT for an
optimal parameter p∗. At p∗, the correspond-
ing detrended demand represents ride-sharing
demand, becoming the focus of our empirical
analysis of demand dynamics.

The following equation can format those four pro-
cedures (P1–P4)

min
p

(
min
m,τ

SDDET(m, τ, p), min
m,τ

SDTT(m, τ, p)
)

SDDET(m, τ, p) =

√√√√√ 1

Nw
p − 1

Nw
p∑

t=1

(DETt − μDET)2

SDTT(m, τ, p) =

√√√√√ 1

Nw
p − 1

Nw
p∑

t=1

(TTt − μT T )2

μDET = 1

N

Nw
p∑

t=1

DETt (m, τ, p)

μTT = 1

N

Nw
p∑

t=1

TTt (m, τ, p)

m, τ ∈ {
2, 3, · · · , 20

}
, p ∈ {

5i : i = 4, · · · , 40
}
(6)

where Nw
p is the total number of sliding windows for

a given detrended time series, and DETt and TTt in
Eq. (6) depend on m, τ and p.

The rule that under a reasonable sampling rate recur-
rence plots yield a reliable dynamics is applied to define
the objectives in Eq. (6). The reliability is quantified
by the standard deviations of recurrence quantification
measures as well. However, the dynamics can be repre-
sented by either diagonal or vertical lines. The reason
to take the rule is that the diagonal and the vertical
lines represent different types of dynamics [32]. The
optimal sampling rate should lead to a time series with

Fig. 3 Recurrence-based reconstruction to sample point process
data by optimizing the parameter p∗ for aggregations of demand.
AThedataset [39] records the arrivals of each transaction, includ-
ing the time when the transaction is created. B Aggregating the
number of transactions every p minutes leads to raw demand. C
Applying linear regression on raw demand leads to a time series
of demand. At time t , a detrended demand is equal to the minus

between the raw demand yt and its linear fit ŷt . D Recurrence-
based reconstruction (Fig. 1 and Eq. 5) is applied on the time
series of demand. At a given p, varying (m, τ ) produces a time
series of SDDET(m, τ, p) and that of SDT T (m, τ, p).EThe opti-
mal parameter p∗ is chosen from Pareto optimal solutions to
Eq. (6)
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the reliable type of dynamics, which is unrelated to the
choices over the diagonal or the vertical lines. There-
fore, Eq. (6) aims for an optimal value of p∗ under
which the minimum between the minimum of SDDET

and that of SDTT is chosen.
Furthermore, the dataset from RideAustin [39] is

assumed to be attributed to a Poisson process in the
modeling of dynamic pricing problems [2]. We gener-
ate a new dataset to test the null hypothesis that demand
satisfies a Poisson process. Following the assumption
in Ref. [2], we randomly generate five transactions
per minute. We then count the number of transactions
every p∗ minutes. Here, p∗ is derived from Eq. (6)
as the dataset from RideAustin [39] is applied with
recurrence-based reconstruction (Fig. 1 and Eq. 5).
A simulated Poisson demand is thus generated. The
detrended algorithm (SI Sect. 3) is applied on the sim-
ulated Poisson demand. We call the detrended result a
Poisson process in the following sections.

Finally, the paradigm of recurrence-based recon-
struction (Eq. 5) is applied to six benchmarking systems
(SI, Table S1) as well. They are the Rössler system [40]
with periodic and chaotic dynamics, theDuffing system
[24] with periodic and chaotic dynamics, the Duffing
system where a stochastic resonance is achieved, the
non-auto FitzHugh–Nagumo system [14], the multi-
fractional Gaussian noise, and an autoregressive model
of order 2. Stochastic resonance is a phenomenon tak-
ing place when a nonlinear signal is amplified and opti-
mized by the presence of noise [3,15]. More details
about the six systems can be found in SI Sect. 1. Here,
we utilize the Rösser system and the Duffing system to
show the feature of deterministic dynamics, the non-
auto FitzHugh-Nagumo model and the stochastic res-
onance to show that of deterministic dynamics con-
taminated by different levels of noise, and the multi-
fractional Gaussian noise and the autoregressive model
to show that of stochastic dynamics.

4 Results

SI Section 4 shows the results as the paradigm (Eq. 5
and Fig. 1) is applied on benchmarking systems. Here,
we show the results as the paradigm is applied on empir-
ical data [39], its three types of surrogates, and the Pois-
son process. We firstly get an optimal parameter p∗ via
Eq. (6) and then a time series of ride-sharing demand.
We shuffle the ride-sharing demand by shuffle-based,

Fourier-based, and truncatedAAFTsurrogates. Finally,
the dynamics of ride-sharing demand is compared with
its three surrogates and the Poisson process.

Prior to show demand dynamics, we shall conclude
the optimal sampling rate to process the point process
data from RideAustin [39]. Figure 3E shows the four
Pareto optimal solutions to Eq. (6), including p = 80,
85, 95, and 100. At p = 100, the minimum of SDDET

is the second smallest, and the minimum of SDTT is
the third smallest (Fig. 3E). The performances are rea-
sonable for both SDDET and SDTT. We thus aggregate
transactions every p∗ = 100 minutes and then get a
time series of ride-sharing demand by the de-trending
algorithm (SI, Sect. 3).

4.1 Ride-sharing demand versus Poisson process

The dynamics of the ride-sharing demand is compared
with that of the Poisson process in Fig. 4 and with
that of three types of surrogates in Fig. 5. Difference in
statistics between the ride-sharing demand, the Poisson
process, and the three surrogates is shown in Fig. 6. The
statistics aremade over all slidingwindows (Eq. 5)with
respect to DET and TT as lmin and vmin change from 5
to 50 (Fig. 6), respectively.

The Poisson process fails to capture the dynam-
ics of the ride-sharing demand, which is evidenced
by several observations. In the reordered front, the
ride sharing demand has multiple local maxima of
which the maximum corresponds to the global max-
imum (Fig. 4A2). In addition, m spans from 2 to 18
(Fig. 4A2). Those two features are consistent with the
feature of deterministic dynamics, such as the feature
of Rössler systems (SI, Fig. S1A) and the Duffing sys-
tems (SI, Fig. S1C and S1D). However, for the Poisson
process, no local maximum exists and m clusters at
2 in the reordered front (Fig. 4B2), being consistent
with the feature of the autoregressive model shown
in SI, Fig. S1H. Figure 4C4 further indicates a high
confidence in concluding deterministic dynamics of
the ride-sharing demand, which contradicts the feature
of the Poisson process (Fig. 4D4). In recurrence plot,
the ride-sharing demand has non-interrupted diagonals
(Fig. 4C4), being consistent with deterministic dynam-
ics shown in SI, Fig. S3A2 to S3D2. However, recur-
rence plot of the Poisson process does not exhibit either
the periodicity or the long diagonals (Fig. 4D4)
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Fig. 4 Differences in dynamics between the ride-sharing
demand and the widely assumed Poisson process (p∗ = 100).
A1 and A2. Pareto front and reordered front of the ride-sharing
demand. The maximum of the local maxima corresponds to the
global maximum. B1 and B2. Pareto front and reorder front of
the Poisson process. No local maxima exists. C1 to C3. An orig-
inal time series, a detrended time series, and a zoomed time
series of ride-sharing demand. Two patterns exist: a slow and

a fast dynamics. C4. A recurrence plot of ride-sharing demand
(Fig. 4C3). D1 to D3. An original time series, a detrended time
series, and a zoomed time series of the Poisson process. D4. A
recurrence plot of the Poisson process (Fig. 4D3). Ride-sharing
demand exhibits periodicity and organizations in recurrence plots
(Fig. 4C4), whereas the Poisson process fails to capture the
dynamics in recurrence (Fig. 4D4)
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Fig. 5 The dynamics of the surrogates of the ride-sharing
demand. A The dynamics of the shuffle-based surrogate. B The
dynamics of the Fourier-based surrogate.C The dynamics of the
truncated AAFT surrogate. A1 to C1: Pareto front. A2 to C2:
Reordered front. A3 to C3: Time series. A4 to C4: A zoomed
plot of a segment of A3 to C3, respectively. A5 to C5: Recur-
rence plot of the time series shown in A4 to C4, respectively. The

shuffle-based surrogate shows a feature consistent with the Pois-
son process (Figs. 4D and 5A). The Fourier-based surrogate has
the Pareto optimal embedding dimension that clusters atm∗ = 2
(Fig. 5B). Sword-like patterns [20] are shown in the recurrence
plot of the Fourier-based and the truncated AAFT surrogates to
indicate the slow and the fast dynamics (Fig. 5B5 and C5)
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Fig. 6 A statistics of μDET and that of μTT. A The 95% and
the 5% percentiles of DET among all sliding windows (Eq. 5)
as lmin varies. The statistics of μDET related to the ride-sharing
demand has no overlaps with that of the Poisson process, the
shuffle-based, the Fourier-based, and the truncated AAFT surro-

gates.B The 95% and the 5% percentiles of TT among all sliding
windows (Eq. 5) as vmin varies. As vmin increases, μTT goes to
zero for the Poisson process and those three surrogates; however,
μTT is nonzero for the ride-sharing demand

4.2 Ride-sharing demand versus surrogates

For the shuffle-based surrogate, its feature is con-
sistent with that of a Poisson process, instead of
the ride-sharing demand (Fig. 4A2 and C4), with
important observations listed in the following. (i)
In the (m,SDTT)-plane, a local maximum is absent
(Fig. 5A2), and (ii) the recurrence plot exhibits isolated
dots (Fig. 5C5). Those two observations are different
from the features of the ride-sharing demand (Fig. 4A2

and C4). We therefore reject H0,1.
For the Fourier-based surrogate, the feature in the

Pareto and the reordered fronts is similar to that of a
Poisson process (Figs. 4B1, B2, 5B1, and B2). For the
truncated AAFT, a local maximum exists at (m, τ ) =
(6, 15) in the reordered front; however, the change of
SDTT is relatively small (Fig. 5C2), which is similar to
the feature of the non-auto FitzHugh-Nagumo model
shown in Fig. S1F.

Moreover, recurrence plots of the Fourier-based and
the truncated AAFT surrogates exhibit sword-like pat-
terns along the diagonal line (Fig. 5B5 and C5). The
phenomenon is related to the slow and the fast dynam-
ics within a time series [20]. Figure 5B3, B4 and C3, C4

further show a heterogeneity of dynamics in the cor-
responding surrogates. However, neither the Fourier-
based nor the truncated AAFT shows the recurring
long diagonals that the ride-sharing demand presents
(Figs. 4C4 and 5B5, C5). Different features between the
ride-sharing demand and the surrogate data (Fourier-
based and truncated AAFT) reject H0,2 and H0,3. This
suggests that the nonlinearity in deterministic func-

tions is responsible for the dynamics of the ride-sharing
demand.

As lmin and vmin increase (Fig. 6), the changing pat-
terns of μDET and μTT also indicate that deterministic
dynamics is a constituent part of ride-sharing demand.
The reasons for that are briefly discussed in the fol-
lowing. (i) At lmin = 50, the ride-sharing demand
presents a nonzero μDET (Fig. 6A), which is consis-
tent with deterministic dynamics shown in SI, Fig.
S5A1 and S5A2. (ii) A linear correlation exists between
lmin and μDET, which is consistent with the Rössler
system (SI, Fig. S5A1), the Duffing system (SI, Fig.
S5A2), and the stochastic resonance (SI, Fig. S5A3).
(iii) A plateau in μTT is observed in the middle as vmin

increases (Fig. 6B), which is similar to the feature of
the stochastic resonance (SI, Fig. S5B3) where deter-
ministic dynamics is contaminated by a low level of
noise (SI, Table S1).

The statistical tests of DET and TT further reject
H0,1 to H0,3 that the three types of surrogates cor-
respond to from the following observations (Fig. 6A
and B). For neither the 95% nor the 5% percentile of
DET, no overlapping between the ride-sharing demand
and the three types of surrogate data can be observed
(Fig. 6A). This indicates statistically significant differ-
ences between the ride-sharing demand and its surro-
gates. For TT, the 5% percentile of the ride-sharing
demand goes to zero (Fig. 6B), which is indicative for
a contamination of noise. For the three types of surro-
gate data, μTT goes to zero at vmin = 15 (Fig. 6B). For
the ride-sharing demand, however, μTT does not tend
to zero (Fig. 6B).
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Fig. 7 A reconstruction of an on-demand attractor. A A time
series covers one week. The ride-sharing demand exhibits the
slow and the fast dynamics. B An on-demand attractor is recon-
structed and shows five inner and two outer circles.CAn outline
of the on-demand attractor further indicates the dynamics and
the period-7 limit cycle oscillations. D The Poisson process is
incapable of capturing the dynamics of the ride-sharing demand
shown in Fig. 7A

4.3 Reconstructed attractor

Finally, a reconstructed attractor confirms that the
ride-sharing demand is consistent with deterministic
dynamics (Fig. 7B and C). The attractor is recon-
structed under (m∗, τ ∗) = (13, 3). The calculation
is from the recurrence-base reconstruction (Fig. 1 and
Eq. 5) and an observation of Fig. 4A2. The periodicity
of the reconstructed attractor is around one week, cf.
Figure 4C4. Figure 7A thus shows a time series that
covers one week. Figure 7B shows the attractor recon-
structed from the exemplified time series (Fig. 7A).
Figure 7C is an outline of the reconstructed attractor to
show a switching behavior. The following features are
evident.

(1) The system switches between the slow and the fast
dynamics (Fig. 7A–C).

(2) The slow dynamics takes the five inner circles, cf.
Figure 7A–C.The fast dynamics takes the two outer
circles, cf. Figure 7A–C. The oscillations produce
a periodic-7 limit cycle. Here, a circle is not closed,
cf. [28].

(3) However, the oscillations take different times to
complete an individual circle. For the time series
we present, the seven circles take 0.1, 0.14, 0.15,

0.18, 0.16, 0.14, and 0.13 weeks (Fig. 7A), respec-
tively.

Nevertheless, the Poisson process fails to preserve
either periodic oscillations (Fig. 4D4) or the slow and
the fast dynamics (Fig. 7D). The comparison further
confirms that the Poisson process is incapable of cap-
turing the dynamics of the ride-sharing demand.

For benchmarking systems, In SI, Fig. S4 shows the
efficiency of recurrence-based reconstruction to pre-
serve the topology of the well-known attractors under
the optimal embedding calculated via Eq. (5) and SI,
Fig. S1. As the standard method based onmutual infor-
mation to locate τ becomes difficult (SI, Fig. S2),
recurrence-based reconstruction opens a new way to
find an optimal m and τ by optimizing the recurrence
quantifications (SI, Fig. S1).

A decision matrix is proposed in SI, Sect. 5. We
compare the feature of ride-sharing demand with well-
known dynamics from four categories. They are the
Pareto front and the reordered front, recurrence plots,
the statistics of DET and TT, and reconstructed attrac-
tors. More descriptions and results can be found in SI,
Sect. 5. The comparison shows that while the Poisson
process presents stochastic dynamics, the ride-sharing
demand is consistent with deterministic dynamics (SI,
Table S3).

5 Discussions

Dynamic pricing problems are widely modeled as
stochastic systems where either Gaussian noise or
a Poisson process can be assumed [7,11,37,51,61].
Here we have addressed the open question whether
low-dimensional attractors can be responsible for the
dynamics of a real-life demandprocess that implements
dynamic pricing strategy. The paradigm (Fig. 1) we
have proposed shows that neither the Poisson process
nor the Gaussian noise is able to fit underlying dynam-
ics of empirical data from RideAustin [39] (Figs. 4 and
5). However, a period-7 attractor fits the dynamics by
irregularly switching the slow and the fast dynamics
(Fig. 7). This challenges the three types of dynamic
pricing approaches that utilize stochastic demand to
fit uncertainty, namely a stochastic process, and para-
metric or nonparametric stochastic demand functions.
Findings emphasize the importance of showing non-
linear dynamics of demand under uncertainty. The
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proposed paradigm pioneers the analysis of uncertain
demand from the perspective of complex systems.

5.1 Recurrence-based reconstruction

Time delay embedding is silent on practical choices
of an embedding dimension and a time delay for a
reconstruction [25,52]. The recurrence-based recon-
struction we suggested extends the optimal embedding
method that performs an optimization to find an embed-
ding [48], providing practitioners an algorithmicway to
find a desired embedding [25,26,48]. Existingmethods
rely on nearest neighbors or distances among recon-
structed states in the definition of an optimal embed-
ding [25,26,35,47,48,52]. Recurrence-based recon-
struction (Eq. 5 and Fig. 1), however, utilizes recur-
rence quantification measures and Pareto optimality
together (Eq. 5) to achieve an optimal embedding.
This allows a flexible definition to capture the desired
dynamics that one cares about and extends the applica-
bility of recurrence quantification analysis into a real-
life setting as noise or non-stationarity is inevitable.
Our results demonstrate that contemporary optimiza-
tion algorithms can complement recurrence plots and
boost their applicability.

Recurrence-based reconstruction can distinguish
deterministic dynamics fromstochastic dynamics (Figs. 4,
5, and 6, and SI, Figs. S1 to S5), for which we have
proposed a decision matrix in SI, Table S3 and SI Sect.
5.3. For example, optimal solutions outline different
reordered fronts in the (m,SDTT)−plane (Figs. 4 and
5 and SI, Fig. S1), providing an indicator of determin-
istic dynamics. Recurrence quantificationmeasures are
applied on S&P 500 returns [55], brake noise [36],
and earth climate [58] to distinguish deterministic from
stochastic dynamics in practical problems. Here, our
paradigm (Fig. 1) provides a way to cross-check recur-
rence quantificationmeasures, as suggested inRef. [30]
to avoid pitfalls of recurrence plots, and draw a con-
clusion of deterministic systems by scoring individual
perspectives of dynamics (SI, Table S3).

The paradigm (Fig. 1) identifies the dynamics solely
froma time serieswithout knowing the governing equa-
tions, which is expected to be applicable formany engi-
neering problems where the dynamics of uncertainty
remains disputable. For example, Markovian stochas-
tic process is assumed to model engineered vibrations
[60], whereas Oberst and Lai [36] demonstrate that

deterministic dynamics is responsible for many vibra-
tions in engineering. Our paradigm can be extended to
contribute to the debate by defining new optimization
objectives that cover the desired dynamics in engineer-
ing.

The generality of optimizing recurrence quantifica-
tion measures should be theoretically explored. There
are several interesting topics that are needed to be
explored. It could be interesting to compare (m∗, τ ∗)
derived from Eq. (5) with that from the standard
approach. It could also be interesting to investigate
how the objective functions (Eq. 5) of Pareto optimality
affects the choices for (m∗, τ ∗). For example, Eq. (5)
could use three or more recurrence quantification mea-
sures, or replace DET and TT with other measures.

5.2 On-demand attractor

Traditionally, models that combine stochasticity with
periodic trends are proposed to fit uncertainty of time
series [8]. The most important dynamics is quantified
by probability distributions [6,10,37,51], and the prob-
lem is then reduced to a fitting of the periodicity of
trends by equations [8]. Figures 4C4 and 7A–C, how-
ever, indicate that ride-sharing demand satisfies period-
7 limit cycle oscillations. This suggests that determinis-
tic dynamics is a constituent part of uncertainty. From a
modeling perspective, themessage is that period-7 limit
cycle oscillations dominate and describe the dynamics
of empirical data [39], instead of stochasticity.

The dynamics of uncertain demand is achieved in
the following way. Within a week, the attractor under-
lies the slow dynamics by completing five inner cir-
cles with small amplitudes (off-peak) and then moves
into the fast dynamics by completing two outer circles
with significantly larger amplitude (on-peak), relating
to findings on weekly traffic dynamics [22]. However,
the ratio we observed between the slow and the fast
dynamics is 5:2, rather than 4:3. The difference comes
from the fifth circle (ordered from the left to the right in
Fig. 7A). The circle represents a transient between the
slow and the fast dynamics. The fifth circle can under-
lie either the fast or the slow dynamics, depending on
individual weeks.

Our results explain the success of the application
of nonlinear dynamics in a traffic system. Similar
results have been presented previously, e.g., fitting the
susceptible-infected-recovered (SIR) model into the
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dynamics of Melbourne’s (Australia) traffic systems
[42], also cf. [1] for the use of Koopman mode decom-
position to reconstruct the dynamics of the US-101
highway.

Our results confirm that a Poisson process fails to
reflect the dynamics that a ride-sharing market under-
lies. In a ride-sharing market, consumers’ demand
is inelastic because of fixed daily routines [45]. The
findings demonstrate that a careful identification of
demand dynamics becomes necessary for themodeling
of dynamic pricing problems. Recurrence-based recon-
struction allows finding an optimal sampling parameter
p∗ for processing raw data (Fig. 3 and Eq. 6), which
enables the extraction of the on-demand attractor. This
suggests that for point process data, such as a time series
of transactions, an optimal sampling rate could benefit
applications of the time delay embedding in dynamical
systems.

Schröder et al. [45] introduce game theory and pro-
pose a theoretical model for identifying the dynam-
ics that a time series of prices underlies in on-demand
markets of different countries. Here, we reconstruct the
on-demand attractor, further supporting the efficiency
of the method [45] that separates price changes into a
slow and a fast time scales for dynamic pricing prob-
lems. As an on-demand attractor has been extracted, a
future study that utilizes deterministic chaotic informa-
tion [28] as opposed to assuming a stochastic demand
becomes critical for dynamic pricing.Applying the the-
ory that studies a dynamical system to a dynamic pric-
ing problem would be needed for better understanding
and predicting the behavior of demand and prices.

Acknowledgements We thank S. Lu’s PhD confirmation
examiners Michael Small, Yoshito Hirata, and José Nathan Kutz
who helpfully criticized the content and provided suggestions
to improve the results. We also thank Guoqiang Zhang who
critically reviewed S. Lu’s dissertation. S. Lu is supported by
the Australian Research Council through the Centre for Trans-
forming Maintenance through Data Science (Grant Number
IC180100030).

Author contributions SL did conceptualization, methodology,
software, validation, formal analysis, investigation, resources,
data curation, writing—original draft, writing—review & edit-
ing. SOperformedconceptualization, resources,writing—review
& editing, supervision.

Funding OpenAccess funding enabled and organized byCAUL
and its Member Institutions.

Data availability The empirical dataset is referred to Ref. [39].
All algorithms to analyze the data are contained in themanuscript
or referred to in the supplementary information.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References
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