

University of Technology Sydney

Faculty of Engineering and Information Technology

January 2024

Optimizing Resource Allocation and

Offloading for Long-Term Load

Balancing Solutions in Fog Computing

by Hamza H. Sulimani

Thesis submitted in fulfilment of the requirements for

the degree of

Doctor of Philosophy

under the supervision of Dr Mukesh Prasad

II

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Hamza H. Sulimani, declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy in the School of Computer

Science, in the Faculty of Engineering, and Information Technology at the University

of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Signature:

Date: 06/11/2023

Production Note:

Signature removed prior to publication.

III

ACKNOWLEDGEMENTS

Allah, the Most Merciful and Kind, is worthy of all acclaim for allowing me to

complete my dissertation and earn my doctorate. His grace has enabled me to

accomplish all I have, but I am exclusively accountable for my failures.

Associate Professor Mukesh Prasad was an outstanding advisor throughout my

PhD studies. I greatly appreciate your insightful comments and suggestions, which

have substantially improved this study. Your commitment to your studies,

generosity, and work ethic have left an indelible mark on me and will undoubtedly

aid me in future endeavours.

My father has always supported and believed in me, and I owe her everything.

He passed away before I began my doctoral studies. Please, Allah, let my father’s

essence enter paradise.

My primary goal is to express sincere appreciation to my mother. Regardless of

my difficulties, she was always encouraging and supportive. My mother and I have

set a lifetime goal to complete a doctoral program. I do not know if I would ever

succeed if not for my mother’s prayers, encouragement, vast understanding, and

unwavering support. Consequently, I have the highest regard and affection for my

mother.

Similarly, I would like to convey my appreciation to my relatives. I appreciate

the Saudi Arabian Cultural Mission (SACM) in Australia, the Saudi Arabian Embassy

in Australia, and Umm Al-Qura University.

IV

LIST OF PUBLICATIONS

JOURNAL ARTICLES PUBLISHED

1. Sulimani, H., et al., Reinforcement optimisation for decentralised service

placement policy in IoT‐centric fog environment. Transactions on

Emerging Telecommunications Technologies, 2022: p. e4650.

(Chapter 2)

CONFERENCE PAPER PUBLISHED

1. Sulimani, H., et al., Sustainability of Load Balancing Techniques in Fog

Computing Environment. Procedia Computer Science, 2021. 191: p.

93-101. (Chapter 3)

V

TABLE OF CONTENTS

Contents
CERTIFICATE OF ORIGINAL AUTHORSHIP ... II

ACKNOWLEDGEMENTS ... III

LIST OF PUBLICATIONS .. IV

TABLE OF CONTENTS .. V

LIST OF FIGURES ... VIII

LIST OF TABLES .. X

ABBREVIATIONS .. XI

ABSTRACT ... XII

1. CHAPTER, INTRODUCTION .. 2

1.1. BACKGROUND .. 3

1.2. RESEARCH ELEMENTS .. 6

1.2.1. RESEARCH PROBLEMS... 6

1.2.2. RESEARCH QUESTIONS .. 9

1.2.3. RESEARCH OBJECTIVES ... 9

1.2.4. RESEARCH CONTRIBUTIONS .. 12

1.3. RESEARCH METHODOLOGY ... 13

1.3.1. GENERAL METHODOLOGY ... 13

1.3.2. RESEARCH PLAN .. 15

1.4. RESEARCH FRAMEWORKS ... 20

1.4.1. THEORETICAL FRAMEWORK .. 20

1.4.2. CONCEPTUAL FRAMEWORK ... 23

1.5. THESIS STRUCTURE ... 24

1.6. PUBLICATION RELATED TO THIS RESEARCH ... 25

2. CHAPTER, LITERATURE REVIEW ... 26

2.1. INTRODUCTION .. 27

2.2. RELATED REVIEW STUDIES. .. 29

2.2.1. THE MOTIVATIONS FOR THE SYSTEMATIC REVIEW .. 30

2.2.2. RESEARCH CONTRIBUTION .. 31

2.3. RESEARCH METHOD .. 31

2.3.1. PLANNING REVIEW ... 32

2.3.2. CONDUCTING AND DOCUMENTING THE REVIEW .. 34

2.4. BACKGROUND OF RESEARCH ... 35

VI

2.4.1. FOG COMPUTING (FC) .. 36

2.4.2. LOAD BALANCING (LB) .. 44

2.5. CHALLENGES IN FOG COMPUTING .. 49

2.5.1. SERVICE-ORIENTED .. 50

2.5.2. STRUCTURAL ISSUES ... 50

2.5.3. SECURITY ASPECTS ... 50

2.6. DISCUSSION ... 50

2.7. CONCLUSION ... 53

3. CHAPTER, REINFORCEMENT OPTIMISATION FOR DECENTRALISED SERVICE PLACEMENT

POLICY IN IOT-CENTRIC FOG ENVIRONMENT ... 54

3.1. INTRODUCTION .. 55

3.1.1. RESEARCH PROBLEM .. 56

3.2. RELATED WORKS .. 57

3.3. PROPOSED ARCHITECTURE AND ALGORITHM .. 60

3.3.1. ARCHITECTURE .. 60

3.3.2. SYSTEM MODEL ... 65

3.3.3. OPTIMISATION MODEL ... 66

3.4. EVALUATION AND EXPERIMENTAL RESULTS. .. 70

3.4.1. EVALUATION .. 70

3.4.2. EXPERIMENTAL RESULTS .. 72

3.5. DISCUSSION ... 74

3.6. CONCLUSION ... 78

4. CHAPTER, HYBOFF: A HYBRID APPROACH TO IMPROVE LOAD BALANCING IN FOG

NETWORKS ... 79

4.1. INTRODUCTION .. 80

4.2. LITERATURE REVIEW ... 83

4.2.1. FOG COMPUTING .. 83

4.2.2. RELATED WORKS ... 84

4.3. HYBRID APPROACH TO ENHANCE LOAD BALANCING ... 88

4.3.1. PROBLEM FORMULATION AND TERMINOLOGY ... 90

4.3.2. HYBOFF DESIGN .. 93

4.3.3. HYBRID FRAMEWORK ... 94

4.3.4. THE PROPOSED ALGORITHM ... 100

4.4. EXPERIMENTS AND RESULTS .. 101

4.4.1. PRELIMINARY EXPLANATIONS ... 101

4.4.2. ENVIRONMENT DESCRIPTION .. 102

VII

4.5. DISCUSSION ... 107

4.6. STAGE 1C, OPTIMUM LB SOLUTION ... 109

4.6.1. DISCUSSION ... 112

4.6.2. LIMITATIONS ... 113

4.7. CONCLUSION. .. 115

5. CHAPTER, A COMPREHENSIVE SOLUTION: A SUSTAINABLE LOAD BALANCING MONITORING

SYSTEM FOR THE HIDDEN COSTS IN FOG COMPUTING ... 116

5.1. INTRODUCTION .. 117

5.2. BACKGROUND OF THE RESEARCH AREA ... 119

5.2.1. SUSTAINABILITY ... 119

5.2.2. REINFORCEMENT LEARNING (RL) ... 120

5.2.3. LOAD BALANCING IN A FOG ENVIRONMENT .. 121

5.2.4. RELATED WORKS ... 121

5.3. RESEARCH PROBLEM ... 122

5.3.1. THE PREVALENT SOLUTION... 123

5.3.2. EXPLORING THE NEW DIRECTION OF RESEARCH ... 125

5.4. THE PROPOSED SUSTAINABLE LOAD-BALANCING MONITORING SYSTEM (SLBMS) ... 126

5.4.1. THE ARCHITECTURE ... 127

5.4.2. THE STRUCTURE OF THE MODEL ... 129

5.5. IMPLEMENTATION AND EVALUATION ... 134

5.5.1. USED ACCESS POINTS DATASET ... 134

5.5.2. A MATHEMATICAL RL ILLUSTRATION MODEL ... 135

5.5.3. EVALUATION METRICS .. 137

5.5.4. SLBMS IMPLEMENTATION ... 138

5.6. DISCUSSION ... 139

5.7. CONCLUSION ... 141

6. CHAPTER, CONCLUSION AND FUTURE RESEARCH ... 142

6.1. INTRODUCTION .. 143

6.1.1. RESEARCH OVERVIEW .. 143

6.1.2. RESEARCH PHASES ... 146

6.2. LOAD BALANCING SOLUTIONS ... 147

6.3. MODEL LIMITATIONS IN THE REAL WORLD ... 148

6.4. FUTURE WORKS .. 150

BIBLIOGRAPHY .. 151

APPENDIX ... 162

VIII

LIST OF FIGURES

FIGURE 1.1: NUMBER OF CONNECTED IOT DEVICES GLOBALLY. .. 5

FIGURE 1.2: VENN DIAGRAM FOR RESEARCH GAPS. .. 8

FIGURE 1.3: RESEARCH OBJECTIVES. .. 12

FIGURE 1.4: FUNDAMENTAL STAGES FOR RESEARCH METHODOLOGY. 14

FIGURE 1.5: THE ACTUAL IMPLEMENTATION OF THIS RESEARCH. 15

FIGURE 1.6: FIFO BEHAVIOR IN THE PROPOSED MODEL. .. 17

FIGURE 1.7: DEALING WITH THE LIGHT TASK IN THE QUEUE. ... 18

FIGURE 1.8: CLUSTERING IN THE PROPOSED ALGORITHM. .. 18

FIGURE 1.9: THE PROPOSED SOLUTION FOR THE RESEARCH PROBLEM. 20

FIGURE 1.10: THE RAPPORT AMONG VARIABLES OF RESEARCH. 21

FIGURE 1.11: THE CONCEPTUAL FRAMEWORK OF THE STUDY. 23

FIGURE 1.12: THESIS ORGANIZATION. ... 24

FIGURE 2.1: THE STAGES OF THE RESEARCH METHODOLOGY. ... 32
FIGURE 2.2: FOG ARCHITECTURE. .. 39
FIGURE 2.3: OPENFOG ARCHITECTURE. .. 41
FIGURE 2.4: TYPE OF CONTROLLER IN FOG LAYER. .. 48
FIGURE 2.5: POSSIBLE OFFLOADING SCENARIOS IN A FOG ENVIRONMENT. 49

FIGURE 3.1: INTEROPERATED SERVICES AND APPLICATIONS. ... 61
FIGURE 3.2: EXAMPLE OF SERVICE MIGRATION WITHIN DIFFERENT PATHS. 63
FIGURE 3.3: EXAMPLE OF INTEROPERATED SERVICE MIGRATION WITHIN THE

SHORTEST PATH. ... 64
FIGURE 3.4: DECENTRALISED SERVICE PLACEMENT, THE BROKER............................... 65
FIGURE 3.5: PROPOSED NETWORK. .. 71
FIGURE 3.6: APPLICATION EDGES FOR ONLINE STORE-BASED CASE STUDY. 72
FIGURE 3.7: HOPS COUNT WITH DIFFERENT SITUATIONS. EXPERIMENT WITH TWO

APPLICATIONS, TWO USERS, AND TWO LEVELS OF FOG DEVICES: (A)
CHANGING THE NUMBER OF DEVICES ASSOCIATED WITH THE EDGE DEVICE
AND (B) CHANGING THE NUMBER OF PROPOSED FOG LEVELS. 75

FIGURE 3.8: SERVICE LATENCY IN DIFFERENT SITUATIONS. EXPERIMENT WITH
TWO APPLICATIONS, TWO USERS, AND TWO LEVELS OF FOG DEVICES: (A). ... 76

FIGURE 3.9: CPU USAGE OF THE DEVICES REGARDING THEIR TOPOLOGY
DISTRIBUTION. EXPERIMENT WITH TWO APPLICATIONS AND TWO USERS. .. 77

FIGURE 4.1: PREVALENT OFFLOADING, COSTS, AND SOLUTIONS. 90

￼

￼
FIGURE 4.4: STATIC OFFLOADING TABLE IN THE MASTER SERVER. 96
FIGURE 4.5: HYBOFF PROCESS FLOWCHART. ... 100
FIGURE 4.6: BALANCE OF RESOURCE UTILIZATION-MATHEMATICAL, (A) BEFORE

OFFLOADING, (B) SORTED SERVERS, (C) PAIRED SERVERS, AND (D) AFTER
OFFLOADING. ... 101

IX

FIGURE 4.7: RESOURCE UTILIZATION OVER TIME AND CHANGING NUMBER OF
SERVERS. (A) RESOURCE UTILIZATION OF THE SYSTEM WITH CHANGING OF
TIME, AND (B) RESOURCE UTILIZATION PERCENTAGE. ... 104

FIGURE 4.8: THE PERCENTAGE OF HEALTHY SERVERS FOR THE THREE
ALGORITHMS WITH THE SAME MEAN VALUE BUT DIFFERENT STANDARD
DEVIATIONS, WHERE (A) IS THE PERCENTAGE OF BALANCED SERVERS, AND
(B) IS THE STANDARD DEVIATION FOR ALGORITHMS. ... 106

FIGURE 4.9: TSAS PERFORMANCE EVALUATION WITH (A) DIFFERENT DATA SIZES
AND (B) DIFFERENT SYSTEM SCALES.. 107

FIGURE 4.10: THE DEFINITION OF CELL IN MODELS. .. 110
FIGURE 4.11: CPU USAGE OF THE DEVICES ABOUT THEIR TOPOLOGY

DISTRIBUTION. EXPERIMENT WITH TWO APPLICATIONS. 111
FIGURE 4.12: HOPS COUNT WITH DIFFERENT SITUATIONS. EXPERIMENT WITH

TWO APPLICATIONS, TWO USERS, AND THREE FOG LEVELS: (A) CHANGING
THE NUMBER OF GENERATED TASKS. .. 111

FIGURE 4.13: THE LEVEL OF LB FOR THE PROPOSED MODELS UNDER DIFFERENT
SIZE OF GENERATED TASKS AND CONSTANT COMPUTING POWER. 112

FIGURE 5.1: PREVALENT OFFLOADING PROCESS FLOWCHART. 124
FIGURE 5.2: POSSIBLE SOLUTIONS FOR THE PROBLEM OF RESEARCH. 125
FIGURE 5.3: THE PROPOSED MODEL ARCHITECTURE. .. 127
FIGURE 5.4: THE EFFECT OF RPQ-STAGE ONE. .. 128
FIGURE 5.5: TYPE OF EXCHANGED DATA IN APS. .. 130
FIGURE 5.6: SLBMS MODEL. .. 133
FIGURE 5.7: AVERAGE WT IN COMPARISON. ... 138
FIGURE 5.8: THE NUMBER OF EXCHANGED TASKS IN THE SPECIAL CASE OF

HYBOFF AND AFTER ENGAGING SLBMS IN THE SOLUTION. 139

X

LIST OF TABLES

TABLE 1.1: THE PLANNING OF THESIS PUBLICATIONS. .. 25

TABLE 2.1: THE USED DATABASES. .. 30
TABLE 2.2: A COMPARISON AMONG DIFFERENT SYSTEMATIC STUDIES OF LB

APPROACHES IN THE FC. .. 30
TABLE 2.3: THE EXCLUSION AND INCLUSION CRITERIA. .. 34
TABLE 2.4: SEARCHING PROCESS. ... 35
TABLE 2.5: THE DIFFERENCES BETWEEN FOG AND CLOUD COMPUTING. 44

TABLE 3.1: SUMMARY OF APPROACHES TO SERVICE PLACEMENT............................ 60
TABLE 3.2: SUMMARY OF THE FUNCTIONS AND VARIABLES USED IN THE

PROPOSED MODEL. ... 67
TABLE 3.3: THE SUMMARY OF CONFIGURATIONS OF EXPERIMENTS. 70
TABLE 3.4: SYSTEM SPECIFICATION... 72

TABLE 4.1: ESSENTIAL NOTATIONS. ... 91
TABLE 4.2: FEATURES OF HYBOFF MODULES. ... 94
TABLE 4.3: INITIAL PARAMETERS OF EXPERIMENT. ... 102
TABLE 4.4: SPECIFICATIONS OF FOG SERVERS. .. 103
TABLE 4.5: TASK SPECIFICATIONS. .. 103

TABLE 5.1: DEVICES ATTRIBUTES TABLE (DAT). .. 132
TABLE 5.2: STATES OF THE CELLS OF THE SYSTEM. .. 133
TABLE 5.3: DA-TABLE OF THE SYSTEM. ... 135
TABLE 5.4: THE INITIAL VALUES OF THE PARAMETERS. .. 135
TABLE 5.5: Q-TABLE- INITIALISED. .. 135
TABLE 5.6: Q-TABLE-UPDATED. .. 136
TABLE 5.7: EVALUATION METRICS. ... 137
TABLE 5.8: WT AND TAT FOR HYBOFF IN DIFFERENT STATES................................. 138

XI

ABBREVIATIONS

IoT - Internet of Things

LB – Load Balancing

HybOff- Hybrid Offloading

SlbmS- Sustainable Load Balancing Monitoring System

RODSPP - Reinforcement Optimisation for a Decentralised Service Placement
Policy.

RAN - Radio Access Network

ISG - Industry Specification Group

ETSI - European Telecommunications Standards Institute.

AWS - Amazon Web Services.

AR - Augmented Reality

IoV - Internet of Vehicles

VFC- Vehicular Fog Computing.

MFL- Monitoring Fog Layer

SOT- Static Offloading Table

TADF- Top Affected Device Factor

CDN - Content Delivery Network

LBM- Load Balancing Module

RM- Recommendation System

AP - Access Point

QoS - Quality of Service

QoE - Quality of Experience

DRL - Deep Reinforcement Learning

RSS - Radio Signal Strength.

SEC - Symposium on Edge Computing.

SPRM - Service placement request manager

XII

ABSTRACT

OPTIMISING RESOURCE ALLOCATION AND OFFLOADING FOR

LONG-TERM LOAD BALANCING SOLUTIONS IN FOG

COMPUTING ENVIRONMENTS

by

Hamza H. Sulimani

Nowadays, most emerging critical IoT applications have unique requirements and

restrictions to operate efficiently; otherwise, they could be useless. Latency is one

of these requirements. Fog computing is the complement system for cloud

computing, proving it is the ideal computing environment for critical IoT

applications.

Distributed computing systems, such as fog computing, have an inherent problem

when the computing units have different computing loads, called load difference

problems. Offloading and service placement are some techniques used to fix these

problems. Although prevalent offloading is the appropriate technique for this

research, its procedures generate hidden costs in a system, such as decision time,

distant offloading, and network congestion. Many researchers attempt to reduce

these costs to get the results of static offloading (in stable environments).

However, this research seeks to overcome the hidden costs in the prevalent

offloading techniques to balance the load in a fog environment by utilising the

sustainability concept. This research believes that increasing physical resources is

the only way to improve efficiency as a long-term solution. The study consists of two

consecutive phases. The first phase attempts to find the optimum solution between

task offloading and service placement. The solution must revive the low-cost

offloading solution. A Sustainable load-balancing monitoring system (SlbmS) is the

comprehensive solution for the optimum solution to release its limitations. SlbmS

uses the sustainability concept to solve the problem of the limitation of resources in

edge computing using reinforcement learning.

XIII

The experiment results of the two phases show that hybrid offloading outperforms

the service placement policy in the first stage and prevalent offloading in the second

stage when utilising the behaviour of static offloading to reduce the offloading costs

in unpredictable environments. The study aims to explore a new area of research

that attempts to amend the network topology to improve resource provisioning to

provide a free resource at the edge of the network. This research paved the way for

a new dimension of analysis. It is the first research to recommend the physical

expansion in the fog layer using the sustainability concept.

THE CHAPTERS

2

1. CHAPTER, INTRODUCTION

Abstract: The success of any project depends mainly on its planning process. In a

PhD journey, an average PhD candidate spends around one year exploring and

planning potential research gaps for his thesis. A well-planned PhD research study

should adhere to a specific research plan and framework. A research plan must be

discussed and approved to hold the research; each research’s objectives, concerns,

and aims serve as its foundation. Fog computing is the leading research area of this

thesis’s investigation. This chapter, however, attempts to sketch out the

foundations of the study of new dimensions for balancing the load among the

computing units in the fog layer. Offloading and resource allocation are the core

elements to balance the load in a fog environment. The outcomes of this chapter are

the research plan framework and thesis structure followed in the following years

after being identified and approved. The procedure for conducting the research is

detailed in this chapter.

3

1.1. BACKGROUND

In the era of the internet, with the support of 5G access networks, the central

computing concept has appeared primarily in all fields. The central computing

system is the technology that allows enterprises to collect, process, analyse, and

archive the distributed client’s data worldwide. The main concept has countless

benefits for enterprises, such as easy management, protection, and timely business

updates (Traub, Maier et al. 2017). The idea has become so important with the

internet that we can no longer return to primitive, decentralised systems.

On the ground, cloud computing is implementing the central computing

concept. It offers novel possibilities for both service providers and their clients

through an architecture for delivering Software as a Service (SaaS), Platform as a

Service (PaaS), and Infrastructure as a Service (IaaS) on-demand over the internet

that promises to bring about significant economic and technical benefits (Celesti,

Fazio et al. 2012). These large-scale services can be provided using virtualised

cloud resources on a shared basis. Cloud resources are generally made available

as a compilation of several proprietary processes running in a virtual environment

known as a Virtual Machine (VM).

In a cloud environment, virtualised computational resources are used to

provision resources on demand. Virtualization also enables an auto-scaling

technique that dynamically allocates computational resources to services that

precisely correspond to their current needs, thereby eliminating inactive and costly

resources (Kriushanth, Arockiam et al. 2013). Advances in virtualisation techniques

and the construction of numerous large commodity data centres around the globe

have resulted in cloud computing, a new approach to computing, becoming a

significant research and development topic (Ghanbari, Simmons et al. 2012). The

recent increase in the prevalence and utilisation of cloud computing services

by enterprise and individual consumers necessitates the efficient and proactive

administration of data centre resources that host services with diverse

characteristics.

Cloud Computing is indispensable for any business to connect and

communicate directly with its intelligent products to manage its business

4

proficiently. The cloud computing model has been widely appreciated as

appropriate machinery to efficiently run/manage widely distributed IoT (Internet

of Things) products. IoT is a telecommunication system that enables endless

processing devices to exchange data over a public network to keep a business

running with minimal human intervention (Sadeeq, Abdulkareem et al. 2021); it is

considered a system tool that allows cloud computing to interact with the

environment. Currently, most of the surrounding intelligent products, which

surmount daily hurdles, are enabled by the IoT, meaning they may only fully

operate with an internet connection (Aazam, Zeadally et al. 2018). This setup

allows IoT technology to spread widely and its data to grow gradually, which gives

the cloud system more popularity while, on the other hand, affecting the efficiency

of public networks.

When the public network, the primary channel for the cloud to work, slows

down, time-sensitive applications are the ones that suffer the most. Time-sensitive

applications are characterised by timing constraints that must be satisfied for

correct operation (Goel, Abeni et al. 2002). They must be served within a

reasonable time limit to be more effective and work well. Noteworthy, all IoT

applications use the same public network; public networks are designed to serve

all applications without bias. Hence, providers of time-sensitive applications must

consider this when introducing critical services, such as e-health, smart grids, and

unmanned vehicles (Ruan, Guo et al. 2021, Gupta and Gupta 2022).

However, cloud computing cannot offer the required level of service for this

type of application due to the uncontrolled efficiency of public networks (Wójcicki,

Biegańska et al. 2022). Fog Computing (FC) has been proposed as a critical

technology to provide decentralised computation services in decentralised

settings, which would help address the challenges in cloud computing and deal

with the problems listed above. FC is designed to operate IoT applications

efficiently, especially real-time applications (Gomes, Costa et al. 2021).

The continued growth in the number of IoT objects and the data generated

means FC cannot deliver the expected performance level (Sabireen and

Neelanarayanan 2021). Due to the widespread use of mobile devices and the rapid

advancement of wireless networking technologies over the past ten years, mobile

users’ demand for computation has increased unprecedentedly. According to

Figure 1.1:

the workloads among layers to fill clients’ needs regarding resources with the least

6

offloading costs the computing system in terms of time and network. Therefore,

providing a powerful solution for offloading is vital, allowing cloud technology via

FC to continue running well to serve real-time applications.

However, LB optimisation problems via dynamic offloading have been

extensively studied; most proposed optimisation models focused on improving

dynamic offloading, which has an inherent cost and follows a short-term theme.

To the best of our knowledge, they need to use the concept of long-term in their

optimisation model.

Considering these facts, this study prepares a combination of the three main

topics of LB as a core system. It proposes a reinforcement optimisation for a

decentralised service placement policy in fog environments (RODSPP) and novel

techniques for hybrid offloading (HybOff). Furthermore, a comprehensive solution

named a sustainable load balancing monitoring system (SlbmS) for LB has been

developed in this study to overcome the drawbacks of current solutions.

The remaining part of this chapter is structured as shown next. Section 2

presents the research description, including the research problems, objectives,

and expected contributions. In Section 3, the research methodology and plan are

described. Section 4 outlines the thesis frames, while Section 5 presents the

structure. The publications of research are enumerated in Section 6.

1.2. RESEARCH ELEMENTS

This section presents the major research elements that outline the research

borders, such as motivations, challenges, and problem statements. Moreover, the

gaps, questions, objectives, and research methodology are listed here.

1.2.1. RESEARCH PROBLEMS

Many problems are motivated to start working in this area of research. The

following issues have been noticed during the review stage. Some inherent costs

were found in the prevalent offloading process. This subsection illustrates the

primary issues that motivate this study, as listed next:

1) Offloading Costs. Offloading is a crucial technique in the LB process.

According to our observation, we have noticed that all prevalent offloading

7

approaches use the present system state information, in which the heavy

devices read the environment (gathering attributes) and give an offloading

action to redirect the excess tasks to the target device (Jaya 2023). This

action is repeated several times when there is a necessity for extra

resources. There are multi-costs due to offloading activities, such as:

a. Decision time. Most prevalent offloading models have many

procedures, such as gathering, analysing, and evaluating system

attributes, to take the action required. These procedures might

consume an unnoticeable time to find a suitable device for

offloading. Even though this time is minimal, it repeats many times

in every loaded device, which costs a system hefty of time. We call

this time a decision time. This time accumulates, which increases the

total execution time for the task.

b. Decision messages. Decision processes generate a high volume of

exchanged messages with the peer devices; they seek to explore

unused resources to cover the shortage in the affected areas without

any intention to increase the number of served devices (resources)

(Sofla, Kashani et al. 2022). We call these messages decision

messages. Growing the number of exchanged decision messages

consumes more time and causes network congestion.

c. Network Oversizing. However, it may only be the appropriate

decision to expand the network if we are confident that all fog

devices are fully equipped and utilised, especially with the apparent

differences in the efficiency of LB algorithms. In this case, the

expansion in network size generates a unique network state, which

we propose to name network oversizing. More wastage in power

and resources occurs if the offered resources exceed the demand;

this state typically appears in small businesses where they do not

intend to study or plan for their networks before expanding.

d. Need for more planning. A network oversizing state occurs when

the network keeps expanding by enterprise without sufficient

planning—the network oversizing conflicts with a sustainability

concept that seeks to avoid significant or unreasonable physical

8

changes. Thus, adequate planning for the expanding action is

required to keep the performance of FC at an acceptable level

without incurring high costs.

e. Distant offloading. The other effect of network oversizing is distant

offloading. It usually appears with the large-scale system. With this

system, the overloaded device might offload its tasks to the device

located away. While many offloading algorithms are not concerned

with this point, it surges the consumed time with the exchanged

messages.

2) Time-sensitive applications. Many emerging applications are real-time,

which is more valuable and applicable to the users. Time-sensitive

applications require a harsh criterion to run effectively. Thus, our research

aims to enhance the quality of this type of application.

3) Resource constraints. Conceptually, once LB systems start offloading, the

local fog resources are exhausted, and the workload increases substantially

(Aazam, Zeadally et al. 2018, Sulimani, Sajjad et al. 2022). However,

resource provisioning is required to find extra resources. Most existing

resource provisioning research in FC uses granularity services such as

virtual resource, container-based, application, and task provisioning

services to enhance the capabilities of available local resources (Shakarami,

Shakarami et al. 2022). However, these services are limited by physical

resources and can only go up to that. Figure 1.2 illustrates the research gaps.

 Figure 1.2: Venn diagram for research gaps.

Fog
Computing

Load
Balancing

Sustainability

Service Placement

Offloading

9

1.2.2. RESEARCH QUESTIONS

Based on the problems mentioned above and the fact that both service placement

and offloading techniques rely on offloading strategy, the research questions of

this study are determined as follows:

• Research Question 1: What is the required technique to minimise the
consumed time by offloading the decision process?

• Research Question 2: What is the required strategy to minimise the number of
offloading messages?

• Research Question 3: What is the suitable strategy to avoid the distant
offloading phenomena?

• Research Question 4: What is a new solution for optimal placement policy over
fog physical resources to overcome the inherent issues of prevalent resource
allocation mentioned in RQ1, RQ2, and RQ3?

• Research Question 5: What is a new solution for optimal offloading over fog
physical resources to overcome the inherent issues of prevalent resource
allocation mentioned in RQ1, RQ2, and RQ3?

• Research Question 6: How could the performance of the proposed systems be
evaluated in a fog environment in RQ4 and RQ5?

• Research Question 7: What are the limitations of the optimum LB solution in
this research?

• Research Question 8: How should reinforcement learning be designed to
apply sufficient planning before expansion?

• Research Question 9: How do we design a comprehensive model to monitor
the entire system and suggest a recommendation to tackle the overload
situation by proposing hardware modifications?

1.2.3. RESEARCH OBJECTIVES

Generally, dynamic behaviour is typically required. Several offloading strategies

have been applied by examining the prevalent solutions, which may reduce the load

on some nodes but generate drawbacks. Most of these studies, however, ignore the

significant impact on network bandwidth and the time needed for offloading

decisions, which must improve the level of LB in the system. Based on the research

problems and questions, this study has nine primary objectives to solve the dilemma

of the research problem, as shown next:

Research Objective One. The first research objective related to the first research

question is to propose a new offloading philosophy that avoids the consumed time

in dynamic offloading to keep the time at the bottom. The new philosophy should

10

partially follow the static offloading philosophy. Static offloading is the primarily

used system; it has many drawbacks, as mentioned in (Sulimani, Alghamdi et al.

2021). Both dynamic and static offloading have inherent issues. Even though the

recent research focused on dynamic offloading while ignoring the static, adopting a

new hybrid offloading process is necessary. The new process will cease the

consequences of both approaches.

Research Objective Two. This objective, which corresponds to the second research

question, is to propose a solution to minimise the number of decision messages in a

system that aims to reduce the traffic in the network. The proposed solution must

be acceptable with the quality of the present system state information, which is

essential to evaluate the surrounding devices. This feature cannot be found in static

offloading, where static offloading is not required to collect the present system state

information.

Research Objective Three. The third research objective related to the third

research question is to propose a technique to solve the distant offloading to

alleviate the communication cost with the remote device, which might be located

away. The proposed solution must keep the devices to communicate as a group.

Research Objective Four. The fourth research objective corresponding to question

four is to design a new service placement policy to enhance the LB level in FC. After

finding a suitable research gap, the new algorithm should reinforce one state-of-the-

art algorithm. This stage aims mainly to explore another approach to balance the

load in FC. At this point, we are going to introduce placement algorithms with the

goals of decreasing latency, lightening the load on bandwidth, and improving the

quality of service. This stage aims to understand the drawbacks of current service

placement algorithms and create a practical model that enhances the efficiency of

existing computing nodes as much as possible.

Research Objective Fifth. The primary goal of this proposal is to construct a hybrid

offloading algorithm to maintain equilibrium for FC. It proposes offloading

algorithms with the goals of decreasing latency, lightening the stress on bandwidth,

and boosting the quality of service. This stage aims to understand the drawbacks of

11

current offloading algorithms and create a practical model that improves the

efficiency of resource allocation policy as much as possible.

Research Objective Six. The sixth objective of the investigation is to evaluate the

developed algorithms. Evaluation is a crucial component of every methodology

because it provides reasonable assurance of the model’s results. This research relies

on three evaluation models and empirical environments to evaluate the

performance of three new systems devised for this study, including:

• RODSPP

• HybOff

• SlbmS

The RODSPP and HybOff prototype systems are implemented in simulation

environments and evaluated using iFogSim. SlbmS is evaluated by implementing its

subsystems in MATLAB. This stage aims to determine the optimal solution to

balance the load of fog nodes among two techniques.

Research Objective Seven. To identify the optimum solution, we need to find the

constraints or limitations of this solution. The identified solution must be tested

with different scenarios with different sizes of cells and generated tasks.

Research Objective Eight. The eighth objective of this research is to utilise

reinforcement learning to satisfy the requirement of sufficient planning. The RL

must work through two steps. In step one, the proposed model must study how to

improve the coverage quality; in step two, the system must learn the efficiency of

adding new Access points to the system. This technique gives a chance before

engaging in an unnecessary expansion process.

Research Objective Nine. This aim aims to find a sustainable solution to the

research dilemma. As we have noticed during the review stage that all prevalent

solutions for LB work around the same notion, we aim to find a novel solution for

this dilemma in this research. The primary motivation of this research is to

determine how to build a framework to balance the load in fog environments, which

is a long-term concept. Accordingly, this research intends to go beyond prevalent

resource provisioning by exploring a new research dimension. However, Figure 1.3

depicts and illustrates the rapport among the research objectives.

12

Figure 1.3: Research Objectives.

1.2.4. RESEARCH CONTRIBUTIONS

According to the objectives of the study, the following innovations and

contributions to research are summarised:

1) Develop a service placement policy: This research proposes a

reinforcement service placement policy as a prototype solution to explore

the other LB technique. It covers two major fog resource management topics:

service migration and task offloading. It is the first technique in this research

that attempts to balance the load. In FC, service placement or migration to

Virtual Machines (VMs) affects the level of LB. On the other hand, task

offloading should be optimised resource allocation, which improves the

utilisation level. Therefore, the research considers service placement and

task allocation to maximise the QoS for time-sensitive applications.

2) Develop a novel hybrid offloading model: It is the first work that attempts

to apply the real meaning of hybrid offloading, which gains both the

behaviour of static and dynamic offloading. The existing research in task

offloading migrates the tasks from loaded devices to other non-heavy devices

using different techniques. All prevalent task-offloading methods use the

same pattern with hidden costs (Sulimani, Alghamdi et al. 2021). However,

task offloading is affected by the unpredictable number of arrival tasks and

13

the immutable capacity of the computing unit. This model can overcome the

inherent issues in static and dynamic offloading with outstanding results in

terms of latency.

3) Hidden costs: It discussed hidden costs such as distant offloading, decision

messages, and network congestion.

4) Cease offloading processes: While all prevalent LB models seek to enhance

the efficiency of offloading techniques, this research’s ultimate goal seeks to

minimise or cease offloading procedures.

5) Long-Term Solution: This research aims to answer the main research

question, “How to build a comprehensive model applying sustainable

concepts for the research dilemma?” The goal will be secured by answering

this part of the research. It demonstrates how to apply the sustainability

concept to the proposed solution.

6) Multi-feature system: The proposed model contains many features, such

as following a central-distributed control system, clustering fog devices,

and prioritising critical applications.

7) Experiments: It presents the results of the three comprehensive

experiments that examine the proposed models from different aspects.

1.3. RESEARCH METHODOLOGY

Research methodology is a collection of problem-solving techniques that follow a

set of fundamentals and a shared philosophy for addressing specific issues (Gallupe

2007). Numerous research methodologies have been proposed and utilised in

information systems, including design research, case study, field experiment, field

study, laboratory experiment, action, and survey research. This study’s

methodology is based on the practice of design research (Niu, Lu et al. 2009), which

has been proposed and implemented in information systems.

1.3.1. GENERAL METHODOLOGY

As shown in Figure 1.4, the design research methodology consists of five

fundamental stages (Niu, Lu et al. 2009):

1. Problem definition: This is the initial step in identifying the limitations of

existing applications and significant research problems. Existing applications

must catch up to the anticipated status, reflected by the research problems.

14

Various sources, including industry experience, observations of practical

applications, and literature review, can be used to identify research problems.

A precise definition of the research problem focuses on the investigation

throughout the development process. This phase produces a research

proposal for new research endeavours.

Figure 1.4: Fundamental Stages for Research Methodology.

2. Solution Plan: This phase immediately follows the problem definition phase,

during which a provisional design is proposed. The preliminary design

describes the prospective artifacts and how they can be created. Suggestion is

a creative process that demonstrates new concepts, models, and functions of

artifacts. The research proposal typically includes the tentative design that

results from this stage.

3. Development and Implementation: This phase examines the

implementation of the tentatively suggested design artifacts. The

implementation techniques will be based on the constructed object. The

implementation need not be novel; the novelty lies predominantly in the

design, not the construction of the artifact. Typically, the development process

is iterative, in which an initial prototype is constructed and then modified as

the researcher obtains a deeper understanding of research problems. Thus,

the output of the suggestion phase is also the feedback of the first step,

allowing for the revision of the research proposal. This step includes the sub-

steps a) planning, b) analysis, c) design, d) development, e) testing, f)

implementation, and g) maintenance to construct the prototype (Niu, Lu et al.

2009).

15

4. Evaluation: This phase involves assessing the implemented artifacts. The

efficacy of the artifacts can be evaluated using criteria outlined in the research

proposal and the proposed design. The evaluation results, which may fall short

of expectations, are fed back to the first two phases. Consequently, the

proposal and plan could be revised, and the products could be enhanced.

5. Reporting: This is the reporting phase of the design investigation. Typically,

it results from contentment with the evaluation outcomes of the developed

artifacts. However, behavioural differences exist between the proposed

solution and the actual artifacts created. As long as the created artifacts are

deemed “good enough,” the design research endeavour concludes, and the

anomalous behaviour may be the subject of further study.

Due to the case for this research, Figure 1.5 shows the actual implementation of

research methodology with our work; it presents the interference of steps of phases

one and two. The following chapters seek to answer each research question

individually. Moreover, we will discuss the significant common points in offloading

and service placement techniques.

Figure 1.5: The actual implementation of this research.

1.3.2. RESEARCH PLAN

The research plan for this investigation consisted of the following stages:

Step 1. Select a topic: The selection of a research topic can be motivated by

observation, personal interest, pieces of literature describing previous

theory and research in the field, social concern, or as a result of some current

hot topics. This research topic was selected based on previous literature,

16

research, and the author’s observation and experience in the process

industry.

Step 2. Literature review: Regardless of the reason for selecting a particular topic,

a literature review of previous research in the topic area is a crucial step in

the research process. Existing literature in the relevant fields was retrieved

and evaluated critically.

Step 3. Finalise research problems: The findings of the literature review

contributed to the formulation of the specific research questions for this

study. This research study explicitly addressed the research questions. As the

clarity and specificity of the research questions increased, more literature

closely related to them was reviewed. Existing work is compared to the

desired standards; voids and restrictions are identified.

Step 4. Formulate the problem of research: Clients at the IoT layer generate tasks

to be executed at fog nodes. When fog nodes get a job, they may send it to the

cloud nodes. Because more power will be rented from the cloud because of

this process, overall network operating costs will be increased. To solve this

problem, an offloading procedure is carried out, which causes more work to

be done on the second layer and less in the cloud.

The primary motivation for this work is to override the obstacles that face

prevalent offloading to balance the load in the fog layer. Although offloading

is the primary motivation, the service placement LB approach will be

examined. However, testing more than one technique is appreciated in a PhD

project. The innovative offloading technique is presented in this section to

explore the main idea behind this work. Both service placement and

offloading use the following techniques as possible.

Step 5. Prioritise Sensitive Applications: Several tasks with varying sizes and

levels of importance are created at the IoT layer. Although some tasks are

pretty large but have a low priority, others are so small that they must be

completed on time. Consequently, in the context of our investigation,

categorising diverse tasks is essential. This subject will be discussed further

in the methods section.

17

Some of the previous studies have based their criteria for task classification

on the assumption that all streamed workloads have the same priorities

(Verma, Yadav et al. 2016, Neto, Callou et al. 2017, Téllez, Jimeno et al. 2018,

Sarma, Kumar et al. 2019), while a few authors categorise the workloads

based on their time sensitivity (Verma, Bhardwaj et al. 2016, Refaat and Mead

2019). Due to the logical conception of service, which uses “first in, first out,”

the low-priority tasks might be served first, which will obstruct the critical

medical case from receiving help. This approach, as seen in Figure 1.6, will

affect emergency cases that require immediate action.

Figure 1.6: FIFO behavior in the proposed model.

The benefit of the second standard method is that it will give credit to

sensitive tasks to reduce the waiting time in the queue, which is high due to

the high traffic of functions in some regions. Task classification was designed

according to the procedure used by (Chen, Huang et al. 2021), which

proposes two classes of workloads: light tasks (LT) and heavy tasks (HT).

This approach will give emergency cases a chance to execute first, which will

improve system latency. On the other hand, heavy tasks will not affect this

process due to their requirements. In this case study, we propose a medical

computing system with different operating systems that share networks,

such as X-ray, reporting, filing, and control systems, which we consider in our

case in HT Figure 1.7. When there is heavy function traffic in a particular area,

waiting times in the line can be extended. The second conventional approach

can help with this problem by crediting sensitive jobs.

18

Figure 1.7: Dealing with the Light Task in the Queue.

On the other hand, a system is in place to monitor a patient’s vital signs and

send an alert in an emergency. LT jobs are given higher priority than other

types of tasks in terms of data quantity. As a result, each node incorporates a

task scheduler module to reprioritise “LT first” items in the queue. As can be

seen in Figure 1.6, this means that even if an HT job is at the front of the

queue, we still ensure that it will not be completed before an LT task.

Step 6. Smart Gateway (SG): This proposal employs a straightforward scenario

with a cluster of computer nodes to explore LB in this context (see Figure

1.8). A special algorithm is needed to cluster various fog nodes together to

produce a clustering of computing power. For example, the method’s end

goal in the offloading technique is to set up a paired set of compute nodes for

direct job offloading without any intermediate node selection.

Figure 1.8: Clustering in the proposed algorithm.

The planned system uses fog nodes in critical applications to connect many

devices to the network’s core. The cloud infrastructure is a vital part of this

setup, as is long-term storage backup to help the fog nodes already in place

when demand is high. On the other hand, an SG will connect all the FC nodes

19

and act as a bridge between the local infrastructure and the cloud. However,

both service placement and offloading techniques define SG according to

their structures. Hence, all communications in the fog layer will be subject to

the same suppression level, and the information flow between the fog and

cloud layers will be under tight control.

Step 7. Clustering: In this phase, all computing nodes will split into virtual cells to

build collective computing power. The SG will use the K-means algorithm to

construct the clusters in a different area. Indeed, adjacent nodes in the same

geography are clustered into an individual cell, which can have a different

size. This philosophy aims to reduce the bandwidth usage of the entire

network and limit it to a specific region. Euclidean distance will help to

perform distance calculation in the intelligent gateway among nodes in the

cluster (Danielsson 1980). Once the smart gateway has all the nodes’

positions, the K-mean algorithm, which facilitates clustering in large-scale

systems, starts creating clusters. The number of clusters will be decided later.

Step 8. Creating Central Distributed System: The central system can begin static

offloading by registering all nodes inside a central dynamic table. The

intelligent gateway will regularly broadcast a pair of compute nodes. By

taking this measure, we can rest assured that all current nodes will have their

load data updated.

Step 9. Evaluation of the proposed algorithm: We will compare the hybrid

method against a selective offloading approach to see how well they stack up.

The parameters of interest for this analysis are latency times and quality of

service. The modelling tool, iFogSim, is ideal for accomplishing this goal.

This thesis strives to achieve two primary goals: fog and cloud computing.

The first step in attaining LB in FC’s second layer is researching and

proposing offloading strategies. First, the newly suggested techniques for LB

in fog/cloud computing were investigated using an extensive study. All viable

offloading systems have been uncovered through this investigation. After this

phase, we will have a reinforcement offloading approach that considers the

benefits of existing models while minimising their downsides. To achieve this

goal, we will investigate the shortcomings of existing offloading methods and

20

develop an effective model to maximise the efficiency of the already available

processing nodes.

Step 10. Sustainability: Even though the offloading technique would improve the

LB level, it would cost the entire system’s resources. Most offloading

algorithms follow a dynamic strategy to unload rather than a static one,

which leads to accumulating offloading time. Thus, finding a creative

technique to avoid this accumulated time is vital. Moreover, a massive

number of messages exchanged among nodes will cause high pressure on the

infrastructure of the network’s backbone.

The second aim of this thesis is to create a sustainable solution for LB without

causing another issue. Figure 1.9 shows the main framework of the proposed

model.

Figure 1.9: The Proposed solution for the research problem.

1.4. RESEARCH FRAMEWORKS

The problem to be addressed through this study is the increasing latency in time-

sensitive applications due to the unfair resource allocation of the arrival workload

among the computing units in the fog layer, especially in large-scale networks.

Creating a balanced computing environment in the fog layer decreases the latency,

enhances performance in sensitive applications, and utilises the available resources

in this layer.

1.4.1. THEORETICAL FRAMEWORK

Building a comprehensive framework requires a well-known understanding of all

the research concepts. Many concepts in research must be highlighted here. This

21

subsection lists and discusses the concepts used during the literature review stage,

where these concepts are repeated in most of the prior studies. Figure 1.10 depicts

the rapport between them.

Figure 1.10: The rapport among variables of research.

• Computing load: There are many functions for computing devices, such as

storage, computing, and networking. Computing is the core function of any

smart device. In FC, the Fog device is the central computing unit in the layer.

The fog device works by executing the arrival task from the IoT layer.

However, most fog devices have a limited computing capability, forcing the

served device to list the arrival task in a private queue. This action generates

a variable time, named a waiting time. Waiting time is the time computing

units consume to execute the queued task. It relies on the computing power

of the fog device and the rate of arrival tasks. However, this work defines

a computing load as a dependent variable because these factors affect it. As

the computing power cannot be changed, we consider the arrival task as the

independent variable affecting the computing load, where computing power

is a control variable.

• Offloading: There are many reasons for offloading to be used in computing

fields. This technique shifts the workload among computing units for

different reasons. It is used primarily in multi-processing systems (Albalawi,

Alkayal et al. 2022). In this study, we utilise offloading to migrate the arrival

tasks in loaded computing units to the underloaded units. To make the

offloading decision, we need to create an algorithm to find the optimum

device for offloading. The target device will return the computing results

22

after accomplishing the task. Aazam, Zeadally et al. (2018) argue that

offloading operations enhance the LB level among fog devices. Consequently,

the offloading process initiates if the fog device faces a high load. Accordingly,

we consider offloading as a dependent variable.

• Arrival Tasks: The Arrival Tasks or workloads are the overall amount of

work assigned to someone. Firstly, we need to define the task in FC. The study

describes it as the request sent by an object in the IoT layer to be executed.

Regardless of the size of the computing power of the IoT objects, many cases

are required to send the data to be processed in fog or cloud layer due to the

availability of on-demand service. However, we call the tasks that arrived in

fog or cloud layers “arrival tasks”.

• Consequently, we can define workload as the number of arrival tasks sent by

IoT objects to higher servers to be executed. As a requirement in a theoretical

framework, we need to identify the type of workload. Hence, the workload is

an independent variable because they are generated outside our framework.

• Computing Power: The amount of computing resources that can be used to

complete a specified number of tasks. It can be measured by the processing

capacity and speed of individual components, such as processors and

memory modules, or by the total computing resources of an entire system,

such as a data centre. Typically, the computational capacity of a system is

determined by the resources accessible to its users. In this research, we

consider the computing devices as homogeneous units. Therefore, it is a

control variable.

• Computing Resources: Several computational resource-related topics may

require your consideration as you plan your research. Following are

descriptions of the most prevalent resources. The purpose of this document

is to assist in identifying resource requirements and to initiate a discussion

on how to meet those requirements. This research identifies CPU power as

the vital resource that needs to be secured to accomplish task execution. The

capacity of the CPU limits it.

23

1.4.2. CONCEPTUAL FRAMEWORK

This section presents the conceptual framework for this thesis. It consists of seven

steps that must be performed to generate a sustainable LB system in a fog

environment. During the PhD research, we performed these steps.

In the first year of the research, selecting the research gap was the main issue

after choosing FC as the primary research area. Many topics were found, and most

of them were interesting. However, LB is selected after reading and checking many

review papers in this domain. Next, and in the solution plan, we identify two

methods to balance the load in FC. Service placement is the first technique to balance

the load, while task offloading is the second technique. Later, as part of our research

method, we selected iFogSim as a simulation tool to build our proposed model. In

the data analysis stage, the outcomes of the experiments are reported and

documented, and the third year focuses on accomplishing the remaining steps, as

shown in Figure 1.11.

Figure 1.11: THE CONCEPTUAL FRAMEWORK OF THE STUDY.

24

1.5. THESIS STRUCTURE

This is the general structure of the thesis, as shown in Figure 1.12.

Chapter Two: The state-of-the-art FC computation offloading, and LB are reviewed

and discussed. This chapter follows the systematic review to present the topic.

Chapter Three: This chapter attempts to balance the load of the fog layer by

enhancing the service placement policy. We propose reinforcement optimisation for

a decentralised service placement policy (RODSPP), which attempts to mitigate

some of the drawbacks of existing placement policies. This chapter aims to answer

the first research question.

Chapter Four introduces the second attempt to improve the LB in FC by proposing

a novel offloading model. This chapter attempts to answer the second and third

research questions titled “How to create a practical offloading model that improves

the efficiency of existing FC nodes as far as possible?” and “How to determine the

optimal technique among the two techniques?” respectively. To our knowledge, this

is the first work to introduce hybrid offloading in the real meaning.

Figure 1.12: Thesis Organization.

Chapter Five: In this chapter, we attempt to answer the fourth research question:

“How to create a sustainable solution for LB to avoid overload situations in FC?”. It

presents the second and last phase of the thesis research. It proposes a SlbmS that

seeks a long-term concept using machine learning.

Chapter Six: This part of the thesis concludes the research with a discussion of

limitations and potential future research.

25

1.6. PUBLICATION RELATED TO THIS RESEARCH

In the Academic field, the publication is vital. PhD is one of the academic degrees

that need to experience the ability of student ability in publication. “More

publications, more respective in this field” is the standard clause in the academic

field. Regardless, we have designed the research framework to have the ability to

publish its phases. Table 1.1 presents the updated states of each paper per phase.

Table 1.1: THE PLANNING OF THESIS PUBLICATIONS.

Sr. Article Phase States

1. Sustainability of Load Balancing Techniques in Fog Computing
Environment, Review.

Pre-phase I. Published

2. Reinforcement optimisation for decentralised service placement
policy in IoT‐centric fog environment.

Phase I- Stage 1. Published

3. 𝑯𝒚𝒃𝑶𝒇𝒇: A Hybrid Offloading Strategy to Improve the
Performance of Time-Sensitive Applications for Large-Scale
Networks in Fog Environments.

Phase I- Stage 2. Peer Review-
Publish stage

4. A Comprehensive Solution: A Sustainable Load Balancing
Monitoring System.

Phase II. Peer Review

5. Sustainability of Load Balancing Techniques in Fog Computing
Environment, Systematic Review.

General. Draft

26

2. CHAPTER, LITERATURE REVIEW

Abstract: To increase the number of real-time and sensitive-time applications,

reinforcing and supporting edge computing, such as FC, is required. FC remains a

fertile field for research, even with the advent of other computing systems. On the

other hand, a tremendous number of Internet of Things (IoT) objects and their

requests make FC face obstacles to providing the required Quality of Service (QoS).

The distributed nature and limited resources of fog systems make cooperation

among their devices challenging to handle user requests. LB is one of the practical

techniques that can remedy this situation. Many researchers seek to introduce

innovative mechanisms to create balanced computing devices. Utilising the

sustainability concept to solve the dilemma of LB in FC is the area of this research.

However, this chapter presents an empirical study of a taxonomy of existing

techniques in LB. Besides, it summarises the research study according to the

approved review protocol, which defines the extracted information from each

article. The chapter finds the best practices in state-of-the-art research to answer

research questions; this answering paved the way to solving the research problem

with a sustainable concept.

27

2.1. INTRODUCTION

In recent years, the cloud computing model has acquired popularity. This computing

architecture has garnered widespread adoption in the IoT as an effective means of

managing and centrally processing data. The two primary components of cloud

computing are the cloud and the Internet of Things, or IoT, client layer. Numerous

IoT client-layer devices and objects incorporate sensors for gathering

various environmental measurements. The IoT layer processes and transmits the

information to the cloud layer. Over time, the cloud system collects and stores a

mountain of data for analysis from these devices. However, increasing the reaction

time could result in the abandonment of cloud technology for specific applications,

such as intelligent infrastructure, augmented reality, virtual reality, and healthcare.

(Aazam, Zeadally et al. 2018).

Later, FC was introduced as a new technology to bridge sensitive cloud and IoT

technology gaps, such as time latency, location awareness, and service quality. FC

complements the cloud environment by occupying a layer between the client and

cloud layers. Although the cloud layer has allotted heavy computational burdens to

support lower layers, the fog layer has been designed to alleviate the cloud load by

performing tasks at the periphery. In contrast, portions of fog devices, such as the

central server in a high-density area, become overwhelmed due to the vast amount

of IoT-generated data in the client layer. Moreover, FC’s utilisation has increased

significantly due to the accelerated growth in the usage and implementation of IoT

applications (Mahmud, Kotagiri et al. 2018). These overburdened fog nodes have

laboured due to the high demand for services, which has led to unstable computing

environments. As a result, some nodes are heavily occupied while others are

inactive. Intelligent techniques must redistribute the transmitted duties among the

computational devices in all layers to create a balanced computing environment and

to increase the demands on overburdened nodes to address this issue.

Alternatively, the World Commission on Environment and Development

(WCED) introduced the term “sustainability” in a broad context during the 1984

United Nations General Conference. Nevertheless, many researchers define

sustainability from a computing standpoint; they introduce it using the same

concept. González-Mejía, Eason et al. (2014) described sustainability as

28

“maintaining a system’s functionality without experiencing significant deterioration

over time.” Many experts have studied sustainability in various computing contexts

to prevent the waste of available resources and maximise their utilisation. However,

many papers have proposed solutions to improve fog and cloud computing

performance without considering sustainability.

LB, on the other hand, is an effective method for enhancing the entire computing

environment and ensuring that all computing components operate simultaneously.

Implementing the most recent LB concepts to any computational system will

improve the complete system’s performance, and all nodes will be burdened

equally. However, many researchers have recently conducted studies in LB and FC.

Numerous papers have proposed and introduced a competitive computing system

at the network’s periphery since 2015. Nevertheless, the LB techniques present

innumerable obstacles that may diminish the efficacy of such a solution. Efficiency,

overhead, implementation consequences, and improving defect tolerance are some

of LB’s current challenges.

This literature review investigates recent articles and knowledge on LB in the

fog domain by addressing the following points: a comprehensive primer to FC,

including an overview, definition, principal components, typical architecture, and

application examples. It illustrates LB’s core definitions, concepts, scenarios,

proposed solutions, prose, disadvantages, and controller categories. Are there any

proposed LB remedies that incorporate sustainability to address this issue? It

investigates and discusses recent offloading algorithms and their rapport with the

concept of sustainability, if any. The overall structure of the research is comprised

of two components, which are the thesis’s most significant contributions.

The remainder of this chapter is organised as follows: section 2 presents and

discusses the related systematic research, while Section 3 presents the review

methodology used in this chapter. Sections 4, 5, and 6 present the background of the

study, followed by the challenges faced by the FC in section 7. The chapter output is

discussed in section 8. Section 9 introduces the conclusions.

29

2.2. RELATED REVIEW STUDIES.

Although many review papers have been found at the start of this survey, they are

not recommended to be considered when systematic review papers are available

(Brereton, Kitchenham et al. 2007). Three systematic reviews have been found on

LB solutions in FC (Kaur and Aron 2021, Kashani and Mahdipour 2022, Shakeel and

Alam 2022). However, to ensure the necessity of this review, the existing systematic

reviews should be investigated as suggested in (Kitchenham 2004).

In a fog environment, Kaur and Aron (2021) presented the first systematic

review paper on LB. The authors covered 72 research papers published between

2010 and 2020 using specific databases like IEEE Xplore, Science Direct, Springer,

Google Scholar, ACM digital library, and Elsevier. They studied the selective articles

from different aspects, such as their algorithm, pros, cons, and simulation tool used.

Based on that, they introduced a taxonomy for these solutions and potential

research gaps. The study categorised the existing LB algorithms into two main

types: static and dynamic. Though the authors classified all static algorithms under

one class, they classified the existing dynamic LB into five categories: traditional,

agent-based, hybrid, real-time, and nature-inspired. Moreover, they proposed their

architecture and solution for LB in a fog environment. However, the authors

answered the research questions essential to understanding the fog system clearly.

After that, and in the second review paper, Shakeel and Alam (2022) discussed

different sides of cloud and FC. The article investigates and studies around sixty

papers published from 2015 to 2022 using unclear databases. However, they

declare some of them, such as IEEE Xplore, Springer, Elsevier, Wiley, and IGI Global;

Table 2.1 shows the differences among the used databases. It also presents different

taxonomies for LB algorithms. The authors followed the main classification (Kaur

and Aron 2021). However, the subclassifications were different, i.e. sub-optimal and

optimal are the subclassifications for static LB, whereas control and component-

based are the subclassifications for dynamic LB. However, the paper does not

include any research questions, which is a piece of crucial knowledge for any

systematic review paper.

30

Table 2.1: THE USED DATABASES.

Kashani and Mahdipour (2022) wrote the third systematic review of LB

mechanisms in FC. The authors covered several search engines like IEEE Xplore,

Science Direct, Springer, ACM digital library, Taylor & Francis, and Wiley. The study

selected 49 articles published between 2013 to 2021. The study introduced most of

the classifications, metrics, and simulation tools for LB raised by research questions.

However, the authors adopted different classifications for LB; approximate, exact,

fundamental, and hybrid are the main classifications of LB in this study. The adopted

classification in this article was entirely different from the previous papers. Table

2.2 depicts the differences between the systematic review studies based on surveys

(Kaur and Aron 2021, Kashani and Mahdipour 2022, Shakeel and Alam 2022) and

this research.

Table 2.2: A COMPARISON AMONG DIFFERENT SYSTEMATIC STUDIES OF LB APPROACHES IN THE FC.

Ref. Scope of Research
Pub.
Year

Reviewed
articles

Taxonomy RQs
Covered

years

(Kaur and
Aron 2021)

General 2021 72
Approximate, Exact,
Fundamental, and Hybrid

5
2010-
2020

(Kashani and
Mahdipour

2022)
General 2022 49 Static and Dynamic 6

2013-
2021

(Shakeel and
Alam 2022)

General 2022 60 Static and Dynamic N/A
2015-
2022

Our Survey
Focusing on time-
sensitive application

2023 103
Static, Dynamic, and
Hybrid

5
2015-
2023

2.2.1. THE MOTIVATIONS FOR THE SYSTEMATIC REVIEW

The primary motivation for the research is to study the overlap area among FC, LB,

and sustainability concepts. Many terminologies, concepts, and metrics needed to

Name Type Disciplines

ACM Digital Library Electronic database computer science (informatics)

IEEE Xplore Digital
Library

Electronic database Computer science, electrical engineering, and
electronics

Elsevier Dutch academic
publishing

humanities, and the scientific

Wiley USA academic
publishing

Science, technology, medicine, professional
development, higher education

Science Direct Indexing system scientific and medical publications

Taylor & Francis England academic
publishing

Behavioural Science, Education, Law, Science,
Technology, Engineering, and Mathematics, Medicine

Web of Science Indexing system the sciences, social sciences, the arts, and humanities,

IOS Press Netherlands academic
publishing

Scientific, technical, and medical research

ProQuest Indexing system Information and data provide

31

be clarified in this area of research. This review defines and summarises most of

LB’s terminologies, concepts, and taxonomy in FC. It is considered a decent start for

new researchers interested in this field. Moreover, this review will draw more

general conclusions about FC and LB techniques based on existing systematic

reviews. On the other hand, this review discusses the sustainability concept in the

computing field. The review protocol is the key to the planning of this study, as

defined before.

Consequently, we found that our review will be different because it focuses on

specific research areas. This review will synthesise the taxonomy of the existing

studies to create a comprehensive one. It also provides some approved calculations

for some metrics. Thus, this article has value when it is written as planned.

2.2.2. RESEARCH CONTRIBUTION

A list of points makes this review unique over other existing systematic reviews for

this research area, as shown next.

• This chapter is the first systematic review in which writing relies upon three

existing systematic reviews.

• It focuses on the offloading techniques for time-sensitive applications in a

fog environment with the support of the sustainability concept.

• It introduces some selective calculation formulas to each metric.

• It explores the sustainability concept in the existing solutions (if any).

• Furthermore, it provides a different taxonomy than the existing SLRs.

2.3. RESEARCH METHOD

As a requirement for a PhD degree, we summarised the existing research about the

strategy of LB in FC. The summary follows the systematic review described in

(Kitchenham 2004) thoroughly and unbiasedly. However, Kitchenham (2004)

argues that any new systematic review must identify and review the existing

systematic reviews of the phenomena of interest. Thus, we followed the checklist

Khan, Ter Riet et al. (2001) suggested to evaluate the current systematic research,

as discussed in section 2.2.

However, planning, conduction, and documentation are three-stage procedures

obtained from (Brereton, Kitchenham et al. 2007) and the guidelines in (Kitchenham

2004). To make this work fairer, we consult an external assessment to verify the

results of each research step; moreover, the external evaluation engages in a precise

Figure 2.1:

, “A systematic review relies on validated

results”. It attempts to avoid the researcher’s expectations in the selection process

33

of the individual studies. This systematic review follows the subsequent review

protocol guidelines, such as:

• Background: The article seeks to investigate most of the proposed solutions

for time-sensitive applications that have been published in ranked journals

in the area of research.

• The article must seek to answer the Research Questions (RQs) mentioned in

Chapter One. Therefore, an initial scoping study is built to collect the

required data.

• After performing the initial scoping study, the approved searching strategy

has been defined. The method for searching primary studies includes search

terms and a list of databases. The search terms are “Load balancing” +

“Offloading” + “Resource allocation” + “Service placement” + “Fog

computing”. Regarding the searched database, we have chosen IEEE Xplore,

IOS Press, Springer, Web of Science, ProQuest, Scopus, and Wiley.

• Study Selection criteria are the conditions that must be satisfied by each

selected article. It consists of including and excluding points.

• The review protocol must contain developed quality checklists to evaluate

the individual studies.

• Data extraction strategy. The extraction data for each selected article

contains metrics equations, methodology, results, challenges, simulation

tools, and compared algorithms. Moreover, we need to check if the reviewed

article answers any research questions of this study.

2.3.1.3. VALIDATING THE REVIEW PROTOCOL

Based on the purposes of this article, the RQs and the study scope were specified to

make the search strings for extracting literature. The review protocol was also

developed for a systematic study by following (Kitchenham 2004) and the

experience with existing systematic reviews (Kaur and Aron 2021, Kashani and

Mahdipour 2022, Shakeel and Alam 2022). Nevertheless, as Kitchenham (2004) has

recommended, the review protocol has been reviewed and criticised by the

supervisor, who is considered here as the external assessment.

Before the execution process for the review protocol, an external assessment,

which had experienced a systematic survey process before, was performed and

34

modified depending on its feedback. To build the initial scoping study, we applied

the approved reviewed protocol to ten articles to make the initial scoping study. The

output of this stage prevents us from struggling among the high number of searched

articles. During the experimental studies, the study scope was expanded, the search

methods were enhanced, and the exclusion/inclusion criteria were refined Table

2.3.

Table 2.3: THE EXCLUSION AND INCLUSION CRITERIA.

In
cl

u
si

o
n

 • Research articles that introduce innovative solutions or algorithms on LB in FC focus on time-
sensitive applications.

• Peer-reviewed articles in conferences or journals

• Articles published between 2015 and August 2023

E
xc

lu
si

o
n

 • Articles that study Service Placement, Resource Allocation, task scheduling, task allocation, IioT,
vehicular or IoV systems,

• Review articles, editorial articles, short articles (less than six pages), write articles, and non-
English articles.

• Research articles that do not mention solutions and algorithms to improve LB in FC explicitly.
• Books, book chapters, and dissertations

2.3.2. CONDUCTING AND DOCUMENTING THE REVIEW

After we finalise planning the review, we will conduct the review. The conduction

stage consists of five steps. Identifying the relevant research and selecting the

primary studies are the first two steps, followed by assessing the quality of the

selected papers. Then, Extracting the required data and synthesising them are the

last two steps in this stage.

2.3.2.1. RELEVANT RESEARCH AND PRIMARY STUDIES

The conduction stage consists of four consecutive steps. However, this is the first

stage, which aims to select the primary studies. This subsection lists the procedures

for searching and selecting articles in the second phase of this review. We need to

identify relevant research as described next to accomplish the selecting step.

We have identified relevant research. The search string or keywords that follow

are used within the different databases to find the articles related to our study. This

process searched abstracts, titles, and keywords in Well-known electronic academic

databases like IEEE Xplore, IOS Press, Springer, Web of Science, ProQuest, Scopus,

and Wiley are employed. The output of this step was 582 articles, as shown in Table

2.4. Notice that the search process was between 2015 to 2023. Even though FC was

35

introduced in 2012 (Sulimani, Alghamdi et al. 2021), we have chosen the starting

year 2015 to find articles more robust.

Ultimate selection- by applying the inclusion and exclusion criteria, we

examined the extracted 308 articles. Then, the articles that had passed the quality

assessment were chosen. By the end of step three, 103 studies were finally selected

to be included in this review.

Table 2.4: SEARCHING PROCESS.

Serial Indexing & Database Systems
Outcomes

Step I Step II Step III

1 IEEE Xplore 64 44 32

2 IOS Press 35 8 4

3 Springer 213 83 16

4 Web Of Science 114 65 19

5 ProQuest 15 11 10

6 Scopus 134 94 19

7 Wiley 7 3 3

Total 582 308 103

2.3.2.2. DATA EXTRACTION AND SYNTHESIS

As mentioned in the section on review protocol, a structured format was designed

as described in (Kitchenham 2004) to record the target data from selected articles.

An organised comparative analysis was performed by analysing each article,

enriching the article with an investigation of the collective research impact.

2.4. BACKGROUND OF RESEARCH

In 2012, Cisco’s researchers proposed FC as a new term in the computing world

(Yannuzzi, Irons-Mclean et al. 2017). Processing data at the edge was not a novel

concept then, as edge computing and cloudlets had emerged before 2001 and 2009.

Both FC and Cloudlets are the revolution of a similar notion, which revolves around

computing and analysis at the border area. FC is available to connect the IoT’s

objects. It is a newly emerging decentralised computing paradigm that closely

connects with central cloud computing and IoT devices. On the ground, the extreme

data generated via IoT devices such as sensors, cameras, and wearable devices can

be analysed (processed) locally in fog devices, e.g., routers.

In contrast, the cloud-based systems are forwarded to the cloud in the network

core (Mouradian, Naboulsi et al. 2017). The enhancement of FC frameworks

produced the administrators’ choices for computing data at the most suitable

location in the network to increase the QoS. For example, many applications might

36

require high reliability and ultra-low latency processing tasks, such as in a

connected vehicle use case where vehicles are required to respond to an accident in

less than 2 milliseconds of delay (Stojmenovic and Wen 2014).

FC offers several benefits for IoT applications, such as performing all steps of

data transmission, data extraction, data execution, and data storage from the IoT

apps (Xu, Fu et al. 2018). It can fulfil such high-reliability and low-latency service

requirements and boost the processing capacity for the network by utilising the

excellent performance of the network connections among the fog devices at the edge

and the analytics Edge points (Naha, Garg et al. 2018). Also, FC can minimise the

required bandwidth of the background links), compared to cloud computing, where

the whole data set needs to be forwarded to a data centre in the core network for

processing and storage (if necessary). The future IoT networks and era will adjust

to this scenario, where a noticeable volume of data can flow into the system for

computing, storage, or analysis. In other words, FC is very similar to obsolete

computing systems, where the processing occurs near the devices or locally without

sending them to the remote systems, yet with a central system with powerful

processing and communication facilities.

2.4.1. FOG COMPUTING (FC)

The interest in and focus on FC research is rapidly increasing. Several FC definitions

rely on different points of view. One of the first people to define FC was Bonomi,

Milito et al. (2012), who wrote: “Fog computing is a highly virtualised platform that

provides compute, storage, and networking services between IoT devices and

traditional cloud computing data centres, typically, but not exclusively located at the

edge of the network.”. This definition is superficial; it does not consider the

fundamental aspects of the spread nature of FC; it is just an upgrade in organising

abilities, like by providing facilitating conditions and improved help for

communication between gadgets.

Vaquero and Rodero-Merino (2014) defined FC as “a scenario where a huge

number of heterogeneous (wireless and sometimes autonomous) ubiquitous and

decentralised devices communicate and potentially cooperate with the network to

perform storage and processing tasks without the intervention of third parties. These

tasks can be for supporting basic network functions or new services and applications

37

that run in a sandboxed environment. Users who lease part of their devices to host

these services get incentives”. Although this definition has explained the fog system

from different angles, it ignores the relationship between cloud computing and fog

environments and why we need to use this type of technology.

Another researcher intends to define this technology as “Fog computing is a

distributed computing platform where most of the processing will be done by the

virtualised and non-virtualised end or edge devices.” (Patwary, Naha et al. 2021).

Moreover, Naha, Garg et al. (2018) define “It is also associated with the cloud for non-

latency-aware processing and long-term storage of useful data by residing between

users and the cloud.”.

According to a definition provided by Mukherjee, Shu et al. (2018), FC is a novel

model that expands the traditional cloud computing model to the network’s edge. In

some application components, processing (e.g., latency-sensitive ones) is executed

at the network’s edge. In contrast, others (e.g., computationally intensive and delay-

tolerant components) can occur in the cloud centre. Networking, computing, and

storage services are the basic building blocks of the cloud and fog that can provide

this service. It is the most comprehensive definition due to enough information

about the fog system.

Other researchers introduce the FC as a decentralised computing paradigm with

a pool of resources consisting of more than one ubiquitously connected heterogeneous

(wireless or autonomous) device at the network’s edge. It might work in a standalone

mode without supporting cloud services to provide the clients with available resources

collaboratively (Yi, Qin et al. 2015). Baburao, Pavankumar et al. (2021) define FC as

a distributed computing model that provides all the benefits of cloud computing at the

boundaries of the network and acts as a cloud to the clients at the edge.

Although the expressive definition for FC is “clouds closer to the ground”

(Mukherjee, Shu et al. 2018), we can modify that to be “fog computing is a mini

virtual cloud that resides closer to the ground,” which will be more descriptive. Even

though this definition is too simplistic, it is expressive.

38

2.4.1.1. ARCHITECTURE OF FOG COMPUTING

A new emerging platform needs standard engineering to be deployed. Currently, FC

has no approved standard design (Iorga, Feldman et al. 2017). Nevertheless, many

researchers have introduced fog processing architectures.

HIGH-LEVEL ARCHITECTURE OF FOG COMPUTING

The FC platform is formed by high-level architecture, categorised into three vertical

layers, including Cloud, Fog, and IoT, respectively, as shown in Figure 2.2.

Layer 1: The ground layer is the IoT level, where all connected devices, such as

mobiles, tablets, and sensors, exist. In this layer, devices are distributed

geographically and perform the sensing and actuation processes as an extra activity.

For example, while IoT devices nowadays provide processing capabilities,

computing power is an additional function for the sensors. The time-sensitive

processing should be performed exclusively on the fog layer, while the processing is

not time-sensitive and can be performed in the cloud layer. The fog layer decides

what should be forwarded to the cloud layer and what should not. In this situation,

the clients can gain services from the cloud and the fog based on their condition.

However, the complex tasks will be managed by the cloud layer.

Layer 2: The fog layer is the most crucial layer. It is a group of nodes with idle

storage and/or computational power. Thus, it might have a uni-computational node

or several connected devices communicating dispersedly (Chandak and Ray 2019).

This layer contains all intermediate processing and analytic devices, such as

switches, gateways, servers, and routers. These devices can perform traditional

virtualisation, typically as the cloud; however, this layer accumulates all generated

data by the IoT zone and pushes the required data to clients after processing. For

example, while routing data is the primary function of a router, storage and

computing are extra activities for the router. Even though the big data issue can be

fixed by processing accumulated data at the edge zone, billions of connected objects

will initiate big data problems. Thus, it employs small- to medium-scale big data

computing at this level. Many researchers’ work has been established to expand the

knowledge of big data on the Fog platform (Oueis, Strinati et al. 2015, Ningning, Chao

et al. 2016, Refaat and Mead 2019).

39

Figure 2.2: Fog Architecture.

Layer 3: The cloud layer is the top layer in the fog architecture, comprising the

processing servers and storage servers. These servers have extensive storage

computation power. It is an essential part of any IoT-based system that relies on a

central location and is accessible worldwide through the internet.

CHARACTERISTICS OF FOG COMPONENTS

Figure 2.2 illustrates a basic model of FC. There are many essential computation

components in fog environments, such as fog servers, gateways, routers, and

switches. In other words, we can consider any device with storage capabilities,

networking capabilities, and computation power to be a fog device. All these devices

are managed by fog servers or intelligent gateways, which act as coordinators for

services among heterogeneous objects in the client layer. Thus, the fog server is

responsible for adjusting the communication among IoT devices, and it is also

responsible for establishing and maintaining communication links among the

devices’ layers (Wu, Liu et al. 2019).

Although both fog and cloud share flexible resources of storage, computing, and

networking, it is obvious to highlight the unique characteristic of the FC model,

which decides to implement the fog model in place of the cloud paradigm crucial as

follows (Mukherjee, Shu et al. 2018, Téllez, Jimeno et al. 2018):

Edged position: The minimum latency requirement for applications such as video

streaming, augmented reality, and gaming has required various types of networks.

While the fog system is located at the edge and close to IoT devices, it has the power

to support latency-sensitive programs that rely on real-time processing. Generally,

IoT applications with location awareness on the computing servers would make a

difference.

40

Edge Analytics: regardless of centralised analytics in the cloud platform, FC can

analyse sensitive tasks locally. In a cloud scenario, the task must be sent to the cloud

(unique computing power in the system) to analyse the data. In this case, the travel

time will be added to the total time, increasing the execution time.

Location awareness: Because of the enormous increase in mobile applications in

recent years, FC, as a dominant force in network computing, needs to improve the

QoS to tackle the explosion of tasks generated by mobile devices. Even though the

computational capacities of mobile devices and IoT devices are increasing, the QoS

demands of some applications will continue to rise. Besides that, many of those

applications will require information on location awareness from the system they

are running. Although it has limited computational capabilities, it can derive its

location. Thus, the system can track the client’s device position.

Scalability or Geographical Distribution: Many cloud-owning companies such as

Amazon, Google, and Microsoft have been able to arrange their cloud data centres

across the world to improve QoS for their customers and alleviate the load on the

primary data centres. For example, the Google Company has distributed cloud data

centres in Asia, South and North America, Europe, and Australia (Haris and Khan

2018). Although cloud computing has the advantage of covering a wide geographical

area, it often becomes the bottleneck of the whole system. On the other hand, FC can

form mini clusters of nodes to be more efficient by being close to the clients.

Wireless access networking: While FC uses Wi-Fi technology to communicate with

its nodes, fog nodes can communicate distributively.

Federation and seamless interoperability: FC comprises multiple computing

nodes widely distributed and interconnected to cover the workplace. Therefore, the

block of nodes in that context is possible and beneficial to tackle the vast number of

tasks generated by clients and IoT devices. Moreover, large-scale sensor networks

support a heterogeneous end-user and device due to edge devices’ proximity to the

compute nodes. FC networks are planned to be supported by many sensors.

Low latency: A wide range of applications will directly benefit from applying the

fog paradigm to their network by installing computing nodes closer to their sensors

or IoT devices. This technique will work to decrease the processing time for the

41

requests. Vehicular networks are an obvious example that have a clear benefit from

fog. Because latency is a crucial vector, FC is mandatory (Hou, Li et al. 2016).

OPENFOG REFERENCE ARCHITECTURE

As the use cases show, an FC framework can have a pool of gateways and

components, such as switches, routers, gateways, and other IoT devices. This might

require a specific design of the FC paradigm to get the most out of FC. The OpenFog

Consortium was made by more than fifty organisations worldwide, led by Cisco. It

has set three goals for developing a fog framework. Figure 2.3 illustrates the

architecture of OpenFog. The OpenFog research architecture is a mid-level heuristic

document full of valuable model suggestions for specialists planning to implement

fog networks, fog components, fog-based applications, or fog nodes. It explains

several mentions of fog use cases in smart cities, visual security, and transportation.

Figure 2.3: OpenFog Architecture.

Eight pillars of OpenFog constitute the core of its capabilities, such as openness,

autonomy, security, scalability, agility, program ability, manageability, and

hierarchical organisation. The research architecture has discussed these pillars in

detail and shows the interrelationships among various components. OpenFog’s

reference architecture supplies a scalable and programmable paradigm for FC. The

system’s designer can apply their designed resource management plan in this

reference architecture to enhance the LB (e.g., radio resource management,

resource allocation, and task offloading) of the FC environment. Given the different

use cases of FC, fog’s LB needs to consider the exclusive features of the specific

applications (such as automatic driving and data analytics) in the selected cases. The

42

computation task models we plan to introduce will be used for different

applications. Here, we list some of the applications of FC security and

transportation.

2.4.1.2. REAL-TIME DATA ANALYTICS

Like IoT applications, the Internet of Vehicles (IoV) must reinforce its ability to

tackle the high car production rate. With the advent of self-driving and semi-

autonomous vehicles, sensing data (e.g., generated by sensors) in smart cars must

be analysed locally in real-time and operations (e.g., directions and driving speed)

must be taken. Even though smart cars might handle all the tasks required to analyse

locally, the fog system can categorise the tasks that rely on the priority defined in

the predefined stage or setup. This feature gives a chance to critical tasks for

execution with minimal time, whereas the other requests are pushed to the cloud to

be analysed or not taken immediately. For example, if the oil engine expires, the

indication would be to act or store the historical data for that car.

Furthermore, many decisions require processing data that does not exist locally

(in a vehicle). Hence, FC acts to accelerate this process and assist in making fast

decisions at the edge. Many researchers study and propose many algorithms related

to mobility computing integrated with FC. Hou, Li et al. (2016) investigate how

Vehicular FC (VFC) might utilise vehicles as computational power and

communication infrastructures. The research demonstrates an intriguing rapport

between FC and computational mobility power, which can be used to empower that

market. Chen, Huang et al. (2021) present CFC-IoV architecture, a regional fog-

computing-based intelligent vehicular network architecture for dealing with big

data that generates IoV objects. The proposed architecture includes infra-fog

energy-aware and QoS-aware resource management, which aim to enhance the

performance of the entire IoV system.

SMART GRIDS

The smart grid is a new era for an electricity distribution network. Usually, this

network contains distributive smart meters installed near clients to count and

measure real-time consumption for each unit. Supervisory control and data

acquisition, known as SCADA, is a standard system utilised by utility organisations

such as water and electricity to monitor and control distributive objects. These

43

objects are smart meters, sensors, control switches, or control valves. Traditional

SCADA systems use telecommunication protocols to communicate over private or

public networks, such as IEC 60870-5-101/103. This protocol has many obstacles

when used via the internet. Smart meters leverage networking and cloud technology

to communicate with a central unit in utility organisations. Therefore, IoT

accelerates smart grids’ ability to communicate with the central SCADA system over

the internet.

FC is emerging in this field to enhance and accelerate the reaction of SCADA

systems by analysing and processing tasks near the edge. Many researchers study

smart grids in fog environments. Okay and Ozdemir (2016) presents a model for

smart grids based on FC. The authors prove the efficiency of FC for smart grids

compared to cloud systems. In contrast, Zahoor, Javaid et al. (2018) propose the

HABACO technique to enhance resource management in intelligent grid systems by

using the cloud or FC. The research shows the benefits of using FC in the SCADA

system.

IOT APPLICATIONS

IoT applications, such as smart grids and cities, increasingly rely on real-time data

to operate efficiently. Moreover, with the incredible amount of data generated

continually via sensors and other spread devices, the uni-data centre (such as the

cloud) cannot be centralised in a data centre. An FC framework can compute the

data aggregated from the IoT sensors near the source point. Therefore, this

framework can handle both problems in this manner.

Although the cloud system has higher computational power than FC, fog/cloud

computing has more power than the cloud. Traditional network components, such

as routers, Access Points (AP), switches, and proxy servers, are available in the FC

paradigm. Those components give FC an advantage over cloud computing by locally

providing processing and analytic power. Thereby, FC can perform efficiently

regarding service latency, network traffic, content distribution, and operational

expenses. Therefore, FC better meets the IoT application requirements than using

cloud computing.

44

2.4.1.3. COMPARISON OF CLOUD AND FOG COMPUTING ARCHITECTURES

The main distinction between fog and cloud computing is the goal of minimising

latency in the overall system. While the cloud centre resides apart from the field,

some clients’ apps require almost zero time to perform their tasks. Health

applications, for example, are among the most prevalent applications that require

low time latency, as are intelligent grids. The main differences between the two

systems are listed in Table 2.5.

Table 2.5: THE DIFFERENCES BETWEEN FOG AND CLOUD COMPUTING.

feature Cloud Computing Fog Computing

Location In promises Closed to the clients

Internet Required Crucial Not essential

Technical Support 24/7 Client Responsibility

Globality Support Not support

Size of Recourses Massive and easily expandable Limited and not changeable

Owned by Organisation Clients

2.4.2. LOAD BALANCING (LB)

In FC, LB is a strategy that makes all resources of the units’ system equally used. It

targets distributing the arriving tasks fairly to fully equip all active computing

units. Every LB algorithm has a unique mechanism to accomplish this target.

Generally, if managed well, LB is used to increase system throughput, resource

utilisation, performance, and reliability. Although LB research inspired different

solutions to fill most research gaps, an explosive growth of IoT data, users, and

application requirements increased the burden on the fog layer, which has limited

resources.

This section expands writing about LB, especially in offloading algorithms. In

this field, various definitions of LB have been found. LB aims to maintain the

available resources in computational nodes by redistributing the arrival tasks

among computing nodes to be equally loaded, avoid overload conditions of one

device (or specific nodes) with many tasks (Puthal, Obaidat et al. 2018), and avoid

idle conditions for them.

Accordingly, LB in FC refers to efficiently distributing the arrival workload

among a group of computing fog nodes, thus increasing the reliability of incoming

tasks and the capacity of existing clients. LB is beneficial for cloud and fog providers

to effectively distribute application tasks to different fog nodes or cloud servers. Due

45

to the fluctuation in the number of client requests, the LB technique is the most

suitable technique for network computation, which works on a dynamic principle to

avoid lagging in execution due to a long waiting list at one node. Among the previous

definitions we notice, it seems they all have the same meaning. When offloading

specific tasks, criteria such as excessive computation or resource constraints,

latency requirement, permanent or long-term storage, data management and

organisation, privacy and security, accessibility, affordability, feasibility, and LB are

used.

Figure 2.2 depicts a model of LB in fog architecture, in which the cloud server

interacts with different layers. LB process, the workloads are exchanged among

layers to fill clients’ needs regarding resources with the least possible delay.

Further, in another part, the sensitive request gets sent to the cloud if the client fails

to receive essential resources.

LB uses many metrics to evaluate, such as system performance, throughput,

average waiting time, response time, make-span time, fault tolerance, network

delay, execution time, resource usage, CPU usage, network load, and Quality of

Service (QoS). The advantage of LB is that it utilises more computational and storage

power while minimising the switching time between tasks. LB can be static or

dynamic, periodic or non-periodic, and centralised or decentralised in a computing

environment. Therefore, the main advantage of using an LB algorithm is enhancing

the FC environment (Mon and Khine 2019).

There are two main categories for LB in FC: static and dynamic LB techniques

(Bolarinwa 2015). Static LB relies on distributing the tasks using the initial

information on task requirements. These requirements are determined at the

beginning of the mission. Although this technique is easy to apply and configure, the

static method has significant drawbacks. For example, they are changing the burden

of one node during system start-up to the maximum load. Task allocation is fixed

and cannot be modified during the execution of the process. While the network’s

initial design configures the distribution of the workloads to some nodes that seem

not loaded, the nature of free movements in a fog environment will affect this

strategy.

46

On the other hand, dynamic LB migrates tasks among nodes smartly when one

of them gets too busy. Selecting the destination node always depends upon the

current information about traffic loads. Hence, efficient real-time load estimation is

vital for active dynamic LB. Moreover, most computing systems widely use virtual

machines (VMs) (Pan, Thulasiraman et al. 2018). Therefore, the LB function might

be more complicated in the fog environment.

Estimating the memory usage and CPU load for fog nodes and the network load

is the first stage in the algorithm; secondly, analysing the available resources in fog

devices and measuring the synchronisation level in fog zones. Third, notice the

fault tolerance and avoid a single point of failure in the event of failure (Bisht and

Subrahmanyam).

2.4.2.1. CLASSIFICATION OF FOG NODE IN LOAD BALANCING

Different methods have been proposed to classify the fog nodes. In the LB algorithm

of FC, the algorithm classifies the nodes as heterogeneous or homogeneous.

Homogeneous Node: The FC environment usually compromises devices with

different power capacities, such as a base unit with high power of resources, and, in

other parts, mobile phones with a limited number of resources and a different type

of constraining, so the fog environment is heterogeneous. Therefore, it is hardly

adopted in the Fog environment. On the other hand, in heterogeneous nodes, this

type of catalogue, the nodes agreed to cooperate with different types of nodes with

varying power capacities. Therefore, the LB controller can choose the next execution

node depending on specific conditions such as algorithm and task size.

Many IoT-generated datasets are processed in the fog layer. As mentioned, the

fog layer comprises a group of fog devices, such as switches and routers,

communicating to create a pool of computing and storage resources. These

resources need to be managed by distributing the workload requested by clients.

Those workloads sometimes have a high arrival rate at fog nodes and need fair

distribution among processing nodes to benefit from those pools of resources.

Thus, distributing loads requires an LB instant that uses a distinct distributing

scenario. LB allocates loads to a suitable computing unit. A load balancer collects

some information about fog devices to estimate and calculate the size of each device.

47

Based on this data, the workloads will be forwarded to the suitable fog node (Ferrer,

Marquès et al. 2019).

A fog node is initially designated based on end devices’ and traditional servers’

features and characteristics. A group of fog nodes combines at least one or more

physical machines with high computational capabilities (Ferrer, Marquès et al.

2019). An FC node would be a logical concept for a more robust understanding, with

a device’s different form as its physical infrastructure. All end devices, including

processing capacity, will be counted within the fog node regarding virtual

processing units. Therefore, all physical devices with computing power at a fog node

are collected as a single logical unit able to process and analyse assigned services

seamlessly. For example, traditional computers and mobile devices can also share

their processing power to provide task orders. All coordination processes for the

end devices, as well as communication issues within the fog node, will be managed

by the fog node master (Mach and Becvar 2017).

2.4.2.2. TYPES OF CONTROLLERS IN LOAD BALANCING

To create a balanced computing environment, a dispatcher must decide the required

action to fulfil the balancing criteria. The primary role of the dispatcher is to

investigate the surrounding statuses of computing nodes and select the ideal

location to execute the arrival tasks. There are two strategies to implement LB in FC:

centralised and distributed controllers.

The central controller uses a core device connected directly or indirectly to other

fog devices. It could be a standalone or fog device with an LB feature. This feature is

provided by modifying or configuring the existing computing nodes, as shown in

Figure 2.4(a). For example, by configuring a router in a fog environment, it can act

as a router and controller of LB at the same time. The pros of using a central

controller technique for LB are that it is simpler to manage and implement.

Moreover, the recovery time is minimal in the event of failure.

48

Figure 2.4: Type of controller in fog layer.

On the other hand, global state information in the network is a collection of

metric information from other devices. Thus, the load balance device has global

state information about the current cluster. This data is gathered and analysed in LB

for redistribution (Chandak and Ray 2019). The cons of this technique are that there

is a single failure point, and we can minimise the consequences by configuring

another fog node to be a hot standby. On the other hand, global state information in

the network is a collection of metric information from other devices. Thus, the load

balance device has global state information about the current cluster.

Distributed Controller: A centrally located controller has many advantages in

managing and controlling the load among devices in a network, but it might have a

communication bottleneck since it utilises the network bandwidth. Thus, the failure

of this load balancer will cause failure of the entire system, or more simply, a single

point of failure. All fog devices must periodically send selective information to the

central controller to sustain system updates. Therefore, cooperation is required

between nodes to distribute the computation requests among them. Whereas the

distributed controller, as shown in Figure 2.4(b), increases the scalability and

reliability of the network, it relies on the cooperation of the local controller

(Chandak and Ray 2019).

2.4.2.3. SCENARIOS OF LOAD BALANCING IN FOG COMPUTING

LB might occur at any computing level in the fog system, depending upon the

location of the computing load. This location, which has a high demand for

computing, determines what type of algorithms are suitable to be initialised and

49

executed, whereas every location has a different technique to apply. There are many

offloading scenarios in the fog system.

Figure 2.5 illustrates some scenarios where offloading can be activated to

achieve LB. There are three locations to offload tasks in the fog environment. For

example, case A represents an IoT/cloud model where the IoT device communicates

directly with the cloud platform without engaging the fog layer in communication,

such as some intelligent meters accessing a cloud service directly. In case B, the

communication line represents offload from IoT objects to fog level, where fog

cooperates with the cloud to improve security or latency services or store and

process data. While case C shows IoT devices accessing the smart gateway in a

middleware, it evaluates the task. It decides whether to execute it locally or offload

it to the cloud instead of offloading it to the fog, depending on the requirements of

the service. In case D, the operation represents offloading among fog devices (peer-

to-peer) after receiving it from an intelligent gateway or IoT objects.

Figure 2.5: Possible offloading scenarios in a fog environment.

2.5. CHALLENGES IN FOG COMPUTING

While FC is classified as an evolved extension of the cloud computing system to

handle IoT-related problems and shortcomings at the network edge, in FC,

processing nodes are distributed and heterogeneous. Furthermore, the services

based on fog technology must work with various aspects of the restricted

environment. Moreover, assurance of security is dominant in FC. Therefore,

discovering the challenges of FC from service-oriented, structural, and security

perspectives can be listed as follows (Mouradian, Naboulsi et al. 2017):

50

2.5.1. SERVICE-ORIENTED

Resources enrich not all fog nodes. Therefore, comprehensive scale application

enhancement in resource-restricted nodes is not natural compared to traditional

data centres. Thus, distributed application development needs for potential

programming platforms in Fog are required to be implemented. Moreover, a fog

administrator must clarify the policies to distribute required tasks among

sensors/IoT devices fog infrastructure.

2.5.2. STRUCTURAL ISSUES

The infrastructure of FC consists of various components from both the core and edge

of networks. These components have different computations but are not designed

for general computing. Therefore, redesigning or modifying the computation unit

for the element is a highly challenging part of the system setup. Additionally, based

on execution operations and operational requirements, selecting the suitable

device, places of deployment, and corresponding resource configuration are also

crucial in FC. In FC, computational devices are spread across network boundaries

and can be shared or virtualised. In this case, it is necessary to define suitable

metrics, strategies for inter-nodal cooperation, and efficient resource provisioning.

2.5.3. SECURITY ASPECTS

FC relies on conventional networking components, making it highly vulnerable to

security attacks. Maintenance of privacy and authenticated access to computing and

storage services in a widely distributed model, such as FC, is challenging to ensure.

Therefore, maintaining QoS is difficult during the implementation of security, where

the data centre integrity is adequate, which makes the security topic in FC

challenging.

2.6. DISCUSSION

Nowadays, a plethora of beneficial IoT apps rely on the quality of time-sensitive to

run effectively. FC might be the appropriate technology to enhance the new

generation of real-time apps. Because of the dramatically increasing number of IoT

users, some computational nodes in a fog system become loaded while others

remain idle. Thus, it has become essential to reinforce the cooperation and

integration among computing nodes through offloading techniques to run most of

the processing nodes equally and reduce the computational and storage power

51

wastage (in the idle nodes) (Janjic 2012, Nokia 2013, Bittencourt, Diaz-Montes et al.

2017, Mach and Becvar 2017, Baburao, Pavankumar et al. 2021). This chapter

focuses on the research that has already been done on LB and the different ways to

improve a fog model. Collectively, these studies outline the critical role and the need

for offloading to enhance system performance, QoS, time latency, and power

efficiency in FC (Vaquero and Rodero-Merino 2014, Shi, Pallis et al. 2019).

Therefore, LB, through offloading processes, promises tremendous benefits in a fog

environment.

At this stage, the first three questions of the research can be answered. After

reviewing the recent study, the proposed solution must have the following

characteristics to satisfy the research requirements:

• Utilising the behaviours of static and dynamic offloading in a novel

offloading. (Answering RQ1).

• The proposed model must categorise the arrival client task into heavy

and light tasks, as shown in (Guerrero, Lera et al. 2019). (Helping to

answer RQ1).

• It is essential that light tasks be executed at the leaf or edge device and

not be engaged in any offloading process (Sulimani, Sajjad et al. 2022).

(Helping to answer RQ1).

• The novel hybrid algorithm, which has static behaviour, can work to

minimise the exchanged system messages (as explained before);

moreover, clustering limits the exchanged messages in a system by

keeping them inside the cell. (Answering RQ2).

• Clustering also works effectively to limit the exchanged messages inside

the cell. Distant offloading appears, in this case, when the fog node

offloads the tasks to the cloud. (Answering RQ3).

• The proposed model must employ offload in cases C and D and avoid

cases A and B (Figure 2.5). (Helping to answer RQ3).

However, the formidable rapport between enhancing the performance of

computing nodes and offloading processes has been reported in the literature. In

effect, the offloading technique reinforces the current algorithms and invents a new

one (software). This chapter sets out to assess the drawbacks of offloading

processes in the targeted system. Moreover, an initial objective of this study is to

identify if any previous study introduced a sustainable concept to balance the load

52

in a fog system. The outcomes showed no LB solution based on a long-term concept

with the mentioned characteristics in the literature reviews. These finding

highlights adding an extra computing node to an affected area or moving the idle

node to another location (hardware modification) with high demands to overcome

the research issue. This modification in node position must be done through specific

software, which must have historical load data for all computing points. However,

creating a hybrid LB system is considered a measurable research gap. It can thus be

suggested that even though the software solution has a noticeable improvement for

LB, hardware and software resolution will enhance the computing system better.

There is ample room for further progress in determining the feasibility of including

hardware modifications in the position of fog nodes to improve LB.

53

2.7. CONCLUSION

Most suggested LB solutions that aim to reduce the workload of affected nodes by

offloading some of that workload to their neighbours’ nodes ignore the concept of

sustainability in fog networks. This scenario is discussed and explored in this

chapter. However, this perspective on resolution may lead to an increase in

offloading processes, which would inevitably impact available network throughput.

However, this chapter presents the most articles that offer solutions to enhance the

LB in FC. The chapter uses a systematic review to build the survey. The research

questions aim to understand better the proposed solutions to tackle the obstacles

that affect the performance of time-sensitive applications in large-scale fog

networks. Moreover, the study explores the sustainability concept utilised before.

The outcomes of this chapter point to the fact that no study finding a solution to the

research dilemma has a long-term solution.

54

3. CHAPTER, REINFORCEMENT OPTIMISATION

FOR DECENTRALISED SERVICE PLACEMENT

POLICY IN IOT-CENTRIC FOG ENVIRONMENT

Abstract: A decentralised service placement policy is critical in distributed systems

like FC, where sharing workloads fairly among active computing nodes is essential.

A decentralised approach is an inherent feature of the service placement process,

may improve LB among computers, and can reduce the latency in many real-time

Internet of Things (IoT) applications. However, this chapter proposes

reinforcement optimisation for a decentralised service placement policy (RODSPP),

which attempts to mitigate some of the drawbacks of existing placement policies.

Matching task size with node specifications and allocating less popular but time-

sensitive applications in the fog layer are the primary contributions of this study.

Extensive experimental comparisons are made between the proposed algorithm

and other well-known algorithms using an iFogSim simulator. A microservice-based

application with varying sizes of computing requests is tested experimentally, and

the results show that the proposed algorithm effectively serves computing instances

closer to users, reducing service latency and network usage. Compared to the

existing models, the proposed modified algorithm reduces service latency by 24.1%,

network usage by 4%, and computing usage by 20%, thus highlighting positive

outcomes when using the proposed algorithm for fog analytics in future real-time

IoT applications.

55

3.1. INTRODUCTION

The popularity of smart cities, wearables, e-health, and intelligent vehicle

environments has increased with the emerging applications of the Internet of

Things (IoT) (Vögler, Schleicher et al. 2016, Sulimani, Alghamdi et al. 2021). Quality

assurance is essential in intelligent systems because users and their service needs

are growing. For the quality assurance of IoT applications, cloud servers were

expected to integrate IoT technologies with human users (Catruc and Iosifescu

2020). The cloud-centric IoT network has been designed to alleviate the constraints

of IoT devices due to the limitations of computational and memory resources by

providing centralised control of IoT devices (Khosroabadi, Fotouhi-Ghazvini et al.

2021). However, cloud servers are often far from IoT edge devices, thus introducing

latency and bandwidth challenges between users and computing nodes (Kamel, Yu

et al. 2020). Latency in time-sensitive applications, such as smart grids or unmanned

vehicle management, can result in significant problems (Kaiwartya, Abdullah et al.

2017, Tiwary, Sharma et al. 2018). A fog network can use local computing and

storage resources near the IoT edge devices. It can thus provide necessary

computations to the IoT edge devices, providing an opportunity to reduce the

latency and bandwidth requirements due to being closer to the IoT edge devices

than cloud servers (Klas 2015, Mao, You et al. 2017).

Cloud servers and fog networks provide alternative options for IoT edge devices

that can also connect to access computing resources through cloud servers and fog

networks. A fog data manager (FDM) can determine whether the data is executed in

the fog network or cloud servers. The FDM can transmit part of the data to the cloud

servers while the remaining data is retained on the fog network, as discussed by

(Puliafito, Vallati et al. 2021). Once the data is sent and allocated to the fog network,

the placement policy (PP) can ensure it is retained on the fog network. Fog service

orchestrators (FSOs) can also fairly allocate computing resources among the fog

nodes to improve the quality of service (QoS), as presented by (Baranwal and

Vidyarthi 2021). However, neither of these methods addresses scalability issues in

an IoT network well, and Salaht, Desprez et al. (2020) addressed scalability in their

Fog Service Placement Problem (FSPP). An efficient FSPP is vital to ensuring the QoS

56

of IoT applications. A failed or suboptimal FSPP can delay fog analytics, causing

significant issues for real-time IoT applications.

FSPP is essential, but its centralised management can have some disadvantages:

(a) increased network overhead due to the periodic communications between the

resource broker and fog node; (b) longer computing time due to the increased

number of IoT edge devices to control; (c) reduced reliability to a single point of

failure (SPOF); (d) management of heterogeneous fog devices; and (e) inherent

latency generated by machine communications between brokers and fog devices.

However, the decentralised scheduling algorithm (DSA) proposed by Salaht,

Desprez et al. (2020) relies on the time vector for efficient operation. A poorly

managed FSPP can cause real-time IoT applications to fail due to the 'induced' high

latency (Brogi, Forti et al. 2020). A poorly managed FSPP can cause real-time IoT

applications to fail due to the 'induced' high latency (Brogi, Forti et al. 2020).

3.1.1. RESEARCH PROBLEM

"What is a new solution for optimal placement policy over fog physical

resources to overcome the inherent issues of prevalent resource allocation

mentioned in RQ1, RQ2, and RQ3? is the fourth research question. Creating a

simple and efficient service placement model is the objective of this chapter.

Several hurdles need to be overcome by the proposed algorithm, which requires

developing a novel strategy in service placement to answer the related research

questions.

This study reinforces the current placement policy FSPP using a proposed new

approach to overcome some shortcomings. This study presents an innovative FSPP

that operates distributed to reduce the induced and inherent latencies in IoT

applications that prioritise delay-sensitive applications to be served with priority

placement even with a low popularity rate. The father node, which receives the

computing tasks from the end-user nodes, can forward or maintain the services if

the father nodes are compatible. All tasks are managed locally by the father node

and its subordinate nodes without global scheduling. Such an FSPP is more scalable

and unaffected by the increasing number of IoT edge devices or services. This study

also performs many experiments to confirm the above hypothesis. The primary

contribution of this study is a more scalable FSPP that reduces computing

57

requirements while reducing inherent and induced delays in time-sensitive IoT

applications. The new FSPP may limit global communication between fog nodes,

therefore not guaranteeing global optimisation; however, as the size of the IoT

network increases, global optimisation is often unnecessary (Puliafito, Vallati et al.

2021).

In this approach, the proposed method places the most popular or delay-

sensitive compute tasks closer to the end-user nodes using the hop number as the

reference. This method manages the workload for fog nodes to remain sustainable

with locally optimised QoS, thereby satisfying the necessary computing

requirements of IoT applications in the fog network. The primary objective of this

study is to develop the decision criteria for service allocation, including when and

where the services are to be allocated among the IoT fog nodes and associated time-

sensitive requirements (either closer or further from the end-user nodes).

3.2. RELATED WORKS

Fog networks can use many optimisation techniques, including greedy algorithms,

heuristics, genetic algorithms, and linear programming. In References (Yang 2015,

Zeng 2016, Wang 2017, Khosroabadi 2021, Sami 2021), several aspects of fog

resource management are defined, including scheduling, placement, provisioning,

allocation, and mapping for clients, virtual machines, services, and resources. These

algorithms have also been investigated for real-time applications, such as smart

cities, industrial IoT, and mobile microclouds (Taneja 2017, Salimian 2021). Table

3.1 summarises recent work, including application types (e.g., eHealth IoT system,

general IoT system, or embedded system) in the column Scope, types of brokers

(Broker), proposed algorithms (Alg.), target functions to optimise (Objective

functions), components that the optimisation algorithm can control to enhance the

objective functions (Decision variables), validation tools used to test the algorithms,

and types of computing environments (Env.).

Khosroabadi, Fotouhi-Ghazvini et al. (2021) proposed "a clustering of fog

devices and requirement-sensitive services first" (SCATTER) algorithm to allocate

the Fog-Edge border computing resources to delay-sensitive applications but

ignores the other tasks in demand, which could be a concern in many real-life

applications. Velasquez, Abreu et al. (2021) introduced popularity ranked

58

placement (PRP) based on graph partitions and optimisation using genetic

algorithms and showed that PRP yielded improvements compared to the generic

genetic algorithm or first fit (FF) algorithm but could still be improved.

Morkevicius, Venčkauskas et al. (2021) presented two stages of multiobjective

optimisation that included multiple metrics that we use in this study to evaluate

the proposed method: security performance, compute usage performance, and

storage utilisation. This technique was designed to maintain the QoS level with the

minimum usage of available resources.

QoS and energy consumption metrics were used to evaluate the algorithms

proposed by Puliafito, Vallati et al. (2021). Those authors attempted to enhance

the service placement policy in a cloud/fog environment, ultimately improving

QoS in delay-sensitive applications. Hassan, Azizi et al. (2020) proposed a MinRE

placement policy to enhance QoS and energy consumption in a cloud/fog

ecosystem. MinRE consists of two algorithms, MinRes and MinEng, each focusing

on different workload types. During experimentation, MinRE showed promising

results while increasing computing loads, even with a fixed number of fog nodes.

Baranwal and Vidyarthi (2021) used distributive fog orchestrator nodes (FONs) to

place services on a fog-integrated cloud. The FON, a mediator entity, was proposed

by Al-Tarawneh to assign the arrival workload to the fog computational node

(FCN). Tarawneh and Hyasat (2010) proposed a bi-objective placement algorithm

to enhance the placement policy for interoperated services in a fog network. That

study considered the security requirements and criticality of the application as

optimisation variables and improved the satisfaction metrics compared to other

policies, including edge-affinity and cloud-only.

Maiti, Sahoo et al. (2021) designed a service placement policy to use schedule

gaps. Their proposed policy aimed to minimise the makespan to meet the task

deadlines with less utilisation of communication resources. In (Sami, Mourad et al.

2021), an intelligent fog and service placement (IFSP) was proposed to proactively

place services on demand using deep reinforcement learning (DRL) hosted in the

cloud to predict the system's load expectations with the entire database. The IFSP

can thus prepare nodes predictively before bearing workloads. Salimian Salimian,

Ghobaei‐Arani et al. (2021) proposed autonomous IoT service placement to reduce

59

the execution costs of a distributed fog system using the grey wolf optimisation

(GWO) scheme, which outperformed comparable policies in finding suitable fog

nodes to allocate computations. For heterogeneous cloud/fog environments,

Arora and Singh (2021) presented a heterogeneous shortest module first (HSMF)

placement policy. The HSMF was based on finding the shortest module to serve

first, which yielded improved performance compared to the other approaches.

Beraldi and Alnuweiri (2019) introduced a job allocation methodology for

interdependent services in a fog network, where interdependent jobs rely on

internode data communication and are described using a directed acyclic graph

(DAG). This work was limited because it did not consider the deadline constraint

and workflow execution. A linear approach (first comes, first serviced) has been

widely used, but task completion in ascending order is more time-efficient (Jamil,

Shojafar et al. 2020). However, sorting can be resource-intensive in terms of time

and computing.

The decentralised service provisioning introduced by Guerrero, Lera et al.

(2019) produced promising outcomes, such that all latencies in data transmission,

decision processing, and return response were reduced, achieving fair LB.

However, this system is still challenging due to its high running cost. Random

service allocation was discussed by Souza, Ramírez et al. (2016) but resulted in a

high service delay due to poor LB. Huang, Lin et al. (2014) proposed an energy-

efficient approach to co-locating service placement, which was adequate for a

small network but achieved poor service placement in a more extensive network.

A similar approach by Wang, Zafer et al. (2017) reduced execution costs by placing

predictive modelling tasks. The proposed solution performed well, but the cost of

the system was high, making it unaffordable to a small company. Taneja and Davy

(2017) proposed a resource-aware service placement solution, a good QoS

optimisation approach that first considered the highest-demand application tasks.

Thus, the mechanism resulted in a swamped network with idle and waiting states

with low-capacity devices/nodes.

60

Table 3.1: Summary of approaches to service placement.

3.3. PROPOSED ARCHITECTURE AND ALGORITHM

3.3.1. ARCHITECTURE

In real applications, a fog network is an extension of a cloud network. The extension

of the decentralised, remote distribution of the cloud network can be considered a

fog network. The computing nodes within the fog network are equipped with

limited storage capacity and computing power for host instances and can thus be

regarded as cloudlets (Muniswamaiah, Agerwala et al. 2021). Therefore, a resource

management policy for the IoT network can determine where and when to place

61

computing instances among the different layers of computing nodes (e.g., fog or

cloud). This chapter proposes an innovative service allocation architecture that

alleviates the drawbacks of FSPP, particularly for time-sensitive applications.

Given the three layers of the IoT network (cloud, fog, and edge), as shown in

Figure 2.2, the top layer is the cloud layer that contains the primary cloud servers.

The access layer is the edge layer, where end devices manage requests for IoT

applications. The fog nodes connect to both the edge devices and cloud servers. Edge

devices include computers, smart cars, sensors, and smart homes (Sabireen and

Neelanarayanan 2021). The fog nodes connect to both the edge devices and cloud

servers. This study assumes that all applications in an IoT network use

microservices (Colistra, Pilloni et al. 2014). These applications were configured as a

group of stateless and trivial services. These small services complete a complex task

once executed in a sequence. For example, 𝑎𝑝𝑝1 requires 𝑠1, 𝑠4, and 𝑠6 to perform its

complex task, while 𝑎𝑝𝑝2 requires 𝑠1, 𝑠2, 𝑠3, and 𝑠5, where the system consists of N

services, as shown in Figure 3.1. Both applications must complete a specific number

of jumps to perform 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2. Thus, each computing node can be scaled up

and down in their instances to improve the QoS of the distributed fog nodes. The

scaling process can use service codes from the cloud.

Figure 3.1: Interoperated services and applications.

This article proposes an optimisation of service placement by (1) allocating the

most demanded services and all time-sensitive applications in a particular area in

the fog nodes that are closer to the clients (edge); (2) migrating the services that are

62

not used regularly to reserve the available resources for other priority services; and

(3) managing service allocations to prevent system overloads. For example, if an

enormous computing task is allocated to a less powerful device, an overload will

occur in the system. Due to resource limitations in fog nodes, the service placement

policy must select services to be migrated. The proposed algorithm allocates

priority services to the nearest nodes in the shortest path. It migrates the lowest

nonsensitive requests to the upper levels, away from the users and closer to the

cloud.

System latency is inherent in all IoT applications. Although the service

placement policy can reduce latency in some fog applications, a delay-sensitive

application demands further reduced latency to perform adequately in a time-

critical application. For example, a device for a stroke patient must respond within

near-zero seconds, where any delay in the reporting system can have marked

consequences for the patient (Pareek, Tiwari et al. 2021). The metadata of service

requests must be evaluated in priority assignment; thus, critical tasks can be

allocated near edge nodes to support real-time requirements.

Many IoT applications perform interrelated services, where the cloud server

becomes essential as a long-term solution. Migration of such services along the

shortest path to the cloud is critical. The migration of some services can increase the

total execution time (and thus latency) if some essential services do not migrate

through the shortest path (Al-Tarawneh 2021). For example, an algorithm finds a

service 𝑆𝑥 with the highest demand for the device 𝐷1. However, due to the limitation

of 𝐷1
′ 𝑠 resources, s2, which is selected with the lowest popularity in 𝐷1, must migrate

to neighbouring devices, as shown in Figure 3.2. Although, 𝐷3 With a short distance

from the source device, the number of hops increases by two for 𝐷2, located on the

shortest path to the cloud. To accomplish this task, s4 was required.

Some services are in high demand (i.e., popular), while others are in low

demand. The popularity rule works by migrating high-demand services to fog nodes

closer to the client (edge), while other low-demand services are allocated to the

upper nodes with the shortest path to the cloud servers.

63

Figure 3.2: Example of service migration within different paths.

The interoperated service combines a clump of compensated microservices to

a complex task. Thus, it is critical to migrate all interoperated services (if possible)

if one must be migrated; this action tends to minimise the number of hops. Figure

3.3 shows the idea of partially migrating the interoperated services. We assume that

the service execution flow for an application is s1 → s2 → s3 → s4 → s5. Due to this, it

resides at the upper level, closer to the cloud and away from the edge. The

application will add two additional hops if the placement management system

(PMS) does not migrate to the following interoperated services: 𝑠4 and 𝑠5. Thus, it is

essential to verify the migration of Sn+1 and higher and keep 𝑠𝑛−1 at the same node.

Suppose we assume Sn is the migrated service, as shown in Equation 3.1. In that case,

the PMS must maintain the migration process for the (n+1)th interoperated service

along the shortest path to the cloud while keeping the (n-1)th in the initial node 𝐷𝑖:

 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑛
= ⋀ 𝑠𝑥

𝑥→∞

𝑥=𝑛
 ∀ 𝑥 ∈ 𝑖𝑛𝑡𝑒𝑟𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 (3.1)

This strategy must be activated if the initial node has limited resources. The

computing node uses a decentralised service broker in the proposed system, which

has proven beneficial against a centralised management system (Gowri and

Baranidharan 2023).

64

Figure 3.3: Example of interoperated service migration within the shortest path.

A decentralised broker is used to implement the proposed strategy. The

modelling and characterisation parameters were obtained from (Besharati, Rezvani

et al.) but with modifications. The modification is made using the service placement

request manager (SPRM). A matching code is used in the SPRM to add more

restrictions to accept the tasks or migrate them to the higher layer. Therefore, the

computing nodes accept workloads by matching their sizes with node specifications.

Conversely, Figure 3.4 shows the proposed broker, which keeps the remaining

components of the broker having similar functions as Service Manager (SM), Service

Usage Monitor (SUM), and Service Popularity Monitor (SPM) (Guerrero, Lera et al.

2019).

Fog clients must be connected to one leaf device or gateway in the fog network

to start using available services. Each time the client requests a specific service, a

service allocation request (SAR) is generated to obtain permission to reserve the

computing resources. The SPRM decides to accept the allocation of this service or

forward the SAR to the next upper fog device (see Figures 3.2 and 3.3). After

analysing the local device information gathered from the SPM and SUM, the SPRM

decides. Although the SUM aims to collect internal data about fog devices, the SPM

is designed to measure the service request rate, which the SPRM uses in its

calculations. Each node decides to host the services or migrates them to the next

available node in the upper layer.

65

Figure 3.4: Decentralised service placement, the broker.

3.3.2. SYSTEM MODEL

In the proposed model, which follows the principles of FSPP, all applications

requested by a group of clients, 𝐶𝑛, are initially allocated to cloud servers, 𝑆𝑐𝑙𝑜𝑢𝑑.

Each application comprises a set of (interrelated) service units. Therefore, a

sequence of service units must be executed to perform a specific application.

Applications in the cloud are called by clients in the lower layer (closer to the edge)

with a group of interconnected fog devices D in between. These fog nodes have

constrained but available processing power that can complete the sequence of

service units without relying on cloud servers. 𝑆𝑃𝑆
𝐶𝑙𝑜𝑢𝑑 is a term used to define the

shortest path between service tasks and the cloud with the minimum number of

hops. The father (D1) of the device represents the first device that receives service

requests.

The decentralised approach allocates services to local (neighbouring) fog

devices. Various instances (𝑆𝑥
𝑦

, where x is the service number and y is the code of

the device that hosts the services) are allocated across the fog nodes. Thus,

considering a given instance, we can formulate the relation as a many-to-one

rapport 𝑎𝑙𝑙𝑜𝑐: {𝑆𝑥
𝑦

} → {𝐷𝑥}. Conversely, many-to-many is the rapport if we consider

{𝑆𝑥}→ {𝐷𝑥}.

To complete an application, every client 𝐶𝑥 must be connected to the system

through a leaf device. The leaf device can communicate with one or more devices

66

simultaneously. Thus, the rapport in this model was defined as a many-to-one

rapport 𝑐𝑜𝑛𝑛. {𝐶𝑛} → {𝐷𝑥}. The service request rate 𝛾𝑆𝑥

𝐶𝑛 for each client must be

considered in this study to categorise services. Each device 𝐷𝑖 connected to the

system must analyses its behaviour by monitoring the request rate 𝛾𝑆𝑥

𝐷𝑖 that it

receives for each task. To calculate the request rate for 𝐷𝑥, for example, we must

sum all the arrival tasks of clients who are in the range covering 𝐷𝑥 as follows:

𝛾𝑆𝑥

𝐷𝑖 = ∑ 𝛾𝑆𝑥

𝐶𝑛 ∀ 𝐶𝑛 ∈ 𝑇ℎ𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐷𝑖

𝐶𝑛

 (3.2)

To determine the performance of each device in the system, we consider the

computational capacity of a fog device. Therefore, the resource capacity is

introduced as 𝑅𝐷𝑖

𝐶𝑎𝑝 = {𝑟𝑐𝑝𝑢}, which is constant for each device and where 𝑅𝐷𝑖

𝐶𝑜𝑛𝑠𝑝 is

the power consumption of 𝐷𝑖 depending on the allocation process in each device,

which must be variable. Therefore, it is essential to calculate the total resource usage

𝑅𝐷𝑖

𝑢𝑡𝑧 for each computing node. The total resource usage can be calculated as follows:

𝑅𝐷𝑖

𝑢𝑡𝑧 = ∑ 𝑅𝐷𝑖

𝐶𝑎𝑝
×

𝑠𝑥

 𝛾𝑆𝑥

𝐷𝑖 ∀ 𝑆𝑥 ∈ 𝐷𝑖 (3.3)

3.3.3. OPTIMISATION MODEL

The proposed algorithm allocates the most popular (in-demand) computing loads

closer to the client layer. It allows all nodes to accept computer loads if resources

are available with the correct specifications. Thus, the service request rate is part of

the acceptance metric in the SPRM module. The decision for each fog node is to

locally analyse the service request rate before migrating less popular services to the

cloud. The heavy tasks that overload the local nodes also migrate to the upper level.

Guerrero (2019) notes that heavier tasks should be kept closer to the cloud

provider. In both cases, the interoperated services migrated to the cloud once

classified. The migration of the interoperated services with the undesirable service

decreases the number of unwanted hops in the network, as previously discussed in

Figure 3.3. Table 3.2 summarises the functions and variables used in the proposed

model.

67

Table 3.2: SUMMARY OF THE FUNCTIONS AND VARIABLES USED IN THE PROPOSED MODEL.

Algorithm 1 shows the pseudocode for the proposed enhanced service

placement policy. The placement algorithm is invoked when a particular service

cannot serve appropriately with the local fog nodes and/or when the available

capacity of a fog device is inadequate to satisfy the maximum service requirements.

(Line 1). The latter condition ensures that all fog nodes in the proposed policy have

sufficient capacity to run the most popular services. If these criteria are met, the

gateway or leaf device 𝐷𝑖 is the father of route 𝐷𝑓𝑎𝑡ℎ𝑒𝑟 (Line 2). The father device is

the closest computing node to the client's gadget. Thus, it is critical to maintain the

highest-demand instances in a leaf device (Roig, Alcaraz et al. 2020).

Additionally, once the father device is selected, the first-child device 𝐷𝐶ℎ𝑖𝑙𝑑1

must be chosen (Line 4) by identifying the shortest path to the cloud (Line 3). Thus,

the first-child device 𝐷𝐶ℎ𝑖𝑙𝑑1
 receives SAR messages if 𝐷𝑖 begins straggling. The

service placement request manager (SPRM) in the child device decides to host the

service or migrate it again by generating another SAR to its child while recalculating

the shortest path. The child's decision depends on the service's popularity in 𝐷𝐶ℎ𝑖𝑙𝑑1
.

Typically, SPRM gathers essential data by SUM and SPM, where both are located

within the same local broker. The reinforcement optimisation for a decentralised

service placement policy (RODSPP) algorithm also ignores the remaining child in

the route to the cloud, where each fog node recomputes the shortest path once the

previous criteria are satisfied. This strategy reduces operational conditions'

dependency on the remaining distant fog nodes.

68

Because this algorithm aims to improve service availability in the fog nodes, the

system sometimes downloads the services from the cloud. To download the service

𝑆𝑥
𝑦

 in the candidate fog device 𝐷𝑖 (Line 6), the candidate node must have adequate

resources to serve the requested tasks; the device overload must also be within the

acceptable threshold, and the tasks must be recognised as part of delay-sensitive

applications (Line 5). Eventually, the algorithm uniquely guarantees the

maintenance of the overload of all computing nodes, while the POP algorithm

focuses only on the guaranteed availability of services at the nodes (Guerrero, Lera

et al. 2019).

The proposed algorithm then installs services with the highest rate (Line 8);

otherwise, the candidate service is migrated to the upper level (Line 17). The

migration process extends the computing capacity by alleviating current loads. If the

service is recognised as a high priority, the interoperated services for the lowest

service rate must be migrated together (Line 11). The number of spaces must be

identified to create the required computation space to perform the top services

(Line 9). The placement algorithm sequentially migrates the lowest and

interoperated services to its child (Lines 12-14). Thus, the node begins by sending

𝑆𝐴𝑅𝑆𝑥

𝐷𝐶ℎ𝑖𝑙𝑑to its child. Every child identifies their child to communicate directly. The

required services are downloaded once the migrated services are deallocated from

the father device (Line 15).

We now consider the case study device 𝐷𝑖 is currently allocated s1, s2, and s4 in

Figure 3.3. Due to emerging popular services and limited resources, SPRM may

migrate s2 as the lowest service usage. This action had several consequences. First,

D1 is assigned as the father device, and D2 is assigned as the child, where the shortest

route 𝐷1 → 𝐷2 → 𝑆𝐶𝑙𝑜𝑢𝑑 has two hops, and the other route has one more step 𝐷1 →

𝐷3 → 𝐷2 → 𝑆𝐶𝑙𝑜𝑢𝑑. Second, the most popular service requirements must be less than

the currently available computing resources, and the node configurations must

satisfy computing requirements; the latter condition avoids overloading the

computing nodes. Then, we are obligated to migrate s2 and its interoperated

services s4, and the first migration process occurred for s2, followed by s4. Finally,

the required service triggers the download, while the migrated services commence

finding another child host in the shortest path.

69

Algorithm 1 shows the pseudocode of the proposed resource optimisation

algorithm. The migration request is activated only when the requested service

exceeds the currently available resources. We have provided a service for data

classification using a lightweight module (Guerrero 2019). The service allocation

request is sent to the gateway and then onto the fog layer. In this layer, the controller

estimates the service requirements and sorts the devices accordingly. Thus, time

and complexity are limited in sorting and job allocation. Devices that have the

required capacity will be identified and allocated for computing in a predictive

manner; thus, the tasks will be assigned to those nodes that have the ability and are

available for operation. Also, complex tasks will be assigned to nodes that are not

busy and have sufficient power to perform effectively. Simple tasks are thus

assigned to busy nodes with less capacity. This approach minimises latency and

power consumption, and reducing power consumption generally reduces overall

operational costs.

70

3.4. EVALUATION AND EXPERIMENTAL RESULTS.

3.4.1. EVALUATION

We used the iFogSim simulator (Gupta, Vahid Dastjerdi et al. 2017) for the

microservice-based simulation. The module placement class has been modified to

evaluate the proposed model. This evaluation compared the POP (Guerrero, Lera et

al.) with the edge based on iFogSim's built-in placement policy. Different scenarios

were considered to evaluate the proposed algorithm by varying the parameters of

the number of applications, fog devices, and users/clients. The configurations of the

devices in the simulation environment are shown in Table 3.3, and the experiments

followed the same configuration parameters in the POP study (Guerrero, Lera et al.

2019).

Table 3.3: THE SUMMARY OF CONFIGURATIONS OF EXPERIMENTS.

The experiments used a tree-based network topology to manipulate the number

of devices in a system. Each fog device interacted with another fog device at the next

level via the shortest path to the cloud. This forwarding process represents the

migration activity for the lowest-priority task. For simplicity, the network device's

behaviour was not changed and was fixed with the shortest path once identified.

This proposal identifies the number of children at each level, as shown in Figure 3.5.

As discussed in Section 3.1, cloud servers are assumed to provide unlimited

computational resources. The memory in fog devices was sufficiently large in these

experiments; thus, we can ignore memory's immediate influence, which is the

71

current trend in fog devices: memory is rarely a limitation. Although computational

capacity is the prime evaluation vector, network bandwidth was also considered to

affect migration, which relies on data exchange between devices. As the number of

migrations increased, the number of hops also increased. Thus, we considered the

number of hops as the metric to evaluate network usage.

Figure 3.5: Proposed network.

Microservice-based applications are common in IoT domains. In microservice-

based applications, the number of service placement requests describes service

popularity. System latency is a critical factor for real-time services because delays

may not be tolerated in some cases. The case considered in these experiments was

an online store application, as shown in Figure 3.6. A similar benchmarking

experiment is discussed in (Guerrero, Lera et al. 2019).

This microservice-based online store application is widely used in IoT

modelling and is called a shock shop (Vögler, Schleicher et al. 2016). The

configurations for this application in the proposed container followed the

benchmark (Guerrero, Lera et al. 2019).

72

Figure 3.6: Application edges for online store-based case study.

3.4.2. EXPERIMENTAL RESULTS

The experimental setup for the proposed system followed existing

recommendations. A different set of models was used in the experiment to compare

and evaluate performance. The execution of simulation-based applications varies

from machine to machine, depending on its scalability level. The details of the device

model, operating system (OS), random access memory (RAM), hard disk drive

(HDD), and processors that participated in the experiment are shown in Table 3.4.

Table 3.4: SYSTEM SPECIFICATION.

CloudSim (Buyya, Pandey et al. 2009) is a requirement for iFogSim for cloud-

based operations, and the data centre is managed by this tool. Java and JavaScript

Object Notation (JSON) are used to program the proposed algorithm, while common

math is the library used for complex mathematical computations in the simulations.

The experimental evaluation results are presented in terms of CPU usage,

system latency, and network usage. The equations used to calculate these two

metrics were programmed in the simulator. By analysing the iFogSim source code,

we obtained the equation used to calculate them, as shown in Equation. 3.4 and

Equation. 3.5, respectively:

𝑁𝑒𝑡𝑈𝑠𝑔 =
∑ (𝑇𝐷𝑥→𝐷𝑦

𝑙𝑡𝑠𝑦
× 𝑅𝑒𝑞𝑆𝑖𝑧𝑒)

𝑅𝑒𝑞𝑢(𝐷𝑥,𝐷𝑦)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

(3.4)

73

where 𝑇𝐷𝑥→𝐷𝑦

𝑙𝑡𝑠𝑦
is the time consumed to migrate the request from one device to

another and 𝑅𝑒𝑞𝑆𝑖𝑧𝑒 is the size of the request that travels through the network.

Network usage is the amount of data transferred from the original or the loaded

device to the destination device, which enriches free resources at a specific time.

An increase in the number of devices leads to more complex network usage

scenarios, that can result in network congestion, which indicates low system

performance. A network usage comparison shows the low or high performance of a

system. Compared to the edge policy, the proposed solution reduces network usage

by executing most tasks closer to the clients and by a well-formed job allocation

mechanism at the fog layer. This strategy minimises cloud usage, which eliminates

the use of data transfer/communication networks by default.

System latency is the time required to perform a set of interoperated services

to achieve the required application. iFogSim measures system latency by

determining the average time needed to execute the complete path of the

interoperated services. Latency is the most essential characteristic of the computing

paradigm: the lower the system latency is, the more reliable the system. Equation

3.5 was used to calculate the system latency (𝐿𝑡𝑦𝑠𝑦𝑠) as configured in the simulation

tool:

𝐿𝑡𝑠𝑦𝑠𝑦𝑠 =
∑ 𝑇𝑛

𝑆𝑟𝑡 − 𝑇𝑛
𝐹𝑛𝑙𝐶𝑛

𝑅𝑒𝑞𝑢
 ∀ 𝑅𝑒𝑞𝑢 ∈ interoperated task (3.5)

where 𝑇𝑛
𝑆𝑟𝑡and 𝑇𝑛

𝐹𝑛𝑙 are the start and final times required by the nth service,

respectively; and 𝑅𝑒𝑞𝑢 is the total number of requests in the interoperated service

list. The following figures show a comparison of the three algorithms. The results of

the proposed algorithm are labelled as RODSPP; those for Guerrero, Lera et al.

(2019) are labelled as POP, and the edge is the label for the base policy of iFogSim.

Figures 3.7-3.9 include two subfigures that show the effects of variation in the

setting of execution: (a) variations in the number of users connected to one leaf

device or gateway to examine varying levels of workloads; and (b) variations in the

number of devices in the fog environment to study the influence of the route length

on the network performance.

74

Figure 3.7 shows the hop count outcomes and plots the weighted average hope

count proposed in the POP manuscript (Guerrero, Lera et al. 2019), representing

how the most popular services are closer to customers. Figure 3.8 shows the latency

results for a representative loop of the application. The experiment configured most

parameters at their highest rates, such as accounts, orders, frontend, and edges. The

simulator calculates the time the edge server takes to complete the requested tasks.

CPU usage is an important performance metric of a system because the

processing quality of a system in a scalable manner is measured in terms of the CPU.

If CPU usage is too high, delays occur during processing. The results of CPU usage,

𝑈𝐶𝑃𝑈, are determined by the following equation:

𝑈𝐶𝑃𝑈 =
(𝑇𝑏−𝑇𝑖)×𝑅𝑡

𝑇𝑚𝑖𝑝𝑠−𝐹𝑚𝑖𝑝𝑠
× 100 (3.6)

where 𝑇𝑏 is the busy task rate, 𝑇𝑖 is the idle task rate, Rt is the average tuple time,

𝑇𝑚𝑖𝑝𝑠 is the total number of MIPS (million instructions per second) in the host, and

𝐹𝑚𝑖𝑝𝑠 is the final MIPS in the control of the CPU.

Figure 3.9 shows the CPU usage of the devices by varying the number of users

in each device. The experimental setup was configured as follows: two applications,

up to five users per gateway, one child per device, and two fog devices per level. This

setup is similar to the experimental benchmarking setup.

3.5. DISCUSSION

System latency is an important performance metric in FC. The weighted average

hops effectively measure the proximity between the services and users, providing

some sense of system complexity. Thus, we used both metrics to answer the fourth

research question. Therefore, the series labelled Edge, POP, and RODSPP in Figure

3.7 were analysed. In Figure 3.7 (a), the graph shows a marked increase in the

number of hops for all three approaches when the number of users increases,

implying that the system would slow down once the number of users increases and

the resources conflict. The weighted average hops indicated that RODSPP consumed

4% more hops than POP and 23.1% fewer hops than edges. The increase in hops in

the RODSPP was due to migrating the interoperated services, which have low

request rates and matching the task size with the node resources to avoid overload.

75

RODSPP prevented overload for the computing nodes in all layers by migrating

excessive tasks from the overloaded ones.

POP and edge were not affected by the changes in the number of fog devices;

RODSPP tended to migrate more services to the upper levels closer to the cloud. Due

to adding two more service categories to activate the RODSPP algorithm, such as

delay-sensitive applications, even with a low request rate, the migration process

increased with an increasing number of fog levels in the system, as shown in Figure

3.7 (b). Therefore, RODSPP did not decrease the number of hops while maintaining

the most usable and delay-sensitive services in the edge-fog network. This

behaviour is acceptable if we try to solve many issues with limited resources in leaf

nodes.

Figure 3.7: Hops count with different situations. Experiment with two applications, two users, and
two levels of fog devices: (a) changing the number of devices associated with the edge device and (b)
changing the number of proposed fog levels.

In Figure 3.8, after we split the tasks into high and low request rates, Figure 3.8

(A) shows that there has been a marked rise in the time latency incurred by the

highest popularity applications. What is striking in the chart is the outperformance

of RODSPP by 24.1%, which is due to matching the workloads with the capability of

the computing nodes. Although RODSPP recorded a noticeable increase in hops, it

achieved fair results in the overall performance scheme.

POP ignores low-requested services without considering their sensitivities. We

added a delay-sensitive application with a low request rate to the proposed

experiment. RODSPP allocates low-popularity applications on a leaf device if it is a

delay-sensitive application. To answer the second research question, we consider

Figure 3.8, which shows the performance of the POP and RODSPP for applications

with low popularity but high time sensitivity. The chart shows the comparable

behaviours of the RODSPP and POP policies in non-time-sensitivity applications.

The chart shows that there has been a sharp decline in system latency for RODSPP

76

in delay-sensitive applications. Thus, despite its low popularity, RODSPP is a valid

policy for delay-sensitive applications. Generally, even though the system places all

services at the border with one user, the gateway still engages the cloud to

accomplish complex tasks in real life. The third question in this study addresses the

performance of RODSPP, among other models, in CPU, network usage, and system

latency. The system latency parameter has already been discussed in the second

question. The RODSPP showed outstanding outcomes for delay-sensitive

applications with low request rates, as shown in Figure 3.8. Thus, RODSPP can be

highly recommended for time-sensitive applications.

Figure 3.8: Service latency in different situations. Experiment with two applications, two users, and two levels
of fog devices: (A).

Figure 3.9 shows the relation between the CPU usage in different layers and the

network usage. Figure 3.9A shows the CPU usage of the father nodes in the proposed

algorithm, which outperformed POP by matching the workloads with the available

resources. This feature has improved the use of border CPUs. The proposed

algorithm tends to decrease the load of children's CPUs once a new layer appears,

which increases network usage. Although RODSPP consumes 4.5% more network

bandwidth than POP, it decreases all fog resource usage by 20%.

This study's primary contribution was synthesising well-disciplined resource

allocation approaches using them in local optimisation through a divide-and-

conquer strategy in a carefully articulated realistic IoT fog networking environment.

This study demonstrates successful IoT fog resource allocations in terms of

controlled response time and constrained computing resource usage, thus

providing significant insights and guidelines for the community to refer to and seek

further enhancements in real-time IoT fog applications.

77

Figure 3.9: CPU usage of the devices regarding their topology distribution. Experiment with two
applications and two users.

78

3.6. CONCLUSION

The span of IoT devices is growing daily, generating large amounts of data. However,

due to its centralised and distant architecture, the cloud cannot manage and process

an increasing number of IoT devices for real-time processing, which requires low

latency and reduced resource consumption. Server mobility and decentralisation

are requirements for IoT devices for real-time data processing. An FC paradigm is

thus proposed in this study to meet the needs of future IoT networks. The proposed

LB algorithm enables the FC mechanism to satisfy real-time performance

requirements of the Internet of Everything (IoE), and the results demonstrate the

scope of the proposed algorithm for utilising FC technology. This experiment paved

the way for future evaluation.

79

4. CHAPTER, HYBOFF: A HYBRID APPROACH TO

IMPROVE LOAD BALANCING IN FOG

NETWORKS

Abstract: LB is crucial in distributed systems like FC, where efficiency is paramount.

Current static offloading methods fall short in heterogeneous networks,

necessitating dynamic offloading to reduce latency in time-sensitive tasks. However,

existing offloading solutions often have hidden costs that impact sensitive

applications, including decision time and distance offloading. This paper introduces

the Hybrid Offloading (HybOff) algorithm, which enhances LB and resource

utilization in fog networks, addressing issues in both static and dynamic approaches

while leveraging clustering theory. Its goal is to optimize static offloading and

enhance IoT application performance regardless of network size. Experimental

results using the iFogSim simulation tool show that HybOff significantly reduces

offloading messages, distance, and decision-offloading consequences. It improves

LB by 97%, surpassing SOS (64%) and DOS (88%). Additionally, it increases system

utilization by an average of 50% and enhances system performance 1.6 times and

1.4 times more than SOS and DOS, respectively. In summary, HybOff substantially

contributes to LB and offloading research in FC.

80

4.1. INTRODUCTION
Central computing has emerged as a prevalent concept in various fields in the era

of the internet, supported by 5G access networks. The central computing systems

encompass technologies that empower enterprises to collect, process, analyze, and

archive data from distributed clients worldwide (Datta and Bonnet 2017). This

concept has become so integral to the internet that reverting to primitive (Peng,

Zhao et al. 2023), decentralized systems are no longer feasible. In practice, cloud

computing represents the tangible implementation of the central computing

concept. It has gained widespread recognition as the ideal infrastructure for

efficiently managing widely distributed Internet of Things (IoT) devices (Cheng,

Wang et al. 2017). IoT, a telecommunication system facilitating data exchange

among interconnected objects over a public network, streamlines operations with

minimal human intervention (Lv, Wu et al. 2022). As a fundamental framework, IoT

enables cloud computing to interact with the environment, facilitating the

widespread adoption of IoT technology and the gradual growth of its data.

However, it also presents implications for the efficiency of public networks (Khan,

Laghari et al. 2022, Alsharif, Jahid et al. 2023).

Numerous critical applications rely on the same public network infrastructure,

designed to support all cloud-connected applications (Cao, Li et al. 2021, Wang,

Zhang et al. 2022). When slowdowns occur in the public network, time-sensitive

applications such as e-health, smart grids, and unmanned vehicles, which have

strict timing requirements for proper functioning, are severely affected (Jiang, Xiao

et al. 2020). Cloud computing often struggles to consistently deliver the required

level of service for these time-sensitive applications due to the unpredictable

efficiency of public networks (Cao, Sun et al. 2021).

To address this challenge, Cisco introduced a new layer seamlessly integrated

into cloud computing, forming FC. It integrates storage, computing, and

networking at the network's edge, reducing data transfer to the cloud, lowering

latency, and enhancing efficiency (Apat, Nayak et al. 2023). This technology is

crucial for decentralized computing, especially in real-time IoT applications.

However, the continuous growth in the number of IoT devices and their generated

81

data, along with the unpredictable nature of distributed IoT clients, places an

increasing load on fog servers (Xu, Liu et al. 2023).

These factors drive researchers in FC to enhance the resource management

system, particularly the LB system. It aims to allocate incoming tasks among

servers with limited resources to prevent overloading or underutilizing fog

resources. Effective LB management is vital to maintaining a stable computing

environment and improving network availability and flexibility (Jiang, Dai et al.

2022, Goel and Chaturvedi 2023).

A steering algorithm is required to direct user requests to the most suitable

fog server based on application requirements to achieve effective fog load

balancing. Offloading is the primary mechanism for relieving overloaded servers,

thus achieving LB in a distributed system (Goel and Chaturvedi 2023). A well-

designed resource allocation policy is essential for creating an effective offloading

strategy to balance load. In general, there are two fundamental approaches to

offloading: static and dynamic (Cao, Zhang et al. 2021). Most recent offloading

algorithms favour the dynamic approach due to its superior features to the static

algorithm (Sulimani, Sajjad et al. 2022). However, dynamic offloading does have

inherent drawbacks, including decision-making time, increased offloading

messages, and distance-related issues (Xiao, Shu et al. 2022). These challenges

result in significant network costs, often considered hidden expenses. Many

articles view these costs as a trade-off for the reliability gained from dynamic

approaches (Sulimani, Alghamdi et al. 2021).

The motivation for this research is rooted in the pressing need to address the

formidable challenges posed by large-scale networks and time-sensitive issues,

which, despite various studies on the subject (Meurisch, Seeliger et al. 2015, Li,

Zhuang et al. 2018, Cao, Zhao et al. 2020), have yet to see a comprehensive solution

that considers the hidden expenses associated with these challenges. This research

introduces a novel approach, a hybrid algorithm, designed to simultaneously

tackle these issues and ensure the selection of a suitable destination server for

offloading. The imperative drives the impetus for this research to meet the

escalating demands of time-sensitive applications in a world characterized by the

continuous proliferation of IoT devices. Cisco's introduction of FC, which

82

seamlessly integrates storage, computing, and networking at the network's edge,

is a notable development (Apat, Nayak et al., 2023). With its capability to reduce

data transfer to the cloud, diminish latency, and improve efficiency, FC represents

a significant step forward. However, the critical need remains for establishing an

effective resource management system, particularly a LB system, to optimize the

utilization of FC resources and establish a stable environment for time-sensitive

applications. This research aims to develop a solution that simultaneously tackles

the challenges of fog load balancing for large-scale networks, particularly in the

context of time-sensitive applications. The research questions guiding this paper

include:

1. How can fog load balancing be improved to support time-sensitive applications

like e-health and unmanned vehicles efficiently?

2. What is the impact of offloading strategies on fog load balancing, and how can

the hidden expenses associated with dynamic offloading be minimized?

3. Can a hybrid LB algorithm combining the strengths of static and dynamic

offloading approaches provide a comprehensive solution to these challenges?

We introduce a hybrid LB algorithm that combines the strengths of both static

and dynamic offloading approaches. The proposed algorithm offers five key

contributions to fog load balancing:

• Reintroducing static offloading.

• Minimizing message exchanges.

• Reducing decision-making time for offloading.

• Encouraging servers to handle time-sensitive applications locally,

eliminating the need for global allocation.

• Efficiently managing networks of all sizes using a cell-based approach,

reducing latency, alleviating network congestion, and enhancing LB.

• Comprehensive experiments evaluate our algorithm from various

perspectives, illustrating its superiority over other state-of-the-art fog

load balancing algorithms in extensive studies.

Our work marks the implementation of the true essence of hybrid offloading,

merging static and dynamic offloading behaviours. Additionally, the proposed

algorithm incorporates various features, including a central-distributed control

system, fog server clustering, and prioritization of critical applications while also

83

addressing hidden expenses such as distance-based offloading, decision messages,

and network congestion. Compared to the static offloading scheme (SOS) and the

dynamic offloading scheme (DOS). The experiments demonstrate that the

proposed algorithm enhances LB by 52.1% and 38.2%, improves system

performance by 60% and 38.8%, and increases the system utilization ratio by

62.4% and 42.7% compared to SOS and DOS, respectively.

The rest of this paper is organized as follows. The next section presents the

literature review. Section 3 describes the proposed algorithm in detail. Section 4

shows the experiments and results, followed by the discussion and conclusion in

sections 5 and 6, respectively.

4.2. LITERATURE REVIEW

In this section, the literature review explains the foundational concept of FC systems

and the LB strategies devised to enhance offloading.

4.2.1. FOG COMPUTING

FC, a pivotal concept in distributed computing, is engineered to efficiently support

Internet of Things (IoT) applications, especially those demanding real-time

responses (Mukherjee, Shu et al. 2018). As a complement to traditional cloud

computing, it aspires to leverage edge resources strategically positioned closer to

end-users (Das and Inuwa 2023). The core objective is reducing reliance on remote

cloud data centres, reducing latency and decreasing network bandwidth

requirements. Embracing FC presents various innovative advantages, including

cost savings in cloud operations and fortified system stability (Burhan, Alam et al.

2023).

However, the continuous proliferation of IoT devices and the surge in data

generation has strained FC's capacity to meet performance expectations (Alsharif,

Jahid et al. 2023). This strain is particularly acute in specialized applications,

especially time-sensitive ones. Varied growth rates in user density across different

regions have resulted in an uneven distribution of workloads, causing some fog

servers to become overloaded while others remain underutilized (Jebur 2023).

This imbalance leads to resource wastage and misalignment within the fog layer

(Jiang, Dai et al. 2022). To tackle these challenges, researchers have explored

84

dynamic offloading as a potential solution (Meurisch, Seeliger et al. 2015, Li, Zhuang

et al. 2018, Lu, Gu et al. 2020, Tran-Dang and Kim 2023, Xu, Liu et al. 2023).

Notwithstanding the merits of FC, due to inherent resource limitations within the

fog layer, certain applications necessitate offloading to the cloud, emphasizing the

enduring significance of web-based computing applications (Aazam, Zeadally et al.

2018).

To better comprehend the structure of computing networks in the proposed

system, Figure 2.2 illustrates the three interconnected layers. Cellular or WiFi

networks are wireless links connecting fog servers to client servers in the IoT edge

layer (Jiang, Xiao et al. 2020). The internet is the primary medium connecting the

fog layer and the cloud (Cao, Zhao et al. 2019). Within the fog layer, tasks are

managed by surrounding fog servers, with results forwarded to the source server

if necessary. The cloud layer is dedicated to specific purposes, such as heavy

processing or data archiving. This research focuses on applications predominantly

processed within the fog layer (Li, Zhuang et al. 2018).

All user-sent applications adhere to a common operational algorithm, as

outlined by Mukherjee, Shu et al. (2018):

• Edge servers receive application requests from end-users.

• Received applications are decomposed into a set of sub-tasks for distribution.

Heavy fog servers either redirect the sub-tasks to idle fog servers for

processing or add them to their processing queues. The processing results are

subsequently sent back to the original server.

4.2.2. RELATED WORKS

The offloading technique is a pivotal solution for LB aimed at conserving

computing and storage resources, particularly in decentralized systems (Tran-

Dang and Kim 2023). A plethora of research efforts are dedicated to minimizing

inefficiencies. However, prevalent task offloading schemes come with unavoidable

hidden costs due to their specific requirements. These costs include offloading

decisions, distance offloading, and network congestion (Wang, Han et al. 2023).

Conversely, low-cost static offloading encounters numerous challenges, such as

reliability concerns. This section delves into relevant publications and prior works

85

that validate the algorithm's novelty, which successfully addresses many of these

obstacles.

In dynamic offloading, overloaded servers continuously gather data from

other fog servers to distribute incoming tasks among the active servers (Tang, Xie

et al. 2020). Once the system evaluates and processes this collected data, it makes

an offloading decision, typically referred to as a 1-out-n process, where it selects

the optimal target server (1) from among the available options (n) (Sethi and Pal

2023). However, this decision process leads to network congestion due to the

periodic exchange of critical messages known as decision messages (Qu, Liu et al.

2022). In addition to network congestion, it also introduces high communication

latency when identifying the target servers for offloading, termed decision latency

(Zhang, Wen et al. 2022). While decision messages and decision latency may be

minimal individually, they occur continually in affected areas, collectively

impacting the effectiveness of dynamic offloading when following this approach.

On the other hand, the primary goal of most network operators is to 'serve

more clients, earn more profit' (Jiang, Li et al. 2021). Expanding their coverage can

increase the number of clients they serve, making coverage expansion a valuable

metric for evaluating any network, as it correlates with increased network rank

(Pavlovic 2008). While expanding the number of fog servers enhances system

availability, it can have a negative impact on dynamic offloading. In such networks,

dynamic offloading may offload tasks to remote servers, as many algorithms have

no distance limits (Li, Zhuang et al. 2018, Jiang, Li et al. 2021). This can result in

unfavourable outcomes, particularly for time-sensitive tasks, adding a burden on

network bandwidth and total execution time due to messages travelling among

remote servers (Meurisch, Seeliger et al. 2015). Therefore, distant offloading and

offloading decisions hinder the effectiveness of dynamic offloading.

However, there are severe consequences if the fog system fails to deliver the

expected services. Many critical applications that have recently emerged are time-

sensitive, including unmanned vehicles, healthcare, and the smart grid (Gupta and

Gupta 2022, Dhyani 2023, Kumar, Karunakaran et al. 2023). These applications

rely on the fog layer for proper operation, where any delay can lead to catastrophic

outcomes (Mutlag, Abd Ghani et al. 2023). Network congestion is another adverse

86

effect. The conventional offloading approach increases the number of messages in

the network due to present system state requirements (decision messages) and

distant offloading (in some algorithms). Consequently, the network infrastructure

can deteriorate rapidly (Dhyani 2023).

Various LB algorithms and solutions have been proposed. In (Jiang, Chen et al.

2018), the authors introduce an energy-efficient offloading decision mechanism

and an offloading dispatcher designed to balance energy consumption and

response time for fog servers serving multiple applications in the IoT. This

mechanism employs energy-aware cloud-fog offloading (ECFO), which aids in

selecting the optimal target server with minimal utilization from the available

servers. To address the issue of distant offloading and its associated consequences,

ECFO assesses the cost of offloading decisions concerning bandwidth and energy

consumption. This assessment is conducted through an energy-aware module by

comparing it with the cost of local server execution. The proposed algorithm is

evaluated against two state-of-the-art algorithms, and the results demonstrate

that ECFO outperforms the others.

In (Ebrahim and Hafid 2023), the authors introduce a privacy-aware LB

algorithm that employs reinforcement machine learning techniques to reduce the

number of waiting tasks in the queues of fog nodes. The proposed algorithm,

DDQN, does not rely on load or resource information from fog servers to determine

the optimal server for offloading. Instead, it leverages Markov theory to estimate

the availability of free servers. This approach significantly enhances system

performance while maintaining privacy at an acceptable level. Interactive

experiments demonstrate that DDQN outperforms a search-based optimization

algorithm from the literature and traditional baseline approaches.

Albalawi, Alkayal et al. (2022) introduced a hybrid LB algorithm called

PSOSVR, which combines particle swarm optimization (PSO) with support vector

regression (SVR). PSOSVR reduces response time and energy consumption while

improving resource utilization (RU) and throughput. The outcomes of this

proposed algorithm notably enhance various metrics, with energy consumption

improving by 56%. Using deep reinforcement learning, Lu, Gu et al. (2020) tackled

the offloading problem in large-scale systems and multiple service clusters. Their

87

paper compares average execution time, latency, LB, and energy consumption,

demonstrating that the IDRQN algorithm outperforms others. Tran-Dang and Kim

(2023) proposed a dynamic collaborative task offloading (DCTO) algorithm to

reduce execution time delays in fog systems. The algorithm has two main

components: a task division technique and parallel execution. It seeks to identify

the optimal target server for offloading among the servers in four layers. However,

the algorithm does not prioritize sensitive applications over others.

In (Gowri and Baranidharan 2023), a dynamic energy resource allotment

(DERA) technique that combines oppositional sparrow search (OSS) with the

gravitational search algorithm (GSA) is introduced. DERA aims to improve energy

efficiency and overall computing cost in FC environments, focusing on LB by

reducing broadband costs, duration, and energy consumption. The proposed

algorithm includes four layers: terminal servers, FC, cloud computing, and

applications. The fog layer's controller module coordinates these layers. The DERA

algorithm outperforms the DRAM algorithm by 6.96 percent in resource

management through LB in most experiments. However, DERA does not prioritize

sensitive applications and follows a centralized approach, which may limit

flexibility and reliability.

Hussein and Mousa (2020) introduced two task offloading algorithms using

nature-inspired meta-heuristic schedulers: ant colony optimization (ACO) and

particle swarm optimization (PSO). They aim to minimize task response times

while considering network latency, bandwidth, and fog server loads. Comparing

these algorithms with the round-robin (RR) approach in extensive experiments,

the ACO-based scheduler notably improves IoT task execution times. This ACO

algorithm considers completion deadlines and optimizes fog server efficiency by

finding the shortest path between the source and resources. However, it maintains

some aspects of traditional offloading methods, relying on a central server for

decision-making and processing time determination.

Lu, Wu et al. (2023) proposed a resource provisioning strategy to reduce the

total mandatory cost in time-sensitive applications. The authors conducted a study

in unlimited-processor and limited-processor fog nodes. Their paper introduces a

heuristic algorithm that delivers exceptional performance in enhancing resource

88

provisioning, even under challenging conditions. Li, Zhuang et al. (2018)

presented a Self-Similarity-based Load Balancing (SSLB) algorithm for large-scale

FC systems. The authors introduced the concept of the 'cell,' which is sized to

address distance offloading issues. While SSLB exhibits excellent performance

compared to other algorithms, it does not offer advantages for Time-sensitive

application (TSA), which has numerous restrictions. Additionally, the algorithm

enforces uniform cell sizes, leading cells to be allocated to servers that may be

located at a distance.

The previous section discussed various LB solutions summarized in Appendix

I. These solutions primarily aim to mitigate the impacts of dynamic offloading

rather than addressing the root cause of the problem. Despite their use of

innovative technologies, they often entail hidden costs that can create an

inconspicuous burden.

A summary of the current literature review reveals that dynamic offloading

has gained widespread acceptance in FC. However, it is beset by inherent

limitations, leading to significant consequences. Existing research has

predominantly concentrated on improving dynamic offloading performance and

catering to time-sensitive applications. Nonetheless, a noticeable gap exists in

integrated solutions that can effectively address the inherent challenges of

dynamic offloading, particularly those concerning offloading decisions and distant

offloading.

This work aims to bridge these gaps and propel LB capabilities to new heights

within the FC environment. To achieve this goal, it necessitates the development

of a novel offloading strategy capable of surmounting these formidable challenges.

4.3. HYBRID APPROACH TO ENHANCE LOAD BALANCING

In this section, we dive deeper into the complexities of LB for Edge Computing and

the innovative workload offloading solution we propose to solve these issues. Our

proposed solution aims to directly address these challenges by providing an

efficient offloading strategy that combines algorithms and real-time analytics to

make informed task allocation decisions. By optimizing LB at the edge, we aim to

89

optimize resource usage, reduce latency, and provide a smooth and responsive

experience for end users and devices.

As mentioned previously, many challenges and difficulties persist in fog load

balancing, including distant and dynamic offloading issues, which drove us to create

the hybrid offloading solution. The design of this proposed algorithm adheres to the

following guiding principles, to address some of the shortcomings observed in

prevalent algorithms:

• Flexibility: Given the decentralized behaviour of fog servers, where servers

can randomly connect to or leave the fog environment, it is crucial to design

a flexible mechanism that instantly reflects the status of connected and

reconnected servers. Flexibility is enhanced by identifying a central server in

each cluster that tracks clustered servers as they join or leave.

• Low Latency: Despite the minimal impact of offloading decisions

individually, they occur continuously across affected servers. A novel

offloading approach is followed to mitigate these effects, partly inspired by

static offloading principles. The hybrid approach is crucial in minimizing the

consequences of offloading decisions. Moreover, the proposed algorithm

compels fog servers to serve locally, meeting the requirements of time-

sensitive applications.

• Scalability: While increasing the number of fog servers enhances system

availability, it can negatively affect dynamic offloading. The proposed

algorithm mitigates distant offloading issues by grouping distributed servers

into sets of cells. The clustering concept ensures that all adjacent servers

interact with each other.

This work introduces the Hybrid Offloading (HybOff) algorithm, which aims to

enhance LB efficiency and resource utilization in fog networks. The development

of this hybrid offloading approach was motivated by the persistent challenges and

difficulties outlined in the problem statement. Dynamic offloading mitigates these

issues but has drawbacks: network congestion, high decision latency, and

inefficiency with increased servers and distant offloading. These challenges are

critical for time-sensitive applications like unmanned vehicles and healthcare.

HybOff addresses these issues to provide adequate LB. Figure 4.1 illustrates the

90

estimated costs associated with prevalent offloading and the essential features it

offers.

Figure 4.1: Prevalent offloading, costs, and solutions.

4.3.1. PROBLEM FORMULATION AND TERMINOLOGY

At the beginning, Table 4.1 presents the essential notations used in this work, to

facilitate the reading.

LB in fog networks demands innovative task allocation for end-user service

requests, which are transformed into applications, underscoring the need for

efficient task management (Zhang, Wang et al. 2022). In this context, this work

assumes that the fog layer consists of a single level of fog servers with no vertical

dimension, utilizing only the horizontal dimension for offloading. Additionally, we

consider the fog layer to comprise W fog servers or nodes, denoted as Fn1 to 𝐹𝑛𝑤 ,

alongside n applications represented as cloud services.

𝐴𝑝𝑝 = {𝐴𝑝𝑝1,𝐴𝑝𝑝2,…,𝐴𝑝𝑝𝑛} (4.1)

In this work, we categorize applications based on their task partitioning.

Applications that are not partitioned into more than one task, and have time-

sensitive requirements with deadlines, are classified as lightweight or TSA. On the

other hand, applications with multiple tasks are categorized as Heavy applications

(HA). Each HA, upon reception by the fog server, can be subdivided into a group of

tasks, as shown below:

Appi = {AppTski1
x , AppTski2

y
, … . , AppTskiq

z } (4.2)

91

Each HA is divided into tasks, such as AppTski1
x (the 1st task in the application

i assigned to 𝐹𝑛𝑥), AppTski2
y

 (the 2nd task in the application i assigned to 𝐹𝑛𝑦), and

so on, with AppTsk
𝑖𝑞
𝑧 representing the 𝑞𝑡ℎ task assigned to 𝐹𝑛𝑧 .

Table 4.1: ESSENTIAL NOTATIONS.

Symbol Definition

TSA Time-sensitive application: Refers to applications with strict time constraints, where
processing and response times are critical.

HA Heavy application: Denotes applications that require significant computational resources
and are resource-intensive.

CPD Cooperating paired servers: Represents servers that work in tandem or cooperation, often
used for LB or redundancy.

SOT The Static Offloading Table: A data structure or table that contains information about how
tasks are offloaded from one server to another in a static manner.

𝑊 A complete set of system fog servers: Refers to the entire collection of fog servers in the
system, which collectively provide computing resources.

𝑛 Number of system applications: Represents the count of applications within the system.
𝑁 Number of cells constituted after clustering: Indicates the total number of cells formed

after applying a clustering algorithm or process.
𝑄𝑘 The queue of the 𝒌𝒕𝒉 fog server: Denotes the queue or waiting line for tasks that need to be

processed by the 𝑘𝑡ℎ fog server.
Fni The 𝒊𝒕𝒉 fog server: Refers to the specific or 𝑖𝑡ℎ fog server in the system.

Fni
CoDx The complementary server of 𝒙𝒕𝒉 cell for 𝑭𝒏𝒊: Denotes the server in cell x that

complements or cooperates with the 𝑖𝑡ℎ fog server 𝐹𝑛𝑖 .

Fni
RU% The utilization percentage of the 𝒊𝒕𝒉 fog server: Represents the percentage of

computational resources used by the 𝑖𝑡ℎ fog server 𝐹𝑛𝑖 .

Fni
Mx 𝒊𝒕𝒉 fog server which acts as a master of cell x: Refers to the 𝑖𝑡ℎ fog server that serves as the

primary or controlling server for cell x.

Celi
Sz The number of servers in 𝒊𝒕𝒉 cell: Indicates the count of servers present within the 𝑖𝑡ℎ cell.

Celi
RU% The average utilization of the 𝒊𝐭𝐡cell: Denotes the percentage of resources used, on

average, within the 𝑖th cell.
Appi The 𝒊𝒕𝒉 application: Refers to a specific application, often in the context of multiple

applications running within the system.
AppTskxy

z The 𝒚𝒕𝒉 task of application x computed in 𝑭𝒏𝒙: Describes the task y within application x
that is processed by the server 𝐹𝑛𝑥.

𝜇 The theoretical difference between each consecutive server in SOT: Represents the
calculated or theoretical variance or difference between consecutive servers listed in the
Static Offloading Table (SOT).

SysRU%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ The average system resource utilization: Denotes the mean or average utilization of
resources within the system.

SysLB̅̅ ̅̅ ̅̅ ̅ The average load balance of the system's cells: This represents the average distribution of
computational load among the cells in the system.

HAs are distributed to different servers for parallel processing once the

partitioning process is completed. In contrast, TSAs are executed locally and

receive the highest priority in the server's private queue, which is used to sort and

re-sort received tasks.

Q = Q1, Q2,…,QW (4.3)

Tasks are generally queued on the system's servers when the server's

computing power is insufficient to handle them immediately. For example, tasks

from Appi are organized as follows:

92

Appi = {AppTski1
5 , AppTski2

4 , AppTski3
7 } (4.4)

It is important to note that application i is concurrently served by

𝐹𝑛4, 𝐹𝑛5, 𝑎𝑛𝑑 𝐹𝑛7. In contrast, HybOff is designed to accept application subsets

from a single server, reducing the load on network bandwidth. For instance, 𝐹𝑛6

maintains tasks in its private queue, and it cooperates with 𝐹𝑛9, as shown in

Expression 4.5:

Q6 = {AppTskax
6 , AppTskbx

9 , AppTskbz
9 , AppTskay

6 } (4.5)

This proposed algorithm describes the workload as the number of tasks listed

in the server queue for execution. Equation 4.6 shows the total time consumed for

the workloads in the queue.

TETQi
= ∑ ETAppTskx

ix ∈ Qi
 (4.6)

where, ETAppTskx
i represents the execution time in milliseconds (ms) per task,

with 'x' denoting its index. To improve the TET, a set of tasks (AppTskx
i must be

managed in each server queue, where the ET cannot be enhanced in this study (it

is assumed to be fixed). Therefore, the LB issue can be addressed by efficiently

redirecting the workload within each server's queue, as described in Equation

(4.5).

Except for TSAs, this study employs a fixed-price algorithm for evaluating the

available servers (Wu, Jin et al. 2022). Consequently, all servers have identical

offloading costs. The system prefers to select a target server with sufficient

resources, necessitating an evaluation process. Due to the homogeneity in server

specifications, a suitable metric is utilized to identify the most appropriate servers

for offloading. In the case of HybOff, the resource utilization percentage (RU%) for

each server serves as an indicator to assess its available capacity, as computed in

(Gupta, Vahid Dastjerdi et al. 2017). This metric depends on the computing power

required to execute offloaded and local tasks. It's worth noting that HybOff does

not factor in offloading costs in its calculations, as time-sensitive applications are

executed locally (Cao, Sun et al. 2021).

93

4.3.2. HYBOFF DESIGN

In essence, control systems in multi-processing environments come in two forms:

central and distributed. Central control, a traditional algorithm, suffers from

reliability issues, as system failure can occur if the primary controller malfunctions

(Sulimani, Alghamdi et al. 2021). Consequently, recent research favours

distributed systems, where each computing unit functions independently.

However, distributed systems lack certain central system advantages, like

centralized server selection based on a comprehensive system analysis (Deepak

and Pradeep 2012).

This work adopts a central-distributed control system as the optimal solution

to combine central and distributed control aspects. It segments the extensive

system into autonomous mini-controlled systems, forming the HybOff algorithm.

This algorithm comprises interconnected computing cells, each housing a cluster

of adjacent fog servers governed by an elected fog server known as the master fog

server (Fni
M). Conversely, the other cell servers are referred to as followers. This

design empowers Fni
M to monitor and supervise the performance of the followers,

enhancing system flexibility. Even if a cell loses connection with others, each

maintains an autonomous control system (Yang, Zhu et al. 2022). The

interconnection of these cells forms the central-distributed control system, a

framework that facilitates the implementation of HybOff, which requires multi-

cells with distributed control.

In implementing the autonomous control system, each fog server has three

modules: HybOffMonitor, HybOffComm, and HybOffSched. These modules handle

monitoring, communication, and offloading, creating an independent control

system for the fog servers, as depicted in Figure 4.2. As detailed in Table III, fog

servers operate in two modes: basic and advanced. The advanced mode is

activated in the master server, while the followers remain in the primary mode.

94

In the basic mode, followers continuously use their monitor module to assess

their workload and report it to the master server. The master server's scheduler

module processes the data collected by the monitor module, determining the

offloading policy needed for task allocation. The offloading process commences

once the necessary information is disseminated within the cell via the

communicator module. The communicator module is responsible for facilitating

communication and message exchange among servers within the cell. The

communicator module's thread is periodically generated to ensure all servers

receive the necessary information. Additionally, it uses heartbeat information to

address churn issues that may arise due to server crashes or new servers joining

the network (Cao, Wang et al. 2021).

In summary, each master server collects workload data from the followers,

processes it centrally, and then broadcasts the required offloading information to

the cell servers to initiate static offloading. Table 4.2 shows the basic and advance

features of each module.

Table 4.2: Features of HybOff Modules.

Module Basic (Followers) Advanced (Master)
Monitoring
Module

Reporting the utilization
percentage periodically.

Reading the utilization percentage of the followers
periodically.

Comm.
Module

Acknowledging and updating the
target server for offloading process.

Maintaining static offloading table policy updating
to create the list of targeted servers.

Sched.
Module

Exchanging the server messages
across the cell.

Working as a gateway to block internal messages
within the cell and handle the outboard messages.

4.3.3. HYBRID FRAMEWORK

The HybOff algorithm's structure comprises a network of interconnected,

distributed, and autonomously managed fog servers called cells. To initiate and

operate the proposed algorithm, several steps must be performed:

Figure 4.2: Architecture of HybOff algorithms. comprising three essential
components: HybOffMonitor, HybOffComm, and HybOffSched, consistently
maintained across all fog servers (Li, Zhuang et al. 2018).

Clustering:

W

W N

Cel1, Cel2, Cel3, ..., CelN

2 ≤ Celi
Sz ≤ 𝑊 | ∀ i ∈ 𝑁

Master server

Follower

Figure 4.3:

96

where, Celi
Sz represents the number of fog servers in the ith cell, which can be

odd or even. For instance, in Figure 4.4, the system consists of 19 fog servers

(W=19) as per the clustering algorithm, and they are organized into four cells

(N=4). Each cell accommodates a different number of fog servers, as

determined by Expression 4.7.

𝑖 𝐹𝑛𝑖 𝐹𝑛𝑖
𝑅𝑈% 𝑆𝑡𝑎𝑡𝑢𝑠 𝐹𝑛𝑖

𝐶𝑜𝐷 𝐶𝑃𝐷 𝐶𝑃𝐷𝑖
𝑢%

1 𝐹𝑛1 0.24 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 1 𝜔

2 𝐹𝑛2 0.3 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 2 𝜔 + 𝜇1

3 𝐹𝑛3 0.501 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 𝐼𝑛𝑑𝑣. 𝜔 + 𝜇1 + 𝜇2

4 𝐹𝑛4 0.712 𝐻𝑒𝑣 𝐹𝑛2 2 𝜔 + 𝜇1 + 𝜇2 + 𝜇3

5 𝐹𝑛5 0.804 𝐻𝑒𝑣 𝐹𝑛1 1 𝜔 + 𝜇1 + 𝜇2 + 𝜇3 + 𝜇4

Figure 4.4: Static Offloading Table in the Master Server.

2. Master Server: In each initialized cell, a controller server is randomly elected

to oversee cell activities (Lu, Zheng et al. 2023). The master server (Fni
𝑀)

assumes various responsibilities, including:

A. Collecting resource utilization (RU) information from cell servers,

including its data.

B. Updating the offloading table in the scheduler module.

C. Periodically broadcasting the required offloading information within the

cell.

D. Monitoring cell servers to exclude any deactivated servers from the

offloading process.

E. Serving as a gateway, connecting followers with external systems, and

keeping exchanged cell messages confined within the cell, thereby

preserving system bandwidth.

For example, if the master server in a specific cell fails, followers will lose

external connections, such as those with the cloud and offloading functions.

Nevertheless, followers can continue to perform essential computing functions

until another master is selected.

3. SOT Policy and CPDs: Besides the HybOff architecture, the SOT policy plays a

pivotal role in its design. A static table is inadequate for a system that requires

flexibility. Therefore, SOT is a dynamic template within the master's scheduler

module. It is unnecessary to offload all fog servers in the cell; instead, SOT

97

contains crucial cell data, including fog identification, FnRU%, and the target

offloading server. Fog identification is a unique number connecting to each

server's Internet Protocol (IP) address, acting as a reference number. Each fog

server corresponds to an individual row in the SOT.

Once the necessary data is available, SOT ranks active fog servers in

ascending order based on resource utilization. This approach follows an

ascending pattern, placing heavy servers at the end of the table and lighter

servers at the top. After sorting the cell servers, SOT creates cooperating paired

servers (CPDs). A CPD consists of two fog servers within the same cell with

opposite resource utilization readings. The first server has the highest reading,

while the second, a complementary server (CoD), has the lowest reading. This

pairing is illustrated in Figure 4.4, where Sysavg
RU% = 54%, CPDs are formed by

pairing opposite servers using Algorithm 1. Equation 4.8 specifies the servers

participating in each pair, with Cel𝑠𝑧 − 𝑖 + 1 representing the index for the fog

node paired with fog node i:

CPDi = {Fn𝑖, Fn𝑗}, where 𝑗 = CelSz − 𝑖 + 1 (4.8)

Algorithm 1: Building and Maintaining SOT in the Master Server.

 Output: Fn𝑖
CoDx

 Input: ∀ Fn ∈ Cel𝑎 , CelRU%, Cel𝑎
Sz

Start;

mid = approx (
Cel𝑎

Sz

2
) ;

 Do

 If (OddSize(Cela
Sz)

 disabOff(Fnmid) //Disable the offloading function

 for (𝑖 = 1: mid; 𝑖 + +)

 CPD𝑖 = (Fni, FnCela
Sz−𝑖+1) //Creating a CPDs

 BroadCast(Fn
Cela

Sz−i+1

CoDi) // Update CPDs

 End

 End

4. Broadcasting: After the creation of CPDs, the master server broadcasts

complementary server information throughout the cell. The "broadcast()"

function informs cell servers about their complementary servers. In contrast,

the middle server (in the SOT when N is odd) disables the offloading function

to operate independently without participating in the offloading process,

achieved through "disabOff()". Light followers must also disable the offloading

98

function to prevent the system from entering a thrashing state. In a thrashing

state, all servers spend time forwarding tasks among themselves without

executing their primary functions (Kaur and Sachdeva 2020). The HybOff

algorithm avoids this state by employing the "disable" function, which restricts

specific and unnecessary servers from forwarding tasks. However, the

"disabOff()" function only prevents servers from offloading within the cell,

allowing them to continue offloading outside or to the cloud when necessary.

5. Static Offloading: Heavy servers initiate offloading as soon as they receive

information about their complementary servers (Algorithm 2). They forward

heavy tasks using the Last In, Last Out (LIFO) procedure, with priority given to

all TSAs in their queue. Servers continue to utilize their complementary servers

until they receive updated information from SOT.

ALGORITHM 2: STATIC OFFLOADING (ALL SERVERS)
 Output: Provide destination server
 Input: CelRU%, FnRU%
 Start;
 Do (Fn𝑎

RU% ≥ CelRU%)
 Fn𝑏

CoD ← Offload(Fn𝑎 , HA(AppTskxy
𝑎) //Static Offloading

 End

HybOff requires verification that heavy servers surpass the average load of the

cell. In this algorithm, offloading occurs independently within each cell once a

server is categorized as heavy. To establish the appropriate categorization criteria

for servers, the average utilization ratio of each cell must first be calculated.

Equation 4.9 provides the formula for categorizing each cell:

Cel𝑖
RU% =

∑ (Fn𝑥
RU%×Fn𝑥

𝜑
)

Celi
Sz

𝑥=1

(Celi
Sz−∑ Fn𝜑)

 (4.9)

where, Cel𝑖
RU% represents the average utilization ratio for cell i, and Fnφ is 1 if the

fog server is active and 0 otherwise. The cell servers will not initiate offloading

until the categorization criteria are met. In this algorithm, if Fni
RU% ≥ CelRU%, 𝐹𝑛𝑖

is considered a heavy server; otherwise, it is categorized as a healthy server. This

condition deactivates the algorithm when all servers are not overloaded. For

example, if all cell servers have a low load, no offloading process will commence,

and each server will manage its workload locally. Thus, we can define this cell as a

balanced cell, a feature that significantly benefits network bandwidth.

99

Let's consider an illustrative example to comprehend the relationships among

cell servers. In previous Figure 4.4, if the clustering algorithm forms a cell with five

fog servers, let's assume that the first server, after ranking in the SOT, has a

utilization percentage of Fn1
RU% = 𝜔. It's important to note that there are

variations in the utilization percentages among the sequentially ranked servers,

denoted as 𝜇1, 𝜇2, 𝜇3 , 𝑎𝑛𝑑 𝜇4 in our calculations. In this example, we have two

CPDs, CPD1 and CPD2, each with a unique utilization reading. However, to

calculate the RU for the ith pair, we need to apply the following relationship:

CPD𝑖
RU%(𝑖, Cel𝑖

Sz) = 2ω + ∑ 𝜇𝑎 + ∑ 𝜇𝑏
CelSz−𝑖
𝑏=1

𝑖−1
𝑎=1 , (4.10)

where, CPD𝑖
RU% represents the utilization percentage of CPDi in the cell. Using

Equation 10, CPD1 contains Fn1 and Fn5, while CPD2 contains Fn2 and 𝐹𝑛4. When

the load reaches the average cell load, 𝐹𝑛4 and 𝐹𝑛5 will offload their workloads to

𝐹𝑛1 and 𝐹𝑛2, respectively. 𝐹𝑛3 operates independently as it has an adequate load.

In cases where the number of cell servers is even, all servers are included in

computing pairs. The utilization percentage in each pair is as follows:

CPD1
RU% = 2ω + 𝜇1 + 𝜇2 + 𝜇3 + 𝜇4. (4.11)

CPD2
RU% = 2ω + 𝜇1 + 𝜇1 + 𝜇2 + 𝜇3 (4.12)

Unfortunately, there is no mathematical relation that can predict μi. For

simplicity, we assume that the utilization value between each sequential server is

constant (μ1  = μ2  = ⋯ = μ(𝑠𝑧−1)  = μ). If so, we can conclude that: CPD1
RU% =

CPD2
RU% = 2ω + 4μ, which represents the utilization percentage for any CPD in the

previous example. In other words, HybOff equalizes the loaded pairs cell-wise.

This work predicts the RU% for the cooperative pair servers using the following

formula:

CPDRU%(Celi
Sz) = 2ω + (Cel𝑖

Sz − 1)μ (4.13)

Mathematically, all CPDs in the cell have the same load. However, the load of

CPDs depends on the number of fog servers in the cell. For example,

Cel𝑎 and Cel𝑏contain 6 and 13 servers, respectively, after the clustering algorithm

builds the cells. According to Equation (13), CPD𝑎
RU% = 2ω + 5μ, and CPD𝑏

RU% =

100

2ω + 12μ. This means the shared computational load for each CPD increases with

the cell size.

4.3.4. THE PROPOSED ALGORITHM

The identified drawbacks will be effectively addressed by integrating the cell

concept within our hybrid offloading framework. In this design, Fog servers are

structured into cells, where each server pairs up for resource sharing. Our proposed

algorithm aims to maintain consistent average load levels across Fog servers within

each cell, and you can visualize the algorithm's flowchart in Table 4.5.

Figure 4.5: HybOff Process Flowchart.

As depicted in Figure 4.1, this hybrid LB algorithm capitalizes on the strengths

of static and dynamic offloading strategies. Our proposed algorithm brings five

crucial enhancements to fog load balancing:

• Reintroduction of Static Offloading: We're reintegrating the efficiency of static

offloading into our approach.

• Minimal Message Exchanges: Our algorithm minimizes message exchange

between servers, streamlining the LB process for greater efficiency.

101

• Reduced Decision-Making Time: We've significantly reduced the time

required to make offloading decisions.

• Local Management of Urgent Applications: Our approach encourages servers

to handle urgent applications locally, eliminating the necessity for global

allocation.

• Efficient Network Management: We employ a cell-based approach for

network management, reducing latency, alleviating network congestion, and

enhancing overall LB.

The subsequent section illustrates these improvements through a series of

comprehensive experiments.

4.4. EXPERIMENTS AND RESULTS

4.4.1. PRELIMINARY EXPLANATIONS

This section assesses the proposed algorithm and demonstrates how the hybrid

offloading structure outperforms other classical LB schemes. Generally, the

essential requirement of effective LB is to keep all the computing units equally

loaded by avoiding overloaded or underloaded cases (Sulimani, Alghamdi et al.

2021). The RU% of servers are used to evaluate the effectiveness of LB.

 (a) (b)

 (c) (d)

Figure 4.6: Balance of resource utilization-mathematical, (a) before offloading, (b) sorted servers, (c)
paired servers, and (d) after offloading.

102

To demonstrate the efficiency of HybOff, we consider the example depicted in

Figure 4.6 for a mathematical analysis. As shown in Figure 4.6 (a), the scheduler

module collects the 𝐹𝑛𝑅𝑈% for cell servers with a fixed difference (μ). The servers

in the cell are ranked in ascending order, and the master creates the CPDs as

depicted in Figure 4.6 (b) and (c). These figures illustrate how opposite servers

share their load while the middle server operates independently. After a period of

offloading, all cell servers have the same load, as shown in Figure 4.6 (d). Using

Equation (13), we find 𝐶𝑃𝐷𝑅𝑈% = 2ω + 4μ for each pair, where the 𝐹𝑛𝑅𝑈% for the

cell servers is ω + 2μ. Fortunately, the middle server also has the same load of ω +

2μ. HybOff achieves LB by dividing the cell servers into multiple pairs and ensuring

an equal load distribution through sharing. HybOff successfully balances the load

and creates balanced cells by ensuring that opposite servers share the load. On the

other side, three metrics are employed to evaluate the proposed algorithm: 1)

resource utilization ratio of the fog system, 2) loading balancing resource usage

among fog servers, and 3) system performance. Resource utilization measures the

usage of all the distributed fog servers' computing resources. LB determines the

distributed tasks among computing servers in the fog layer. The system

performance checks the efficiency of the entire algorithm.

4.4.2. ENVIRONMENT DESCRIPTION

Simulation Setup: The experiment follows the algorithm described in Figure 2.2,

as outlined in the work by Lu, Zheng et al. (2023). It consists of W distributed fog

servers and N created cells. Cloud services, denoted as 'n', are available on all fog

servers, and offloading is initiated only in cases of computing power shortage.

Tasks of varying sizes are processed on the fog servers. The initial experiment

settings are summarized in Table 4.3:

Table 4.3: Initial Parameters of Experiment.

Parameter W n 𝜔 𝜇 ET/task

Value Up to 300 15 apps 18% 7% 3 ms

It's important to note that this experiment focuses exclusively on the fog layer

and does not consider the cloud. The simulation tool is iFogSim, which creates the

necessary environment (Gupta, Vahid Dastjerdi et al. 2017). The experiment

assesses various parameters across different server scales and data sizes (Cao,

103

Zhao et al. 2019) and examines resource utilization over time, considering random

combinations of data sizes and scales, as detailed in Table 4.3 and 4.

• Fog Server Specifications: The specifications of the fog servers used in the

experiment are provided in Table 4.4:

Table 4.4: SPECIFICATIONS OF FOG SERVERS.

Fn𝑖 Capacity RAM CPU

Fn1 100 MB 7 MB 120 MHz
Fn2 150 MB 15 MB 80 MHz
⋮ ⋮ ⋮ ⋮
Fni 200 MB 10 MB 100 MHz

• Evaluation Metrics: To evaluate the algorithm's performance, we

measured resource utilization (RU) in the described case studies using

three different schemes: the static SOS, the DOS, and our proposed HybOff

scheme. DOS is adapted from (Li, Zhuang et al. 2018), while SOS is

configured using classical static offloading. The resource utilization ratio of

the system in the experiment is calculated using Equation (4.14), where

certain function components from the HybOff algorithm were modified and

reused to implement SOS and DOS:

Sys𝑅𝑈%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑
∑ Fn𝑎

RU%Cel𝑏
Sz

𝑎=1

Cel𝑏
Sz

N
𝑏=1 , if Fn𝑎

RU% ≅ ∓5% SysAvg
RU% (4.14)

• Task Specifications: The specifications of the tasks used in the experiment

are detailed in Table 4.5:

Table 4.5: TASK SPECIFICATIONS.

Process Process size Partitions Sensitivity Priority

P1 5 MB 1/1 TSA High
P21 6 MB 1/3 HA Low
P22 6 MB 2/3 HA Low
P23 9 MB 3/3 HA Low

⋮ ⋮ ⋮ ⋮ ⋮

4.4.2.1. RESOURCE UTILIZATION

In this work, the resource utilization ratio of the system (SysRU%) refers to the

ratio between the number of resources utilized and the total amount of system

resources. The used resource is any processor of a fog server that consumed more

than or equalled the average cell utilization of its processing power. To do this, the

RU must be calculated at every detection time using SysavgRU (Equation 4.15).

SysavgRU = ∑ Sys𝑖
RU% 𝑡⁄ ,𝑡

𝑖=1 (4.15)

SysRU% =
∑ Celi

RU%N
𝑖=1

𝑁

Figure 4.7:

105

4.4.2.2. LOAD BALANCING

To assess the effectiveness of the proposed algorithm, this section evaluates the

level of balanced RU among servers in the fog layer. It compares it to SOS and DOS,

with the target level defined in (Sulimani, Alghamdi et al. 2021) where all fog

servers were equally loaded. LB is the percentage of healthy fog servers in the cell,

with a ±5% threshold value of (SysRU%). In this experiment, however, we

considered any server close to the average system utilization as a healthy server.

To do this, we need to count the healthy server's cell-wise during the experiment,

which satisfies the criteria previously mentioned. Equation 14 is used to calculate

the RU for the HybOff algorithm, while Equation 4.17 is used to calculate the

average RU for the SOS and DOS.

SysRU%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑ Fn𝑎

RU%𝑁
𝑎=1 ,if Fn𝑎

RU% ≅ ∓5% SysAvg
RU% (4.17)

Figure 4.8 (a) depicts the percentage of fog servers classified as balanced

across various system scales, with experiments ranging from 1 to 300 servers, all

using a fixed data size. The graph underscores HybOff's ability to consistently

maintain a high percentage of healthy servers, closely aligning with the ideal curve.

At 150 fog servers, SOS, DOS, and HybOff achieved 64%, 88%, and 97% for

balanced servers, respectively. Impressively, HybOff continued to perform

exceptionally well even with 230 fog servers. However, the dynamic scheme's

performance deteriorated when the number of fog servers reached 300, revealing

communication overhead as a bottleneck.

The performance of the static approach exhibits a decreasing slope, consistent

with its strategy. Nevertheless, the results indicate that HybOff excels in large-

scale networks, primarily because it is fragmented, and the central-distributed

approach makes it easier to control and maintain. In contrast to the theoretical

estimation of HybOff, which suggests effective load equalization among all

computing servers, the experimental results do not align with this mathematical

estimation. This discrepancy arises from the variable and uncontrolled nature of

μ. The uncontrolled differences among consecutive servers diminish the

performance of HybOff.

106

(a) (b)

Figure 4.8: The percentage of healthy servers for the three algorithms with the same mean value but
different standard deviations, where (a) is the percentage of balanced servers, and (b) is the standard
deviation for algorithms.

However, standard deviation (σ) is crucial for assessing data dispersion. A

smaller standard deviation signifies that data points are closely clustered around

the central measure (Martinez and Bartholomew 2017). All algorithms were

tailored to maintain equal load distribution among computing servers in this work.

As previously defined, fog servers with computing loads within the 47.5% to

52.5% range are considered healthy. In this experiment, we tallied the number of

servers loaded at approximately 50% for each class within each algorithm. Figure

4.8 (b) demonstrates that HybOff exhibited the lowest standard deviation, while

SOS showed the highest. This indicates that HybOff had the most servers meeting

the balanced criteria. Although DOS also upheld a substantial number of balanced

servers, SOS struggled to keep servers within the target range. The performance

results were 39%, 68%, and 95% for SOS, DOS, and HybOff, respectively. All three

algorithms had the same mean value, 𝑥=17. SOS, DOS, and HybOff had standard

deviations of 20.4, 16.9, and 9.7, respectively. HybOff outperformed the other

algorithms.

4.4.2.3. SYSTEM PERFORMANCE

It is essential to compare the performance of HybOff with SOS and DOS to assess

the proposed algorithm's effectiveness. To evaluate each system's performance,

we analyzed the execution of time-sensitive applications. As previously

mentioned, all servers in the fog layer are tasked with serving time-sensitive

applications locally without offloading. For resource-intensive applications,

offloading is only considered when the computing servers are fully loaded (Xiao,

Shu et al. 2022).

Figure 4.9:

Key Findings:

108

• Decision Time: HybOff's hybrid approach allows for direct offloading,

eliminating the delay associated with decision-making in the offloading process.

This contributes to faster and more efficient resource allocation.

• Distance Offloading: Unlike other algorithms that struggle with large-scale

networks, HybOff excels by avoiding offloading to unknown fog locations, a

characteristic more reflective of real-world FC scenarios. This reduces latency

and improves system efficiency.

• Decision Messages: HybOff's static behaviour reduces the need for current

system state messages, minimizing the exchange of messages among servers and

reducing network bandwidth usage. This is crucial for optimizing network

performance.

• Superfluous Offloading: While other algorithms may experience performance

degradation when handling time-sensitive applications (TSAs), HybOff excels by

keeping TSAs local, saving transmission time and network resources. It also

efficiently manages heavy applications (HAs) by offloading them only to adjacent

servers, thus minimizing network congestion.

• Anti-Thrashing State: HybOff effectively prevents the system from entering a

thrashing state by employing the "disable offloading" function. This ensures that

underloaded servers within each area share their resources with the most

affected servers, ultimately optimizing system utilization.

These findings align with existing literature that underscores the effectiveness

of dynamic offloading as a strategy for LB in FC. However, our study further

demonstrates the viability of incorporating classical static offloading into modern

network design. These results mark the first direct demonstration of this hybrid

approach, offering valuable insights for future research in FC.

Limitations and Future Directions: Despite the promising findings, this study has

identified two potential limitations:

• High Load Scenarios: HybOff may not operate efficiently in scenarios with a

substantial load within a single cell. When all computing nodes in a cell reach

their utilization limits, the "disabOff()" function activates, leading to offloading

processes across cells or to the cloud, which may introduce undesired

109

consequences such as network congestion and distant offloading. Future

research should explore sustainable solutions for high-load scenarios within a

single cell.

• Metric Selection: While HybOff uses CPU load and network state as reference

metrics to assess fog server loads, it does not consider other server metrics like

memory usage and energy consumption. Future investigations could consider a

more comprehensive set of metrics for a nuanced assessment.

Implications: These findings have both theoretical and practical implications.

Reviving the use of static offloading techniques, previously deemed impractical in

modern network design, emerges as a critical consideration. Adopting approaches

like HybOff in industrial computing platforms may help reduce unnecessary

network expansion and enhance system performance. In conclusion, HybOff offers

a robust and efficient computing environment for fog systems, outperforming

prevalent dynamic algorithms and providing valuable theoretical and practical

insights for LB in FC scenarios. Future research can build on these insights to

address the identified limitations and further advance the field of FC.

4.6. STAGE 1C, OPTIMUM LB SOLUTION

This part of the research attempts to identify the optimum solution among task

offloading and service placement models to improve the level of LB in the system

after testing them with their peers in stages 1a and 1b. According to the real

implementation of this research, Figure 1.5, this is stage 1c. It is related to research

question 6, “How could the performance of the proposed systems be evaluated in a fog

environment in RQ4 and RQ.5 ?”. Whereas the central issue of this research is LB,

resource utilization ratio and LB level are the main metrics that need to be evaluated

according to (Kadhim and Seno 2018). Moreover, the number of hops is required to

evaluate the impacts of the proposed models.

The comparison uses the fog architecture in Figure 2.2 to implement HybOff and

RODSPP models. As clustering is the core solution in the HybOff model and cannot

be avoided, a comparison must be held between two cells in both models. However,

RODSPP does not have the cell concept. However, the shortest route towards the

cloud is supposed to be a cell. Figure 4.10Error! Reference source not found.

110

shows the difference between cell construction in both models. To construct the

experiment fairer, the cells in both models must have the same number of devices

or computing power. While in RODSPP, we built a three-level of fog devices, we

forced the HybOff model to create a cell with three devices by locating the other

devices away. However, the formed cells have three devices in both models. In the

experiment, all devices can receive the tasks directly from the IoT layer, even in

the second two levels in RODSPP.

In HybOff, we did migrate the location of the services where all devices have all

services, while RODSPP is changed according to its configuration. The experiment

uses the exact configurations for both models, as shown in Table 3.3, except no

gateway is used. It follows procedures in (Sulimani, Sajjad et al. 2022) and

subsection 3.4.1 using iFogSim.

Figure 4.10: The definition of cell in models.

Resource utilization (CPU usage) is the first evaluation metric to be tested; this

research considers CPU as a core resource while ignored the others as discussed

in subsection Figure 4.11. Equation 4.9 calculates the utilization level in the cell

system for both models.

All task offloading processes are initiated by the father to the following two

levels. Figure 4.10 depicts that there is a possibility that two fathers might use the

same intermediate devices. On the other hand, in HybOff, all devices work

independently and offload to their CPDs; device one cooperates with device three

in this experiment while device two works independently. Because this study is

more concerned with sensitive applications, we have generated more light (time-

sensitive) than heavy applications by twenty percent.

Figure 4.11:

Figure 4.12:

0

4

8

12

16

20

50 100 150 200 250 300 350 400 450

HybOff RODSPP

Figure 4.13

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300 350 400 450

113

models show identical performance between 350 and 400 MB. Even though HybOff

outdoes RODSPP, it is mandated to invent a comprehensive solution for HybOff to

confound this situation.

Figure 4.12 shows the performance of both models to balance the load. Even

though RODSPP records a high level of LB, it is clear that it cannot maintain its

performance, and there is a fluctuation. This behaviour is due to the device in the

third level not being used and waiting for workloads. On the other hand, HybOff

maintains its performance by keeping all devices have the same load. The

cooperative opposing-load philosophy is behind this performance.

In summary, the HybOff approach can secure a stable and robust computing

environment for fog systems. It achieves outstanding performance compared to

the RODSPP models.

4.6.2. LIMITATIONS

This subsection is concerning to answer the seventh research question, named:

“What are the limitations of the optimum LB solution in this research?”. However,

there are at least two potential limitations concerning the results of this study. The

first limitation concerns with a massive load in one cell. A second potential

limitation is using CPU utilization as the only considered metric while ignoring

other metrics.

One limitation of this study is that if one cell faces a high amount of arrival

tasks and they are fully loaded, HybOff achieves unexpected outcomes, in this case,

there is no benefit in Hybrid offloading. It is possible that all computing nodes

reach to the utilization limit which allow the disabOff() function to block the

offloading feature inside the cell. Consequentiality, HybOff, in this case, will start

the offloading process across cells or the cloud to find free resources which might

be located a distance away; in this scenario, HybOff will follow prevalent

offloading, which, as mentioned, has drawbacks. It generates the undesirable

phenomena, such as network congested and distant offloading. Accordingly,

HybOff cannot work efficiently within overloaded cells.

While HybOff uses the load of the CPU and network state as references to

evaluate the load of fog devices, it ignores other metrics in the device, such as

114

memory usage and energy consumption. However, the authors believe that the

CPU is the core of any computing system; it is considered a primary metric in the

evaluation process.

To address the first limitation, we need to find a solution with a sustainable

concept that might be suitable for future work. Although the present research

cannot rule out this limitation, it seems useful to point out issues that may conflict

with the proposed model.

Despite this limitation, these results suggest several theoretical and practical

implications. For example, igniting the static offloading technique is critically

essential, which programmers have avoided using in the past, as it is considered a

non-practical strategy in network design. Moreover, Industrial computing

platforms can improve their system performance by following this approach,

which attempts to prevent superfluous network expansion.

115

4.7. CONCLUSION.

This work aimed to enhance the performance of critical applications in large-scale

fog networks by introducing a novel algorithm named "HybOff". HybOff represents

a LB offloading technique that adeptly harnesses the benefits of both static and

dynamic offloading methods, resulting in substantial performance improvements

for time-sensitive applications, regardless of network scale. The offloading

strategies generated by each algorithm in this investigation were simulated utilizing

the iFogSim platform. Through a comparative analysis of diverse metrics

encompassing resource utilization, load distribution, and system performance, we

discerned the merits and demerits of each approach. These algorithms' outcomes

affirm that regardless of network size, HybOff consistently fulfils the requisites of

Application Service Dependencies (ASD).

Furthermore, the experimental results strongly corroborate the efficacy of HybOff.

It demonstrates a notable reduction in the volume of offloading messages, distance

traversed, and the repercussions of offloading decisions. These outcomes effectively

mitigate the inherent deficiencies encountered in traditional offloading techniques.

Notably, the proposed algorithm enhances LB by an impressive 97%, a substantial

improvement compared to the 64% and 88% achieved by SOS and DOS,

respectively. Moreover, it elevates the average system utilization rate by 50% and

enhances system performance by 1.6 times and 1.4 times compared to SOS and DOS,

respectively.

116

5. CHAPTER, A COMPREHENSIVE SOLUTION: A

SUSTAINABLE LOAD BALANCING MONITORING

SYSTEM FOR THE HIDDEN COSTS IN FOG

COMPUTING

Abstract: Due to the complex behaviour in the LB process, prevalent offloading

techniques in fog computing incur hidden costs, such as network congestion,

distance offloading, and decision time. Earlier, in our previous work, we introduced

the Hybrid Offloading Approach (HybOff) to improve the performance of time-

sensitive applications for large-scale fog networks, which marked the first attempt

to mitigate these costs. Although HybOff is designed to address these issues, there

are specific cases where it loses its effectiveness and reverts to the behaviour of

prevalent techniques. This article presents a SlbmS to provide a comprehensive

solution for the HybOff model. It has struggled with the increased demand for data

processing in highly loaded cells and their limited physical resources. SlbmS is a tool

that collaborates with HybOff using machine learning to restore its features if it

implements SlbmS’s recommendations. According to the framework, SlbmS is

constructed in two sequential stages to achieve the research objective. The

investigation assesses the performance of HybOff with and without SlbmS in

congested cells. The simulation experiment demonstrates that implementing the

proposed recommendation of quality or quantity results in HybOff regaining its

features. Adequate planning for the expansion process enables HybOff to overcome

the challenges posed by exceptional cases. This work proves that offloading is an

alternative solution for resource provisioning.

117

5.1. INTRODUCTION

In the internet era, the central computing concept has become so vital that we can

no longer revert to primitive, decentralised systems. On the ground, cloud

computing is the practical implementation of central computing infrastructure. Any

business must establish direct connections and communication with its intelligent

products to manage its operations. For this purpose, the cloud computing model has

been widely recognised as the appropriate infrastructure for efficiently running and

managing widely distributed IoT (Internet of Things) products. IoT is a

telecommunication system that enables many processing devices (things) to

exchange data over a public network, thus allowing businesses to operate with

minimal human intervention (Catruc and Iosifescu 2020). It is considered a

fundamental tool that facilitates the interaction between cloud computing and the

environment. Most of the surrounding intelligent products, which overcome daily

challenges, rely on IoT technology, implying that they may not operate or function

fully without an internet connection (Madakam, Lake et al. 2015). This setup allows

IoT technology to increase widely and its data to grow gradually, enhancing cloud

systems’ popularity while influencing public networks’ efficiency.

On the other hand, when the public network slows down, time-sensitive

applications are the ones that suffer the most. IoT applications that rely on timing

must be served within a reasonable time limit for them to perform well. It’s

important to note that all IoT applications utilise the same public network, designed

to serve all applications impartially (Wójcicki, Biegańska et al. 2022). Consequently,

providers of time-sensitive applications must consider this when introducing

critical services, such as e-health, smart grids, and unmanned vehicles (Goel, Abeni

et al. 2002, Lu, Wu et al. 2023).

Unfortunately, cloud computing cannot offer the required level of service for

these types of applications due to the unpredictable performance of public networks

(Ferrer, Marquès et al. 2019). As extensively discussed in prior research, creating a

well-balanced fog system is crucial to overcoming this situation (Chandak and Ray

2019). However, this work considers offloading the appropriate technique to

enhance LB in FC, enabling cloud technology to continue functioning effectively for

118

time-sensitive applications. Therefore, providing a robust solution for offloading is

essential.

Conceptually, once LB systems start offloading, local fog resources become

exhausted, and the workload significantly increases. Effective resource provisioning

strategies are crucial to address a situation characterised by resource shortages.

Most existing resource provisioning research in FC employs granularity services

such as virtual resource allocation, container-based provisioning, and task

allocation to enhance the capabilities of available local resources (Shakarami,

Shakarami et al. 2022). However, these solutions are constrained by physical

resources and do not expand beyond that, as it has not been explored previously.

Therefore, this research aims to explore this new research dimension in resource

provisioning.

Considering the gap in this research, this work needs to incorporate the concept

of to assess the validity of this new dimension. Sustainability in Information

Technology (IT) fields generally refers to keeping the system running efficiently

with minimal changes. Due to the proposed avoidance of expanding physical

resources, however, all prevalent offloading solutions are incongruent with this

concept. Hence, the solution explored in this study aims to develop a long-term-

based solution (Gonzalez-Mejía, Eason et al. 2012).

To achieve this, we need to refine resource provisioning in the offloading model

by studying fog devices’ quality and quantity of coverage (Lu, Wu et al. 2023).

Quality of resource provisioning entails the system reorganising the range of

underutilised fog devices to assist nearby overloaded devices, considering each fog

device has a limited geographical area to cover (Hermann, Emmelmann et al. 2007).

On the other hand, the quantity of resource provisioning involves altering the

physical number of fog devices. This work primarily focuses on offloading, which

can be considered an alternative technique for resource provisioning. If we succeed

in this study by increasing local resources at the lowest cost, we will regard

offloading as a viable alternative to resource provisioning in a fog environment.

The primary objective of this research is to address the challenges faced by the

Hybrid Offloading (HybOff) model, which have arisen due to the high demand for

119

data processing in already congested cells and the limited physical fog resources.

This inevitable scenario compels HybOff to adopt the behaviour of prevalent

offloading solutions. While existing research has consistently advocated for

offloading as a critical solution (Aazam, Zeadally et al. 2018, He, Lu et al. 2020, Dai,

Xiao et al. 2022, Chakraborty and Mazumdar 2023), this work, in contrast, aims to

minimise or even eliminate offloading processes and their associated consequences

(Lin, Kar et al. 2023). To achieve this, we propose a novel approach involving

minimal changes to the network topology using genetic algorithms and

reinforcement learning (RL) (Ray 2019). As far as our knowledge extends, this

research problem remains unresolved, and we aim to provide a solution in this

work. Importantly, our approach may also resolve the challenges prevalent

offloading techniques pose.

• Key contributions of this paper include:

• The introduction of a new method for creating a sustainable LB system.

• A comprehensive discussion of the hidden costs involved in ensuring the

performance of HybOff as an innovative solution.

• A demonstration of how the concept of sustainability can be applied to the

proposed model.

• Presentation of the results obtained from the comparative experiments

conducted in this study.

The subsequent sections of this manuscript are structured as follows: Section 2

provides background information on the research area. Section 3 outlines the

research problem. In Section 4, we describe the proposed sustainable load-

balancing monitoring system. Section 5 details the implementation and evaluation

aspects, while Section 6 discusses the results. Finally, Section 7 presents the

conclusion and outlines avenues for future research.

5.2. BACKGROUND OF THE RESEARCH AREA

In this section, we provide a brief introduction to sustainability, LB, and Machine

Learning (ML).

5.2.1. SUSTAINABILITY

In the General Conference of the United Nations in 1984, the World Commission on

Environmental and Development (WCED) introduced the term “sustainability” with

120

a broad meaning (Gonzalez-Mejía, Eason et al. 2012). The concept of sustainability

now extends across various fields, including agriculture, manufacturing, health, and

information technology (IT). While numerous definitions of sustainability exist in

the computing field, they all share a common core idea. For instance, Gonzalez-

Mejía, Eason et al. (2012) define sustainability in IT as “maintaining the functionality

of a system without experiencing significant changes in its conditions over time.”

However, to apply sustainability in this research, we need to introduce the concept

of system utilisation. Utilisation is a process that not only maximises the usage of

available resources but also minimises waste to keep the system fully equipped

(Kadhim and Seno 2018). Therefore, we can redefine sustainability as the process

aimed at maintaining the functionality of a system at the highest level of utilisation,

thus increasing the benefits of system components during their limited lifetimes

without significant changes in their conditions over time. This research adopts this

definition to address the current research dilemma.

5.2.2. REINFORCEMENT LEARNING (RL)

Machine Learning (ML) is a process that enables a computer program to improve its

performance on specific tasks by learning from past experiences. ML algorithms are

generally classified into three main categories: supervised, unsupervised, and

Reinforcement Learning (RL) (Kaelbling, Littman et al. 1996). Supervised learning

involves training the system using labelled data to predict continuous values.

Unsupervised learning focuses on labelling or clustering based on similarities. In

real-life scenarios, systems acquire knowledge by testing all possible action

combinations before identifying the optimal solution. RL is the challenge an agent

faces that learns behaviour through trial-and-error interactions with a dynamic

environment. It comprises three key elements: agents, actions, and rewards,

collectively determining the policy. The policy is developed as the agent interacts

with the environment, earning rewards while striving to achieve a specific task

(Prudencio, Maximo et al. 2023). Therefore, the selected policy represents a

sequence of actions that lead to the endpoint with the fewest rewards.

For instance, consider a scenario where you are tasked with escaping from an

escape room using a series of moves (actions). At each step, you have three activities

to choose from: forward, left, or right. Hitting an obstacle forces you to restart, with

121

each successful action yielding rewards. If you start moving and after x actions hit

an obstacle, you collect x points. On the next attempt, the agent chooses a different

activity and, after y steps, hits an obstacle, earning y points (y > x). The system

continues to explore the environment until it finds the optimal policy. Consequently,

the selected policy should guide the agent to reach the endpoint via the shortest

path.

5.2.3. LOAD BALANCING IN A FOG ENVIRONMENT

In FC, LB is a mechanism that enhances the efficiency of resource allocation by

determining the optimal device to receive streaming tasks. Its goal is to distribute

incoming tasks evenly to equip all active computing units fully. Each LB algorithm

employs a distinct mechanism to achieve this objective. Generally, when managed

effectively, LB is utilised to increase system throughput, resource utilisation,

performance, and reliability. Although LB research has inspired various solutions to

optimise resource allocation, the explosive growth of IoT data, users, and

application requirements has significantly burdened the fog layer, which possesses

limited resources.

5.2.4. RELATED WORKS

Most LB schemes typically acknowledge hidden costs as an inherent factor that

cannot be avoided. They aim to minimise the adverse effects of these costs. However,

in this section, we delve into LB-related works attempting to circumvent these costs

or significantly mitigate their impact through sustainable research solutions.

Puthal, Obaidat et al. (2018) propose an innovative LB technique to authenticate

Edge Data Centres (EDCs) and identify less loaded EDCs for task allocation. Their

process employs the Breadth First Search method to explore neighbouring EDCs,

enabling overloaded EDCs to find optimal destinations for offloading. However, this

work introduces a bi-objective approach where cooperation among EDCs involves

an identification process that can lead to cooperation termination if it fails. While

this paper includes sustainability in its title, it does not provide a long-term

resolution for the ongoing challenge of numerous offloading processes among EDCs.

Abedin, Bairagi et al. (2018) introduce an LB algorithm designed to redistribute

tasks among edge centres in metropolitan networks, focusing on reducing average

122

response times, especially in wireless networks. Rafique, Shah et al. (2019) propose

a bio-inspired hybrid algorithm (NBIHA) for LB in fog environments. They reduce

average energy consumption and response times by employing efficient task

scheduling. NBIHA operates meta-heuristic particle swarm optimisation (MPSO) as

a scheduler within the fog layer. Simulations using iFogSim demonstrate favourable

outcomes in terms of resource management.

Arshad, Khattak et al. (2018) analyse nature-based algorithms, precisely the

binary bat algorithm (BBA) and pigeon-inspired optimisation (PIO), within a fog

architecture comprising smart homes in the first layer and cloudlets in the second

layer. The study evaluates the energy consumption of the cloudlets. (Javaid, Butt et

al. 2019) propose a nature-inspired Cuckoo search algorithm combined with flower

pollination and levy walk distribution to enhance processing and response times

while reducing microgrid and data transfer costs. Lu, Wu et al. (2023) investigated

a multi-user mobile edge computing architecture for high-reliability and low-

latency scenarios, analysing the task queue using extreme value theory. Singh

(2022)designed an LB system based on fuzzy logic with various levels of fuzzy

control design and tuning for analysing links and managing traffic.

 In the context of fog/cloud platforms, Maswood, Rahman et al. (2020) introduce

a mixed-integer linear programming (MILP) LB model. This model aims to optimise

network bandwidth and server resource utilisation, evaluating the model

holistically at both the network and server levels.

5.3. RESEARCH PROBLEM

FC is strategically designed to deliver instantaneous services near clients, ensuring

the continuous provision of critical cloud services. FC has evolved in various

dimensions to meet the demands of time-sensitive applications and accommodate

the recent surge in IoT devices and users. However, a pressing need remains for

enhancing LB techniques explicitly tailored to fog environments to optimise the

utilisation of fog resources as clients deplete ground resources and the burden on

devices escalates.

Recent research underscores that offloading is pivotal to LB in distributed

environments. Numerous studies have introduced various offloading approaches,

123

including dynamic, age-based, and hybrid strategies, to enhance the efficiency of fog

environments (Hussein and Mousa 2020, Liu, Xu et al. 2020, Dai, Xiao et al. 2022,

Sheikh Sofla, Haghi Kashani et al. 2022, Tran-Dang and Kim 2023).

In our prior work, we introduced the HybOff algorithm as a novel solution to

address certain inherent limitations of static and dynamic offloading approaches,

such as reliability issues and high communication latency associated with static and

dynamic offloading methods. In this research, we develop a sustainable solution that

operates with HybOff. The goal is to mitigate the weaknesses of the HybOff

algorithm and restore its key features to ensure robust and efficient offloading in

fog environments.

5.3.1. THE PREVALENT SOLUTION

According to our observation, we have noticed that all the prevalent offloading

approaches use the present system state theme, in which the heavy devices read the

environment (gathering attributes) and give an offloading action to redirect the

excess tasks to the target device. This is repeated several times when there is a

necessity for extra resources. This theme generates a high volume of exchanged

messages with the peer devices; we can call it decision messages. They seek to

explore unused resources to cover the shortage in the affected areas without the

intention to increase the number of served devices (Sheikh Sofla, Haghi Kashani et

al. 2022). Although all research approaches seek to enhance offloading strategy,

they ignore these hidden costs.

As illustrated in Figure 5.1, an infinite series of interaction and offloading

processes among devices will occur due to the unchanging quantity or quality of

physical resources in the field. These processes make the network situation seem to

get worse over time. Keeping the networks congested will escalate the latency in the

system (Kuempel, Adams et al. 2018), which is a decline in the main objective of FC.

124

Figure 5.1: Prevalent Offloading Process Flowchart.

While HybOff is designed to address the challenges in FC, there are specific

scenarios where it tends to adopt the behaviour of prevalent algorithms,

particularly when confronted with heavy loads in particular cells. In such cases,

HybOff resorts to “distance offloading,” sending tasks to other cells or the cloud,

increasing system latency. This research assumes that HybOff operates efficiently in

maintaining balanced and fully utilised computing nodes, except under these

circumstances. Therefore, without improving the physical resources in these

affected areas, HybOff may have long-term adverse consequences, diminishing the

effectiveness of software solutions.

Given this scenario and following the flowchart, enhancing the quantity of

physical resources emerges as the most viable approach to breaking this endless

loop. This step aims to minimise or halt the constant message exchanges.

Consequently, expanding the network, either partially or entirely, appears to be the

logical solution to support the affected areas. However, this decision may not be

suitable if there is uncertainty about the full utilisation of all fog devices, especially

considering the varying efficiency of LB algorithms.

In such cases, network expansion can lead to a unique network state, which we

propose as “network oversizing.” This state arises when the network expands

without adequate planning. Excess resources and power are wasted when the

125

provided resources surpass the demand. Network oversizing is particularly

prevalent in smaller businesses that may not conduct thorough network studies or

planning before expanding. Importantly, network oversizing contradicts the

sustainability definition adopted in this research, which seeks to avoid significant or

unwarranted physical changes.

Therefore, engaging in meticulous planning for the expansion process is

imperative, including estimating the number of Access Points (APs) required before

actual implementation. Adequate planning ensures that the performance of FC

remains at an acceptable level without incurring excessive costs.

5.3.2. EXPLORING THE NEW DIRECTION OF RESEARCH

To tackle the dilemma effectively, it is imperative to implement an intelligent and

autonomous monitoring system capable of monitoring, evaluating, and proposing

solutions to enhance the resource management system. The proposed solution

should bridge the gaps left by existing solutions, addressing issues such as decision

messaging, network congestion, and network oversizing. The primary focus of the

proposed solution should be to augment the computing power available on the

ground through meticulous resource planning, as depicted in Figure 5.2.

Figure 5.2: Possible Solutions for the Problem of Research.

Hence, this is the opportune moment to create a comprehensive solution that

allows for physical modifications (both in terms of quality and quantity) in the

126

network topology. Constructing this proposed system will unfold in two sequential

phases. The initial phase aims to enhance the quality of coverage provided by

computing devices or Access Points (APs). In contrast, the subsequent phase seeks

to augment the quantity of computing devices or APs. Both phases are designed to

bolster physical resources.

In the first phase, the proposed model will continuously monitor the load

readings of fog devices and provide recommendations for altering the network

topology based on analysing the system’s load data. In this phase, the proposed

model will utilise genetic algorithms to study, analyse, and simulate (offline) all

feasible recommendations before selecting and implementing the most suitable one.

In this phase, a critical piece of advice is repositioning fog devices closer to

overloaded areas, thereby enhancing coverage quality in those affected regions.

However, suppose the simulation results for rearrangement (quality) are

deemed insufficient. In that case, the model will transition to the second phase,

involving the evaluation of the impact of adding a certain number of APs (quantity).

This step constitutes a partial or complete network expansion within the overloaded

areas if deemed necessary. This approach provides overloaded devices with

additional physical resources, resulting in a natural reduction or cessation of

offloading processes. This, in turn, alleviates the strain on network bandwidth and

puts an end to the cycle of infinite processes. As a result, the concept of sustainability

is effectively preserved and realised.

5.4. THE PROPOSED SUSTAINABLE LOAD-BALANCING MONITORING SYSTEM

(SLBMS)

This section introduces the architecture and structure of the proposed sustainable

solution, SlbmS. It is not an LB solution but a recommendation system to facilitate

sufficient planning for enhancing local resources. SlbmS heavily relies on the HybOff

algorithm, as depicted in Figure 5.3, where HybOff represents the endorsed LB

algorithm in this research due to its exceptional resource utilisation capabilities.

127

Figure 5.3: The Proposed Model Architecture.

Time-sensitive applications demand a highly reliable and continuously

available FC system. This research predominantly investigates such applications,

making SlbmS potentially applicable to a wide range of critical fog environments.

Consequently, this research is focused on designing a robust IoT fog system

primarily geared toward serving essential applications.

The outcome of this research stage comprises a set of recommendations for

implementing physical changes in the network topology. These recommendations

should be executed by repositioning fog devices or Access Points (APs). In this work,

we delve into the theoretical aspects of sustainable theory. SlbmS is subjected to

testing both before and after these changes through simulation.

5.4.1. THE ARCHITECTURE

The proposed model’s architecture, as illustrated in Figure 5.4, comprises four

distinct layers: (1) IoT Edge Layer, (2) Fog Layer, (3) Monitoring Fog Layer (MFL),

and (4) Cloud Data Centre Layer. Each layer serves a specific purpose within the

system.

• IoT Edge Layer: This layer connects IoT objects with limited processing

capabilities, including mobile phones, laptops, actuators, and sensors, to the

fog system. It facilitates interaction between these IoT devices and the fog

environment.

128

• Fog Layer: The fog layer is designed to manage the influx of user requests

and data, processing them locally or redirecting them to other fog devices or

the cloud. It is subdivided into cells based on relative distances, following the

HybOff model’s proposal. Additionally, this layer houses the LB algorithm,

which plays a crucial role in optimising resource allocation.

• Monitoring Fog Layer (MFL): The third layer, MFL, has direct access to the

fog devices. Within MFL, the SlbmS model is situated. SlbmS is responsible

for enhancing HybOff’s performance and devising long-term solutions to LB

challenges. Significantly, MFL’s absence does not disrupt the fog system’s

operation since it is not involved in data processing. This layer seamlessly

complements the HybOff architecture.

• Cloud Data Centre Layer: The cloud layer manages data exchanges with the

fog layer while fulfilling its primary responsibilities. It encompasses many

high-performance servers that deliver stable and reliable services.

Figure 5.4: The Effect of RPQ-Stage One.

The organisation responsible for the FC system’s administration oversees the

operation and maintenance of devices in the second and third layers. Conversely, a

third-party organisation, such as Google or Amazon, owns the fourth layer, which

provides on-demand cloud services.

129

5.4.2. THE STRUCTURE OF THE MODEL

In this section, SlbmS is introduced and located within the MFL. SlbmS is a remote

system that establishes direct connections with the master fog devices in the fog

layer. SlbmS comprises a Resource Provisioning Quality module (RPQ) and a

Recommendation System for Resource Provisioning (RRP). However, the following

subsections will detail the construction of these systems.

5.4.2.1. RESOURCE PROVISIONING QUALITY SYSTEM (RPQ)

RPQ is a software module aimed at reorganising the distribution of Access Points

(APs) in the fog layer to provide additional computing resources in highly affected

areas. It represents the first stage of SlbmS. RPQ operates through the following

steps when called:

• Data Collection: RPQ gathers the necessary attributes to build a background

understanding of device loads.

• Data Preparation: Using a genetic algorithm, it prepares the required data

to identify extra resources near the overloaded APs.

• Evaluation: The system evaluates the effectiveness of these changes.

• Recommendations: Finally, the system sends suggestions to be applied.

Once this phase is completed, the system remains inactive until requested

again.

• RPQ comprises two sub-modules: the Classifying Cells and Devices Module

(CrM) and the Arrangement and Simulation Module (ASM). Figure 5.4

illustrates the benefits of the first phase.

• Classifying Module (CrM): This module’s primary objective is to prepare

the necessary data from the IoT layer. CrM is responsible for executing the

first two steps of RPQ, involving the classification process by collecting the

required attributes of the fog devices. CrM also contains additional features

not used in HybOff.

 Various evaluation metrics are employed to study and assess the proposed

model. According to HybOff, devices are classified as either heavy or light. RPQ seeks

to reclassify fog devices into overloaded, balanced, and underloaded categories. The

core goal of this research is to address the main weaknesses of HybOff, such as

network congestion and distant overloading. Therefore, more straightforward

metrics focusing on network traffic and computing unit load are preferred. Studying

the number of incoming and migrated tasks is a suitable indicator for classification.

130

These attributes are stored in the Device Attributes Table (DAT) in MFL, as

shown in Figure 5.5. To represent the attributes of fog devices as described, you can

use the following notation:

a) Average Arrival Tasks from the IoT Layer:
Symbol: (𝑨𝑻𝒊

𝝋𝑰𝒐𝑻),

Description: The average number of tasks per second from the IoT layer to fog

device 𝑖.

b) Arrival Tasks from Paired Devices:

Symbol: (𝐴𝑇𝑖
𝜑𝑂𝑃),

Description: The number of tasks per second from paired devices to fog devices

𝑖.

c) Offloading Tasks:

Symbol: (𝑂𝑇𝑖
𝜑

),

Description: The number of tasks per second that need to be offloaded by fog
device 𝑖.

d) Distance Offloading Tasks:
Symbol: (𝑶𝑻𝒊

𝝋𝑫𝑶),

 Description: The number of tasks per second that require distance offloading
involving other fog devices or the cloud by fog device 𝑖.

e) Device Capacity in Data Processing per Second:

Symbol: 𝐹𝑛𝑖
𝐶𝑎𝑝

Description: The capacity of arrival tasks to fog device i in terms of tasks
processing per second.

These attributes can evaluate fog devices and make decisions in a fog

environment. These attributes are utilised for AP evaluation.

Figure 5.5: Type of exchanged data in APs.

On the other hand, the Adapted Weight (AW) serves as a gain factor in the

evaluation process. It confirms that fog devices are eager to increase the number of

131

free resources in the cell and identifies the least engaged device (𝜏). Equation 1

outlines the formula used to calculate the AW for each device in the fog layer:

AWi = 𝛽 ×
𝐴𝑇

𝑖

𝜑𝐼𝑜𝑇+𝐴𝑇
𝑖

𝜑𝑂𝑃+𝐹𝑛𝑖
𝐶𝑎𝑝

𝑂𝑇𝑖
𝜑

+𝑂𝑇𝑦
𝜑𝐷𝑂

 , (5.1)

where AW is adjusted based on the value of 𝛽 , used to ensure fair evaluation of APs,

considering offloading processes that collectively reduce the load in the cell. The

subsequent submodule generates updated values of 𝛽. After this step, the data is

ready for the classification process.

• Arrangement and simulation module (ASM)

ASM is a software submodule of RPQ that leverages the calculations made by CrM to

make informed decisions after thorough planning. ASM is responsible for carrying

out the second two steps of RPQ. It employs a genetic algorithm (GA) to determine

the optimal value of 𝛽 to enhance the AW for each device. Algorithm 1, OBS, outlines

the overall steps of the GA for the optimisation process, which aims to find the ideal

value of 𝛽. The GA’s population comprises all fog devices in the system and a set of

virtual tasks. This step leads to the classification of fog devices, as depicted in Table

5.1.

ALGORITHM 1: Optimal Beta Setting (OBS)

 Output: Optimised 𝛽 (𝛽°)

 Input: Set of available FSs, Set of assumed tasks, Initial values for 𝛽

 1. Generate a new random population of chromosomes for pair (𝛽).

 2. For each new population do

 3. For each chromosome containing (𝛽) do

 4. Assign tasks and calculate LB level (LBL).

 5. Next

 6. Do mutation: (i) Select a random particle. (ii) Change its value.

 7. Do crossover: (i) Select two random particles. (ii) Exchange them. (iii) Calculate
their fitness. (iv) Chose the best of them

 8. Calculate the best values for (𝛽) with the highest LBL.

 9. Next

After finding the AW for each AP, the ASM determines the Average AW (AAW)

and the Threshold AW (TAW) using Equation 5.2.

𝑇𝐴𝑊 = 𝐹𝑛𝐴𝑊𝑇
𝑖 |(𝛾𝑖 ≤ 10%), (5.2)

where 𝛾𝑖 is the average of the arrival tasks in the cell. The ASM is responsible for

periodically updating the attributes of APs to classify them as (1) balanced, (2)

overloaded, or (3) underloaded, according to Table 5.1 and the accompanying rules.

Note that the capacity of Fog devices (AP) is 50 Tsks/s.

132

• AP ==> Underloaded if AW >= TAW.

• AP ==> Balanced if TAW > AW >= AAW.

• AP ==> Overloaded if AW < TAW.

Table 5.1: DEVICES ATTRIBUTES TABLE (DAT).

𝑭𝒏𝒎 𝑪𝒆𝒍𝒍 𝑨𝑻𝒊
𝝋𝑰𝒐𝑻 𝑨𝑻𝒊

𝝋𝑶𝑷 𝑶𝑻𝒊
𝝋

 𝑶𝑻𝒚
𝝋𝑫𝑶 𝑨𝑾𝒊 Status

𝐹𝑛1 3 150 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 3 𝑇𝑠𝑘/𝑠 70 𝑇𝑠𝑘/𝑠 0.2 OL

𝐹𝑛3 3 180 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 5 𝑇𝑠𝑘/𝑠 98 𝑇𝑠𝑘/𝑠 0.15 OL

𝐹𝑛4 3 192 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 3 𝑇𝑠𝑘/𝑠 122 𝑇𝑠𝑘/𝑠 0.14 OL

𝐹𝑛2 2 4 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 3.78 UL

𝐹𝑛1 2 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 4 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 1.4 UL

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

On the other hand, to classify the cells in this model, the most affected cell (MaC)

is calculated. It is the metric that represents the status of system cells; MaC is the

most important metric to find out the affected area and increase resources there.

Equation 5.3 shows how it should be calculated, where n is the number of APs in the

cell:

𝐶𝑒𝑖
𝑀𝑎𝐶 =

𝛾𝑖

∑ 𝐹𝑛𝑖
𝐶𝑎𝑝𝑛

𝑖=1

 (5.3)

ASM’s outcome is finding the set of APs to be moved into overloaded cells. The

relocation cost of APs is ignored in this study. Despite the drawbacks of the

relocation process for some clients, it will improve service in other congested

network parts. The ASM sends the recommendation, and the system administrator

will decide whether to reposition them; if there is no recommendation, RPQ will

hand over the overloaded cells to RRP to increase the quantity of APs in the system.

5.4.2.2. RECOMMENDATIONS SYSTEM OF RESOURCE PROVISIONING (RRP)

The recommendations system for resource provisioning (RRP) is the second phase

of the comprehensive solution. The RRP has an agent: RL-based resource

provisioning (RP). RRP utilises a modified weight parameter. It prioritises the

available APs in congested cells based on the AW value to be enhanced. The priority

is given to the cell with the highest AW. The goal of the RRP module is to estimate 𝜏

which represents the number of added APs to the specific cell. 𝜏 has a minimum

arrival task and offloading process ratio value with sufficient moving resources. 𝜏 is

the less effective device on the network coverage that gains the highest score of AW,

such as 𝐹𝑛2 in cell two, as shown in Table 1. The following equations show the

formula that governs this calculation:

133

𝜏𝑖 = 𝑛𝑖 −
𝛾𝑖

𝛼 × 𝐹𝑛𝑖
𝐶𝑎𝑝 (5.4)

where 𝛼 is the minimum reserve computing power. The system considers the cell as

one block of computing cells. We ignore the exact location. As shown in Table 2,

suppose cell three has a MaC of 3.3 and cell two has a MaC of 0.06; they are classified

as overloaded and underloaded, respectively. In this case, the RRP tests all

combinations to add nine APs to cell 3, where 𝜏 equals nine, while cell two can move

out one AP to cell three. Despite the high number of APs recommended, this capacity

gives space for future loads. Figure 5.6 depicts the overarching stages of the

proposed SlbmS.

Table 5.2: STATES OF THE CELLS OF THE SYSTEM.

𝒊 𝒏 𝑪𝒆𝒊
𝑴𝒂𝑪 𝝉 Status

1 3 2.17 7 B
2 2 0.06 -1 UL
3 5 3.3 9 OL
⋮ ⋮ ⋮ ⋮ ⋮

Figure 5.6: SlbmS model.

This section proposes a novel, comprehensive system for LB in fog

environments. The recommendation module is based on an RL algorithm to increase

the number of physical resources virtually at the ground of a fog environment. RL is

an AI technique in which agents act in each environment to receive rewards. The

agent gets the rewards condition of the environment and responds accordingly. The

action performed causes a change in the state of the environment, which is then

communicated to the agent through rewards. The RRP learns to select the optimal

AP to which virtual APs are added near it and to evaluate its effects. The total RRP

134

phases are depicted in Algorithm 2. However, Algorithm 3 demonstrates the three

fundamental stages of RL in general.

ALGORITHM 2: RL based Resource Provisioning

 Output: Number of APs required to improve the quality of the cell.
 Input: Overloaded cell, Set of APs, Initial values for 𝛼 𝑎𝑛𝑑 𝛽
 1. For each new Overloaded cell do
 2. Create a Q-table containing two columns {State: Available Overloaded Cell, Action:

Selecting the best number of APs to be installed} initialised to zero.
 3. //Taking Action
 4. The agent interacts with the environment (APs) and updates the state action pairs

in the Q-table Q[state, action].
 5. The Q-table is used as a reference by the agent to view all possible actions (all

available APs) for a given state. Then, it selects the best number of APs based on
the height of LBL.

 6. //Updating the Q-table
 7. //Update the data in DST
 8. The LBA updates the data in the DST (update the AW and the status for each FS)
 9. Next

ALGORITHM 3: Q-learning based RL Algorithm

 Output: Update the Q-table with the most recent Q-values.
 Input: A Q-table with initial values.
 Step:
 1. Create a Q-table with the state and action columns initialised to zero. The agent

reviews the Q-table to determine the optimal action based on the Q-value.
 import numpy as np

Initialize Q-table values to 0
Q = np.zeros((state_size, action_size))

 2. //Taken Action
The agent interacts with the environment and modifies the state-action
pairings contained within the Q-table Q {state, action}

 import random# Set the percentage you wish to investigate to epsilon =
20%
if random.uniform(0, 1) < epsilon:
 """
 Explore: select a random action
 """
Else:
 """
 Exploit: select the action with max value (future rewards)
 """

 3. // Updating the Q-table
 The updates occur following each step or action and conclude when an episode

is completed.
 # Update Q-values

Q[state, action] = Q[state, action] + lr * (reward + gamma *
np.max(Q[new_state, :]) — Q[state, action])

5.5. IMPLEMENTATION AND EVALUATION

To validate the effectiveness of the proposed algorithm, this section compares the

SlbmS model and the HybOff LB algorithm using Python.

5.5.1. USED ACCESS POINTS DATASET

Contemplate Tables 5.2 and 3, cells set and their APs that will be used throughout

this paper to illustrate the distinctions between the SlbmS and HybOff LB

135

algorithms. Table 5.3 shows the states of any cell generated under the HybOff model.

We attempt to present the different cases of cells. Overloaded, balanced and

underloaded cells are different cases. For that, we increased the generated IoT tasks

for one cell while others received medium and low rates of generated tasks.

Table 5.3: DA-TABLE OF THE SYSTEM.

𝐃𝐞𝐯𝐢𝐜𝐞 𝑪𝒆𝒍𝒍 𝑨𝑻𝒊
𝝋𝑰𝒐𝑻 𝑨𝑻𝒊

𝝋𝑶𝑷 𝑶𝑻𝒚
𝝋𝑫𝑶 𝑶𝑻𝒊

𝝋
 𝑨𝑾𝒊 Status

Fn1 3 150 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 70 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.2 OL
Fn2 3 180 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 98 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.16 OL
Fn3 3 110 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 40 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.28 OL
Fn4 3 192 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 122 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.14 OL
Fn5 3 200 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 120 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.15 OL
Fn1 1 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 7 OL
Fn2 1 200 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 50 𝑇𝑠𝑘/𝑠 100 𝑇𝑠𝑘/𝑠 0.12 OL
Fn3 1 25 𝑇𝑠𝑘/𝑠 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 8.75 OL
Fn1 2 4 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 54 𝑇𝑠𝑘/𝑠/s 0 𝑇𝑠𝑘/𝑠 3.78 UL
Fn2 2 2 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 52 𝑇𝑠𝑘/𝑠/s 0 𝑇𝑠𝑘/𝑠 3.64 UL

To compute the value of MaC for each cell, the initial value for the study’s variables

must be initialised, such as optimised beta (𝛽0) and the value of TAW must first be

determined. The following table shows the initialisation for our experiment:

Table 5.4: THE INITIAL VALUES OF THE PARAMETERS.

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔es 𝜷𝟎 𝑭𝒏𝒊
𝑪𝒂𝒑

 𝑨𝑨𝑾𝑭𝒏 𝑻𝑨𝑾𝑭𝒏 𝑴𝒂𝑪𝑪𝒆𝒍𝒍

𝑉𝑎𝑙𝑢𝑒𝑠 0.07 50 Tsk/s 2.42 4.08 2

According to the model’s formulas, Cell3 is overloaded, while Cell1 is balanced, and

Cell2 is underloaded. Table 5.3 provides detailed information about all the APs.

5.5.2. A MATHEMATICAL RL ILLUSTRATION MODEL

Q-learning is the most prevalent reinforcement learning method, where Q

represents the long-term utility of an action. Q-learning is the process of acquiring

Q-values via observation. The Q-learning steps are:

Create a Q-table with two columns [State: A list of overloaded APs in the system,

action: select the best AP to add extra resources nearby it] with zero-initialised

values, as shown in Table 5.5. This implies that we have no information regarding

the long-term rewards of each state-action combination.

Table 5.5: Q-TABLE- INITIALISED.

𝑺𝒕𝒂𝒕𝒆 (𝒔) 𝑨𝒄𝒕𝒊𝒐𝒏 (𝒂)
0 0
0 0
0 0

As the agent learns, it performs actions denoted as ‘a’ in a particular state s and

receives a reward r for its action. The agent also records that the system’s state has

136

transitioned to a new state 𝑠′. The Q-value for a state-action pair 𝑄(𝑠, 𝑎) is updated

using the following formula:

𝑄(𝑠, 𝑎) = (1 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒)𝑄(𝑠, 𝑎) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 × (𝑟 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑡𝑒 ×

max
a

𝑄(𝑠′, 𝑎))
(5.5)

Here, the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 controls the weight given to new information, and the

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑡𝑒 represents the discount factor for future rewards. The ‘max’ function

identifies the maximum Q-value for the successive state-action pairs available to the

agent.

The agent interacts with the environment (the list of overloaded APs) and

modifies the state-action pairings in the Q-table 𝑄[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛]. As in Tables 2 and

3, we have ten action options (𝐹𝑛1
1, 𝐹𝑛2

1, 𝐹𝑛3
1, 𝐹𝑛1

2, 𝐹𝑛2
2, 𝐹𝑛1

3, 𝐹𝑛2
3, 𝐹𝑛3

3, 𝐹𝑛4
3, and 𝐹𝑛5

3).

In some states, however, action options are restricted. For instance, in state 1 (the

initial state), the agent has three action options: 𝐹𝑛1
1, 𝐹𝑛2

1, or 𝐹𝑛3
1. There are five

possible actions in state three: 𝐹𝑛1
3, 𝐹𝑛2

3, 𝐹𝑛3
3, 𝐹𝑛4

3, or 𝐹𝑛5
3.

When the agent takes the maximum AW, the agent receives a negative reward

(-1). When it takes an average AW, it receives no reward. When it takes the lowest

AW, it is rewarded with 1. Note, however, that this one-time reward differs

significantly from Q-values. Indeed, we have

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛1
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 0.7) = 0.11

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛2
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 0.12) = 0.02

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛3
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 8.75) = 1.4

With a learning rate of 0.2 and a discount rate of 0.8%. 𝐹𝑛2 is the premium

action for Cell1 and Fn4 in Cell5. We notice that the algorithm chosen is loaded and

overused for the cloud. Update the Q-table values according to Table 5.6.

Table 5.6: Q-TABLE-UPDATED.

𝑺𝒕𝒂𝒕𝒆 (𝒔) 𝑨𝒄𝒕𝒊𝒐𝒏 (𝒂)
𝐹𝑛1

1, 𝐹𝑛2
1, 𝐹𝑛3

1 𝐹𝑛1
1

𝐹𝑛1
2, 𝐹𝑛2

2 𝐹𝑛1
2

𝐹𝑛1
3, 𝐹𝑛2

3, 𝐹𝑛3
3, 𝐹𝑛4

3, 𝐹𝑛5
3 𝐹𝑛5

3

137

5.5.3. EVALUATION METRICS

The performance of the SlbmS and HybOff LB algorithms can be compared using

the metrics presented in Table 5.7. The main comparison points are Average

Waiting Time (𝑊𝑇) and the rate of offloaded tasks.

Firstly, WT is the difference in time between the Turnaround Time (TAT) and

the burst time (BT), as shown in Equation 5.6. WT indicates the state of queues in

the APs. To calculate the WT, TAT must be calculated first. TAT is the difference in

time between the completion and arrival times. However, Average WT is the metric

used to explore the HybOff model that suffers from congested cells.

𝑇𝐴𝑇 = 𝐶𝑇 − 𝐴𝑇,
(5.6)

𝑊𝑇 = 𝐶𝑇 − 𝑇𝐴𝑇,

Secondly, this counter has two kinds: external offloading (eTs) and internal

offloading (iTs). The latter is used to count the processes if it targets the paired

device, while external offloading is used when the target device is the cloud or other

fog device in another cell. eTs reveal whether the system successfully avoids

distance offloading and network congestion. The counter counts the number of

offloading processes in each fog device. We prefer to keep iTs at the top level and

the eTs at the bottom for each cell. Equations 5.7 and 8 depict the formulas of

internal and external offloading rates:

𝑖𝑇𝑠𝑆𝑦𝑠 =
∑ ∑ 𝑂𝑇𝑥𝑦

𝜑𝑛
𝑦=1

𝑚
𝑥=1

∑ 𝑛𝑖
𝑚
𝑖=1

, (5.7)

𝑒𝑇𝑠𝑆𝑦𝑠 =
∑ ∑ 𝑂𝑇𝑥𝑦

𝜑𝐷𝑂𝑛
𝑦=1

𝑚
𝑥=1

∑ 𝑛𝑖
𝑚
𝑖=1

, (5.8)

Table 5.7: EVALUATION METRICS.

Metric Uses Justification

𝑊𝑇̅̅ ̅̅ ̅
The average execution time of the APs
consumed to execute the tasks includes the
queued time.

To verify the resource management
efficiency of an algorithm.

𝑖𝑇𝑠
It is a metric that counts, device-wise, the
number of exchanged messages inside the
cell.

It is a good indicator of the ability of the LB
algorithm to keep the exchanged messages
inside the cell.

𝑒𝑇𝑠
It is a metric that counts the number of
exchanged messages with external devices,
including the cloud, device-wise.

It is a good indicator of the ability of the LB
algorithm to keep the exchanged messages
inside the cell.

𝑆𝑦𝑠𝐿𝐵̅̅ ̅̅ ̅̅ ̅̅
It is a metric that computes the average
level of LB in the system.

Using this metric allows for an excellent and
fair comparison between the algorithms
regarding LB.

Table 5.8:

𝑴𝒐𝒅𝒆𝒍 𝑨𝑾𝑻 (𝒎𝒔) 𝑻𝑨𝑻 (𝒎𝒔)

HybOff B,UL 8

HybOff OL 3.5 1.5

HybOff SlbmS 3 2.1

HybOff SlbmS

HybOff SlbmS

Figure 5.7:

HybOff (OL)

HybOff (UL,B)

SlbmS

WT (ms)

Figure 5.8:

support the hypothesis that “Even though the software solution has a noticeable

system in a better way.”

N
u

m
b

e
r

o
f

O
ff

lo
a

d
in

g
 T

a
sk

s

Time (ms)

The Offloading Tasks Stats

140

has explored a new research dimension for improving LB by increasing the number

of computing nodes with sufficient planning. RL has been used to provide adequate

planning where the approved numbers of APs must satisfy many criteria. The new

model kept network congestion and distance offloading at the bottom. The

experiment uses Python, which provides a suitable simulation environment. The

outcomes of this stage have shown that HybOff works efficiently with the

recommendation system, SlbmS, which devastates HybOff and avoids the bottleneck

of the particular case.

141

5.7. CONCLUSION

HybOff is introduced as a novel solution for the offloading technique used mainly to

balance the load in the distributed computing environment. To empower HybOff, it

is essential to fill the gap generated in some cases, such as overload cells. Leaving

HybOff in this state, exposure to those high-probability situations causes an

apparent decrease in efficiency. However, this chapter presents the second and last

phase of this dissertation. SlbmS is the comprehensive solution for HybOff that

introduces a competitive solution for the problem of time-sensitive applications in

large-scale fog networks. The idea behind SlbmS is how to increase the physical

quality and quantity of computing nodes with sufficient planning. It works through

two sequential phases, each concerned with one side compatible with the

sustainable concept. The proposed solution utilises the genetic algorithm in phase

one, while RL is in phase two. The experimental outcomes by Python show an

apparent enhancement in the system performance. The experimental result shows

a return of HybOff to its original performance. This work is the first to engage the

precise meaning of sustainable concepts within LB in Fog environments. Although

this work has some limitations, future work is essential to find a better way to

reintroduce this work.

142

6. CHAPTER, CONCLUSION AND FUTURE

RESEARCH

Abstract: In this thesis, we have planned to present five articles that have

contributed to the development of LB in FC, including improving service placement

policy, a novel offloading algorithm, and a comprehensive solution that seeks to

support a long-term solution in FC. In Chapter One, we depict the thesis framework

and the elements for this research, while we analyse the extant FC literature from

theoretical and practical perspectives in Chapter Two. Then, we presented three of

our most representative works in FC in Chapters Three to Five, respectively.

However, this chapter presents the research phases, proposed solutions, and their

limitations on the words. Moreover, future works are offered, including the

technical contributions of this thesis.

143

6.1. INTRODUCTION

This study sought to identify effective LB strategies in a fog environment. Based on

experimental analysis of the fog model under different conditions, it can be

concluded that a hybrid offloading technique with a sustainability concept is crucial

when designing a distributed computing system. This proposed design aims to

override the dilemma of LB in a fog environment. The outcomes indicate that fog

devices are running balanced with minimal network traffic.

The primary research questions for this study were as follows:

• Research Question 1: What is the required technique to minimise the
consumed time by offloading the decision process?

• Research Question 2: What is the required strategy to minimise the number of
offloading messages?

• Research Question 3: What is the suitable strategy to avoid the distant
offloading phenomena?

• Research Question 4: What is a new solution for optimal placement policy over
fog physical resources to overcome the inherent issues of prevalent resource
allocation mentioned in RQ1, RQ2, and RQ3?

• Research Question 5: What is a new solution for optimal offloading over fog
physical resources to overcome the inherent issues of prevalent resource
allocation mentioned in RQ1, RQ2, and RQ3?

• Research Question 6: How could the performance of the proposed systems be
evaluated in a fog environment in RQ4 and RQ5?

• Research Question 7: What are the limitations of the optimum LB solution in
this research?

• Research Question 8: How should reinforcement learning be designed to
apply sufficient planning before expansion?

• Research Question 9: How to design a comprehensive model to monitor the
entire system and suggest a recommendation to tackle the overload situation
by proposing hardware modifications?

6.1.1. RESEARCH OVERVIEW

In the earlier times of this research, the research gap and the general framework

were proposed; it consists of two phases. The first phase enhances the LB level,

while the second phase provides the sustainability concept. As a result, the general

framework was identified and approved to be constructed in two phases.

However, there are many approaches to solving the problem of LB in FC. We

explore the optimum solution between offloading and service placement

144

approaches to enhance the research problem. This process is the output of the first

phase. In the following lines, we present the methodology used to solve these

questions:

• The methodology applied to answer question 1: The offloading decision is

the process required to find the optimum accessible server to offload the

exceeded tasks. It consumes a lot of time. All prevalent offloading follows the

same behaviour, while static offloading does not require time to decide.

However, this research has used hybrid offloading to eliminate this problem.

HybOff is the actual implementation of hybrid offloading. The algorithm depends

mainly on the clustering technique to give the system a limited number of fog

servers.

• The methodology applied to answer question 2: The offloading decision

generates an uncontrolled number of exchanged messages. We utilise two

techniques to reduce the number of exchanged offloading messages. Firstly,

hybrid behaviour, which operates static behaviour, uses a limited number of

messages to update the servers' information. Moreover, the clustering technique

can limit the messages inside the generated cell.

• The methodology applied to answer question 3: The nature of the network

and the offloading algorithm make the offloading to a distant server possible. To

overcome this problem, HybOff utilises the cell structure to hold the messages

inside the cell.

• The methodology applied to answer question 4: Placement policy is one of

the techniques used to improve the level of LB. In this technique, we consider

the number of servers in the shortest path to the cloud as one cell. Thus, RODSPP

uses the shortest path toward the cloud instead of the clustering technique. The

father's server forwards to its child. However, RODSPP outperforms its peers

and dramatically improves LB.

• The methodology applied to answer question 5: This part attempts to

respond to the fifth research question, "What is a new solution for optimal

offloading over fog physical resources to overcome the inherent issues of

prevalent offloading mentioned in RQ1, RQ2, and RQ3?". It relies heavily on

145

clustering theory and hybrid offloading. This technique's primary contributions

are reviving static offloading and improving the efficacy of IoT applications,

particularly time-sensitive ones, regardless of network size.

• The methodology applied to answer question 6: Measuring the performance

of the proposed algorithms is the only way to judge the optimum solution.

Utilisation and LBLs are critical metrics that aim to evaluate them.

• The methodology applied to answer question 7: The main drawback of

HybOff is that if a cell encounters many arrival tasks and is entirely loaded,

HybOff achieves unanticipated results; in this case, Hybrid offloading provides

no benefit. All computing nodes may reach the utilisation limit, allowing the

disabOff() function to block the offloading feature inside the cell.

Consequentiality, HybOff, in this case, will start the offloading process across

cells or the cloud to find free resources that might be located a distance away; in

this scenario, HybOff will follow prevalent offloading, which, as mentioned, has

drawbacks. It generates undesirable phenomena, such as network congestion

and distant offloading. Accordingly, HybOff cannot work efficiently within

overloaded cells.

• The methodology applied to answer question 8: Increasing the ground

resources is the only way to overcome the limitations of HybOff. Sufficient

planning for network expansion is a suitable approach to avoid network

oversizing and congestion. Reinforcement learning works to study the effect of

increasing the number of fog servers virtually or offline. By analysing several

arrivals and offloaded tasks, we can identify the unused servers to move them to

the loaded area.

• The methodology applied to answer question 9: By answering this question,

we present a SlbmS that seeks to find a comprehensive solution for a HybOff

model that has suffered from the increased demand for data processing in the

highly loaded cells and, on the other hand, their limited physical resources.

SlbmS is designed to satisfy the requirements of time-sensitive applications

using machine learning to acquire the sustainable concept. According to the

framework, SlbmS constructs in two sequential stages to achieve the research

146

aim. The investigation examines the performance of HybOff with and without

SlbmS in congested cells.

6.1.2. RESEARCH PHASES

The first phase consists of three stages. In stage one, chapter four, we focused on

studying the service placement technique, which enhances the LB in the fog layer.

Consequently, reinforcement optimisation for a decentralised service placement

policy (RODSPP) was proposed for fog networks that leverage service placement

theory. Later and in chapter five, a novel hybrid offloading (HybOff) algorithm was

proposed to overcome the inherent issues of prevalent offloading algorithms,

representing stage two in the research.

The third stage in phase one seeks to adopt the ideal technique to balance the

load with the minimum cost. Both the proposed algorithms enhanced the level of

the research problem. Even though the service placement technique has an

outstanding outcome compared to its peers, it costs the network an immense

number of exchanged messages due to its attitude, which relies substantially on

offloading, considered a hidden cost, to find the required service. RODSPP cannot be

controlled to reduce the traffic in the network. On the other hand, HybOff seems to

be an ideal solution due to its solvable disadvantages that do not conflict with its

essential attitude. Hence, HybOff is the approved pilot solution for the second phase.

However, the experimental results of phase one reveal that HybOff follows the

attitude of prevalent solutions in some unavoidable cases. However, the second and

last phase of the thesis research aims to create a comprehensive solution for a

HybOff model that has suffered from the increased demand for data processing in

the highly loaded cells and, on the other hand, the limited physical resources to

satisfy the requirements of time-sensitive applications. Thus, this work proposes a

SlbmS that seeks a long-term concept using machine learning.

According to the framework, SlbmS constructs in two sequential stages to

achieve the research aim. While enhancing the coverage quality of the fog layer is

the outcome of the first stage, proposing recommendations to strengthen the

resource provisioning of the fog layer is the result of the second stage. The explicit

goal of SlbmS is to decrease the number of offloading processes in the fog layer by

147

improving the coverage quality and quantity of fog devices, which can be implicitly

considered resource provisioning. Squeezing offloading procedures into the system

enables it to override the network-congested phenomenon.

To verify the efficiency of the proposed model, a proper simulation experiment

was held using MATLAB. The investigation examines the performance of HybOff

with and without SlbmS in congested cells. The experiment shows that when the

proposed recommendation of quality or quantity was implemented, HybOff

enormously benefited. Sufficient planning for the expansion process allows HybOff

to overcome the problems of exceptional cases. The results reveal that HybOff

reverted to its original performance.

The remainder of this chapter is structured as follows: Section two concludes

the techniques used in this research. The research limitations are presented in

Section Three. Section four discusses possible future works.

6.2. LOAD BALANCING SOLUTIONS

In Chapter 4, we examined the problem of LB in fog networks using service

placement policy; RODSPP is a reinforcement optimisation for a decentralised

service placement policy (RODSPP) scheme for fog networks that leverages service

placement theory. It represents stage one (in phase one) to examine the

performance of service placement police to balance the load. By matching the

overhead of the fog nodes to the cloud's shortest route, the modified placement

policy outperforms its peers significantly. RODSPP follows the vertical dimension

toward the cloud in its solution. RODSPP reduces latency and computing

consumption by 24.1% and 4%, respectively, in task performance, as demonstrated

by simulation and trace-driven evaluation outcomes. In contrast, its computational

complexity has decreased significantly over time.

Chapter Five examines how the offloading theory can assist fog nodes in burden

sharing. We have proposed the offloading in the horizontal dimension, upon which

our hypothesis relies, no vertical offloading except to the cloud centre. In this stage,

HybOff is the proposed offloading algorithm. The hybrid offloading algorithm aims

to increase the periphery computing utilisation rate. It executes sensitive tasks

locally while sending other tasks to neighbouring nodes. Clustering techniques

148

reduce communication bandwidth costs by preventing outsourcing to remote

devices. On the other hand, hybrid offloading combines the benefits of static and

dynamic offloading, thereby reducing the time required to identify the optimal node

for offloading. The outcomes are exceptional compared to the service placement

policy implemented through vertical offloading.

Thereby, stage three selects HybOff to represent phase one, whose primary

objective is to ensure that all fog nodes in their layer perform the same quantity of

tasks. Extensive stage two experiments demonstrate that HybOff confronts

significant challenges in continuing to show outstanding results. The challenges

manifest when most fog nodes are loaded in specific cells. The laden nodes will

transfer their weighty tasks to other cells or the cloud at that moment. However, this

behaviour attempts to replicate the traditional offloading pattern. Therefore, the

prototype HybOff algorithm requires further reinforcement from another system.

Fortunately, stage two relies on the concept of sustainability. Accordingly, stage two

is modified to address the HybOff issue.

In Chapter Six, we discussed SlbmS, a LB monitoring system that enables fog

networks to share workload and offload computations equitably. The SlbmS

incorporates the hybrid offloading theory and the sustainable notion to create a

robust LB model for a fog environment. We have devised the system model of

computation offloading and formulated the LB problem to maximise fairness.

Adopting the 'two-stage' paradigm, we have presented a comprehensive algorithm

design for LB and conducted exhaustive evaluation studies by performing

simulations and experiments on various cases. The experimental findings indicate

that SlbmS effectively achieves LB with a guaranteed performance of a near-optimal

fairness index of up to 0.85 and a 50 % improvement over conventional baseline

methods.

6.3. MODEL LIMITATIONS IN THE REAL WORLD

This research seeks to create a competitive solution for LB issues in a fog

environment. However, as a requirement for academic research, we must mention

the limitations noticed during our study to pave the way for the following

149

researchers. The following points depict the most significant restrictions and

drawbacks of this work:

1. Cost: In the real world, using this solution requires a physical modification

in the position of APs to benefit from this work. Generally, the enterprise

performs the network expansion through its team or a contractor. This action

costs the enterprise human resources to reinstall or install the computing

nodes. Despite the cost, the development of the network remains the ultimate

solution for the research topic.

2. Distrust: In the real world, many enterprises have a lower level with the

automated recommendations systems to be applied. They trust the second

party, the consultant, to decide the expansion process.

3. Interruption of services: Reinstalling or installing some APs might cause a

denial of service. Reinstallation of some APs will disconnect some clients

from the system. The enterprise must reposition APs with many users near

zero regarding arrival and offloading tasks. Fortunately, the expansion

process occurs typically rarely.

4. Installation time: It is the time required to install, and, in some rare cases,

the installation process may take longer, which may extend the service

interruption time.

Despite these limitations, this research can be recognised as a first step toward

integrating the study aims, LB in FC and sustainability, which have yet to be directly

linked to our knowledge.

Moreover, this study has enhanced our understanding of the rapport between

LB in FC and sustainability. We hope that the current research will stimulate further

investigation of this vital area.

Therefore, it contributes to an embarking body of evidence suggesting that

sufficient planning in the expanding process is required. Although the generality of

the current results must be established by future research, this study has supported

the software/hardware solution. Not only was the software solution the key to LB's

dilemma in a fog environment.

150

6.4. FUTURE WORKS

The following points highlight some of the future research topics that are considered

to be hot spots of current research:

Though the proposed algorithm (RODSPP) achieves the best performance

within the requirements considered in this study, we plan to improve upon these

results by adding more dimensions to the service placement policy. Thus, we plan

to work toward a near-zero-delay system by combining static and dynamic

offloading mechanisms for LB in FC.

In the future, we will investigate the optimal number of cell servers to reduce

energy consumption. Since this work concentrates only on the outsourcing decision-

making process, we intend to examine the issue of task migration and virtual

machine migration in the future. Thus, after the initial decision for the task has been

made, the task migration will be determined based on the circumstances.

In addition, iFogSim, a Java-based framework for modelling and simulating FC

infrastructures and services, will be utilised to simulate relevant experiments. We

intend to affect the task migration and mobility issue using the Markov decision

process, the deep learning method, and actual datasets.

We intend to analyse the negative and positive effects of VM migrations in future

work. In addition, we will create a method to balance the negative and positive

impacts of service migrations.

Location-awareness: future research needs to study to include the nearby nodes

by expanding the coverage of cells. This action required us to be aware of the

physical location of all APs.

151

BIBLIOGRAPHY

Aazam, M., S. Zeadally and K. A. Harras (2018). "Offloading in fog computing for IoT:
Review, enabling technologies, and research opportunities." Future Generation
Computer Systems 87: 278-289.
Abedin, S. F., A. K. Bairagi, M. S. Munir, N. H. Tran and C. S. Hong (2018). "Fog load
balancing for massive machine type communications: A game and transport theoretic
approach." IEEE Access 7: 4204-4218.
Al-Tarawneh, M. A. (2021). "Bi-objective optimization of application placement in fog
computing environments." Journal of Ambient Intelligence and Humanized Computing:
1-24.
Albalawi, M., E. Alkayal, A. Barnawi and M. Boulares (2022). "Load Balancing Based
on Many-objective Particle Swarm Optimization Algorithm with Support Vector
Regression in Fog Computing." Journal of Engineering and Applied Sciences
Technology. SRC/JEAST-170. DOI: doi. org/10.47363/JEAST/2022 (4) 138.
Alsharif, M. H., A. Jahid, A. H. Kelechi and R. Kannadasan (2023). "Green IoT: A
review and future research directions." Symmetry 15(3): 757.
Apat, H. K., R. Nayak and B. Sahoo (2023). "A comprehensive review on Internet of
Things application placement in Fog computing environment." Internet of Things:
100866.
Arora, U. and N. Singh (2021). "IoT application modules placement in heterogeneous
fog–cloud infrastructure." International Journal of Information Technology: 1-8.
Arshad, H., H. A. Khattak, M. A. Shah, A. Assad and Z. Ameer (2018). "Evaluation and
analysis of bio-inspired optimization techniques for bill estimation in fog computing."
International Journal of Advanced Computer Science and Applications 9(7).
Baburao, D., T. Pavankumar and C. Prabhu (2021). "Load balancing in the fog nodes
using particle swarm optimization-based enhanced dynamic resource allocation
method." Applied Nanoscience: 1-10.
Baranwal, G. and D. P. Vidyarthi (2021). "FONS: a fog orchestrator node selection
model to improve application placement in fog computing." The Journal of
Supercomputing 77: 10562-10589.
Beraldi, R. and H. Alnuweiri (2019). Exploiting power-of-choices for load balancing in
fog computing. 2019 IEEE International Conference on Fog Computing (ICFC), IEEE.
Besharati, R., M. H. Rezvani and M. M. Gilanian Sadeghi (2023). "An Auction-Based
Bid Prediction Mechanism for Fog-Cloud Offloading Using Q-Learning." Complexity
2023.
Bisht, J. and V. Subrahmanyam "Survey on Load Balancing and Scheduling Algorithms
in Cloud Integrated Fog Environment."
Bittencourt, L. F., J. Diaz-Montes, R. Buyya, O. F. Rana and M. Parashar (2017).
"Mobility-aware application scheduling in fog computing." IEEE Cloud Computing
4(2): 26-35.
Bolarinwa, O. A. (2015). "Principles and methods of validity and reliability testing of
questionnaires used in social and health science researches." Nigerian Postgraduate
Medical Journal 22(4): 195.
Bonomi, F., R. Milito, J. Zhu and S. Addepalli (2012). Fog computing and its role in the
internet of things. Proceedings of the first edition of the MCC workshop on Mobile
cloud computing.

152

Brereton, P., B. A. Kitchenham, D. Budgen, M. Turner and M. Khalil (2007). "Lessons
from applying the systematic literature review process within the software engineering
domain." Journal of systems and software 80(4): 571-583.
Brogi, A., S. Forti, C. Guerrero and I. Lera (2020). "How to place your apps in the fog:
State of the art and open challenges." Software: Practice and Experience 50(5): 719-
740.
Burhan, M., H. Alam, A. Arsalan, R. A. Rehman, M. Anwar, M. Faheem and M. W.
Ashraf (2023). "A Comprehensive Survey on the Cooperation of Fog Computing
Paradigm-based IoT Applications: Layered Architecture, Real-Time Security Issues,
and Solutions." IEEE Access.
Buyya, R., S. Pandey and C. Vecchiola (2009). Cloudbus toolkit for market-oriented
cloud computing. IEEE International Conference on Cloud Computing, Springer.
Cao, B., M. Li, X. Liu, J. Zhao, W. Cao and Z. Lv (2021). "Many-objective deployment
optimization for a drone-assisted camera network." IEEE transactions on network
science and engineering 8(4): 2756-2764.
Cao, B., Z. Sun, J. Zhang and Y. Gu (2021). "Resource allocation in 5G IoV
architecture based on SDN and fog-cloud computing." IEEE Transactions on Intelligent
Transportation Systems 22(6): 3832-3840.
Cao, B., J. Zhang, X. Liu, Z. Sun, W. Cao, R. M. Nowak and Z. Lv (2021). "Edge–
cloud resource scheduling in space–air–ground-integrated networks for internet of
vehicles." IEEE Internet of Things Journal 9(8): 5765-5772.
Cao, B., J. Zhao, Y. Gu, S. Fan and P. Yang (2019). "Security-aware industrial wireless
sensor network deployment optimization." IEEE transactions on industrial informatics
16(8): 5309-5316.
Cao, B., J. Zhao, Y. Gu, Y. Ling and X. Ma (2020). "Applying graph-based differential
grouping for multiobjective large-scale optimization." Swarm and Evolutionary
Computation 53: 100626.
Cao, B., J. Zhao, P. Yang, Y. Gu, K. Muhammad, J. J. Rodrigues and V. H. C. de
Albuquerque (2019). "Multiobjective 3-D topology optimization of next-generation
wireless data center network." IEEE Transactions on Industrial Informatics 16(5): 3597-
3605.
Cao, K., B. Wang, H. Ding, L. Lv, J. Tian, H. Hu and F. Gong (2021). "Achieving
reliable and secure communications in wireless-powered NOMA systems." IEEE
Transactions on Vehicular Technology 70(2): 1978-1983.
Catruc, I. and D. Iosifescu (2020). "IoT Integration with Mobile and Cloud Solutions."
Informatica Economica 24(2).
Celesti, A., M. Fazio, M. Villari and A. Puliafito (2012). "Virtual machine provisioning
through satellite communications in federated Cloud environments." Future Generation
Computer Systems 28(1): 85-93.
Chakraborty, S. and K. Mazumdar (2023). "A Hybrid GRASP-GA based collaborative
task offloading technique in fog computing." Multimedia Tools and Applications: 1-30.
Chandak, A. and N. K. Ray (2019). A review of load balancing in fog computing. 2019
International Conference on Information Technology (ICIT), IEEE.
Chen, C.-M., Y. Huang, K.-H. Wang, S. Kumari and M.-E. Wu (2021). "A secure
authenticated and key exchange scheme for fog computing." Enterprise Information
Systems 15(9): 1200-1215.
Cheng, B., M. Wang, S. Zhao, Z. Zhai, D. Zhu and J. Chen (2017). "Situation-aware
dynamic service coordination in an IoT environment." IEEE/ACM Transactions On
Networking 25(4): 2082-2095.

153

Colistra, G., V. Pilloni and L. Atzori (2014). "The problem of task allocation in the
Internet of Things and the consensus-based approach." Computer Networks 73: 98-111.
Dai, X., Z. Xiao, H. Jiang, M. Alazab, J. C. Lui, S. Dustdar and J. Liu (2022). "Task co-
offloading for d2d-assisted mobile edge computing in industrial internet of things."
IEEE Transactions on Industrial Informatics 19(1): 480-490.
Danielsson, P.-E. (1980). "Euclidean distance mapping." Computer Graphics and image
processing 14(3): 227-248.
Das, R. and M. M. Inuwa (2023). "A review on fog computing: issues, characteristics,
challenges, and potential applications." Telematics and Informatics Reports: 100049.
Datta, S. K. and C. Bonnet (2017). An edge computing architecture integrating virtual
IoT devices. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE),
IEEE.
Deepak, G. and B. Pradeep (2012). "Challenging issues and limitations of mobile
computing." International Journal of Computer Technology & Applications 3(1): 177-
181.
Dhyani, D. (2023). E-Health data risks & protection for public cloud: An elderly
healthcare usecase for Swedish municipality.
Ebrahim, M. and A. Hafid (2023). "Privacy-Aware Load Balancing in Fog Networks: A
Reinforcement Learning Approach." arXiv preprint arXiv:2301.09497.
Ferrer, A. J., J. M. Marquès and J. Jorba (2019). "Towards the decentralised cloud:
Survey on approaches and challenges for mobile, ad hoc, and edge computing." ACM
Computing Surveys (CSUR) 51(6): 1-36.
Gallupe, R. B. (2007). "The tyranny of methodologies in information systems
research1." ACM SIGMIS Database: the DATABASE for Advances in Information
Systems 38(3): 20-28.
Ghanbari, H., B. Simmons, M. Litoiu and G. Iszlai (2012). "Feedback-based
optimization of a private cloud." Future Generation Computer Systems 28(1): 104-111.
Goel, A., L. Abeni, C. Krasic, J. Snow and J. Walpole (2002). "Supporting time-
sensitive applications on a commodity OS." ACM SIGOPS Operating Systems Review
36(SI): 165-180.
Goel, G. and A. K. Chaturvedi (2023). A Systematic Review of Task Offloading &
Load Balancing Methods in a Fog Computing Environment: Major Highlights &
Research Areas. 2023 3rd International Conference on Intelligent Communication and
Computational Techniques (ICCT), IEEE.
Gomes, E., F. Costa, C. De Rolt, P. Plentz and M. Dantas (2021). A survey from real-
time to near real-time applications in fog computing environments. Telecom, MDPI.
Gonzalez-Mejía, A. M., T. N. Eason, H. Cabezas and M. T. Suidan (2012). "Assessing
sustainability in real urban systems: the greater Cincinnati metropolitan area in Ohio,
Kentucky, and Indiana." Environmental science & technology 46(17): 9620-9629.
González-Mejía, A. M., T. N. Eason, H. Cabezas and M. T. Suidan (2014). "Social and
economic sustainability of urban systems: comparative analysis of metropolitan
statistical areas in Ohio, USA." Sustainability science 9: 217-228.
Gowri, V. and B. Baranidharan (2023). "Multi Objective Hybrid Load Balancing Based
Optimization Algorithm for Improving Fog Computing Performance."
Guerrero (2019). "A lightweight decentralized service placement policy for
performance optimization in fog computing. J. Ambient Intell. Humanized Comput. 10
(6), 2435–2452 (2019)."
Guerrero, C., I. Lera and C. Juiz (2019). "A lightweight decentralized service placement
policy for performance optimization in fog computing. J. Ambient Intell. Humanized
Comput. 10 (6), 2435–2452 (2019)."

154

Guerrero, C., I. Lera and C. Juiz (2019). A lightweight decentralized service placement
policy for performance optimization in fog computing. J. Ambient Intell. Humanized
Comput. 10 (6), 2435–2452 (2019).
Guo, F., W. Zhou, Q. Lu and C. Zhang (2022). "Path extension similarity link
prediction method based on matrix algebra in directed networks." Computer
Communications 187: 83-92.
Gupta, A. and S. K. Gupta (2022). "A survey on green unmanned aerial vehicles‐based
fog computing: Challenges and future perspective." Transactions on Emerging
Telecommunications Technologies 33(11): e4603.
Gupta, A. and S. K. Gupta (2022). "A survey on green unmanned aerial vehicles‐based
fog computing: Challenges and future perspective." Transactions on Emerging
Telecommunications Technologies: e4603.
Gupta, H., A. Vahid Dastjerdi, S. K. Ghosh and R. Buyya (2017). "iFogSim: A toolkit
for modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments." Software: Practice and Experience
47(9): 1275-1296.
Haris, M. and R. Z. Khan (2018). "A systematic review on cloud computing."
International Journal of Computer Sciences and Engineering 6(11): 632-639.
Hassan, H. O., S. Azizi and M. Shojafar (2020). "Priority, network and energy-aware
placement of IoT-based application services in fog-cloud environments." IET
communications 14(13): 2117-2129.
He, X., H. Lu, H. Huang, Y. Mao, K. Wang and S. Guo (2020). "QoE-based
cooperative task offloading with deep reinforcement learning in mobile edge networks."
IEEE Wireless Communications 27(3): 111-117.
Hermann, S. D., M. Emmelmann, O. Belaifa and A. Wolisz (2007). Investigation of
IEEE 802.11 k-based access point coverage area and neighbor discovery. 32nd IEEE
Conference on Local Computer Networks (LCN 2007), IEEE.
Hou, X., Y. Li, M. Chen, D. Wu, D. Jin and S. Chen (2016). "Vehicular fog computing:
A viewpoint of vehicles as the infrastructures." IEEE Transactions on Vehicular
Technology 65(6): 3860-3873.
Huang, Z., K.-J. Lin, S.-Y. Yu and J. Y.-j. Hsu (2014). "Co-locating services in IoT
systems to minimize the communication energy cost." Journal of Innovation in Digital
Ecosystems 1(1-2): 47-57.
Hussein, M. K. and M. H. Mousa (2020). "Efficient task offloading for IoT-based
applications in fog computing using ant colony optimization." IEEE Access 8: 37191-
37201.
Iorga, M., L. Feldman, R. Barton, M. Martin, N. Goren and C. Mahmoudi (2017). The
nist definition of fog computing, National Institute of Standards and Technology.
Jamil, B., M. Shojafar, I. Ahmed, A. Ullah, K. Munir and H. Ijaz (2020). "A job
scheduling algorithm for delay and performance optimization in fog computing."
Concurrency and Computation: Practice and Experience 32(7): e5581.
Janjic, V. (2012). Load balancing of irregular parallel applications on heterogeneous
computing environments, University of St Andrews.
Javaid, N., A. A. Butt, K. Latif and A. Rehman (2019). Cloud and fog based integrated
environment for load balancing using cuckoo levy distribution and flower pollination
for smart homes. 2019 International Conference on Computer and Information Sciences
(ICCIS), IEEE.
Jaya, I. (2023). "Resource allocation in cloud gaming."

155

Jebur, T. K. (2023). "Greening the internet of things: A comprehensive review of
sustainable iot solutions from an educational perspective." Indonesian Journal of
Educational Research and Technology 3(3): 247-256.
Jiang, H., X. Dai, Z. Xiao and A. K. Iyengar (2022). "Joint task offloading and resource
allocation for energy-constrained mobile edge computing." IEEE Transactions on
Mobile Computing.
Jiang, H., Z. Xiao, Z. Li, J. Xu, F. Zeng and D. Wang (2020). "An energy-efficient
framework for internet of things underlaying heterogeneous small cell networks." IEEE
Transactions on Mobile Computing 21(1): 31-43.
Jiang, Y.-L., Y.-S. Chen, S.-W. Yang and C.-H. Wu (2018). "Energy-efficient task
offloading for time-sensitive applications in fog computing." IEEE Systems Journal
13(3): 2930-2941.
Jiang, Y., C. Li, Y. Zhang, R. Zhao, K. Yan and W. Wang (2021). "Data-driven method
based on deep learning algorithm for detecting fat, oil, and grease (FOG) of sewer
networks in urban commercial areas." Water Research 207: 117797.
Kadhim, A. J. and S. A. H. Seno (2018). "Maximizing the utilization of fog computing
in internet of vehicle using SDN." IEEE Communications Letters 23(1): 140-143.
Kaelbling, L. P., M. L. Littman and A. W. Moore (1996). "Reinforcement learning: A
survey." Journal of artificial intelligence research 4: 237-285.
Kaiwartya, O., A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah, M. Prasad and
S. Prakash (2017). "Virtualization in wireless sensor networks: Fault tolerant
embedding for internet of things." IEEE Internet of Things Journal 5(2): 571-580.
Kamel, M. A., X. Yu and Y. Zhang (2020). "Formation control and coordination of
multiple unmanned ground vehicles in normal and faulty situations: A review." Annual
reviews in control 49: 128-144.
Kashani, M. H., A. Ahmadzadeh and E. Mahdipour (2020). "Load balancing
mechanisms in fog computing: A systematic review." arXiv preprint arXiv:2011.14706.
Kashani, M. H. and E. Mahdipour (2022). "Load balancing algorithms in fog
computing: A systematic review." IEEE Transactions on Services Computing.
Kaur, K. and M. Sachdeva (2020). "Fog computing in IoT: An overview of new
opportunities." Proceedings of ICETIT 2019: 59-68.
Kaur, M. and R. Aron (2021). "A systematic study of load balancing approaches in the
fog computing environment." The Journal of supercomputing 77(8): 9202-9247.
Khan, A. A., A. A. Laghari, Z. A. Shaikh, Z. Dacko-Pikiewicz and S. Kot (2022).
"Internet of Things (IoT) security with blockchain technology: A state-of-the-art
review." IEEE Access.
Khan, K. S., G. Ter Riet, J. Glanville, A. J. Sowden and J. Kleijnen (2001). Undertaking
systematic reviews of research on effectiveness: CRD's guidance for carrying out or
commissioning reviews, NHS Centre for Reviews and Dissemination.
Khosroabadi (2021). "SCATTER: Service Placement in Real-Time Fog-Assisted IoT
Networks." Journal of Sensor and Actuator Networks 10(2): 26.
Khosroabadi, F., F. Fotouhi-Ghazvini and H. Fotouhi (2021). "SCATTER: Service
Placement in Real-Time Fog-Assisted IoT Networks." Journal of Sensor and Actuator
Networks 10(2): 26.
Kitchenham, B. (2004). "Procedures for performing systematic reviews." Keele, UK,
Keele University 33(2004): 1-26.
Klas, G. I. (2015). "Fog computing and mobile edge cloud gain momentum open fog
consortium, etsi mec and cloudlets." Google Scholar 1(1): 1-13.

156

Kriushanth, M., L. Arockiam and G. J. Mirobi (2013). "Auto scaling in Cloud
Computing: an overview." International Journal of Advanced Research in Computer
and Communication Engineering 2(7): 2278-1021.
Kuempel, C. D., V. M. Adams, H. P. Possingham and M. Bode (2018). "Bigger or
better: the relative benefits of protected area network expansion and enforcement for the
conservation of an exploited species." Conservation Letters 11(3): e12433.
Kumar, M. G. V., S. Karunakaran, S. Chandre, R. K. Godi, P. Manirajkumar and A.
Balaram (2023). "Implementation of Microgrid Digital Twin System for Unmanned
Vehicles with Cloud Computing Techniques." SN Computer Science 4(5): 566.
Li, C., H. Zhuang, Q. Wang and X. Zhou (2018). "SSLB: self-similarity-based load
balancing for large-scale fog computing." Arabian Journal for Science and Engineering
43(12): 7487-7498.
Likas, A., N. Vlassis and J. J. Verbeek (2003). "The global k-means clustering
algorithm." Pattern recognition 36(2): 451-461.
Lin, B.-S., B. Kar, T.-L. Chin, Y.-D. Lin and C.-Y. Chen (2023). "Cost optimization of
cloud-edge-fog federated systems with bidirectional offloading: one-hop versus two-
hop." Telecommunication Systems: 1-19.
Liu, W., Y. Xu, N. Qi, K. Yao, Y. Zhang and W. He (2020). Joint computation
offloading and resource allocation in UAV swarms with multi-access edge computing.
2020 International Conference on Wireless Communications and Signal Processing
(WCSP), IEEE.
Lu, C., J. Zheng, L. Yin and R. Wang (2023). "An improved iterated greedy algorithm
for the distributed hybrid flowshop scheduling problem." Engineering Optimization: 1-
19.
Lu, H., C. Gu, F. Luo, W. Ding and X. Liu (2020). "Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforcement learning."
Future Generation Computer Systems 102: 847-861.
Lu, S., J. Wu, N. Wang, Y. Duan, H. Liu, J. Zhang and J. Fang (2023). "Resource
provisioning in collaborative fog computing for multiple delay‐sensitive users."
Software: Practice and Experience 53(2): 243-262.
Lv, Z., J. Wu, Y. Li and H. Song (2022). "Cross-layer optimization for industrial
Internet of Things in real scene digital twins." IEEE Internet of Things Journal 9(17):
15618-15629.
Mach, P. and Z. Becvar (2017). "Mobile edge computing: A survey on architecture and
computation offloading." IEEE communications surveys & tutorials 19(3): 1628-1656.
Madakam, S., V. Lake, V. Lake and V. Lake (2015). "Internet of Things (IoT): A
literature review." Journal of Computer and Communications 3(05): 164.
Mahmud, R., R. Kotagiri and R. Buyya (2018). "Fog computing: A taxonomy, survey
and future directions." Internet of Everything: Algorithms, Methodologies,
Technologies and Perspectives: 103-130.
Maiti, P., B. Sahoo, A. K. Turuk, A. Kumar and B. J. Choi (2021). "Internet of Things
applications placement to minimize latency in multi-tier fog computing framework."
ICT Express.
Mao, Y., C. You, J. Zhang, K. Huang and K. B. Letaief (2017). "A survey on mobile
edge computing: The communication perspective." IEEE communications surveys &
tutorials 19(4): 2322-2358.
Martinez, M. N. and M. J. Bartholomew (2017). "What does it “mean”? A review of
interpreting and calculating different types of means and standard deviations."
Pharmaceutics 9(2): 14.

157

Maswood, M. M. S., M. R. Rahman, A. G. Alharbi and D. Medhi (2020). "A novel
strategy to achieve bandwidth cost reduction and load balancing in a cooperative three-
layer fog-cloud computing environment." IEEE Access 8: 113737-113750.
Meurisch, C., A. Seeliger, B. Schmidt, I. Schweizer, F. Kaup and M. Mühlhäuser
(2015). Upgrading wireless home routers for enabling large-scale deployment of
cloudlets. Mobile Computing, Applications, and Services: 7th International Conference,
MobiCASE 2015, Berlin, Germany, November 12–13, 2015, Revised Selected Papers
7, Springer.
Mon, M. M. and M. A. Khine (2019). Scheduling and load balancing in cloud-fog
computing using swarm optimization techniques: A survey, MERAL Portal.
Morkevicius, N., A. Venčkauskas, N. Šatkauskas and J. Toldinas (2021). "Method for
Dynamic Service Orchestration in Fog Computing." Electronics 10(15): 1796.
Mouradian, C., D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow and P. A. Polakos
(2017). "A comprehensive survey on fog computing: State-of-the-art and research
challenges." IEEE communications surveys & tutorials 20(1): 416-464.
Mukherjee, M., L. Shu and D. Wang (2018). "Survey of fog computing: Fundamental,
network applications, and research challenges." IEEE Communications Surveys &
Tutorials 20(3): 1826-1857.
Muniswamaiah, M., T. Agerwala and C. C. Tappert (2021). A Survey on Cloudlets,
Mobile Edge, and Fog Computing. 2021 8th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on
Edge Computing and Scalable Cloud (EdgeCom), IEEE.
Mutlag, A. A., M. K. Abd Ghani, O. Mohd, K. H. Abdulkareem, M. A. Mohammed, M.
Alharbi and Z. J. Al-Araji (2023). "A new fog computing resource management (FRM)
model based on hybrid load balancing and scheduling for critical healthcare
applications." Physical Communication 59: 102109.
Naha, R. K., S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang and R.
Ranjan (2018). "Fog computing: Survey of trends, architectures, requirements, and
research directions." IEEE access 6: 47980-48009.
Neto, E. C. P., G. Callou and F. Aires (2017). An algorithm to optimise the load
distribution of fog environments. 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), IEEE.
Ningning, S., G. Chao, A. Xingshuo and Z. Qiang (2016). "Fog computing dynamic
load balancing mechanism based on graph repartitioning." China Communications
13(3): 156-164.
Niu, L., J. Lu and G. Zhang (2009). "Cognition-driven decision support for business
intelligence." Models, Techniques, Systems and Applications. Studies in Computational
Intelligence, Springer, Berlin: 4-5.
Nokia, I. (2013). "Increasing mobile operators value proposition with edge computing."
Technical Brief.
Okay, F. Y. and S. Ozdemir (2016). A fog computing based smart grid model. 2016
international symposium on networks, computers and communications (ISNCC), IEEE.
Oueis, J., E. C. Strinati and S. Barbarossa (2015). The fog balancing: Load distribution
for small cell cloud computing. 2015 IEEE 81st vehicular technology conference (VTC
spring), IEEE.
Pan, Y., P. Thulasiraman and Y. Wang (2018). Overview of cloudlet, fog computing,
edge computing, and dew computing. Proceedings of The 3rd International Workshop
on Dew Computing.
Pareek, K., P. K. Tiwari and V. Bhatnagar (2021). Fog Computing in Healthcare: A
Review. IOP Conference Series: Materials Science and Engineering, IOP Publishing.

158

Patwary, A. A.-N., R. K. Naha, S. Garg, S. K. Battula, M. A. K. Patwary, E. Aghasian,
M. B. Amin, A. Mahanti and M. Gong (2021). "Towards secure fog computing: A
survey on trust management, privacy, authentication, threats and access control."
Electronics 10(10): 1171.
Pavlovic, D. (2008). Network as a computer: ranking paths to find flows. International
Computer Science Symposium in Russia, Springer.
Peng, Y., Y. Zhao and J. Hu (2023). "On the role of community structure in evolution of
opinion formation: A new bounded confidence opinion dynamics." Information
Sciences 621: 672-690.
Prudencio, R. F., M. R. Maximo and E. L. Colombini (2023). "A survey on offline
reinforcement learning: Taxonomy, review, and open problems." IEEE Transactions on
Neural Networks and Learning Systems.
Puliafito, C., C. Vallati, E. Mingozzi, G. Merlino and F. Longo (2021). "Design and
evaluation of a fog platform supporting device mobility through container migration."
Pervasive and Mobile Computing 74: 101415.
Puthal, D., M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty and A. Y. Zomaya
(2018). "Secure and sustainable load balancing of edge data centers in fog computing."
IEEE Communications Magazine 56(5): 60-65.
Qu, Z., X. Liu and M. Zheng (2022). "Temporal-Spatial Quantum Graph Convolutional
Neural Network Based on Schrödinger Approach for Traffic Congestion Prediction."
IEEE Transactions on Intelligent Transportation Systems.
Rafique, H., M. A. Shah, S. U. Islam, T. Maqsood, S. Khan and C. Maple (2019). "A
novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog
computing." IEEE Access 7: 115760-115773.
Ray, S. (2019). A quick review of machine learning algorithms. 2019 International
conference on machine learning, big data, cloud and parallel computing (COMITCon),
IEEE.
Refaat, H. E. and M. A. Mead (2019). "DLBS: Decentralize Load-Balance Scheduling
Algorithm for Real-Time IoT Services in Mist Computing." Editorial Preface From the
Desk of Managing Editor… 10(9).
Refaat, H. E. and M. A. Mead (2019). "DLBS: decentralize load-balance scheduling
algorithm for real-time IoT services in mist computing." International Journal of
Advanced Computer Science and Applications 10(9).
Roig, P. J., S. Alcaraz, K. Gilly and C. Juiz (2020). Modelling a leaf and spine topology
for VM migration in Fog computing. 2020 24th International Conference Electronics,
IEEE.
Ruan, L., S. Guo, X. Qiu and R. Buyya (2021). Fog computing for smart grids:
challenges and solutions. Electric Vehicle Integration in a Smart Microgrid
Environment, CRC Press: 7-31.
Sabireen, H. and V. Neelanarayanan (2021). "A Review on Fog Computing:
Architecture, Fog with IoT, Algorithms and Research Challenges." ICT Express 7(2):
162-176.
Sadeeq, M. M., N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S. Sami and R.
R. Zebari (2021). "IoT and Cloud computing issues, challenges and opportunities: A
review." Qubahan Academic Journal 1(2): 1-7.
Salaht, F. A., F. Desprez and A. Lebre (2020). "An overview of service placement
problem in fog and edge computing." ACM Computing Surveys (CSUR) 53(3): 1-35.
Salimian (2021). "Toward an autonomic approach for Internet of Things service
placement using gray wolf optimization in the fog computing environment." Software:
Practice and Experience.

159

Salimian, M., M. Ghobaei‐Arani and A. Shahidinejad (2021). "Toward an autonomic
approach for Internet of Things service placement using gray wolf optimization in the
fog computing environment." Software: Practice and Experience.
Sami (2021). "Demand-Driven Deep Reinforcement Learning for Scalable Fog and
Service Placement." IEEE Transactions on Services Computing.
Sami, H., A. Mourad, H. Otrok and J. Bentahar (2021). "Demand-Driven Deep
Reinforcement Learning for Scalable Fog and Service Placement." IEEE Transactions
on Services Computing.
Sarma, B., G. Kumar, R. Kumar and T. Tuithung (2019). Fog Computing: An Enhanced
Performance Analysis Emulation Framework for IoT with Load Balancing Smart
Gateway Architecture. 2019 International Conference on Communication and
Electronics Systems (ICCES), IEEE.
Satka, Z., M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sjödin and S. Mubeen (2023).
"A comprehensive systematic review of integration of time sensitive networking and 5G
communication." Journal of Systems Architecture: 102852.
Sethi, V. and S. Pal (2023). "FedDOVe: A Federated Deep Q-learning-based Offloading
for Vehicular fog computing." Future Generation Computer Systems 141: 96-105.
Shakarami, A., H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar and M. Faraji-
Mehmandar (2022). "Resource provisioning in edge/fog computing: A Comprehensive
and Systematic Review." Journal of Systems Architecture 122: 102362.
Shakeel, H. and M. Alam (2022). "Load Balancing Approaches in Cloud and Fog
Computing Environments: A Framework, Classification, and Systematic Review."
International Journal of Cloud Applications and Computing (IJCAC) 12(1): 1-24.
Sheikh Sofla, M., M. Haghi Kashani, E. Mahdipour and R. Faghih Mirzaee (2022).
"Towards effective offloading mechanisms in fog computing." Multimedia Tools and
Applications 81(2): 1997-2042.
Shi, W., G. Pallis and Z. Xu (2019). "Edge computing [scanning the issue]."
Proceedings of the IEEE 107(8): 1474-1481.
Singh, S. P. (2022). "Effective Load Balancing Strategy Using Fuzzy Golden Eagle
Optimization in Fog Computing Environment." Sustainable Computing: Informatics
and Systems: 100766.
Sofla, M. S., M. H. Kashani, E. Mahdipour and R. F. Mirzaee (2022). "Towards
effective offloading mechanisms in fog computing." Multimedia Tools and
Applications: 1.
Souza, V. B. C., W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren and G.
Tashakor (2016). Handling service allocation in combined fog-cloud scenarios. 2016
IEEE international conference on communications (ICC), IEEE.
Statista. (2023). "IoT connected devices by vertical 2030 ", from
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.
Stojmenovic, I. and S. Wen (2014). The fog computing paradigm: Scenarios and
security issues. 2014 federated conference on computer science and information
systems, IEEE.
Sulimani, H., W. Y. Alghamdi, T. Jan, G. Bharathy and M. Prasad (2021).
"Sustainability of Load Balancing Techniques in Fog Computing Environment."
Procedia Computer Science 191: 93-101.
Sulimani, H., A. M. Sajjad, W. Y. Alghamdi, O. Kaiwartya, T. Jan, S. Simoff and M.
Prasad (2022). "Reinforcement optimization for decentralized service placement policy
in IoT‐centric fog environment." Transactions on Emerging Telecommunications
Technologies: e4650.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

160

Taneja (2017). Resource aware placement of IoT application modules in Fog-Cloud
Computing Paradigm. 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), IEEE.
Taneja, M. and A. Davy (2017). Resource aware placement of IoT application modules
in Fog-Cloud Computing Paradigm. 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), IEEE.
Tang, Q., R. Xie, F. R. Yu, T. Huang and Y. Liu (2020). "Decentralized computation
offloading in IoT fog computing system with energy harvesting: A dec-POMDP
approach." IEEE Internet of Things Journal 7(6): 4898-4911.
Tarawneh, A. and A. Hyasat (2010). "White Spot Formation under Banded Molars after
Orthodontic Treatment and Suggested Preventive Measures." Journal of the Royal
Medical Services 17(3): 45.
Téllez, N., M. Jimeno, A. Salazar and E. Nino-Ruiz (2018). "A tabu search method for
load balancing in fog computing." Int. J. Artif. Intell 16(2).
Téllez, N., M. Jimeno, A. Salazar and E. Nino-Ruiz (2018). "A tabu search method for
load balancing in fog computing." Int. J. Artif. Intell 16(2): 1-30.
Tiwary, M., S. Sharma, P. Mishra, H. El-Sayed, M. Prasad and D. Puthal (2018).
Building Scalable Mobile Edge Computing by Enhancing Quality of Services. 2018
International Conference on Innovations in Information Technology (IIT), IEEE.
Tran-Dang, H. and D.-S. Kim (2023). Bandit Learning for Distributed Task Offloading
in Fog Computing Networks: Literature Review, Challenges, and Open Research
Issues. International Conference on Network-Based Information Systems, Springer.
Tran-Dang, H. and D.-S. Kim (2023). "Dynamic collaborative task offloading for delay
minimization in the heterogeneous fog computing systems." Journal of Communications
and Networks.
Traub, M., A. Maier and K. L. Barbehön (2017). "Future automotive architecture and
the impact of IT trends." IEEE Software 34(3): 27-32.
Vaquero, L. M. and L. Rodero-Merino (2014). "Finding your way in the fog: Towards a
comprehensive definition of fog computing." ACM SIGCOMM computer
communication Review 44(5): 27-32.
Velasquez, K., D. P. Abreu, M. Curado and E. Monteiro (2021). "Service Placement for
Latency Reduction in the Fog using Application Profiles." IEEE Access.
Verma, M., N. Bhardwaj and A. K. Yadav (2016). "Real time efficient scheduling
algorithm for load balancing in fog computing environment." Int. J. Inf. Technol.
Comput. Sci 8(4): 1-10.
Verma, S., A. K. Yadav, D. Motwani, R. Raw and H. K. Singh (2016). An efficient data
replication and load balancing technique for fog computing environment. 2016 3rd
international conference on computing for sustainable global development
(INDIACom), IEEE.
Vögler, M., J. M. Schleicher, C. Inzinger and S. Dustdar (2016). "A scalable framework
for provisioning large-scale IoT deployments." ACM Transactions on Internet
Technology (TOIT) 16(2): 1-20.
Wang (2017). "Online placement of multi-component applications in edge computing
environments." IEEE Access 5: 2514-2533.
Wang, B., Y. Zhang and W. Zhang (2022). "A Composite Adaptive Fault-Tolerant
Attitude Control for a Quadrotor UAV with Multiple Uncertainties." Journal of Systems
Science and Complexity 35(1): 81-104.
Wang, S., M. Zafer and K. K. Leung (2017). "Online placement of multi-component
applications in edge computing environments." IEEE Access 5: 2514-2533.

161

Wang, Y., X. Han and S. Jin (2023). "MAP based modeling method and performance
study of a task offloading scheme with time-correlated traffic and VM repair in MEC
systems." Wireless Networks 29(1): 47-68.
Wójcicki, K., M. Biegańska, B. Paliwoda and J. Górna (2022). "Internet of Things in
Industry: Research Profiling, Application, Challenges and Opportunities—A Review."
Energies 15(5): 1806.
Wu, H., S. Jin and W. Yue (2022). "Pricing policy for a dynamic spectrum allocation
scheme with batch requests and impatient packets in cognitive radio networks." Journal
of Systems Science and Systems Engineering 31(2): 133-149.
Wu, Q., H. Liu, R. Wang, P. Fan, Q. Fan and Z. Li (2019). "Delay-sensitive task
offloading in the 802.11 p-based vehicular fog computing systems." IEEE Internet of
Things Journal 7(1): 773-785.
Xiao, Z., J. Shu, H. Jiang, J. C. Lui, G. Min, J. Liu and S. Dustdar (2022). "Multi-
objective parallel task offloading and content caching in D2D-aided MEC networks."
IEEE Transactions on Mobile Computing.
Xu, D., L. Liu, N. Zhang, M. Dong, V. C. Leung and J. A. Ritcey (2023). "Nested Hash
Access with Post Quantum Encryption for Mission-Critical IoT Communications."
IEEE Internet of Things Journal.
Xu, X., S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun and A. X. Liu (2018).
"Dynamic resource allocation for load balancing in fog environment." Wireless
Communications and Mobile Computing 2018.
Yang (2015). "Cost aware service placement and load dispatching in mobile cloud
systems." IEEE Transactions on Computers 65(5): 1440-1452.
Yang, D., T. Zhu, S. Wang, S. Wang and Z. Xiong (2022). "LFRSNet: A robust light
field semantic segmentation network combining contextual and geometric features."
Frontiers in environmental Science 10: 996513.
Yannuzzi, M., R. Irons-Mclean, F. van Lingen, S. Raghav, A. Somaraju, C. Byers, T.
Zhang, A. Jain, J. Curado and D. Carrera (2017). Toward a converged openfog and etsi
mano architecture. 2017 IEEE Fog World Congress (FWC), IEEE.
Yi, S., Z. Qin and Q. Li (2015). Security and privacy issues of fog computing: A
survey. Wireless Algorithms, Systems, and Applications: 10th International Conference,
WASA 2015, Qufu, China, August 10-12, 2015, Proceedings 10, Springer.
Zahoor, S., S. Javaid, N. Javaid, M. Ashraf, F. Ishmanov and M. K. Afzal (2018).
"Cloud–fog–based smart grid model for efficient resource management." Sustainability
10(6): 2079.
Zeng (2016). "Joint optimization of task scheduling and image placement in fog
computing supported software-defined embedded system." IEEE Transactions on
Computers 65(12): 3702-3712.
Zhang, X., Z. Wang and Z. Lu (2022). "Multi-objective load dispatch for microgrid
with electric vehicles using modified gravitational search and particle swarm
optimization algorithm." Applied Energy 306: 118018.
Zhang, X., S. Wen, L. Yan, J. Feng and Y. Xia (2022). "A hybrid-convolution spatial–
temporal recurrent network for traffic flow prediction." The Computer Journal:
bxac171.

APPENDIX

Appendix I: COMPARISON OF RELATED WORKS .

Authors Contributions Offloading-in Offloading Approach Clustering TSA Control System Metrics Pros/Cons

Jiang, Chen et
al. (2018)

Offloading
dispatcher and an
energy-efficient
offloading decision
mechanism

Fog nodes Find the optimum
destination device after
studding the offloading
cost- Dynamic

No Yes Decentralized Response time,
Energy
consumption

The algorithm costs the
system a high number
of exchanged messages
to explore the suitable
device for offloading.

Ebrahim and
Hafid (2023)

A LB algorithm
based on
Reinforcement
Learning (RL),
DDQN.

Cloud and Fog
Servers

The algorithm aims to
minimize the waiting
delay of IoT workloads in
dynamic environments
with unpredictable traffic
demands, using intelligent
workload distribution.

Yes No Distributed Latency, Waiting
time, Execution
time, Response
time

The author does not
solve the inherent
issues of traditional
offloading.

Albalawi,
Alkayal et al.
(2022)

PSOSVR: based on
a many-objective
Particle Swarm
Optimization (PSO)
algorithm with
Support Vector
Regression (SVR)

Fog nodes Dynamic- AI

No No Centralized- The
control unit
locates in Fog
layer - FSM

Response time,
Energy
consumption,
Resource
utilization, and
Throughput

The authors have not
given an advantage in
execution for time-
sensitive applications
or distant offloading.
The architecture has
low scalability.

Lu, Gu et al.
(2020)

DRL: based on the
improved IDRQN
algorithm.

Cloud and Fog
Servers

DRL is proposed to solve
the offloading problem of
multiple service nodes for
the cluster and multiple
dependencies for mobile
tasks in large-scale
heterogeneous MEC.

Yes Yes Decentralized Energy
consumption,
load balancing,
latency and
average execution

The study considers
TSA and distant
offloading. However, it
follows the traditional
offloading approach,
which may consume
unnoticeable time.

2

Tran-Dang and
Kim (2023)

Proposing DCTO, a
dynamic
collaborative task
offloading,
algorithm.

Fog nodes Using partitioned tasks
and parallel computation

No No Decentralized Average of task
execution delay
and utilization
ratio of fogs

The authors did not
give advantage for
sensitive applications
or distant offloading.

Gowri and
Baranidharan
(2023)

A dynamic energy
resource allotment
(DERA) technique

Cloud and Fog
Servers

The proposed algorithm
used two algorithms to
find the optimum target
device.

No No Centralized- The
control unit
locates in Fog
layer - Controller

Broadband costs,
duration, and
energy
consumption.

The algorithm shows
outstanding results
among others.
However, it ignores
sensitive application
and distant offloading.

Hussein and
Mousa (2020)

Two nature-
inspired meta-
heuristic
schedulers, namely
ant colony
optimization (ACO)
and particle swarm
optimization
(PSO),

Cloud and Fog
Servers

The proposed model
considers the network
latency and the service
rate of the fog nodes

No No Centralized- The
control unit
locates in Fog
layer –Fog Master
Node

Communication
cost and
Response time

The authors do not
prioritize the critical
application to be
executed locally.
Moreover, they ignore
other critical problems.

Li, Zhuang et al.
(2018)

A self-similarity-
based load
balancing (SSLB)
mechanism for
large-scale fog
computing.

Fog nodes address the LB challenges
caused by fog’s ‘large-
scale’ characteristic
through clustering.

Yes Yes Decentralized Execution time,
clustering
overhead

Even though SSLB
presents many features,
it faces the inherent
issues of prevalent
offloading, such as
decision time and
messages.

Lu, Wu et al.
(2023)

Two scenarios are
considered:
Unlimited-
Processor Fog
Nodes (UPFN) and
Limited-Processor
Fog Nodes (LPFN).

Cloud and Fog
Servers

minimize the total
monetary cost by
considering the deadline.

and capacity constraints.

No Yes fog nodes’
distributions are

concentrated

Average cost and
Makespan

The manuscript does
not find a solution for
large-scale networks
and other phenomena
in dynamic offloading.

3

Sarma, Kumar
et al. (2019)

A smart gateway
as a load balancer
in a fog
environment

Cloud and Fog
Servers

The authors proposed a
smart gateway that
control the arrival tasks
with minimum cost.

No No Centralized- - The
control unit
locates in Fog
layer –Smart
gateway

Network delay
and Computing
time

Despite the outcomes of
the centralized system,
the proposed solution
did not consider other
inherent issues of
offloading costs.

Chakraborty
and Mazumdar
(2023)

Hybrid
metaheuristic
Greedy
Randomized
Adaptive Search
Procedure and
Genetic Algorithm
(GRASP-GA).

Cloud and Fog
Servers

Hybrid metaheuristic

 == > Dynamic- AI.

A dynamic edge server
selection mechanism for
task offloading.

Yes Yes Centralized. The
control unit
locates in cloud
layer.

total execution
time and energy
consumption

The authors did not
study the implications
of distant offloading on
critical applications.
The proposed model
highly uses a cloud
server. Even though its
outstanding results,
assigning sensitive
applications to the fog
devices is a better
approach.

HybOff A comprehensive
offloading
algorithm that
override most of
inherent issues in
static and dynamic
offloading.

Fog layer The proposed algorithm
aims to utilize many
features, such as
clustering, static
offloading, and local
execution, to present a
comprehensive solution.

Yes Yes Central-
distributed

RU, LB level, and
system
performance

It solves many inherent
issues in prevalent
offloading, such as
offloading decision,
distant offloading,
network

