Instructing Robots with Natural Language via
Bi-RNNs for Temporal Logic Translation

Suryansh Sharma, Ki Myung Brian Lee, Mason Brown, Graeme Best
University of Technology Sydney, Australia
{suryansh.sharma, kmbrian.lee, mason.brown, graeme.best}@uts.edu.au

Abstract

We consider the problem of planning trajecto-
ries that satisfy natural language instruction.
We explore translating natural language com-
mands to temporal logic formulae to resolve
ambiguities for planning. Our main contribu-
tion is a new bi-directional recurrent neural net-
work (Bi-RNN) architecture for this translation
task. We experimentally show that the pro-
posed Bi-RNN architecture achieves 1.6% bet-
ter accuracy, 20% faster inference time, and
98% faster training time compared to leading
models owing to bidirectional processing. The
overall system, including a planning algorithm,
exhibits useful diverse behaviours that satisfy
given instructions.

1 Introduction

Natural language is central to how humans interact with
other intelligent beings. Humans naturally communicate
their intent and instructions to others in natural lan-
guage, whether spoken or written. A similar ability to
instruct robots with natural language will significantly
enhance accessibility for non-expert users, accelerating
the adoption of robots. Natural language communica-
tion with robots will render interaction as seamless and
intuitive as with humans.

Recent advances in natural language processing (NLP)
and formal methods provide some means toward this
end. NLP techniques allow machines to understand
natural language. Meanwhile, formal methods provide
high-level task representations such as temporal logic
that facilitate automatic verification and synthesis of be-
haviours [Kupferman, 2018].

However, instructing robots with natural language re-
mains challenging. Black-box NLP techniques typically
suffer from contextual and spatial ambiguities. A com-
mon remedy is augmentation with more data or other
modalities, such as vision, which necessitates a trade-off

Natural Language Command Temporal Logic Formula

NLP Model

TL Engine
F(blue_room &
F(green_room))

“Go to the blue
room via the
green room”

@
93J] XejuAs

blue_room F

green_room

Planner

Figure 1: Use case diagram of the proposed pipeline that
takes natural language commands to instruct the path
of a robot. A natural language sentence is pre-processed
and fed into an NLP model for inference. A NLP model
outputs a temporal logic (TL) formula. The formula is
passed through a TL engine, creating a syntax tree of
the generated TL formula. The syntax tree is passed
through a planner to generate robot trajectories.

between accuracy and inference time. Formal task rep-
resentations are often unreadable for a non-expert user.

To bridge this gap, we explore using temporal logic
as an intermediate high-level task representation, as il-
lustrated in Fig. 1. Temporal logic side-steps ambiguity
challenges because it allows concrete specification of ex-
ecution order and well-defined mapping of spatial con-
cepts [Li et al., 2020] to geometric locations. Automatic
translation from natural language enhances accessibil-
ity for non-expert users. Previous work [Gopalan et al.,
2018; Chen et al., 2023] shows that such a translation is
possible for linear temporal logic.

Our main contribution is a new bidirectional recurrent
neural network (Bi-RNN) architecture for translating
natural language into signal temporal logic (STL) spec-
ifications. Bi-RNNs capture enhanced contextual infor-
mation by taking previous and subsequent inputs [Schus-
ter and Paliwal, 1997], whereas conventional RNNs rely
only on the previous input. Bidirectional processing of-
fers a better trade-off between accuracy and complexity.

Our experimental results support the benefits of the
proposed Bi-RNN architecture. The proposed model ex-
hibits significantly improved performance metrics, with
27.4% higher accuracy than [Gopalan et al., 2018], and
1.61% higher than [Chen et al., 2023], while the training
time is significantly reduced by around 98% compared
to both models. Combined with planning algorithms for
temporal logic, we demonstrate that the proposed meth-
ods serve as a useful framework for an effective human-
robot interface.

2 Related Work

To generate robot behaviours that comply with a given
natural language command, a possible approach is to
train a neural network as a ‘black box’ interface, as
done in modern NLP. Neural network models may be
trained to either directly generate robot behaviours
by imitating annotated behaviours [Stepputtis et al.,
2020], or predict the reward function corresponding to a
given natural language command [Williams et al., 2018;
Xie et al,, 2023a]. Such black-box methods are con-
venient and offer generalisation to unseen vocabulary.
However, generalisation also implies potential hallucina-
tion [Bang et al., 2023], and the opaqueness precludes
opportunities for certifying or debugging the system.

Classical NLP methods, on the other hand, are fully
transparent owing to using a deterministic parser for
‘structured’ natural language with a known, hand-coded
grammar [Naseem et al., 2021]. In robotics, structured-
language approaches have been explored with formal
task representations such as temporal logic [Finucane
et al., 2010] and planning domain description lan-
guage (PDDL) [Xie et al., 2023b]. Task representations
can serve as the objective function for planning, as task
completion can be algorithmically verified given robot
behaviour [Kupferman, 2018]. In particular, temporal
logic offers a favourable trade-off between expressiveness
and planning efficiency, with many algorithmic tools for
plan synthesis. However, hand-coded grammar is cum-
bersome for the system designer or restrictive for the
user because the same natural language command may
be paraphrased in many ways.

A recently emerging paradigm is to use neural net-
work models in conjunction with formal task represen-
tations serving as an intermediate layer. [Gopalan et
al., 2018] presents a neural sequence-to-sequence model
trained to translate commands into linear temporal logic
using RNNs, combined with a Markov decision process
solver to generate plans. [Chen et al., 2023] builds on this
model by adding dropout layers, which showed improved
performance. In a similar setting, we consider using
Bi-RNNs [Schuster and Paliwal, 1997, which previously
showed superior performance in other NLP tasks [Wang
et al., 2020].

3 Background on Random Signal
Temporal Logic

We consider a time-unbounded fragment of random sig-
nal temporal logic (RSTL) [Lee et al., 2021b]! as an in-
termediate high-level task specification between natural
language commands and the planning algorithm. RSTL
is defined over a set of event predicates £, which can
be, for example, “target encountered” or “reached des-
tination”. Given a set of event predicates, RSTL can
specify task specifications such as “eventually go to des-
tination” and “always avoid target”. RSTL naturally
supports reasoning over uncertainty, unlike determinis-
tic STL [Donzé, 2013], and can hence be used to encode
ambiguity inherent in natural language commands.

Formally, RSTL is built from a set of event predicate
FE € & is characterised by a Bernoulli random field over
the state space of a robot:

ENP(E‘X7t)7 (1)

where x is the state of the robot, and P(FE | x,t) is the
probability of event E occurring at state x and time ¢.
Given a set of random events &£, the syntax of an RSTL
formula @ is given in Backus-Naur form as:

=T|E|-®|®VT|DUT, (2)

where T is logical true, F € £, and ¥, ® are RSTL for-
mulae. — is logical negation, A is logical conjunction. U
is the temporal operator ‘Until’, and ®U WV means ¢ must
hold true until ¥. Other operators such as A (conjunc-
tion), F (‘in Future’, i.e., eventually) and G (‘Globally’,
i.e., always) can be derived from the syntax as:

DAY = (=D V -D),
Fo = TUd, (3)
G = ~F-d.

Whether a given trajectory X = xq...x7 satisfies an
RSTL formula ® at time ¢ is measured in terms of prob-
ability of success, P(X,t = ®). We use the mutually ex-
clusive (ME) approximation rule from [Lee et al., 2021b).
The benefits of using the ME approximation (4) are nu-
merical stability [Lee et al., 2021b] and its alternative
interpretation as a smooth approximation of determin-
istic STL [Gilpin et al., 2021].

The ME rule recursively computes the probabil-
ity of success in terms of log-odds L(X,t = ®) =

'RSTL introduced in [Lee et al., 2021b] supports time
domains on temporal operators F, G, and U, so that the
operators are only active within the domain. We consider a
subset of this language where the time domains are always
unbounded.

P(X,t=®)

10g m as follows:

LX,tET)=00
P(E | x4,t)
1—P(E|x4,t)’

L(X,t = —®) = —L(X,t =),

L(X,t = \/ ®;) = log Z exp L(X,t = @),

T
L(X,t = F0) =log Y exp L(X,7 = ®).

T=t

L(X,t = FE) =log

(4)

The ME approximation (4) is differentiable with re-
spect to trajectory X as long as the event predicates are
differentiable [Lee et al., 2021b]. This enables trajec-
tory and control synthesis via gradient ascent similar to
model predictive control:

0 0X
Ui+1 = Ui + EﬁL(Xa 0 ': (I))%a (5)

where Uj; is the ¢-th solution for control actions. The
partial derivative g% is obtained by differentiating the

dynamic model.

4 Problem Formulation

We are interested in synthesising robot behaviours that
comply with natural language commands. We consider
a robot described by a discrete-time dynamic model:

xpp1 = f(x¢,uy), (6)

where x; and u; denote the state and control vectors for
the robot, respectively, and f is the dynamic model.
Our objective is to synthesise a sequence of control
actions U = ug...ur of horizon T that satisfies a nat-
ural language command OV from the user. We write
X E CNE to mean that a trajectory X satisfies com-
mand CV%. Then, the problem of instructing robots
with natural language can be formulated as finding a
sequence of control actions, which can be stated as:

Problem 1 (Natural language planning). Given the dy-
namic model (6) and a cost function ¢, find a sequence
of control actions U with minimal cost that satisfies a
given natural language command CNE :

ml}n Z c(uy)

-
s.t. dynamics (6), (7)

X = ONE,
Here, the cost function ¢(u) penalises control actions

so that they are not needlessly large. More importantly,
a glaring challenge in Problem 1 is to algorithmically

determine whether a trajectory X satisfies the natural
language command X = CNE.

We mitigate this challenge by translating the natural
language command CV' to an RSTL formula ® as an
intermediate interface. With such translation, solving
Problem 1 is reduced to planning a satisfactory trajec-
tory for the translated RSTL formula ®, which can be
readily achieved by gradient ascent (5).

To this end, we assume that a labelled dataset is avail-
able between natural language commands and temporal
logic formula and learn a translation function that pro-
duces equivalent output. We consider two formulae ®4
and Oy logically equivalent (i.e. ®1 = ®g) if the cor-
responding Biichi automata are isomorphic when inter-
preted as linear temporal logic?. Unlike string equiva-
lence in typical NLP, temporal logic formaulae may be
written in different order but remain logically equiva-
lent. For example, F(A) A F(B) = F(B) A F(A). The
translation problem is then posed as maximising the log-
ical equivalence between predicted and ground truth for-
mualae:

Problem 2 (Temporal logic translation). Given a la-
belled dataset D = {(CNL, ®,)}N_,, find a translation
function F that mazimises overall logical equivalence be-

tween ground truth and prediction:

max Z 1D, = ®,),
E (8)
s.t. @, =F(CN),

where 1@)“ =o,)=11i ®, = ®,, and 0 otherwise.

5 Bi-RNN for Temporal Logic
Translation

Bi-RNN [Schuster and Paliwal, 1997] is proposed as a pa-
rameterisation of the translation function to solve Prob-
lem 2. Solving Problem 2 allows solving Problem 1 with
gradient ascent toward RSTL satisfaction as per (5).
An overview of the proposed Bi-RNN model is shown
in Fig. 2. A natural language command input is pre-
sented as a string and is converted to a numeric format
by the tokeniser. The numeric output from the tokeniser
is processed through the Bi-RNN network and converted
back to an appropriate TL formula in string format. In
what follows, we detail the functions of each component.

5.1 Tokeniser

The tokeniser converts string data to a numeric format.
Given a sentence in string format, the tokeniser outputs

2See [Kupferman, 2018] for Biichi automaton construc-
tion, and algorithmic determination of isomorphism. We use
the implementation in SPOT toolbox [Duret-Lutz and Poitre-
naud, 2004]

Natural Temporal
Language Logic
Sentence Formula
[Tokenizer J
Padded
Integer
Sequences
Padded
Integer ArgMax
Sequences
Vector of
Probabilities
= L A

Embedding Layer Output Layer

. J . J
Network
f Y s p
Bi-GRU Layer Dense Layer

N2 ~ =~
Figure 2: Proposed network architecture. The tokeniser
converts natural language and temporal logic commands
in string format to sequences of integers. The embedding
layer converts a sequence of integers into a sequence of
dense vectors. The bidirectional GRU (Bi-GRU) layer
learns sequential features. The dense and output layers
learn translation from sequential features to temporal
logic formulae.

a sequence of integers by assigning an integer token to
each unique word. The output is padded with zeros to
comply with a set length known as the max length. This
process requires a dictionary-like structure where the key
is the index of the integer token, and the value is each
word. We construct tokens over the input natural lan-
guage commands and the output TL formulae to share
the tokens for predicates.

All punctuation is stripped for the input natural lan-
guage commands, and tokens are assigned to each unique
word in the dataset separated by the whitespace char-
acter. For the output temporal logic formulae, tokens
are assigned to all predicates found in the dataset, and
the TL operators, F,G,U,A,V. The output sequence
length is set as the maximum length of the strings in the
dataset.

5.2 Network Architecture

The proposed network F' takes as input the padded se-
quence of integers x from the tokeniser and outputs a

Output Dim. Activation
Tokeniser (-, 34) NA
Embedding (-, 34, 100) None
BiGRU (-, 34, 128) sigmoid & tanh
Dense (v, 34, 64) ReLU
Output (-, 34, 152) Softmax

Table 1: Network Architecture Table: The table repre-
sents the output dimensions of each layer in the network
along with the activation function used.

dense probability vector § = F(z;0) where 6 are pa-
rameters. The network comprises three main types of
layers, which are 1) embedding, 2) bidirectional gated
recurrent unit (GRU), and 3) dense layers, as visualised
in the “network” block of Fig. 2.

The embedding layer converts the padded sequence
of integers from the tokeniser into a sequence of dense
vectors. Letting the input sequence of integers be x, the
i-th output of the embedding layer is simply the x;-th
column of the weight matrix:

w; = W;:nbedding (9)

The embedded word vectors are fed into a bidirec-
tional GRU to learn sequential patterns in the natural
language command. Bi-directional processing improves
understanding of contextual information and is benefi-
cial in translation tasks [Cho et al., 2014]. The bidirec-
tional GRU layer trains two independent GRU cells in
backward and forward directions:

BiGRU forward 3 backward
h; = [hi hi]a

hgorward _ GRU(’U)“ hgo_r{vard)’ (10)

backward __ backward
h; = GRU(wy, hi1§).

Each GRU cell computes an output for index i based
on the previous (for forward GRU) or the next (for back-
ward GRU) output. In doing so, the previous (or next)
output is gated by update and reset vectors z; and r;,
which are given by:

z; = sigmoid(W**w; + W*¥h, + b*),

r; = sigmoid(W"™ w; + W™h, +b"),

hi = tanh (W¥%w; + WY (r; @ hy) + b¥), (1)
hi =2z @hi + (1 — 2) @ hy,

where ® denotes the Hadamard element-wise product,
h, is the previous output for the forward GRU, and the
next for backward. Here, the reset vector r; controls the
influence of h, on the proposed output h;. The update
vector z; linearly mixes between the previous/next out-
put h, and h; The update and reset vectors z; and r; are

o 1 ol

"2 0 2 4 6 8 10 "2 0 2 4
(a) (b)

6 8 10

Figure 3: Example behaviours from the system. (a) “Go to the green room and the blue room”; (b) “Go to the blue
room via the green room”; (¢) “Avoid landmark 1 (red) and go to the yellow room”.

computed as independent neural networks with sigmoid
activation, which has output range [0.,1.].

The sequential features learnt using BiGRU are fed
into two fully connected layers, one with rectified lin-
ear unit (ReLU) [Fukushima, 1969] and the other with

softmax activation:

h?cnsc _ ReLU(Wdcnsch?iGRU + bdcnsc)’

gi — SoftmaX(Woutputh?ense + boutput). (12)
These two fully connected layers translate the sequen-
tial features from BiGRU to the temporal logic formula.
ReLU allows learning a complex FC layer while avoid-
ing the issue of vanishing gradients [Fukushima, 1969
common in neural network training. The softmax layer
generates a probabilistic output representing the proba-
bility of each token appearing in the translated formula.
Thus, an arg max operation over the tokens yields a se-
quence of integers that can be de-tokenised to a string
format.

5.3 Training and Evaluation

To train the proposed model, we first construct a to-
keniser from the dataset as per Sec. 5.1 by identifying
unique word tokens in the dataset. Using the tokeniser,
natural language commands and temporal logic formu-
lae are preprocessed into padded sequences of integer
indices. This promotes the use of the sparse categorical
cross-entropy loss, which can be computed as:

L(®) = Zloggi[xi]a (13)

where §;[z;] denotes the z;-th element in the probability
vector g;. The cross-entropy loss is a useful proxy to the

logical equivalence metric in Problem 2. It is useful be-
cause the cross-entropy loss is differentiable, whereas the
logical equivalence metric is not due to the intermediate
construction of a Biichi automaton. The two objectives
were found to be strongly correlated in our experiments.

6 Experimental Results

We experimentally evaluate the proposed Bi-RNN archi-
tecture. We first detail the implementation of the pro-
posed model and demonstrate the overall system from
commands to plan generation in a mock indoor environ-
ment. We then compare the performance of the pro-
posed model to previous work [Gopalan et al., 2018;
Chen et al., 2023], in terms of accuracy and computation
time.

6.1 Implementation

The proposed Bi-RNN was implemented using the Ten-
sorflow Keras API [Chollet and others, 2015]. The
gradient-ascent planner was implemented using Tensor-
flow based on [Lee et al., 2021b]. The proposed model
was trained on the Cleanup World dataset, which con-
tains natural language commands and the correspond-
ing TL formulae [Gopalan et al., 2018]. The dataset
was shuffled and split into training (for backpropaga-
tion), validation (for assessing performance during train-
ing) and testing sets (for assessing performance post-
training).

There were 34 unique tokens, and the maximum se-
quence length was 152. Table 1 summarises the cor-
responding sizes of the layers. Adding further hidden
layers to the proposed architecture was found to have a
detrimental impact on performance. We train the model
using the Adam optimiser [Kingma and Ba, 2015] with

Ground Truth

[Gopalan et al.,
2018

[Chen et al,
2023

Proposed

Go to landmark one without
leaving the purple room.

F(landmark,)
&G (purple_room)

Go to the second floor, then go
to the purple room.

F(second_floor

& F(purple_room))

Go to landmark two but always
avoid landmark one.

F(landmark,

&—-landmark;)

Go directly to the purple room
without changing floors.

F(purple_room)

Move to the third floor without
entering the yellow room.

F(third_floor

&—yellow_room)

F(landmark,)

&G (purple_room)

F(blue_room

& F (purple_room))

F(landmarks
&—landmarks)

F(purple_room)
&G (second_floor)

F (yellow_room

&—yellow_room)

F(landmark,)
&G (purple_room)

F(third_floor
& F (purple_room))

F(landmark,
&—-landmark;)

F(purple_room)
&G(first_floor)

F (first_floor

&—yellow_room)

F(landmark,)
&G (purple_room)

F(second_floor

& F (purple_room))

F(landmarks
&—-landmark;)

F(third_floor)

F(third_floor

&—yellow_room)

Table 2: Examples of predictions made by [Gopalan et al., 2018], [Chen et al., 2023] and the proposed model for a
given natural language sentence with their respective ground truth value. Results were obtained from the best-saved
checkpoints from a checkpoint series stored while training over 400 epochs. The correct values are shown in green.

a 0.001 learning rate. All models were trained with the
same hardware: AMD Ryzen 7 5800 8-Core Processor
CPU, NVIDIA GeForce RTX 3070 GPU and 32 GB
RAM.

6.2 Demonstration of the System

Example behaviours from the overall system are illus-
trated in Fig. 3. Three natural language commands were
presented, which are a) “Go to the green room and the
blue room” , b) “Go to the blue room via the green room”,
and ¢) “Awoid landmark 1 (red) and go to the yellow
room”. These natural language commands were trans-
lated to TL using the proposed Bi-RNN model, from
which the RSTL gradient ascent planner generated plans
with ten random initial conditions.

The Bi-RNN model produced correct out-
puts as a) F(greenroom) A F(blue_room);
b) F(greenroom A F(blue_room)); and ¢)
G(—landmark_1) A F(yellow_room) respectively.

Consequently, it can be seen that the planner generates
appropriate behaviours in Fig. 3. Example outputs from
the Bi-RNN model are shown in Table 2.

In particular, the behaviours in Figs. 3(a) and (c) is
interesting because two distinct modes of behaviours are
apparent. This is because the natural language com-
mand does not specify the order in (a), and a particular
side for (c¢). Meanwhile, the behaviour in Fig. 3(b) has a
single mode of behaviour because the order was specified
in the natural language command. This demonstrates
the suitability of TL as a task representation, as it offers
avenues for greater flexibility.

—— Gopalan et al., 2018
10° —— Chenetal, 2023
—— Proposed model

0 50 100 150 200 250 300 350 400
Epochs

Figure 4: Loss curves for the three models. The proposed
model achieves the best optimum. The baseline models
either diverge or achieve a worse optimum.

6.3 Performance Comparison

We compare the performance of the proposed model
against [Gopalan et al., 2018] and [Chen et al., 2023].
[Gopalan et al., 2018] uses an EncoderRNN and an at-
tention DecoderRNN. [Chen et al., 2023] additionally
uses attention with dropout layers. The proposed model
does not use an attention mechanism.

[Gopalan et al., 2018] and [Chen et al., 2023] are
trained using negative log likelihood as originally pro-
posed. The learning rate for the [Gopalan et al., 2018]
model was 0.01, and 0.001 for the [Chen et al., 2023]
model. All models were trained for 400 epochs while
saving checkpoints at every epoch. The training loss and
logical equivalence accuracy over the epochs are shown
in Figs. 4 and 5. It can be seen that the training loss

AV T, ¥ 1 T

807

607

— Gopalan et al., 2018
—— Chenetal, 2023

40 —— Proposed model

Accuracy(%)

20+

T T T T T T T
o] 50 100 150 200 250 300 350 400
Epochs

Figure 5: Logical equivalence of the three models over
training epochs. Whereas the proposed model achieves
the optimum later than the baseline models, the final
accuracy is higher and more stable.

is stable for the proposed model and [Chen et al., 2023],
whereas [Gopalan et al., 2018] shows an increase after 14
epochs. A similar pattern is observed for logical equiva-
lence accuracy in Fig. 5. This shows that the proposed
Bi-RNN architecture is more suitable for representing
the commands.

Table 3 shows the best-performing model accuracy.
The best-performing models were from the last epoch
for the proposed model and [Chen et al., 2023], and the
14th epoch for [Gopalan et al, 2018]. The proposed
model performs the best at 89.12% on the testing set, on
par with [Chen et al., 2023] at 88.68% on the validation
set and the best at 93.34 % on the training set. Notably,
the proposed model shows significantly better accuracy
than [Gopalan et al., 2018], which shows 64.37%, 63.15%,
and 61.31% accuracy on training, validation, and testing
sets, respectively. These results show that bidirectional
processing is more effective than an attention mechanism
in temporal logic translation tasks.

The computation time characteristics are shown in Ta-
ble 4. The proposed model is the fastest in both training
and single-query inference. The proposed model shows
a faster training time of around 2 seconds, whereas the
previous models take around 120 seconds per epoch. The
faster training time allows potential extensions, such as
updating the model with user feedback. For all models,
the inference time is around 0.2 milliseconds, although
the proposed model is still the fastest. GPU accelera-
tion has minimal effect on computation time for a single
query. This signifies the possibility of deployment to em-
bedded CPU-only hardware with compute constraints.

Training Validation Testing
[2018] 65.11 (64.37) 64.22 (63.15) 62.5 (61.31)
[2023] 90.12 (90.13) 88.68 (88.68) 87.5 (87.5)

Proposed 93.34 (93.34) 88.68 (88.68) 89.12 (89.12)

Table 3: Comparison of accuracy (%) between the pro-
posed and prior models. The best is highlighted green.
String equivalence accuracy is parenthesised.

Training GPU CPU

[Gopalan et al., 2018] 1.35 x 102 2.45 x 10~* 2.75 x 10~*
[Chen et al., 2023] 1.27 x 10% 2.49 x 107 2.89 x 107*
Proposed Model 2 20x107% 22x107*

Table 4: Computation time (in sec) for training and
CPU/GPU inference with best highlighted green. Train-
ing time is per epoch. Inference time is for a single query.

7 Conclusion

We proposed a Bi-RNN architecture for temporal logic
translation to allow planning for natural language in-
struction. The proposed model provides higher accu-
racy with reduced training and inference time. Reduced
training time enables online updates to the model in
the future, which is compelling for robotics applications.
We also plan to implement logical equivalence during
training. More broadly, we are exploring how natural
language instructions can benefit human-robot team-
ing in a decentralised ISR context [Lee et al., 2021a;
Best et al., 2019].

Acknowledgements

This work was supported in part by the Trusted Au-
tonomous Systems D-CRC.

References

[Bang et al., 2023] Yejin Bang, Samuel Cahyawijaya,
Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie,
Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung,
Quyet V. Do, Yan Xu, and Pascale Fung. A mul-
titask, multilingual, multimodal evaluation of Chat-
GPT on reasoning, hallucination, and interactivity.
arXiv preprint arXiw:2302.04023, 2023.

[Best et al., 2019] Graeme Best, Oliver M Cliff, Timo-
thy Patten, Ramgopal R Mettu, and Robert Fitch.
Dec-MCTS: Decentralized planning for multi-robot
active perception. The International Journal of
Robotics Research, 38(2-3):316-337, 2019.

[Chen et al., 2023] Yongchao Chen, Rujul Gandhi, Yang
Zhang, and Chuchu Fan. NL2TL: Transforming natu-
ral languages to temporal logics using large language

models. In Proc. of Association for Computational
Linguistics Rolling Review, 2023.

[Cho et al., 2014] Kyunghyun Cho, Bart
Van Merriénboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
In Proc. of Conference on Empirical Methods in
Natural Language Processing, 2014.

[Chollet and others, 2015] Francois Chollet et al. Keras.
GitHub, 2015. https://keras.io.

[Donzé, 2013] Alexandre Donzé. On signal temporal
logic. In Axel Legay and Saddek Bensalem, editors,
Runtime Verification, pages 382-383, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[Duret-Lutz and Poitrenaud, 2004] Alexandre Duret-
Lutz and Denis Poitrenaud. SPOT: An extensible
model checking library using transition-based general-
ized Biichi automata. In Proc. of IEEE International
Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages
76-83, 2004.

[Finucane et al., 2010] Cameron Finucane, Gangyuan
Jing, and Hadas Kress-Gazit. LTLMoP: Experiment-
ing with language, temporal logic and robot con-
trol. In Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1988-1993,
2010.

[Fukushima, 1969] Kunihiko Fukushima. Visual feature
extraction by a multilayered network of analog thresh-
old elements. IEFE Transactions on Systems Science
and Cybernetics, 5(4):322-333, 1969.

[Gilpin et al., 2021] Yann Gilpin, Vince Kurtz, and Hai
Lin. A smooth robustness measure of signal tempo-
ral logic for symbolic control. IEEE Control System
Letters, 5(1):241-246, 01 2021.

[Gopalan et al., 2018] Nakul Gopalan, Dilip Aru-
mugam, Lawson L. S. Wong, and Stefanie Tellex.
Sequence-to-sequence language grounding of non-
Markovian task specifications. In Proc. of Robotics:
Science and Systems, 2018.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy
Ba. Adam: A method for stochastic optimization. In
Proc. of International Conference on Learning Repre-
sentations, 2015.

[Kupferman, 2018] Orna Kupferman. Automata the-
ory and model checking. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking. Springer
International Publishing, 2018.

[Lee et al., 2021a] Ki Myung Brian Lee, Felix H Kong,
Ricardo Cannizzaro, Jennifer L Palmer, David John-

son, Chanyeol Yoo, and Robert Fitch. Decentralised
intelligence, surveillance, and reconnaissance in un-
known environments with heterogeneous multi-robot
systems. In Proc. of ICRA2021 Workshop on Robot
Swarms in the Real World: From Design to Deploy-
ment, 2021.

[Lee et al., 2021b] Ki Myung Brian Lee, Chanyeol Yoo,
and Robert Fitch. Signal temporal logic synthesis as
probabilistic inference. In Proc. of IEEE International

Conference on Robotics and Automation, pages 5483—
5489, 2021.

[Li et al., 2020] Tengfei Li, Jing Liu, Haiying Sun, Xi-
ang Chen, Lipeng Zhang, and Junfeng Sun. A spatio-
temporal specification language and its completeness
& decidability. Journal of Cloud Computing, 9(1):65,
Nov 2020.

[Naseem et al., 2021] Usman Naseem, Imran Razzak,
Shah Khalid Khan, and Mukesh Prasad. A compre-
hensive survey on word representation models: From
classical to state-of-the-art word representation lan-
guage models. ACM Transactions on Asian Low-
Resource Language Information Processing, 20(5),
Jun 2021.

[Schuster and Paliwal, 1997] Mike
Kuldip K. Paliwal.

Schuster and
Bidirectional recurrent neural

networks. IEEFE Transactions on Signal Processing,
45, 1997.

[Stepputtis et al., 2020] Simon Stepputtis, Joseph
Campbell, Mariano Phielipp, Stefan Lee, Chitta

Baral, and Heni Ben Amor. Language-conditioned
imitation learning for robot manipulation tasks.
Advances in Neural Information Processing Systems,
33:13139-13150, 2020.

[Wang et al., 2020] Bingyuan Wang, Fang Miao, Xuet-
ing Wang, and Libiao Jin. Text classification using a
bidirectional recurrent neural network with an atten-
tion mechanism. In Proc. of International Carnahan
Conference on Security Technology, 2020.

[Williams et al., 2018] Edward Williams, Nakul
Gopalan, Mine Rhee, and Stefanie Tellex. Learning to
parse natural language to grounded reward functions
with weak supervision. In Proc. of IEEE International
Conference on Robotics and Automation, 2018.

[Xie et al., 2023a] Amber Xie, Youngwoon Lee, Pieter
Abbeel, and Stephen James. Language-conditioned
path planning. In Proc. of Conference on Robot Learn-
ing, 2023.

[Xie et al., 2023b] Yaqi Xie, Chen Yu, Tongyao Zhu,
Jinbin Bai, Ze Gong, and Harold Soh. Translating nat-
ural language to planning goals with large-language
models. arXiv preprint arXiw:2302.05128, 2023.

