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ABSTRACT 

OPTIMISING RESOURCE ALLOCATION AND OFFLOADING FOR 

LONG-TERM LOAD BALANCING SOLUTIONS IN FOG 

COMPUTING ENVIRONMENTS 

by 

Hamza H. Sulimani 

Nowadays, most emerging critical IoT applications have unique requirements and 

restrictions to operate efficiently; otherwise, they could be useless. Latency is one 

of these requirements. Fog computing is the complement system for cloud 

computing, proving it is the ideal computing environment for critical IoT 

applications.  

Distributed computing systems, such as fog computing, have an inherent problem 

when the computing units have different computing loads, called load difference 

problems. Offloading and service placement are some techniques used to fix these 

problems. Although prevalent offloading is the appropriate technique for this 

research, its procedures generate hidden costs in a system, such as decision time, 

distant offloading, and network congestion. Many researchers attempt to reduce 

these costs to get the results of static offloading (in stable environments).  

However, this research seeks to overcome the hidden costs in the prevalent 

offloading techniques to balance the load in a fog environment by utilising the 

sustainability concept. This research believes that increasing physical resources is 

the only way to improve efficiency as a long-term solution. The study consists of two 

consecutive phases. The first phase attempts to find the optimum solution between 

task offloading and service placement. The solution must revive the low-cost 

offloading solution. A Sustainable load-balancing monitoring system (SlbmS) is the 

comprehensive solution for the optimum solution to release its limitations. SlbmS 

uses the sustainability concept to solve the problem of the limitation of resources in 

edge computing using reinforcement learning. 
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The experiment results of the two phases show that hybrid offloading outperforms 

the service placement policy in the first stage and prevalent offloading in the second 

stage when utilising the behaviour of static offloading to reduce the offloading costs 

in unpredictable environments. The study aims to explore a new area of research 

that attempts to amend the network topology to improve resource provisioning to 

provide a free resource at the edge of the network. This research paved the way for 

a new dimension of analysis. It is the first research to recommend the physical 

expansion in the fog layer using the sustainability concept.
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1. CHAPTER, INTRODUCTION 

Abstract: The success of any project depends mainly on its planning process. In a 

PhD journey, an average PhD candidate spends around one year exploring and 

planning potential research gaps for his thesis. A well-planned PhD research study 

should adhere to a specific research plan and framework. A research plan must be 

discussed and approved to hold the research; each research’s objectives, concerns, 

and aims serve as its foundation. Fog computing is the leading research area of this 

thesis’s investigation. This chapter, however, attempts to sketch out the 

foundations of the study of new dimensions for balancing the load among the 

computing units in the fog layer. Offloading and resource allocation are the core 

elements to balance the load in a fog environment. The outcomes of this chapter are 

the research plan framework and thesis structure followed in the following years 

after being identified and approved. The procedure for conducting the research is 

detailed in this chapter. 
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1.1. BACKGROUND 

In the era of the internet, with the support of 5G access networks, the central 

computing concept has appeared primarily in all fields. The central computing 

system is the technology that allows enterprises to collect, process, analyse, and 

archive the distributed client’s data worldwide. The main concept has countless 

benefits for enterprises, such as easy management, protection, and timely business 

updates (Traub, Maier et al. 2017). The idea has become so important with the 

internet that we can no longer return to primitive, decentralised systems. 

On the ground, cloud computing is implementing the central computing 

concept. It offers novel possibilities for both service providers and their clients 

through an architecture for delivering Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS) on-demand over the internet 

that promises to bring about significant economic and technical benefits (Celesti, 

Fazio et al. 2012). These large-scale services can be provided using virtualised 

cloud resources on a shared basis. Cloud resources are generally made available 

as a compilation of several proprietary processes running in a virtual environment 

known as a Virtual Machine (VM). 

In a cloud environment, virtualised computational resources are used to 

provision resources on demand. Virtualization also enables an auto-scaling 

technique that dynamically allocates computational resources to services that 

precisely correspond to their current needs, thereby eliminating inactive and costly 

resources (Kriushanth, Arockiam et al. 2013). Advances in virtualisation techniques 

and the construction of numerous large commodity data centres around the globe 

have resulted in cloud computing, a new approach to computing, becoming a 

significant research and development topic (Ghanbari, Simmons et al. 2012). The 

recent increase in the prevalence and utilisation of cloud computing services 

by enterprise and individual consumers necessitates the efficient and proactive 

administration of data centre resources that host services with diverse 

characteristics. 

Cloud Computing is indispensable for any business to connect and 

communicate directly with its intelligent products to manage its business 
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proficiently. The cloud computing model has been widely appreciated as 

appropriate machinery to efficiently run/manage widely distributed IoT (Internet 

of Things) products. IoT is a telecommunication system that enables endless 

processing devices to exchange data over a public network to keep a business 

running with minimal human intervention (Sadeeq, Abdulkareem et al. 2021); it is 

considered a system tool that allows cloud computing to interact with the 

environment. Currently, most of the surrounding intelligent products, which 

surmount daily hurdles, are enabled by the IoT, meaning they may only fully 

operate with an internet connection (Aazam, Zeadally et al. 2018). This setup 

allows IoT technology to spread widely and its data to grow gradually, which gives 

the cloud system more popularity while, on the other hand, affecting the efficiency 

of public networks. 

When the public network, the primary channel for the cloud to work, slows 

down, time-sensitive applications are the ones that suffer the most. Time-sensitive 

applications are characterised by timing constraints that must be satisfied for 

correct operation (Goel, Abeni et al. 2002). They must be served within a 

reasonable time limit to be more effective and work well. Noteworthy, all IoT 

applications use the same public network; public networks are designed to serve 

all applications without bias. Hence, providers of time-sensitive applications must 

consider this when introducing critical services, such as e-health, smart grids, and 

unmanned vehicles (Ruan, Guo et al. 2021, Gupta and Gupta 2022).  

However, cloud computing cannot offer the required level of service for this 

type of application due to the uncontrolled efficiency of public networks (Wójcicki, 

Biegańska et al. 2022). Fog Computing (FC) has been proposed as a critical 

technology to provide decentralised computation services in decentralised 

settings, which would help address the challenges in cloud computing and deal 

with the problems listed above. FC is designed to operate IoT applications 

efficiently, especially real-time applications (Gomes, Costa et al. 2021).  

The continued growth in the number of IoT objects and the data generated 

means FC cannot deliver the expected performance level (Sabireen and 

Neelanarayanan 2021). Due to the widespread use of mobile devices and the rapid 

advancement of wireless networking technologies over the past ten years, mobile 



users’ demand for computation has increased unprecedentedly. According to 

Figure 1.1:

the workloads among layers to fill clients’ needs regarding resources with the least 
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offloading costs the computing system in terms of time and network. Therefore, 

providing a powerful solution for offloading is vital, allowing cloud technology via 

FC to continue running well to serve real-time applications. 

However, LB optimisation problems via dynamic offloading have been 

extensively studied; most proposed optimisation models focused on improving 

dynamic offloading, which has an inherent cost and follows a short-term theme. 

To the best of our knowledge, they need to use the concept of long-term in their 

optimisation model.  

Considering these facts, this study prepares a combination of the three main 

topics of LB as a core system. It proposes a reinforcement optimisation for a 

decentralised service placement policy in fog environments (RODSPP) and novel 

techniques for hybrid offloading (HybOff). Furthermore, a comprehensive solution 

named a sustainable load balancing monitoring system (SlbmS) for LB has been 

developed in this study to overcome the drawbacks of current solutions. 

The remaining part of this chapter is structured as shown next. Section 2 

presents the research description, including the research problems, objectives, 

and expected contributions. In Section 3, the research methodology and plan are 

described. Section 4 outlines the thesis frames, while Section 5 presents the 

structure. The publications of research are enumerated in Section 6. 

1.2. RESEARCH ELEMENTS 

This section presents the major research elements that outline the research 

borders, such as motivations, challenges, and problem statements. Moreover, the 

gaps, questions, objectives, and research methodology are listed here. 

1.2.1. RESEARCH PROBLEMS 

Many problems are motivated to start working in this area of research. The 

following issues have been noticed during the review stage. Some inherent costs 

were found in the prevalent offloading process. This subsection illustrates the 

primary issues that motivate this study, as listed next: 

1) Offloading Costs. Offloading is a crucial technique in the LB process. 

According to our observation, we have noticed that all prevalent offloading 
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approaches use the present system state information, in which the heavy 

devices read the environment (gathering attributes) and give an offloading 

action to redirect the excess tasks to the target device (Jaya 2023). This 

action is repeated several times when there is a necessity for extra 

resources. There are multi-costs due to offloading activities, such as: 

a. Decision time. Most prevalent offloading models have many 

procedures, such as gathering, analysing, and evaluating system 

attributes, to take the action required. These procedures might 

consume an unnoticeable time to find a suitable device for 

offloading. Even though this time is minimal, it repeats many times 

in every loaded device, which costs a system hefty of time. We call 

this time a decision time. This time accumulates, which increases the 

total execution time for the task. 

b. Decision messages. Decision processes generate a high volume of 

exchanged messages with the peer devices; they seek to explore 

unused resources to cover the shortage in the affected areas without 

any intention to increase the number of served devices (resources) 

(Sofla, Kashani et al. 2022). We call these messages decision 

messages. Growing the number of exchanged decision messages 

consumes more time and causes network congestion. 

c. Network Oversizing. However, it may only be the appropriate 

decision to expand the network if we are confident that all fog 

devices are fully equipped and utilised, especially with the apparent 

differences in the efficiency of LB algorithms. In this case, the 

expansion in network size generates a unique network state, which 

we propose to name network oversizing. More wastage in power 

and resources occurs if the offered resources exceed the demand; 

this state typically appears in small businesses where they do not 

intend to study or plan for their networks before expanding. 

d. Need for more planning. A network oversizing state occurs when 

the network keeps expanding by enterprise without sufficient 

planning—the network oversizing conflicts with a sustainability 

concept that seeks to avoid significant or unreasonable physical 
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changes. Thus, adequate planning for the expanding action is 

required to keep the performance of FC at an acceptable level 

without incurring high costs. 

e. Distant offloading. The other effect of network oversizing is distant 

offloading. It usually appears with the large-scale system. With this 

system, the overloaded device might offload its tasks to the device 

located away. While many offloading algorithms are not concerned 

with this point, it surges the consumed time with the exchanged 

messages. 

2) Time-sensitive applications. Many emerging applications are real-time, 

which is more valuable and applicable to the users. Time-sensitive 

applications require a harsh criterion to run effectively. Thus, our research 

aims to enhance the quality of this type of application. 

3) Resource constraints. Conceptually, once LB systems start offloading, the 

local fog resources are exhausted, and the workload increases substantially 

(Aazam, Zeadally et al. 2018, Sulimani, Sajjad et al. 2022). However, 

resource provisioning is required to find extra resources. Most existing 

resource provisioning research in FC uses granularity services such as 

virtual resource, container-based, application, and task provisioning 

services to enhance the capabilities of available local resources (Shakarami, 

Shakarami et al. 2022). However, these services are limited by physical 

resources and can only go up to that. Figure 1.2 illustrates the research gaps. 

 

 Figure 1.2: Venn diagram for research gaps. 

   
Fog 
Computing 

Load 
Balancing 

Sustainability 

Service Placement 

Offloading 



9 
 

1.2.2. RESEARCH QUESTIONS 

Based on the problems mentioned above and the fact that both service placement 

and offloading techniques rely on offloading strategy, the research questions of 

this study are determined as follows: 

• Research Question 1: What is the required technique to minimise the 
consumed time by offloading the decision process? 

• Research Question 2: What is the required strategy to minimise the number of 
offloading messages? 

• Research Question 3: What is the suitable strategy to avoid the distant 
offloading phenomena? 

• Research Question 4: What is a new solution for optimal placement policy over 
fog physical resources to overcome the inherent issues of prevalent resource 
allocation mentioned in RQ1, RQ2, and RQ3? 

• Research Question 5: What is a new solution for optimal offloading over fog 
physical resources to overcome the inherent issues of prevalent resource 
allocation mentioned in RQ1, RQ2, and RQ3?  

• Research Question 6: How could the performance of the proposed systems be 
evaluated in a fog environment in RQ4 and RQ5?  

• Research Question 7: What are the limitations of the optimum LB solution in 
this research? 

• Research Question 8: How should reinforcement learning be designed to 
apply sufficient planning before expansion? 

• Research Question 9: How do we design a comprehensive model to monitor 
the entire system and suggest a recommendation to tackle the overload 
situation by proposing hardware modifications? 

1.2.3. RESEARCH OBJECTIVES 

Generally, dynamic behaviour is typically required. Several offloading strategies 

have been applied by examining the prevalent solutions, which may reduce the load 

on some nodes but generate drawbacks. Most of these studies, however, ignore the 

significant impact on network bandwidth and the time needed for offloading 

decisions, which must improve the level of LB in the system. Based on the research 

problems and questions, this study has nine primary objectives to solve the dilemma 

of the research problem, as shown next: 

Research Objective One. The first research objective related to the first research 

question is to propose a new offloading philosophy that avoids the consumed time 

in dynamic offloading to keep the time at the bottom. The new philosophy should 
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partially follow the static offloading philosophy. Static offloading is the primarily 

used system; it has many drawbacks, as mentioned in (Sulimani, Alghamdi et al. 

2021). Both dynamic and static offloading have inherent issues. Even though the 

recent research focused on dynamic offloading while ignoring the static, adopting a 

new hybrid offloading process is necessary. The new process will cease the 

consequences of both approaches. 

Research Objective Two. This objective, which corresponds to the second research 

question, is to propose a solution to minimise the number of decision messages in a 

system that aims to reduce the traffic in the network. The proposed solution must 

be acceptable with the quality of the present system state information, which is 

essential to evaluate the surrounding devices. This feature cannot be found in static 

offloading, where static offloading is not required to collect the present system state 

information. 

Research Objective Three. The third research objective related to the third 

research question is to propose a technique to solve the distant offloading to 

alleviate the communication cost with the remote device, which might be located 

away. The proposed solution must keep the devices to communicate as a group.  

Research Objective Four. The fourth research objective corresponding to question 

four is to design a new service placement policy to enhance the LB level in FC. After 

finding a suitable research gap, the new algorithm should reinforce one state-of-the-

art algorithm. This stage aims mainly to explore another approach to balance the 

load in FC. At this point, we are going to introduce placement algorithms with the 

goals of decreasing latency, lightening the load on bandwidth, and improving the 

quality of service. This stage aims to understand the drawbacks of current service 

placement algorithms and create a practical model that enhances the efficiency of 

existing computing nodes as much as possible.  

Research Objective Fifth. The primary goal of this proposal is to construct a hybrid 

offloading algorithm to maintain equilibrium for FC. It proposes offloading 

algorithms with the goals of decreasing latency, lightening the stress on bandwidth, 

and boosting the quality of service. This stage aims to understand the drawbacks of 
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current offloading algorithms and create a practical model that improves the 

efficiency of resource allocation policy as much as possible.  

Research Objective Six. The sixth objective of the investigation is to evaluate the 

developed algorithms. Evaluation is a crucial component of every methodology 

because it provides reasonable assurance of the model’s results. This research relies 

on three evaluation models and empirical environments to evaluate the 

performance of three new systems devised for this study, including: 

• RODSPP 

• HybOff 

• SlbmS 

The RODSPP and HybOff prototype systems are implemented in simulation 

environments and evaluated using iFogSim. SlbmS is evaluated by implementing its 

subsystems in MATLAB. This stage aims to determine the optimal solution to 

balance the load of fog nodes among two techniques. 

Research Objective Seven. To identify the optimum solution, we need to find the 

constraints or limitations of this solution. The identified solution must be tested 

with different scenarios with different sizes of cells and generated tasks. 

Research Objective Eight. The eighth objective of this research is to utilise 

reinforcement learning to satisfy the requirement of sufficient planning. The RL 

must work through two steps. In step one, the proposed model must study how to 

improve the coverage quality; in step two, the system must learn the efficiency of 

adding new Access points to the system. This technique gives a chance before 

engaging in an unnecessary expansion process. 

Research Objective Nine. This aim aims to find a sustainable solution to the 

research dilemma. As we have noticed during the review stage that all prevalent 

solutions for LB work around the same notion, we aim to find a novel solution for 

this dilemma in this research. The primary motivation of this research is to 

determine how to build a framework to balance the load in fog environments, which 

is a long-term concept. Accordingly, this research intends to go beyond prevalent 

resource provisioning by exploring a new research dimension. However, Figure 1.3 

depicts and illustrates the rapport among the research objectives. 
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Figure 1.3: Research Objectives. 

1.2.4. RESEARCH CONTRIBUTIONS 

According to the objectives of the study, the following innovations and 

contributions to research are summarised: 

1) Develop a service placement policy: This research proposes a 

reinforcement service placement policy as a prototype solution to explore 

the other LB technique. It covers two major fog resource management topics: 

service migration and task offloading. It is the first technique in this research 

that attempts to balance the load. In FC, service placement or migration to 

Virtual Machines (VMs) affects the level of LB. On the other hand, task 

offloading should be optimised resource allocation, which improves the 

utilisation level. Therefore, the research considers service placement and 

task allocation to maximise the QoS for time-sensitive applications. 

2) Develop a novel hybrid offloading model: It is the first work that attempts 

to apply the real meaning of hybrid offloading, which gains both the 

behaviour of static and dynamic offloading. The existing research in task 

offloading migrates the tasks from loaded devices to other non-heavy devices 

using different techniques. All prevalent task-offloading methods use the 

same pattern with hidden costs (Sulimani, Alghamdi et al. 2021). However, 

task offloading is affected by the unpredictable number of arrival tasks and 
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the immutable capacity of the computing unit. This model can overcome the 

inherent issues in static and dynamic offloading with outstanding results in 

terms of latency. 

3) Hidden costs: It discussed hidden costs such as distant offloading, decision 

messages, and network congestion. 

4) Cease offloading processes: While all prevalent LB models seek to enhance 

the efficiency of offloading techniques, this research’s ultimate goal seeks to 

minimise or cease offloading procedures.  

5) Long-Term Solution: This research aims to answer the main research 

question, “How to build a comprehensive model applying sustainable 

concepts for the research dilemma?” The goal will be secured by answering 

this part of the research. It demonstrates how to apply the sustainability 

concept to the proposed solution. 

6) Multi-feature system: The proposed model contains many features, such 

as following a central-distributed control system, clustering fog devices, 

and prioritising critical applications. 

7) Experiments: It presents the results of the three comprehensive 

experiments that examine the proposed models from different aspects. 

1.3. RESEARCH METHODOLOGY 

Research methodology is a collection of problem-solving techniques that follow a 

set of fundamentals and a shared philosophy for addressing specific issues (Gallupe 

2007). Numerous research methodologies have been proposed and utilised in 

information systems, including design research, case study, field experiment, field 

study, laboratory experiment, action, and survey research. This study’s 

methodology is based on the practice of design research (Niu, Lu et al. 2009), which 

has been proposed and implemented in information systems. 

1.3.1. GENERAL METHODOLOGY  

As shown in Figure 1.4, the design research methodology consists of five 

fundamental stages (Niu, Lu et al. 2009): 

1. Problem definition: This is the initial step in identifying the limitations of 

existing applications and significant research problems. Existing applications 

must catch up to the anticipated status, reflected by the research problems. 
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Various sources, including industry experience, observations of practical 

applications, and literature review, can be used to identify research problems. 

A precise definition of the research problem focuses on the investigation 

throughout the development process. This phase produces a research 

proposal for new research endeavours. 

 
Figure 1.4: Fundamental Stages for Research Methodology. 

2. Solution Plan: This phase immediately follows the problem definition phase, 

during which a provisional design is proposed. The preliminary design 

describes the prospective artifacts and how they can be created. Suggestion is 

a creative process that demonstrates new concepts, models, and functions of 

artifacts. The research proposal typically includes the tentative design that 

results from this stage. 

3. Development and Implementation: This phase examines the 

implementation of the tentatively suggested design artifacts. The 

implementation techniques will be based on the constructed object. The 

implementation need not be novel; the novelty lies predominantly in the 

design, not the construction of the artifact. Typically, the development process 

is iterative, in which an initial prototype is constructed and then modified as 

the researcher obtains a deeper understanding of research problems. Thus, 

the output of the suggestion phase is also the feedback of the first step, 

allowing for the revision of the research proposal. This step includes the sub-

steps a) planning, b) analysis, c) design, d) development, e) testing, f) 

implementation, and g) maintenance to construct the prototype (Niu, Lu et al. 

2009). 
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4. Evaluation: This phase involves assessing the implemented artifacts. The 

efficacy of the artifacts can be evaluated using criteria outlined in the research 

proposal and the proposed design. The evaluation results, which may fall short 

of expectations, are fed back to the first two phases. Consequently, the 

proposal and plan could be revised, and the products could be enhanced. 

5. Reporting: This is the reporting phase of the design investigation. Typically, 

it results from contentment with the evaluation outcomes of the developed 

artifacts. However, behavioural differences exist between the proposed 

solution and the actual artifacts created. As long as the created artifacts are 

deemed “good enough,” the design research endeavour concludes, and the 

anomalous behaviour may be the subject of further study. 

Due to the case for this research, Figure 1.5 shows the actual implementation of 

research methodology with our work; it presents the interference of steps of phases 

one and two. The following chapters seek to answer each research question 

individually. Moreover, we will discuss the significant common points in offloading 

and service placement techniques. 

 
Figure 1.5: The actual implementation of this research. 

1.3.2. RESEARCH PLAN 

The research plan for this investigation consisted of the following stages: 

Step 1. Select a topic: The selection of a research topic can be motivated by 

observation, personal interest, pieces of literature describing previous 

theory and research in the field, social concern, or as a result of some current 

hot topics. This research topic was selected based on previous literature, 
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research, and the author’s observation and experience in the process 

industry. 

Step 2. Literature review: Regardless of the reason for selecting a particular topic, 

a literature review of previous research in the topic area is a crucial step in 

the research process. Existing literature in the relevant fields was retrieved 

and evaluated critically. 

Step 3. Finalise research problems: The findings of the literature review 

contributed to the formulation of the specific research questions for this 

study. This research study explicitly addressed the research questions. As the 

clarity and specificity of the research questions increased, more literature 

closely related to them was reviewed. Existing work is compared to the 

desired standards; voids and restrictions are identified. 

Step 4. Formulate the problem of research: Clients at the IoT layer generate tasks 

to be executed at fog nodes. When fog nodes get a job, they may send it to the 

cloud nodes. Because more power will be rented from the cloud because of 

this process, overall network operating costs will be increased. To solve this 

problem, an offloading procedure is carried out, which causes more work to 

be done on the second layer and less in the cloud.  

The primary motivation for this work is to override the obstacles that face 

prevalent offloading to balance the load in the fog layer. Although offloading 

is the primary motivation, the service placement LB approach will be 

examined. However, testing more than one technique is appreciated in a PhD 

project. The innovative offloading technique is presented in this section to 

explore the main idea behind this work. Both service placement and 

offloading use the following techniques as possible. 

Step 5. Prioritise Sensitive Applications: Several tasks with varying sizes and 

levels of importance are created at the IoT layer. Although some tasks are 

pretty large but have a low priority, others are so small that they must be 

completed on time. Consequently, in the context of our investigation, 

categorising diverse tasks is essential. This subject will be discussed further 

in the methods section. 
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Some of the previous studies have based their criteria for task classification 

on the assumption that all streamed workloads have the same priorities 

(Verma, Yadav et al. 2016, Neto, Callou et al. 2017, Téllez, Jimeno et al. 2018, 

Sarma, Kumar et al. 2019), while a few authors categorise the workloads 

based on their time sensitivity (Verma, Bhardwaj et al. 2016, Refaat and Mead 

2019). Due to the logical conception of service, which uses “first in, first out,” 

the low-priority tasks might be served first, which will obstruct the critical 

medical case from receiving help. This approach, as seen in Figure 1.6, will 

affect emergency cases that require immediate action.  

 
Figure 1.6: FIFO behavior in the proposed model. 

The benefit of the second standard method is that it will give credit to 

sensitive tasks to reduce the waiting time in the queue, which is high due to 

the high traffic of functions in some regions. Task classification was designed 

according to the procedure used by (Chen, Huang et al. 2021), which 

proposes two classes of workloads: light tasks (LT) and heavy tasks (HT). 

This approach will give emergency cases a chance to execute first, which will 

improve system latency. On the other hand, heavy tasks will not affect this 

process due to their requirements. In this case study, we propose a medical 

computing system with different operating systems that share networks, 

such as X-ray, reporting, filing, and control systems, which we consider in our 

case in HT Figure 1.7. When there is heavy function traffic in a particular area, 

waiting times in the line can be extended. The second conventional approach 

can help with this problem by crediting sensitive jobs.  
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Figure 1.7: Dealing with the Light Task in the Queue. 

On the other hand, a system is in place to monitor a patient’s vital signs and 

send an alert in an emergency. LT jobs are given higher priority than other 

types of tasks in terms of data quantity. As a result, each node incorporates a 

task scheduler module to reprioritise “LT first” items in the queue. As can be 

seen in Figure 1.6, this means that even if an HT job is at the front of the 

queue, we still ensure that it will not be completed before an LT task. 

Step 6. Smart Gateway (SG): This proposal employs a straightforward scenario 

with a cluster of computer nodes to explore LB in this context (see Figure 

1.8). A special algorithm is needed to cluster various fog nodes together to 

produce a clustering of computing power. For example, the method’s end 

goal in the offloading technique is to set up a paired set of compute nodes for 

direct job offloading without any intermediate node selection. 

 
Figure 1.8: Clustering in the proposed algorithm. 

The planned system uses fog nodes in critical applications to connect many 

devices to the network’s core. The cloud infrastructure is a vital part of this 

setup, as is long-term storage backup to help the fog nodes already in place 

when demand is high. On the other hand, an SG will connect all the FC nodes 
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and act as a bridge between the local infrastructure and the cloud. However, 

both service placement and offloading techniques define SG according to 

their structures. Hence, all communications in the fog layer will be subject to 

the same suppression level, and the information flow between the fog and 

cloud layers will be under tight control. 

Step 7. Clustering: In this phase, all computing nodes will split into virtual cells to 

build collective computing power. The SG will use the K-means algorithm to 

construct the clusters in a different area. Indeed, adjacent nodes in the same 

geography are clustered into an individual cell, which can have a different 

size. This philosophy aims to reduce the bandwidth usage of the entire 

network and limit it to a specific region. Euclidean distance will help to 

perform distance calculation in the intelligent gateway among nodes in the 

cluster (Danielsson 1980). Once the smart gateway has all the nodes’ 

positions, the K-mean algorithm, which facilitates clustering in large-scale 

systems, starts creating clusters. The number of clusters will be decided later. 

Step 8. Creating Central Distributed System: The central system can begin static 

offloading by registering all nodes inside a central dynamic table. The 

intelligent gateway will regularly broadcast a pair of compute nodes. By 

taking this measure, we can rest assured that all current nodes will have their 

load data updated. 

Step 9. Evaluation of the proposed algorithm: We will compare the hybrid 

method against a selective offloading approach to see how well they stack up. 

The parameters of interest for this analysis are latency times and quality of 

service. The modelling tool, iFogSim, is ideal for accomplishing this goal. 

This thesis strives to achieve two primary goals: fog and cloud computing. 

The first step in attaining LB in FC’s second layer is researching and 

proposing offloading strategies. First, the newly suggested techniques for LB 

in fog/cloud computing were investigated using an extensive study. All viable 

offloading systems have been uncovered through this investigation. After this 

phase, we will have a reinforcement offloading approach that considers the 

benefits of existing models while minimising their downsides. To achieve this 

goal, we will investigate the shortcomings of existing offloading methods and 



20 
 

develop an effective model to maximise the efficiency of the already available 

processing nodes. 

Step 10. Sustainability: Even though the offloading technique would improve the 

LB level, it would cost the entire system’s resources. Most offloading 

algorithms follow a dynamic strategy to unload rather than a static one, 

which leads to accumulating offloading time. Thus, finding a creative 

technique to avoid this accumulated time is vital. Moreover, a massive 

number of messages exchanged among nodes will cause high pressure on the 

infrastructure of the network’s backbone.  

The second aim of this thesis is to create a sustainable solution for LB without 

causing another issue. Figure 1.9 shows the main framework of the proposed 

model. 

 
Figure 1.9: The Proposed solution for the research problem. 

1.4. RESEARCH FRAMEWORKS 

The problem to be addressed through this study is the increasing latency in time-

sensitive applications due to the unfair resource allocation of the arrival workload 

among the computing units in the fog layer, especially in large-scale networks. 

Creating a balanced computing environment in the fog layer decreases the latency, 

enhances performance in sensitive applications, and utilises the available resources 

in this layer. 

1.4.1. THEORETICAL FRAMEWORK 

Building a comprehensive framework requires a well-known understanding of all 

the research concepts. Many concepts in research must be highlighted here. This 
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subsection lists and discusses the concepts used during the literature review stage, 

where these concepts are repeated in most of the prior studies. Figure 1.10 depicts 

the rapport between them. 

 
Figure 1.10: The rapport among variables of research. 

• Computing load: There are many functions for computing devices, such as 

storage, computing, and networking. Computing is the core function of any 

smart device. In FC, the Fog device is the central computing unit in the layer. 

The fog device works by executing the arrival task from the IoT layer. 

However, most fog devices have a limited computing capability, forcing the 

served device to list the arrival task in a private queue. This action generates 

a variable time, named a waiting time. Waiting time is the time computing 

units consume to execute the queued task. It relies on the computing power 

of the fog device and the rate of arrival tasks. However, this work defines 

a computing load as a dependent variable because these factors affect it. As 

the computing power cannot be changed, we consider the arrival task as the 

independent variable affecting the computing load, where computing power 

is a control variable. 

• Offloading: There are many reasons for offloading to be used in computing 

fields. This technique shifts the workload among computing units for 

different reasons. It is used primarily in multi-processing systems (Albalawi, 

Alkayal et al. 2022). In this study, we utilise offloading to migrate the arrival 

tasks in loaded computing units to the underloaded units. To make the 

offloading decision, we need to create an algorithm to find the optimum 

device for offloading. The target device will return the computing results 
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after accomplishing the task. Aazam, Zeadally et al. (2018) argue that 

offloading operations enhance the LB level among fog devices. Consequently, 

the offloading process initiates if the fog device faces a high load. Accordingly, 

we consider offloading as a dependent variable. 

• Arrival Tasks: The Arrival Tasks or workloads are the overall amount of 

work assigned to someone. Firstly, we need to define the task in FC. The study 

describes it as the request sent by an object in the IoT layer to be executed. 

Regardless of the size of the computing power of the IoT objects, many cases 

are required to send the data to be processed in fog or cloud layer due to the 

availability of on-demand service. However, we call the tasks that arrived in 

fog or cloud layers “arrival tasks”. 

• Consequently, we can define workload as the number of arrival tasks sent by 

IoT objects to higher servers to be executed. As a requirement in a theoretical 

framework, we need to identify the type of workload. Hence, the workload is 

an independent variable because they are generated outside our framework. 

• Computing Power: The amount of computing resources that can be used to 

complete a specified number of tasks. It can be measured by the processing 

capacity and speed of individual components, such as processors and 

memory modules, or by the total computing resources of an entire system, 

such as a data centre. Typically, the computational capacity of a system is 

determined by the resources accessible to its users. In this research, we 

consider the computing devices as homogeneous units. Therefore, it is a 

control variable. 

• Computing Resources: Several computational resource-related topics may 

require your consideration as you plan your research. Following are 

descriptions of the most prevalent resources. The purpose of this document 

is to assist in identifying resource requirements and to initiate a discussion 

on how to meet those requirements. This research identifies CPU power as 

the vital resource that needs to be secured to accomplish task execution. The 

capacity of the CPU limits it. 
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1.4.2. CONCEPTUAL FRAMEWORK 

This section presents the conceptual framework for this thesis. It consists of seven 

steps that must be performed to generate a sustainable LB system in a fog 

environment. During the PhD research, we performed these steps.  

In the first year of the research, selecting the research gap was the main issue 

after choosing FC as the primary research area. Many topics were found, and most 

of them were interesting. However, LB is selected after reading and checking many 

review papers in this domain. Next, and in the solution plan, we identify two 

methods to balance the load in FC. Service placement is the first technique to balance 

the load, while task offloading is the second technique. Later, as part of our research 

method, we selected iFogSim as a simulation tool to build our proposed model. In 

the data analysis stage, the outcomes of the experiments are reported and 

documented, and the third year focuses on accomplishing the remaining steps, as 

shown in Figure 1.11. 

 
Figure 1.11: THE CONCEPTUAL FRAMEWORK OF THE STUDY. 
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1.5. THESIS STRUCTURE 

This is the general structure of the thesis, as shown in Figure 1.12. 

Chapter Two: The state-of-the-art FC computation offloading, and LB are reviewed 

and discussed. This chapter follows the systematic review to present the topic.  

Chapter Three: This chapter attempts to balance the load of the fog layer by 

enhancing the service placement policy. We propose reinforcement optimisation for 

a decentralised service placement policy (RODSPP), which attempts to mitigate 

some of the drawbacks of existing placement policies. This chapter aims to answer 

the first research question. 

Chapter Four introduces the second attempt to improve the LB in FC by proposing 

a novel offloading model. This chapter attempts to answer the second and third 

research questions titled “How to create a practical offloading model that improves 

the efficiency of existing FC nodes as far as possible?” and “How to determine the 

optimal technique among the two techniques?” respectively. To our knowledge, this 

is the first work to introduce hybrid offloading in the real meaning. 

 

Figure 1.12: Thesis Organization. 

Chapter Five: In this chapter, we attempt to answer the fourth research question: 

“How to create a sustainable solution for LB to avoid overload situations in FC?”. It 

presents the second and last phase of the thesis research. It proposes a SlbmS that 

seeks a long-term concept using machine learning. 

Chapter Six: This part of the thesis concludes the research with a discussion of 

limitations and potential future research. 
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1.6. PUBLICATION RELATED TO THIS RESEARCH 

In the Academic field, the publication is vital. PhD is one of the academic degrees 

that need to experience the ability of student ability in publication. “More 

publications, more respective in this field” is the standard clause in the academic 

field. Regardless, we have designed the research framework to have the ability to 

publish its phases. Table 1.1 presents the updated states of each paper per phase. 

Table 1.1: THE PLANNING OF THESIS PUBLICATIONS. 

Sr. Article Phase States 

1. Sustainability of Load Balancing Techniques in Fog Computing 
Environment, Review. 

Pre-phase I. Published 

2. Reinforcement optimisation for decentralised service placement 
policy in IoT‐centric fog environment. 

Phase I- Stage 1. Published 

3. 𝑯𝒚𝒃𝑶𝒇𝒇: A Hybrid Offloading Strategy to Improve the 
Performance of Time-Sensitive Applications for Large-Scale 
Networks in Fog Environments. 

Phase I- Stage 2. Peer Review- 
Publish stage 

4. A Comprehensive Solution: A Sustainable Load Balancing 
Monitoring System. 

Phase II. Peer Review 

5. Sustainability of Load Balancing Techniques in Fog Computing 
Environment, Systematic Review. 

General. Draft 

 
 
  



26 
 

 

2. CHAPTER, LITERATURE REVIEW 

Abstract: To increase the number of real-time and sensitive-time applications, 

reinforcing and supporting edge computing, such as FC, is required. FC remains a 

fertile field for research, even with the advent of other computing systems. On the 

other hand, a tremendous number of Internet of Things (IoT) objects and their 

requests make FC face obstacles to providing the required Quality of Service (QoS). 

The distributed nature and limited resources of fog systems make cooperation 

among their devices challenging to handle user requests. LB is one of the practical 

techniques that can remedy this situation. Many researchers seek to introduce 

innovative mechanisms to create balanced computing devices. Utilising the 

sustainability concept to solve the dilemma of LB in FC is the area of this research. 

However, this chapter presents an empirical study of a taxonomy of existing 

techniques in LB. Besides, it summarises the research study according to the 

approved review protocol, which defines the extracted information from each 

article. The chapter finds the best practices in state-of-the-art research to answer 

research questions; this answering paved the way to solving the research problem 

with a sustainable concept.  



27 
 

2.1. INTRODUCTION 

In recent years, the cloud computing model has acquired popularity. This computing 

architecture has garnered widespread adoption in the IoT as an effective means of 

managing and centrally processing data. The two primary components of cloud 

computing are the cloud and the Internet of Things, or IoT, client layer. Numerous 

IoT client-layer devices and objects incorporate sensors for gathering 

various environmental measurements. The IoT layer processes and transmits the 

information to the cloud layer. Over time, the cloud system collects and stores a 

mountain of data for analysis from these devices. However, increasing the reaction 

time could result in the abandonment of cloud technology for specific applications, 

such as intelligent infrastructure, augmented reality, virtual reality, and healthcare. 

(Aazam, Zeadally et al. 2018). 

Later, FC was introduced as a new technology to bridge sensitive cloud and IoT 

technology gaps, such as time latency, location awareness, and service quality. FC 

complements the cloud environment by occupying a layer between the client and 

cloud layers. Although the cloud layer has allotted heavy computational burdens to 

support lower layers, the fog layer has been designed to alleviate the cloud load by 

performing tasks at the periphery. In contrast, portions of fog devices, such as the 

central server in a high-density area, become overwhelmed due to the vast amount 

of IoT-generated data in the client layer. Moreover, FC’s utilisation has increased 

significantly due to the accelerated growth in the usage and implementation of IoT 

applications (Mahmud, Kotagiri et al. 2018). These overburdened fog nodes have 

laboured due to the high demand for services, which has led to unstable computing 

environments. As a result, some nodes are heavily occupied while others are 

inactive. Intelligent techniques must redistribute the transmitted duties among the 

computational devices in all layers to create a balanced computing environment and 

to increase the demands on overburdened nodes to address this issue. 

Alternatively, the World Commission on Environment and Development 

(WCED) introduced the term “sustainability” in a broad context during the 1984 

United Nations General Conference. Nevertheless, many researchers define 

sustainability from a computing standpoint; they introduce it using the same 

concept. González-Mejía, Eason et al. (2014) described sustainability as 
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“maintaining a system’s functionality without experiencing significant deterioration 

over time.” Many experts have studied sustainability in various computing contexts 

to prevent the waste of available resources and maximise their utilisation. However, 

many papers have proposed solutions to improve fog and cloud computing 

performance without considering sustainability. 

LB, on the other hand, is an effective method for enhancing the entire computing 

environment and ensuring that all computing components operate simultaneously. 

Implementing the most recent LB concepts to any computational system will 

improve the complete system’s performance, and all nodes will be burdened 

equally. However, many researchers have recently conducted studies in LB and FC. 

Numerous papers have proposed and introduced a competitive computing system 

at the network’s periphery since 2015. Nevertheless, the LB techniques present 

innumerable obstacles that may diminish the efficacy of such a solution. Efficiency, 

overhead, implementation consequences, and improving defect tolerance are some 

of LB’s current challenges. 

This literature review investigates recent articles and knowledge on LB in the 

fog domain by addressing the following points: a comprehensive primer to FC, 

including an overview, definition, principal components, typical architecture, and 

application examples. It illustrates LB’s core definitions, concepts, scenarios, 

proposed solutions, prose, disadvantages, and controller categories. Are there any 

proposed LB remedies that incorporate sustainability to address this issue? It 

investigates and discusses recent offloading algorithms and their rapport with the 

concept of sustainability, if any. The overall structure of the research is comprised 

of two components, which are the thesis’s most significant contributions. 

The remainder of this chapter is organised as follows: section 2 presents and 

discusses the related systematic research, while Section 3 presents the review 

methodology used in this chapter. Sections 4, 5, and 6 present the background of the 

study, followed by the challenges faced by the FC in section 7. The chapter output is 

discussed in section 8. Section 9 introduces the conclusions.  
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2.2. RELATED REVIEW STUDIES. 

Although many review papers have been found at the start of this survey, they are 

not recommended to be considered when systematic review papers are available 

(Brereton, Kitchenham et al. 2007). Three systematic reviews have been found on 

LB solutions in FC (Kaur and Aron 2021, Kashani and Mahdipour 2022, Shakeel and 

Alam 2022). However, to ensure the necessity of this review, the existing systematic 

reviews should be investigated as suggested in (Kitchenham 2004).  

In a fog environment, Kaur and Aron (2021) presented the first systematic 

review paper on LB. The authors covered 72 research papers published between 

2010 and 2020 using specific databases like IEEE Xplore, Science Direct, Springer, 

Google Scholar, ACM digital library, and Elsevier. They studied the selective articles 

from different aspects, such as their algorithm, pros, cons, and simulation tool used. 

Based on that, they introduced a taxonomy for these solutions and potential 

research gaps. The study categorised the existing LB algorithms into two main 

types: static and dynamic. Though the authors classified all static algorithms under 

one class, they classified the existing dynamic LB into five categories: traditional, 

agent-based, hybrid, real-time, and nature-inspired. Moreover, they proposed their 

architecture and solution for LB in a fog environment. However, the authors 

answered the research questions essential to understanding the fog system clearly.  

After that, and in the second review paper, Shakeel and Alam (2022) discussed 

different sides of cloud and FC. The article investigates and studies around sixty 

papers published from 2015 to 2022 using unclear databases. However, they 

declare some of them, such as IEEE Xplore, Springer, Elsevier, Wiley, and IGI Global; 

Table 2.1 shows the differences among the used databases. It also presents different 

taxonomies for LB algorithms. The authors followed the main classification (Kaur 

and Aron 2021). However, the subclassifications were different, i.e. sub-optimal and 

optimal are the subclassifications for static LB, whereas control and component-

based are the subclassifications for dynamic LB. However, the paper does not 

include any research questions, which is a piece of crucial knowledge for any 

systematic review paper. 
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Table 2.1: THE USED DATABASES. 

Kashani and Mahdipour (2022) wrote the third systematic review of LB 

mechanisms in FC. The authors covered several search engines like IEEE Xplore, 

Science Direct, Springer, ACM digital library, Taylor & Francis, and Wiley. The study 

selected 49 articles published between 2013 to 2021. The study introduced most of 

the classifications, metrics, and simulation tools for LB raised by research questions. 

However, the authors adopted different classifications for LB; approximate, exact, 

fundamental, and hybrid are the main classifications of LB in this study. The adopted 

classification in this article was entirely different from the previous papers. Table 

2.2 depicts the differences between the systematic review studies based on surveys 

(Kaur and Aron 2021, Kashani and Mahdipour 2022, Shakeel and Alam 2022) and 

this research. 

Table 2.2: A COMPARISON AMONG DIFFERENT SYSTEMATIC STUDIES OF LB APPROACHES IN THE FC. 

Ref. Scope of Research 
Pub. 
Year 

Reviewed 
articles 

Taxonomy RQs 
Covered 

years 

(Kaur and 
Aron 2021) 

General 2021 72 
Approximate, Exact, 
Fundamental, and Hybrid 

5 
2010-
2020 

(Kashani and 
Mahdipour 

2022) 
General 2022 49 Static and Dynamic 6 

2013-
2021 

(Shakeel and 
Alam 2022) 

General 2022 60 Static and Dynamic N/A 
2015-
2022 

Our Survey 
Focusing on time-
sensitive application 

2023 103 
Static, Dynamic, and 
Hybrid 

5 
2015-
2023 

2.2.1. THE MOTIVATIONS FOR THE SYSTEMATIC REVIEW 

The primary motivation for the research is to study the overlap area among FC, LB, 

and sustainability concepts. Many terminologies, concepts, and metrics needed to 

Name Type Disciplines 

ACM Digital Library Electronic database computer science (informatics) 

IEEE Xplore Digital 
Library 

Electronic database Computer science, electrical engineering, and 
electronics 

Elsevier Dutch academic 
publishing 

humanities, and the scientific 

 

Wiley USA academic 
publishing 

Science, technology, medicine, professional 
development, higher education 

Science Direct Indexing system scientific and medical publications 

Taylor & Francis England academic 
publishing 

Behavioural Science, Education, Law, Science, 
Technology, Engineering, and Mathematics, Medicine 

Web of Science Indexing system the sciences, social sciences, the arts, and humanities, 

IOS Press Netherlands academic 
publishing 

Scientific, technical, and medical research 

 

ProQuest Indexing system Information and data provide 
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be clarified in this area of research. This review defines and summarises most of 

LB’s terminologies, concepts, and taxonomy in FC. It is considered a decent start for 

new researchers interested in this field. Moreover, this review will draw more 

general conclusions about FC and LB techniques based on existing systematic 

reviews. On the other hand, this review discusses the sustainability concept in the 

computing field. The review protocol is the key to the planning of this study, as 

defined before. 

Consequently, we found that our review will be different because it focuses on 

specific research areas. This review will synthesise the taxonomy of the existing 

studies to create a comprehensive one. It also provides some approved calculations 

for some metrics. Thus, this article has value when it is written as planned. 

2.2.2. RESEARCH CONTRIBUTION 

A list of points makes this review unique over other existing systematic reviews for 

this research area, as shown next. 

• This chapter is the first systematic review in which writing relies upon three 

existing systematic reviews. 

• It focuses on the offloading techniques for time-sensitive applications in a 

fog environment with the support of the sustainability concept. 

• It introduces some selective calculation formulas to each metric. 

• It explores the sustainability concept in the existing solutions (if any). 

• Furthermore, it provides a different taxonomy than the existing SLRs. 

2.3. RESEARCH METHOD 

As a requirement for a PhD degree, we summarised the existing research about the 

strategy of LB in FC. The summary follows the systematic review described in 

(Kitchenham 2004) thoroughly and unbiasedly. However, Kitchenham (2004) 

argues that any new systematic review must identify and review the existing 

systematic reviews of the phenomena of interest. Thus, we followed the checklist 

Khan, Ter Riet et al. (2001) suggested to evaluate the current systematic research, 

as discussed in section 2.2. 

However, planning, conduction, and documentation are three-stage procedures 

obtained from (Brereton, Kitchenham et al. 2007) and the guidelines in (Kitchenham 

2004). To make this work fairer, we consult an external assessment to verify the 

results of each research step; moreover, the external evaluation engages in a precise 



Figure 2.1: 

, “A systematic review relies on validated 

results”. It attempts to avoid the researcher’s expectations in the selection process 
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of the individual studies. This systematic review follows the subsequent review 

protocol guidelines, such as:  

• Background: The article seeks to investigate most of the proposed solutions 

for time-sensitive applications that have been published in ranked journals 

in the area of research.  

• The article must seek to answer the Research Questions (RQs) mentioned in 

Chapter One. Therefore, an initial scoping study is built to collect the 

required data. 

• After performing the initial scoping study, the approved searching strategy 

has been defined. The method for searching primary studies includes search 

terms and a list of databases. The search terms are “Load balancing” + 

“Offloading” + “Resource allocation” + “Service placement” + “Fog 

computing”. Regarding the searched database, we have chosen IEEE Xplore, 

IOS Press, Springer, Web of Science, ProQuest, Scopus, and Wiley.  

• Study Selection criteria are the conditions that must be satisfied by each 

selected article. It consists of including and excluding points. 

• The review protocol must contain developed quality checklists to evaluate 

the individual studies. 

• Data extraction strategy. The extraction data for each selected article 

contains metrics equations, methodology, results, challenges, simulation 

tools, and compared algorithms. Moreover, we need to check if the reviewed 

article answers any research questions of this study.  

2.3.1.3. VALIDATING THE REVIEW PROTOCOL 

Based on the purposes of this article, the RQs and the study scope were specified to 

make the search strings for extracting literature. The review protocol was also 

developed for a systematic study by following (Kitchenham 2004) and the 

experience with existing systematic reviews (Kaur and Aron 2021, Kashani and 

Mahdipour 2022, Shakeel and Alam 2022). Nevertheless, as Kitchenham (2004) has 

recommended, the review protocol has been reviewed and criticised by the 

supervisor, who is considered here as the external assessment. 

Before the execution process for the review protocol, an external assessment, 

which had experienced a systematic survey process before, was performed and 
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modified depending on its feedback. To build the initial scoping study, we applied 

the approved reviewed protocol to ten articles to make the initial scoping study. The 

output of this stage prevents us from struggling among the high number of searched 

articles. During the experimental studies, the study scope was expanded, the search 

methods were enhanced, and the exclusion/inclusion criteria were refined Table 

2.3. 

Table 2.3: THE EXCLUSION AND INCLUSION CRITERIA. 

In
cl

u
si

o
n

 • Research articles that introduce innovative solutions or algorithms on LB in FC focus on time-
sensitive applications. 

• Peer-reviewed articles in conferences or journals 

• Articles published between 2015 and August 2023 

E
xc

lu
si

o
n

 • Articles that study Service Placement, Resource Allocation, task scheduling, task allocation, IioT, 
vehicular or IoV systems, 

• Review articles, editorial articles, short articles (less than six pages), write articles, and non-
English articles. 

• Research articles that do not mention solutions and algorithms to improve LB in FC explicitly. 
• Books, book chapters, and dissertations 

2.3.2. CONDUCTING AND DOCUMENTING THE REVIEW 

After we finalise planning the review, we will conduct the review. The conduction 

stage consists of five steps. Identifying the relevant research and selecting the 

primary studies are the first two steps, followed by assessing the quality of the 

selected papers. Then, Extracting the required data and synthesising them are the 

last two steps in this stage. 

2.3.2.1. RELEVANT RESEARCH AND PRIMARY STUDIES 

The conduction stage consists of four consecutive steps. However, this is the first 

stage, which aims to select the primary studies. This subsection lists the procedures 

for searching and selecting articles in the second phase of this review. We need to 

identify relevant research as described next to accomplish the selecting step. 

We have identified relevant research. The search string or keywords that follow 

are used within the different databases to find the articles related to our study. This 

process searched abstracts, titles, and keywords in Well-known electronic academic 

databases like IEEE Xplore, IOS Press, Springer, Web of Science, ProQuest, Scopus, 

and Wiley are employed. The output of this step was 582 articles, as shown in Table 

2.4. Notice that the search process was between 2015 to 2023. Even though FC was 
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introduced in 2012 (Sulimani, Alghamdi et al. 2021), we have chosen the starting 

year 2015 to find articles more robust. 

Ultimate selection- by applying the inclusion and exclusion criteria, we 

examined the extracted 308 articles. Then, the articles that had passed the quality 

assessment were chosen. By the end of step three, 103 studies were finally selected 

to be included in this review. 

Table 2.4: SEARCHING PROCESS. 

Serial Indexing & Database Systems 
Outcomes 

Step I Step II Step III 

1 IEEE Xplore 64 44 32 

2 IOS Press 35 8 4 

3 Springer 213 83 16 

4 Web Of Science 114 65 19 

5 ProQuest 15 11 10 

6 Scopus 134 94 19 

7 Wiley 7 3 3 

Total 582 308 103 

2.3.2.2. DATA EXTRACTION AND SYNTHESIS 

As mentioned in the section on review protocol, a structured format was designed 

as described in (Kitchenham 2004) to record the target data from selected articles. 

An organised comparative analysis was performed by analysing each article, 

enriching the article with an investigation of the collective research impact. 

2.4. BACKGROUND OF RESEARCH 

In 2012, Cisco’s researchers proposed FC as a new term in the computing world 

(Yannuzzi, Irons-Mclean et al. 2017). Processing data at the edge was not a novel 

concept then, as edge computing and cloudlets had emerged before 2001 and 2009. 

Both FC and Cloudlets are the revolution of a similar notion, which revolves around 

computing and analysis at the border area. FC is available to connect the IoT’s 

objects. It is a newly emerging decentralised computing paradigm that closely 

connects with central cloud computing and IoT devices. On the ground, the extreme 

data generated via IoT devices such as sensors, cameras, and wearable devices can 

be analysed (processed) locally in fog devices, e.g., routers. 

In contrast, the cloud-based systems are forwarded to the cloud in the network 

core (Mouradian, Naboulsi et al. 2017). The enhancement of FC frameworks 

produced the administrators’ choices for computing data at the most suitable 

location in the network to increase the QoS. For example, many applications might 
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require high reliability and ultra-low latency processing tasks, such as in a 

connected vehicle use case where vehicles are required to respond to an accident in 

less than 2 milliseconds of delay (Stojmenovic and Wen 2014).  

FC offers several benefits for IoT applications, such as performing all steps of 

data transmission, data extraction, data execution, and data storage from the IoT 

apps (Xu, Fu et al. 2018). It can fulfil such high-reliability and low-latency service 

requirements and boost the processing capacity for the network by utilising the 

excellent performance of the network connections among the fog devices at the edge 

and the analytics Edge points (Naha, Garg et al. 2018). Also, FC can minimise the 

required bandwidth of the background links), compared to cloud computing, where 

the whole data set needs to be forwarded to a data centre in the core network for 

processing and storage (if necessary). The future IoT networks and era will adjust 

to this scenario, where a noticeable volume of data can flow into the system for 

computing, storage, or analysis. In other words, FC is very similar to obsolete 

computing systems, where the processing occurs near the devices or locally without 

sending them to the remote systems, yet with a central system with powerful 

processing and communication facilities.  

2.4.1. FOG COMPUTING (FC) 

The interest in and focus on FC research is rapidly increasing. Several FC definitions 

rely on different points of view. One of the first people to define FC was Bonomi, 

Milito et al. (2012), who wrote: “Fog computing is a highly virtualised platform that 

provides compute, storage, and networking services between IoT devices and 

traditional cloud computing data centres, typically, but not exclusively located at the 

edge of the network.”. This definition is superficial; it does not consider the 

fundamental aspects of the spread nature of FC; it is just an upgrade in organising 

abilities, like by providing facilitating conditions and improved help for 

communication between gadgets. 

Vaquero and Rodero-Merino (2014) defined FC as “a scenario where a huge 

number of heterogeneous (wireless and sometimes autonomous) ubiquitous and 

decentralised devices communicate and potentially cooperate with the network to 

perform storage and processing tasks without the intervention of third parties. These 

tasks can be for supporting basic network functions or new services and applications 
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that run in a sandboxed environment. Users who lease part of their devices to host 

these services get incentives”. Although this definition has explained the fog system 

from different angles, it ignores the relationship between cloud computing and fog 

environments and why we need to use this type of technology. 

Another researcher intends to define this technology as “Fog computing is a 

distributed computing platform where most of the processing will be done by the 

virtualised and non-virtualised end or edge devices.” (Patwary, Naha et al. 2021). 

Moreover, Naha, Garg et al. (2018) define “It is also associated with the cloud for non-

latency-aware processing and long-term storage of useful data by residing between 

users and the cloud.”. 

According to a definition provided by Mukherjee, Shu et al. (2018), FC is a novel 

model that expands the traditional cloud computing model to the network’s edge. In 

some application components, processing (e.g., latency-sensitive ones) is executed 

at the network’s edge. In contrast, others (e.g., computationally intensive and delay-

tolerant components) can occur in the cloud centre. Networking, computing, and 

storage services are the basic building blocks of the cloud and fog that can provide 

this service. It is the most comprehensive definition due to enough information 

about the fog system. 

Other researchers introduce the FC as a decentralised computing paradigm with 

a pool of resources consisting of more than one ubiquitously connected heterogeneous 

(wireless or autonomous) device at the network’s edge. It might work in a standalone 

mode without supporting cloud services to provide the clients with available resources 

collaboratively (Yi, Qin et al. 2015). Baburao, Pavankumar et al. (2021) define FC as 

a distributed computing model that provides all the benefits of cloud computing at the 

boundaries of the network and acts as a cloud to the clients at the edge.  

Although the expressive definition for FC is “clouds closer to the ground” 

(Mukherjee, Shu et al. 2018), we can modify that to be “fog computing is a mini 

virtual cloud that resides closer to the ground,” which will be more descriptive. Even 

though this definition is too simplistic, it is expressive. 
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2.4.1.1. ARCHITECTURE OF FOG COMPUTING 

A new emerging platform needs standard engineering to be deployed. Currently, FC 

has no approved standard design (Iorga, Feldman et al. 2017). Nevertheless, many 

researchers have introduced fog processing architectures. 

HIGH-LEVEL ARCHITECTURE OF FOG COMPUTING 

The FC platform is formed by high-level architecture, categorised into three vertical 

layers, including Cloud, Fog, and IoT, respectively, as shown in Figure 2.2. 

Layer 1: The ground layer is the IoT level, where all connected devices, such as 

mobiles, tablets, and sensors, exist. In this layer, devices are distributed 

geographically and perform the sensing and actuation processes as an extra activity. 

For example, while IoT devices nowadays provide processing capabilities, 

computing power is an additional function for the sensors. The time-sensitive 

processing should be performed exclusively on the fog layer, while the processing is 

not time-sensitive and can be performed in the cloud layer. The fog layer decides 

what should be forwarded to the cloud layer and what should not. In this situation, 

the clients can gain services from the cloud and the fog based on their condition. 

However, the complex tasks will be managed by the cloud layer. 

Layer 2: The fog layer is the most crucial layer. It is a group of nodes with idle 

storage and/or computational power. Thus, it might have a uni-computational node 

or several connected devices communicating dispersedly (Chandak and Ray 2019). 

This layer contains all intermediate processing and analytic devices, such as 

switches, gateways, servers, and routers. These devices can perform traditional 

virtualisation, typically as the cloud; however, this layer accumulates all generated 

data by the IoT zone and pushes the required data to clients after processing. For 

example, while routing data is the primary function of a router, storage and 

computing are extra activities for the router. Even though the big data issue can be 

fixed by processing accumulated data at the edge zone, billions of connected objects 

will initiate big data problems. Thus, it employs small- to medium-scale big data 

computing at this level. Many researchers’ work has been established to expand the 

knowledge of big data on the Fog platform (Oueis, Strinati et al. 2015, Ningning, Chao 

et al. 2016, Refaat and Mead 2019). 
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Figure 2.2: Fog Architecture. 

Layer 3: The cloud layer is the top layer in the fog architecture, comprising the 

processing servers and storage servers. These servers have extensive storage 

computation power. It is an essential part of any IoT-based system that relies on a 

central location and is accessible worldwide through the internet. 

CHARACTERISTICS OF FOG COMPONENTS 

Figure 2.2 illustrates a basic model of FC. There are many essential computation 

components in fog environments, such as fog servers, gateways, routers, and 

switches. In other words, we can consider any device with storage capabilities, 

networking capabilities, and computation power to be a fog device. All these devices 

are managed by fog servers or intelligent gateways, which act as coordinators for 

services among heterogeneous objects in the client layer. Thus, the fog server is 

responsible for adjusting the communication among IoT devices, and it is also 

responsible for establishing and maintaining communication links among the 

devices’ layers (Wu, Liu et al. 2019). 

Although both fog and cloud share flexible resources of storage, computing, and 

networking, it is obvious to highlight the unique characteristic of the FC model, 

which decides to implement the fog model in place of the cloud paradigm crucial as 

follows (Mukherjee, Shu et al. 2018, Téllez, Jimeno et al. 2018): 

Edged position: The minimum latency requirement for applications such as video 

streaming, augmented reality, and gaming has required various types of networks. 

While the fog system is located at the edge and close to IoT devices, it has the power 

to support latency-sensitive programs that rely on real-time processing. Generally, 

IoT applications with location awareness on the computing servers would make a 

difference. 
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Edge Analytics: regardless of centralised analytics in the cloud platform, FC can 

analyse sensitive tasks locally. In a cloud scenario, the task must be sent to the cloud 

(unique computing power in the system) to analyse the data. In this case, the travel 

time will be added to the total time, increasing the execution time. 

Location awareness: Because of the enormous increase in mobile applications in 

recent years, FC, as a dominant force in network computing, needs to improve the 

QoS to tackle the explosion of tasks generated by mobile devices. Even though the 

computational capacities of mobile devices and IoT devices are increasing, the QoS 

demands of some applications will continue to rise. Besides that, many of those 

applications will require information on location awareness from the system they 

are running. Although it has limited computational capabilities, it can derive its 

location. Thus, the system can track the client’s device position. 

Scalability or Geographical Distribution: Many cloud-owning companies such as 

Amazon, Google, and Microsoft have been able to arrange their cloud data centres 

across the world to improve QoS for their customers and alleviate the load on the 

primary data centres. For example, the Google Company has distributed cloud data 

centres in Asia, South and North America, Europe, and Australia (Haris and Khan 

2018). Although cloud computing has the advantage of covering a wide geographical 

area, it often becomes the bottleneck of the whole system. On the other hand, FC can 

form mini clusters of nodes to be more efficient by being close to the clients. 

Wireless access networking: While FC uses Wi-Fi technology to communicate with 

its nodes, fog nodes can communicate distributively.  

Federation and seamless interoperability: FC comprises multiple computing 

nodes widely distributed and interconnected to cover the workplace. Therefore, the 

block of nodes in that context is possible and beneficial to tackle the vast number of 

tasks generated by clients and IoT devices. Moreover, large-scale sensor networks 

support a heterogeneous end-user and device due to edge devices’ proximity to the 

compute nodes. FC networks are planned to be supported by many sensors. 

Low latency: A wide range of applications will directly benefit from applying the 

fog paradigm to their network by installing computing nodes closer to their sensors 

or IoT devices. This technique will work to decrease the processing time for the 
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requests. Vehicular networks are an obvious example that have a clear benefit from 

fog. Because latency is a crucial vector, FC is mandatory (Hou, Li et al. 2016).  

OPENFOG REFERENCE ARCHITECTURE  

As the use cases show, an FC framework can have a pool of gateways and 

components, such as switches, routers, gateways, and other IoT devices. This might 

require a specific design of the FC paradigm to get the most out of FC. The OpenFog 

Consortium was made by more than fifty organisations worldwide, led by Cisco. It 

has set three goals for developing a fog framework. Figure 2.3 illustrates the 

architecture of OpenFog. The OpenFog research architecture is a mid-level heuristic 

document full of valuable model suggestions for specialists planning to implement 

fog networks, fog components, fog-based applications, or fog nodes. It explains 

several mentions of fog use cases in smart cities, visual security, and transportation.  

 
Figure 2.3: OpenFog Architecture. 

Eight pillars of OpenFog constitute the core of its capabilities, such as openness, 

autonomy, security, scalability, agility, program ability, manageability, and 

hierarchical organisation. The research architecture has discussed these pillars in 

detail and shows the interrelationships among various components. OpenFog’s 

reference architecture supplies a scalable and programmable paradigm for FC. The 

system’s designer can apply their designed resource management plan in this 

reference architecture to enhance the LB (e.g., radio resource management, 

resource allocation, and task offloading) of the FC environment. Given the different 

use cases of FC, fog’s LB needs to consider the exclusive features of the specific 

applications (such as automatic driving and data analytics) in the selected cases. The 
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computation task models we plan to introduce will be used for different 

applications. Here, we list some of the applications of FC security and 

transportation.  

2.4.1.2. REAL-TIME DATA ANALYTICS 

Like IoT applications, the Internet of Vehicles (IoV) must reinforce its ability to 

tackle the high car production rate. With the advent of self-driving and semi-

autonomous vehicles, sensing data (e.g., generated by sensors) in smart cars must 

be analysed locally in real-time and operations (e.g., directions and driving speed) 

must be taken. Even though smart cars might handle all the tasks required to analyse 

locally, the fog system can categorise the tasks that rely on the priority defined in 

the predefined stage or setup. This feature gives a chance to critical tasks for 

execution with minimal time, whereas the other requests are pushed to the cloud to 

be analysed or not taken immediately. For example, if the oil engine expires, the 

indication would be to act or store the historical data for that car. 

Furthermore, many decisions require processing data that does not exist locally 

(in a vehicle). Hence, FC acts to accelerate this process and assist in making fast 

decisions at the edge. Many researchers study and propose many algorithms related 

to mobility computing integrated with FC. Hou, Li et al. (2016) investigate how 

Vehicular FC (VFC) might utilise vehicles as computational power and 

communication infrastructures. The research demonstrates an intriguing rapport 

between FC and computational mobility power, which can be used to empower that 

market. Chen, Huang et al. (2021) present CFC-IoV architecture, a regional fog-

computing-based intelligent vehicular network architecture for dealing with big 

data that generates IoV objects. The proposed architecture includes infra-fog 

energy-aware and QoS-aware resource management, which aim to enhance the 

performance of the entire IoV system.  

SMART GRIDS 

The smart grid is a new era for an electricity distribution network. Usually, this 

network contains distributive smart meters installed near clients to count and 

measure real-time consumption for each unit. Supervisory control and data 

acquisition, known as SCADA, is a standard system utilised by utility organisations 

such as water and electricity to monitor and control distributive objects. These 
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objects are smart meters, sensors, control switches, or control valves. Traditional 

SCADA systems use telecommunication protocols to communicate over private or 

public networks, such as IEC 60870-5-101/103. This protocol has many obstacles 

when used via the internet. Smart meters leverage networking and cloud technology 

to communicate with a central unit in utility organisations. Therefore, IoT 

accelerates smart grids’ ability to communicate with the central SCADA system over 

the internet.  

FC is emerging in this field to enhance and accelerate the reaction of SCADA 

systems by analysing and processing tasks near the edge. Many researchers study 

smart grids in fog environments. Okay and Ozdemir (2016) presents a model for 

smart grids based on FC. The authors prove the efficiency of FC for smart grids 

compared to cloud systems. In contrast, Zahoor, Javaid et al. (2018) propose the 

HABACO technique to enhance resource management in intelligent grid systems by 

using the cloud or FC. The research shows the benefits of using FC in the SCADA 

system.  

IOT APPLICATIONS 

IoT applications, such as smart grids and cities, increasingly rely on real-time data 

to operate efficiently. Moreover, with the incredible amount of data generated 

continually via sensors and other spread devices, the uni-data centre (such as the 

cloud) cannot be centralised in a data centre. An FC framework can compute the 

data aggregated from the IoT sensors near the source point. Therefore, this 

framework can handle both problems in this manner.  

Although the cloud system has higher computational power than FC, fog/cloud 

computing has more power than the cloud. Traditional network components, such 

as routers, Access Points (AP), switches, and proxy servers, are available in the FC 

paradigm. Those components give FC an advantage over cloud computing by locally 

providing processing and analytic power. Thereby, FC can perform efficiently 

regarding service latency, network traffic, content distribution, and operational 

expenses. Therefore, FC better meets the IoT application requirements than using 

cloud computing.  
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2.4.1.3. COMPARISON OF CLOUD AND FOG COMPUTING ARCHITECTURES 

The main distinction between fog and cloud computing is the goal of minimising 

latency in the overall system. While the cloud centre resides apart from the field, 

some clients’ apps require almost zero time to perform their tasks. Health 

applications, for example, are among the most prevalent applications that require 

low time latency, as are intelligent grids. The main differences between the two 

systems are listed in Table 2.5. 

Table 2.5: THE DIFFERENCES BETWEEN FOG AND CLOUD COMPUTING. 

feature Cloud Computing Fog Computing 

Location In promises Closed to the clients 

Internet Required Crucial Not essential 

Technical Support 24/7 Client Responsibility 

Globality Support Not support 

Size of Recourses Massive and easily expandable Limited and not changeable 

Owned by Organisation Clients 

2.4.2. LOAD BALANCING (LB) 

In FC, LB is a strategy that makes all resources of the units’ system equally used. It 

targets distributing the arriving tasks fairly to fully equip all active computing 

units. Every LB algorithm has a unique mechanism to accomplish this target. 

Generally, if managed well, LB is used to increase system throughput, resource 

utilisation, performance, and reliability. Although LB research inspired different 

solutions to fill most research gaps, an explosive growth of IoT data, users, and 

application requirements increased the burden on the fog layer, which has limited 

resources. 

This section expands writing about LB, especially in offloading algorithms. In 

this field, various definitions of LB have been found. LB aims to maintain the 

available resources in computational nodes by redistributing the arrival tasks 

among computing nodes to be equally loaded, avoid overload conditions of one 

device (or specific nodes) with many tasks (Puthal, Obaidat et al. 2018), and avoid 

idle conditions for them.  

Accordingly, LB in FC refers to efficiently distributing the arrival workload 

among a group of computing fog nodes, thus increasing the reliability of incoming 

tasks and the capacity of existing clients. LB is beneficial for cloud and fog providers 

to effectively distribute application tasks to different fog nodes or cloud servers. Due 
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to the fluctuation in the number of client requests, the LB technique is the most 

suitable technique for network computation, which works on a dynamic principle to 

avoid lagging in execution due to a long waiting list at one node. Among the previous 

definitions we notice, it seems they all have the same meaning. When offloading 

specific tasks, criteria such as excessive computation or resource constraints, 

latency requirement, permanent or long-term storage, data management and 

organisation, privacy and security, accessibility, affordability, feasibility, and LB are 

used.  

Figure 2.2 depicts a model of LB in fog architecture, in which the cloud server 

interacts with different layers. LB process, the workloads are exchanged among 

layers to fill clients’ needs regarding resources with the least possible delay. 

Further, in another part, the sensitive request gets sent to the cloud if the client fails 

to receive essential resources. 

LB uses many metrics to evaluate, such as system performance, throughput, 

average waiting time, response time, make-span time, fault tolerance, network 

delay, execution time, resource usage, CPU usage, network load, and Quality of 

Service (QoS). The advantage of LB is that it utilises more computational and storage 

power while minimising the switching time between tasks. LB can be static or 

dynamic, periodic or non-periodic, and centralised or decentralised in a computing 

environment. Therefore, the main advantage of using an LB algorithm is enhancing 

the FC environment (Mon and Khine 2019). 

There are two main categories for LB in FC: static and dynamic LB techniques 

(Bolarinwa 2015). Static LB relies on distributing the tasks using the initial 

information on task requirements. These requirements are determined at the 

beginning of the mission. Although this technique is easy to apply and configure, the 

static method has significant drawbacks. For example, they are changing the burden 

of one node during system start-up to the maximum load. Task allocation is fixed 

and cannot be modified during the execution of the process. While the network’s 

initial design configures the distribution of the workloads to some nodes that seem 

not loaded, the nature of free movements in a fog environment will affect this 

strategy. 
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On the other hand, dynamic LB migrates tasks among nodes smartly when one 

of them gets too busy. Selecting the destination node always depends upon the 

current information about traffic loads. Hence, efficient real-time load estimation is 

vital for active dynamic LB. Moreover, most computing systems widely use virtual 

machines (VMs) (Pan, Thulasiraman et al. 2018). Therefore, the LB function might 

be more complicated in the fog environment.  

Estimating the memory usage and CPU load for fog nodes and the network load 

is the first stage in the algorithm; secondly, analysing the available resources in fog 

devices and measuring the synchronisation level in fog zones. Third, notice the 

fault tolerance and avoid a single point of failure in the event of failure (Bisht and 

Subrahmanyam). 

2.4.2.1. CLASSIFICATION OF FOG NODE IN LOAD BALANCING 

Different methods have been proposed to classify the fog nodes. In the LB algorithm 

of FC, the algorithm classifies the nodes as heterogeneous or homogeneous. 

Homogeneous Node: The FC environment usually compromises devices with 

different power capacities, such as a base unit with high power of resources, and, in 

other parts, mobile phones with a limited number of resources and a different type 

of constraining, so the fog environment is heterogeneous. Therefore, it is hardly 

adopted in the Fog environment. On the other hand, in heterogeneous nodes, this 

type of catalogue, the nodes agreed to cooperate with different types of nodes with 

varying power capacities. Therefore, the LB controller can choose the next execution 

node depending on specific conditions such as algorithm and task size. 

Many IoT-generated datasets are processed in the fog layer. As mentioned, the 

fog layer comprises a group of fog devices, such as switches and routers, 

communicating to create a pool of computing and storage resources. These 

resources need to be managed by distributing the workload requested by clients. 

Those workloads sometimes have a high arrival rate at fog nodes and need fair 

distribution among processing nodes to benefit from those pools of resources. 

Thus, distributing loads requires an LB instant that uses a distinct distributing 

scenario. LB allocates loads to a suitable computing unit. A load balancer collects 

some information about fog devices to estimate and calculate the size of each device. 
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Based on this data, the workloads will be forwarded to the suitable fog node (Ferrer, 

Marquès et al. 2019). 

A fog node is initially designated based on end devices’ and traditional servers’ 

features and characteristics. A group of fog nodes combines at least one or more 

physical machines with high computational capabilities (Ferrer, Marquès et al. 

2019). An FC node would be a logical concept for a more robust understanding, with 

a device’s different form as its physical infrastructure. All end devices, including 

processing capacity, will be counted within the fog node regarding virtual 

processing units. Therefore, all physical devices with computing power at a fog node 

are collected as a single logical unit able to process and analyse assigned services 

seamlessly. For example, traditional computers and mobile devices can also share 

their processing power to provide task orders. All coordination processes for the 

end devices, as well as communication issues within the fog node, will be managed 

by the fog node master (Mach and Becvar 2017).  

2.4.2.2. TYPES OF CONTROLLERS IN LOAD BALANCING 

To create a balanced computing environment, a dispatcher must decide the required 

action to fulfil the balancing criteria. The primary role of the dispatcher is to 

investigate the surrounding statuses of computing nodes and select the ideal 

location to execute the arrival tasks. There are two strategies to implement LB in FC: 

centralised and distributed controllers. 

The central controller uses a core device connected directly or indirectly to other 

fog devices. It could be a standalone or fog device with an LB feature. This feature is 

provided by modifying or configuring the existing computing nodes, as shown in 

Figure 2.4(a). For example, by configuring a router in a fog environment, it can act 

as a router and controller of LB at the same time. The pros of using a central 

controller technique for LB are that it is simpler to manage and implement. 

Moreover, the recovery time is minimal in the event of failure. 
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Figure 2.4: Type of controller in fog layer. 

On the other hand, global state information in the network is a collection of 

metric information from other devices. Thus, the load balance device has global 

state information about the current cluster. This data is gathered and analysed in LB 

for redistribution (Chandak and Ray 2019). The cons of this technique are that there 

is a single failure point, and we can minimise the consequences by configuring 

another fog node to be a hot standby. On the other hand, global state information in 

the network is a collection of metric information from other devices. Thus, the load 

balance device has global state information about the current cluster. 

Distributed Controller: A centrally located controller has many advantages in 

managing and controlling the load among devices in a network, but it might have a 

communication bottleneck since it utilises the network bandwidth. Thus, the failure 

of this load balancer will cause failure of the entire system, or more simply, a single 

point of failure. All fog devices must periodically send selective information to the 

central controller to sustain system updates. Therefore, cooperation is required 

between nodes to distribute the computation requests among them. Whereas the 

distributed controller, as shown in Figure 2.4(b), increases the scalability and 

reliability of the network, it relies on the cooperation of the local controller 

(Chandak and Ray 2019). 

2.4.2.3. SCENARIOS OF LOAD BALANCING IN FOG COMPUTING 

LB might occur at any computing level in the fog system, depending upon the 

location of the computing load. This location, which has a high demand for 

computing, determines what type of algorithms are suitable to be initialised and 
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executed, whereas every location has a different technique to apply. There are many 

offloading scenarios in the fog system.  

Figure 2.5 illustrates some scenarios where offloading can be activated to 

achieve LB. There are three locations to offload tasks in the fog environment. For 

example, case A represents an IoT/cloud model where the IoT device communicates 

directly with the cloud platform without engaging the fog layer in communication, 

such as some intelligent meters accessing a cloud service directly. In case B, the 

communication line represents offload from IoT objects to fog level, where fog 

cooperates with the cloud to improve security or latency services or store and 

process data. While case C shows IoT devices accessing the smart gateway in a 

middleware, it evaluates the task. It decides whether to execute it locally or offload 

it to the cloud instead of offloading it to the fog, depending on the requirements of 

the service. In case D, the operation represents offloading among fog devices (peer-

to-peer) after receiving it from an intelligent gateway or IoT objects. 

 
Figure 2.5: Possible offloading scenarios in a fog environment. 

2.5. CHALLENGES IN FOG COMPUTING 

While FC is classified as an evolved extension of the cloud computing system to 

handle IoT-related problems and shortcomings at the network edge, in FC, 

processing nodes are distributed and heterogeneous. Furthermore, the services 

based on fog technology must work with various aspects of the restricted 

environment. Moreover, assurance of security is dominant in FC. Therefore, 

discovering the challenges of FC from service-oriented, structural, and security 

perspectives can be listed as follows (Mouradian, Naboulsi et al. 2017): 
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2.5.1. SERVICE-ORIENTED 

Resources enrich not all fog nodes. Therefore, comprehensive scale application 

enhancement in resource-restricted nodes is not natural compared to traditional 

data centres. Thus, distributed application development needs for potential 

programming platforms in Fog are required to be implemented. Moreover, a fog 

administrator must clarify the policies to distribute required tasks among 

sensors/IoT devices fog infrastructure.   

2.5.2. STRUCTURAL ISSUES 

The infrastructure of FC consists of various components from both the core and edge 

of networks. These components have different computations but are not designed 

for general computing. Therefore, redesigning or modifying the computation unit 

for the element is a highly challenging part of the system setup. Additionally, based 

on execution operations and operational requirements, selecting the suitable 

device, places of deployment, and corresponding resource configuration are also 

crucial in FC. In FC, computational devices are spread across network boundaries 

and can be shared or virtualised. In this case, it is necessary to define suitable 

metrics, strategies for inter-nodal cooperation, and efficient resource provisioning. 

2.5.3. SECURITY ASPECTS 

FC relies on conventional networking components, making it highly vulnerable to 

security attacks. Maintenance of privacy and authenticated access to computing and 

storage services in a widely distributed model, such as FC, is challenging to ensure. 

Therefore, maintaining QoS is difficult during the implementation of security, where 

the data centre integrity is adequate, which makes the security topic in FC 

challenging. 

2.6. DISCUSSION  

Nowadays, a plethora of beneficial IoT apps rely on the quality of time-sensitive to 

run effectively. FC might be the appropriate technology to enhance the new 

generation of real-time apps. Because of the dramatically increasing number of IoT 

users, some computational nodes in a fog system become loaded while others 

remain idle. Thus, it has become essential to reinforce the cooperation and 

integration among computing nodes through offloading techniques to run most of 

the processing nodes equally and reduce the computational and storage power 



51 
 

wastage (in the idle nodes) (Janjic 2012, Nokia 2013, Bittencourt, Diaz-Montes et al. 

2017, Mach and Becvar 2017, Baburao, Pavankumar et al. 2021). This chapter 

focuses on the research that has already been done on LB and the different ways to 

improve a fog model. Collectively, these studies outline the critical role and the need 

for offloading to enhance system performance, QoS, time latency, and power 

efficiency in FC (Vaquero and Rodero-Merino 2014, Shi, Pallis et al. 2019). 

Therefore, LB, through offloading processes, promises tremendous benefits in a fog 

environment.  

At this stage, the first three questions of the research can be answered. After 

reviewing the recent study, the proposed solution must have the following 

characteristics to satisfy the research requirements: 

• Utilising the behaviours of static and dynamic offloading in a novel 

offloading. (Answering RQ1). 

• The proposed model must categorise the arrival client task into heavy 

and light tasks, as shown in (Guerrero, Lera et al. 2019). (Helping to 

answer RQ1). 

• It is essential that light tasks be executed at the leaf or edge device and 

not be engaged in any offloading process (Sulimani, Sajjad et al. 2022). 

(Helping to answer RQ1). 

• The novel hybrid algorithm, which has static behaviour, can work to 

minimise the exchanged system messages (as explained before); 

moreover, clustering limits the exchanged messages in a system by 

keeping them inside the cell. (Answering RQ2). 

• Clustering also works effectively to limit the exchanged messages inside 

the cell. Distant offloading appears, in this case, when the fog node 

offloads the tasks to the cloud. (Answering RQ3). 

• The proposed model must employ offload in cases C and D and avoid 

cases A and B (Figure 2.5). (Helping to answer RQ3). 

However, the formidable rapport between enhancing the performance of 

computing nodes and offloading processes has been reported in the literature. In 

effect, the offloading technique reinforces the current algorithms and invents a new 

one (software). This chapter sets out to assess the drawbacks of offloading 

processes in the targeted system. Moreover, an initial objective of this study is to 

identify if any previous study introduced a sustainable concept to balance the load 
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in a fog system. The outcomes showed no LB solution based on a long-term concept 

with the mentioned characteristics in the literature reviews. These finding 

highlights adding an extra computing node to an affected area or moving the idle 

node to another location (hardware modification) with high demands to overcome 

the research issue. This modification in node position must be done through specific 

software, which must have historical load data for all computing points. However, 

creating a hybrid LB system is considered a measurable research gap. It can thus be 

suggested that even though the software solution has a noticeable improvement for 

LB, hardware and software resolution will enhance the computing system better. 

There is ample room for further progress in determining the feasibility of including 

hardware modifications in the position of fog nodes to improve LB. 
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2.7. CONCLUSION 

Most suggested LB solutions that aim to reduce the workload of affected nodes by 

offloading some of that workload to their neighbours’ nodes ignore the concept of 

sustainability in fog networks. This scenario is discussed and explored in this 

chapter. However, this perspective on resolution may lead to an increase in 

offloading processes, which would inevitably impact available network throughput. 

However, this chapter presents the most articles that offer solutions to enhance the 

LB in FC. The chapter uses a systematic review to build the survey. The research 

questions aim to understand better the proposed solutions to tackle the obstacles 

that affect the performance of time-sensitive applications in large-scale fog 

networks. Moreover, the study explores the sustainability concept utilised before. 

The outcomes of this chapter point to the fact that no study finding a solution to the 

research dilemma has a long-term solution. 
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3. CHAPTER, REINFORCEMENT OPTIMISATION 

FOR DECENTRALISED SERVICE PLACEMENT 

POLICY IN IOT-CENTRIC FOG ENVIRONMENT 

Abstract: A decentralised service placement policy is critical in distributed systems 

like FC, where sharing workloads fairly among active computing nodes is essential. 

A decentralised approach is an inherent feature of the service placement process, 

may improve LB among computers, and can reduce the latency in many real-time 

Internet of Things (IoT) applications. However, this chapter proposes 

reinforcement optimisation for a decentralised service placement policy (RODSPP), 

which attempts to mitigate some of the drawbacks of existing placement policies. 

Matching task size with node specifications and allocating less popular but time-

sensitive applications in the fog layer are the primary contributions of this study. 

Extensive experimental comparisons are made between the proposed algorithm 

and other well-known algorithms using an iFogSim simulator. A microservice-based 

application with varying sizes of computing requests is tested experimentally, and 

the results show that the proposed algorithm effectively serves computing instances 

closer to users, reducing service latency and network usage. Compared to the 

existing models, the proposed modified algorithm reduces service latency by 24.1%, 

network usage by 4%, and computing usage by 20%, thus highlighting positive 

outcomes when using the proposed algorithm for fog analytics in future real-time 

IoT applications.  
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3.1. INTRODUCTION 

The popularity of smart cities, wearables, e-health, and intelligent vehicle 

environments has increased with the emerging applications of the Internet of 

Things (IoT) (Vögler, Schleicher et al. 2016, Sulimani, Alghamdi et al. 2021). Quality 

assurance is essential in intelligent systems because users and their service needs 

are growing. For the quality assurance of IoT applications, cloud servers were 

expected to integrate IoT technologies with human users (Catruc and Iosifescu 

2020). The cloud-centric IoT network has been designed to alleviate the constraints 

of IoT devices due to the limitations of computational and memory resources by 

providing centralised control of IoT devices (Khosroabadi, Fotouhi-Ghazvini et al. 

2021). However, cloud servers are often far from IoT edge devices, thus introducing 

latency and bandwidth challenges between users and computing nodes (Kamel, Yu 

et al. 2020). Latency in time-sensitive applications, such as smart grids or unmanned 

vehicle management, can result in significant problems (Kaiwartya, Abdullah et al. 

2017, Tiwary, Sharma et al. 2018). A fog network can use local computing and 

storage resources near the IoT edge devices. It can thus provide necessary 

computations to the IoT edge devices, providing an opportunity to reduce the 

latency and bandwidth requirements due to being closer to the IoT edge devices 

than cloud servers (Klas 2015, Mao, You et al. 2017). 

Cloud servers and fog networks provide alternative options for IoT edge devices 

that can also connect to access computing resources through cloud servers and fog 

networks.  A fog data manager (FDM) can determine whether the data is executed in 

the fog network or cloud servers. The FDM can transmit part of the data to the cloud 

servers while the remaining data is retained on the fog network, as discussed by 

(Puliafito, Vallati et al. 2021).   Once the data is sent and allocated to the fog network, 

the placement policy (PP) can ensure it is retained on the fog network. Fog service 

orchestrators (FSOs) can also fairly allocate computing resources among the fog 

nodes to improve the quality of service (QoS), as presented by (Baranwal and 

Vidyarthi 2021). However, neither of these methods addresses scalability issues in 

an IoT network well, and  Salaht, Desprez et al. (2020) addressed scalability in their 

Fog Service Placement Problem (FSPP). An efficient FSPP is vital to ensuring the QoS 
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of IoT applications. A failed or suboptimal FSPP can delay fog analytics, causing 

significant issues for real-time IoT applications. 

FSPP is essential, but its centralised management can have some disadvantages: 

(a) increased network overhead due to the periodic communications between the 

resource broker and fog node; (b) longer computing time due to the increased 

number of IoT edge devices to control; (c) reduced reliability to a single point of 

failure (SPOF); (d) management of heterogeneous fog devices; and (e) inherent 

latency generated by machine communications between brokers and fog devices. 

However, the decentralised scheduling algorithm (DSA) proposed by Salaht, 

Desprez et al. (2020) relies on the time vector for efficient operation. A poorly 

managed FSPP can cause real-time IoT applications to fail due to the 'induced' high 

latency (Brogi, Forti et al. 2020). A poorly managed FSPP can cause real-time IoT 

applications to fail due to the 'induced' high latency (Brogi, Forti et al. 2020).  

3.1.1. RESEARCH PROBLEM 

"What is a new solution for optimal placement policy over fog physical 

resources to overcome the inherent issues of prevalent resource allocation 

mentioned in RQ1, RQ2, and RQ3? is the fourth research question. Creating a 

simple and efficient service placement model is the objective of this chapter. 

Several hurdles need to be overcome by the proposed algorithm, which requires 

developing a novel strategy in service placement to answer the related research 

questions. 

This study reinforces the current placement policy FSPP using a proposed new 

approach to overcome some shortcomings. This study presents an innovative FSPP 

that operates distributed to reduce the induced and inherent latencies in IoT 

applications that prioritise delay-sensitive applications to be served with priority 

placement even with a low popularity rate. The father node, which receives the 

computing tasks from the end-user nodes, can forward or maintain the services if 

the father nodes are compatible. All tasks are managed locally by the father node 

and its subordinate nodes without global scheduling. Such an FSPP is more scalable 

and unaffected by the increasing number of IoT edge devices or services. This study 

also performs many experiments to confirm the above hypothesis. The primary 

contribution of this study is a more scalable FSPP that reduces computing 
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requirements while reducing inherent and induced delays in time-sensitive IoT 

applications. The new FSPP may limit global communication between fog nodes, 

therefore not guaranteeing global optimisation; however, as the size of the IoT 

network increases, global optimisation is often unnecessary (Puliafito, Vallati et al. 

2021).  

In this approach, the proposed method places the most popular or delay-

sensitive compute tasks closer to the end-user nodes using the hop number as the 

reference. This method manages the workload for fog nodes to remain sustainable 

with locally optimised QoS, thereby satisfying the necessary computing 

requirements of IoT applications in the fog network. The primary objective of this 

study is to develop the decision criteria for service allocation, including when and 

where the services are to be allocated among the IoT fog nodes and associated time-

sensitive requirements (either closer or further from the end-user nodes). 

3.2. RELATED WORKS 

Fog networks can use many optimisation techniques, including greedy algorithms, 

heuristics, genetic algorithms, and linear programming. In References (Yang 2015, 

Zeng 2016, Wang 2017, Khosroabadi 2021, Sami 2021), several aspects of fog 

resource management are defined, including scheduling, placement, provisioning, 

allocation, and mapping for clients, virtual machines, services, and resources. These 

algorithms have also been investigated for real-time applications, such as smart 

cities, industrial IoT, and mobile microclouds (Taneja 2017, Salimian 2021). Table 

3.1 summarises recent work, including application types (e.g., eHealth IoT system, 

general IoT system, or embedded system) in the column Scope, types of brokers 

(Broker), proposed algorithms (Alg.), target functions to optimise (Objective 

functions), components that the optimisation algorithm can control to enhance the 

objective functions (Decision variables), validation tools used to test the algorithms, 

and types of computing environments (Env.). 

Khosroabadi, Fotouhi-Ghazvini et al. (2021) proposed "a clustering of fog 

devices and requirement-sensitive services first" (SCATTER) algorithm to allocate 

the Fog-Edge border computing resources to delay-sensitive applications but 

ignores the other tasks in demand, which could be a concern in many real-life 

applications. Velasquez, Abreu et al. (2021) introduced popularity ranked 
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placement (PRP) based on graph partitions and optimisation using genetic 

algorithms and showed that PRP yielded improvements compared to the generic 

genetic algorithm or first fit (FF) algorithm but could still be improved. 

Morkevicius, Venčkauskas et al. (2021) presented two stages of multiobjective 

optimisation that included multiple metrics that we use in this study to evaluate 

the proposed method: security performance, compute usage performance, and 

storage utilisation. This technique was designed to maintain the QoS level with the 

minimum usage of available resources. 

QoS and energy consumption metrics were used to evaluate the algorithms 

proposed by Puliafito, Vallati et al. (2021). Those authors attempted to enhance 

the service placement policy in a cloud/fog environment, ultimately improving 

QoS in delay-sensitive applications. Hassan, Azizi et al. (2020) proposed a MinRE 

placement policy to enhance QoS and energy consumption in a cloud/fog 

ecosystem. MinRE consists of two algorithms, MinRes and MinEng, each focusing 

on different workload types. During experimentation, MinRE showed promising 

results while increasing computing loads, even with a fixed number of fog nodes. 

Baranwal and Vidyarthi (2021) used distributive fog orchestrator nodes (FONs) to 

place services on a fog-integrated cloud. The FON, a mediator entity, was proposed 

by Al-Tarawneh to assign the arrival workload to the fog computational node 

(FCN). Tarawneh and Hyasat (2010) proposed a bi-objective placement algorithm 

to enhance the placement policy for interoperated services in a fog network. That 

study considered the security requirements and criticality of the application as 

optimisation variables and improved the satisfaction metrics compared to other 

policies, including edge-affinity and cloud-only. 

Maiti, Sahoo et al. (2021) designed a service placement policy to use schedule 

gaps. Their proposed policy aimed to minimise the makespan to meet the task 

deadlines with less utilisation of communication resources. In (Sami, Mourad et al. 

2021), an intelligent fog and service placement (IFSP) was proposed to proactively 

place services on demand using deep reinforcement learning (DRL) hosted in the 

cloud to predict the system's load expectations with the entire database. The IFSP 

can thus prepare nodes predictively before bearing workloads. Salimian Salimian, 

Ghobaei‐Arani et al. (2021) proposed autonomous IoT service placement to reduce 
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the execution costs of a distributed fog system using the grey wolf optimisation 

(GWO) scheme, which outperformed comparable policies in finding suitable fog 

nodes to allocate computations. For heterogeneous cloud/fog environments, 

Arora and Singh (2021) presented a heterogeneous shortest module first (HSMF) 

placement policy. The HSMF was based on finding the shortest module to serve 

first, which yielded improved performance compared to the other approaches. 

Beraldi and Alnuweiri (2019) introduced a job allocation methodology for 

interdependent services in a fog network, where interdependent jobs rely on 

internode data communication and are described using a directed acyclic graph 

(DAG). This work was limited because it did not consider the deadline constraint 

and workflow execution. A linear approach (first comes, first serviced) has been 

widely used, but task completion in ascending order is more time-efficient (Jamil, 

Shojafar et al. 2020). However, sorting can be resource-intensive in terms of time 

and computing.  

The decentralised service provisioning introduced by Guerrero, Lera et al. 

(2019) produced promising outcomes, such that all latencies in data transmission, 

decision processing, and return response were reduced, achieving fair LB. 

However, this system is still challenging due to its high running cost. Random 

service allocation was discussed by Souza, Ramírez et al. (2016) but resulted in a 

high service delay due to poor LB. Huang, Lin et al. (2014) proposed an energy-

efficient approach to co-locating service placement, which was adequate for a 

small network but achieved poor service placement in a more extensive network. 

A similar approach by Wang, Zafer et al. (2017) reduced execution costs by placing 

predictive modelling tasks. The proposed solution performed well, but the cost of 

the system was high, making it unaffordable to a small company. Taneja and Davy 

(2017) proposed a resource-aware service placement solution, a good QoS 

optimisation approach that first considered the highest-demand application tasks. 

Thus, the mechanism resulted in a swamped network with idle and waiting states 

with low-capacity devices/nodes. 
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Table 3.1: Summary of approaches to service placement. 

 

3.3. PROPOSED ARCHITECTURE AND ALGORITHM 

3.3.1. ARCHITECTURE 

In real applications, a fog network is an extension of a cloud network. The extension 

of the decentralised, remote distribution of the cloud network can be considered a 

fog network. The computing nodes within the fog network are equipped with 

limited storage capacity and computing power for host instances and can thus be 

regarded as cloudlets (Muniswamaiah, Agerwala et al. 2021). Therefore, a resource 

management policy for the IoT network can determine where and when to place 
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computing instances among the different layers of computing nodes (e.g., fog or 

cloud). This chapter proposes an innovative service allocation architecture that 

alleviates the drawbacks of FSPP, particularly for time-sensitive applications. 

Given the three layers of the IoT network (cloud, fog, and edge), as shown in 

Figure 2.2, the top layer is the cloud layer that contains the primary cloud servers. 

The access layer is the edge layer, where end devices manage requests for IoT 

applications. The fog nodes connect to both the edge devices and cloud servers. Edge 

devices include computers, smart cars, sensors, and smart homes (Sabireen and 

Neelanarayanan 2021). The fog nodes connect to both the edge devices and cloud 

servers. This study assumes that all applications in an IoT network use 

microservices (Colistra, Pilloni et al. 2014). These applications were configured as a 

group of stateless and trivial services. These small services complete a complex task 

once executed in a sequence. For example, 𝑎𝑝𝑝1 requires 𝑠1, 𝑠4, and 𝑠6 to perform its 

complex task, while 𝑎𝑝𝑝2 requires 𝑠1, 𝑠2, 𝑠3, and 𝑠5, where the system consists of N 

services, as shown in Figure 3.1. Both applications must complete a specific number 

of jumps to perform 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2. Thus, each computing node can be scaled up 

and down in their instances to improve the QoS of the distributed fog nodes. The 

scaling process can use service codes from the cloud. 

 

Figure 3.1: Interoperated services and applications. 

This article proposes an optimisation of service placement by (1) allocating the 

most demanded services and all time-sensitive applications in a particular area in 

the fog nodes that are closer to the clients (edge); (2) migrating the services that are 
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not used regularly to reserve the available resources for other priority services; and 

(3) managing service allocations to prevent system overloads. For example, if an 

enormous computing task is allocated to a less powerful device, an overload will 

occur in the system. Due to resource limitations in fog nodes, the service placement 

policy must select services to be migrated. The proposed algorithm allocates 

priority services to the nearest nodes in the shortest path. It migrates the lowest 

nonsensitive requests to the upper levels, away from the users and closer to the 

cloud. 

System latency is inherent in all IoT applications. Although the service 

placement policy can reduce latency in some fog applications, a delay-sensitive 

application demands further reduced latency to perform adequately in a time-

critical application. For example, a device for a stroke patient must respond within 

near-zero seconds, where any delay in the reporting system can have marked 

consequences for the patient (Pareek, Tiwari et al. 2021). The metadata of service 

requests must be evaluated in priority assignment; thus, critical tasks can be 

allocated near edge nodes to support real-time requirements.  

Many IoT applications perform interrelated services, where the cloud server 

becomes essential as a long-term solution. Migration of such services along the 

shortest path to the cloud is critical. The migration of some services can increase the 

total execution time (and thus latency) if some essential services do not migrate 

through the shortest path (Al-Tarawneh 2021). For example, an algorithm finds a 

service 𝑆𝑥 with the highest demand for the device 𝐷1. However, due to the limitation 

of 𝐷1
′ 𝑠 resources, s2, which is selected with the lowest popularity in 𝐷1, must migrate 

to neighbouring devices, as shown in Figure 3.2. Although, 𝐷3 With a short distance 

from the source device, the number of hops increases by two for 𝐷2, located on the 

shortest path to the cloud. To accomplish this task, s4 was required. 

Some services are in high demand (i.e., popular), while others are in low 

demand. The popularity rule works by migrating high-demand services to fog nodes 

closer to the client (edge), while other low-demand services are allocated to the 

upper nodes with the shortest path to the cloud servers. 



63 
 

 

Figure 3.2: Example of service migration within different paths. 

The interoperated service combines a clump of compensated microservices to 

a complex task. Thus, it is critical to migrate all interoperated services (if possible) 

if one must be migrated; this action tends to minimise the number of hops. Figure 

3.3 shows the idea of partially migrating the interoperated services. We assume that 

the service execution flow for an application is s1 → s2 → s3 → s4 → s5. Due to this, it 

resides at the upper level, closer to the cloud and away from the edge. The 

application will add two additional hops if the placement management system 

(PMS) does not migrate to the following interoperated services: 𝑠4 and 𝑠5. Thus, it is 

essential to verify the migration of Sn+1 and higher and keep 𝑠𝑛−1 at the same node. 

Suppose we assume Sn is the migrated service, as shown in Equation 3.1. In that case, 

the PMS must maintain the migration process for the (n+1)th interoperated service 

along the shortest path to the cloud while keeping the (n-1)th in the initial node 𝐷𝑖: 

 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑛
= ⋀ 𝑠𝑥

𝑥→∞

𝑥=𝑛
  ∀ 𝑥 ∈  𝑖𝑛𝑡𝑒𝑟𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 (3.1) 

This strategy must be activated if the initial node has limited resources. The 

computing node uses a decentralised service broker in the proposed system, which 

has proven beneficial against a centralised management system (Gowri and 

Baranidharan 2023). 
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Figure 3.3: Example of interoperated service migration within the shortest path. 

A decentralised broker is used to implement the proposed strategy. The 

modelling and characterisation parameters were obtained from (Besharati, Rezvani 

et al.) but with modifications. The modification is made using the service placement 

request manager (SPRM). A matching code is used in the SPRM to add more 

restrictions to accept the tasks or migrate them to the higher layer. Therefore, the 

computing nodes accept workloads by matching their sizes with node specifications. 

Conversely, Figure 3.4 shows the proposed broker, which keeps the remaining 

components of the broker having similar functions as Service Manager (SM), Service 

Usage Monitor (SUM), and Service Popularity Monitor (SPM) (Guerrero, Lera et al. 

2019). 

Fog clients must be connected to one leaf device or gateway in the fog network 

to start using available services. Each time the client requests a specific service, a 

service allocation request (SAR) is generated to obtain permission to reserve the 

computing resources. The SPRM decides to accept the allocation of this service or 

forward the SAR to the next upper fog device (see Figures 3.2 and 3.3). After 

analysing the local device information gathered from the SPM and SUM, the SPRM 

decides. Although the SUM aims to collect internal data about fog devices, the SPM 

is designed to measure the service request rate, which the SPRM uses in its 

calculations. Each node decides to host the services or migrates them to the next 

available node in the upper layer. 
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Figure 3.4: Decentralised service placement, the broker. 

3.3.2. SYSTEM MODEL 

In the proposed model, which follows the principles of FSPP, all applications 

requested by a group of clients, 𝐶𝑛, are initially allocated to cloud servers, 𝑆𝑐𝑙𝑜𝑢𝑑. 

Each application comprises a set of (interrelated) service units. Therefore, a 

sequence of service units must be executed to perform a specific application. 

Applications in the cloud are called by clients in the lower layer (closer to the edge) 

with a group of interconnected fog devices D in between. These fog nodes have 

constrained but available processing power that can complete the sequence of 

service units without relying on cloud servers. 𝑆𝑃𝑆
𝐶𝑙𝑜𝑢𝑑  is a term used to define the 

shortest path between service tasks and the cloud with the minimum number of 

hops. The father (D1) of the device represents the first device that receives service 

requests. 

The decentralised approach allocates services to local (neighbouring) fog 

devices. Various instances (𝑆𝑥
𝑦

, where x is the service number and y is the code of 

the device that hosts the services) are allocated across the fog nodes. Thus, 

considering a given instance, we can formulate the relation as a many-to-one 

rapport 𝑎𝑙𝑙𝑜𝑐: {𝑆𝑥
𝑦

} → {𝐷𝑥}. Conversely, many-to-many is the rapport if we consider 

{𝑆𝑥}→ {𝐷𝑥}. 

To complete an application, every client 𝐶𝑥 must be connected to the system 

through a leaf device. The leaf device can communicate with one or more devices 
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simultaneously. Thus, the rapport in this model was defined as a many-to-one 

rapport 𝑐𝑜𝑛𝑛. {𝐶𝑛} → {𝐷𝑥}. The service request rate 𝛾𝑆𝑥

𝐶𝑛 for each client must be 

considered in this study to categorise services. Each device 𝐷𝑖  connected to the 

system must analyses its behaviour by monitoring the request rate 𝛾𝑆𝑥

𝐷𝑖 that it 

receives for each task. To calculate the request rate for 𝐷𝑥, for example, we must 

sum all the arrival tasks of clients who are in the range covering 𝐷𝑥 as follows: 

 

 

𝛾𝑆𝑥

𝐷𝑖 =  ∑ 𝛾𝑆𝑥

𝐶𝑛        ∀ 𝐶𝑛  ∈ 𝑇ℎ𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐷𝑖

𝐶𝑛

 (3.2) 

To determine the performance of each device in the system, we consider the 

computational capacity of a fog device. Therefore, the resource capacity is 

introduced as 𝑅𝐷𝑖

𝐶𝑎𝑝 = {𝑟𝑐𝑝𝑢}, which is constant for each device and where  𝑅𝐷𝑖

𝐶𝑜𝑛𝑠𝑝 is 

the power consumption of 𝐷𝑖  depending on the allocation process in each device, 

which must be variable. Therefore, it is essential to calculate the total resource usage 

𝑅𝐷𝑖

𝑢𝑡𝑧 for each computing node. The total resource usage can be calculated as follows: 

 

𝑅𝐷𝑖

𝑢𝑡𝑧 = ∑ 𝑅𝐷𝑖

𝐶𝑎𝑝
×

𝑠𝑥

 𝛾𝑆𝑥

𝐷𝑖                            ∀ 𝑆𝑥  ∈  𝐷𝑖 (3.3) 

3.3.3. OPTIMISATION MODEL 

The proposed algorithm allocates the most popular (in-demand) computing loads 

closer to the client layer. It allows all nodes to accept computer loads if resources 

are available with the correct specifications. Thus, the service request rate is part of 

the acceptance metric in the SPRM module. The decision for each fog node is to 

locally analyse the service request rate before migrating less popular services to the 

cloud. The heavy tasks that overload the local nodes also migrate to the upper level. 

Guerrero (2019) notes that heavier tasks should be kept closer to the cloud 

provider. In both cases, the interoperated services migrated to the cloud once 

classified. The migration of the interoperated services with the undesirable service 

decreases the number of unwanted hops in the network, as previously discussed in 

Figure 3.3. Table 3.2 summarises the functions and variables used in the proposed 

model. 
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Table 3.2: SUMMARY OF THE FUNCTIONS AND VARIABLES USED IN THE PROPOSED MODEL. 

 

Algorithm 1 shows the pseudocode for the proposed enhanced service 

placement policy. The placement algorithm is invoked when a particular service 

cannot serve appropriately with the local fog nodes and/or when the available 

capacity of a fog device is inadequate to satisfy the maximum service requirements. 

(Line 1). The latter condition ensures that all fog nodes in the proposed policy have 

sufficient capacity to run the most popular services. If these criteria are met, the 

gateway or leaf device 𝐷𝑖  is the father of route 𝐷𝑓𝑎𝑡ℎ𝑒𝑟 (Line 2). The father device is 

the closest computing node to the client's gadget. Thus, it is critical to maintain the 

highest-demand instances in a leaf device (Roig, Alcaraz et al. 2020). 

Additionally, once the father device is selected, the first-child device 𝐷𝐶ℎ𝑖𝑙𝑑1
 

must be chosen (Line 4) by identifying the shortest path to the cloud (Line 3). Thus, 

the first-child device 𝐷𝐶ℎ𝑖𝑙𝑑1
 receives SAR messages if 𝐷𝑖  begins straggling. The 

service placement request manager (SPRM) in the child device decides to host the 

service or migrate it again by generating another SAR to its child while recalculating 

the shortest path. The child's decision depends on the service's popularity in 𝐷𝐶ℎ𝑖𝑙𝑑1
. 

Typically, SPRM gathers essential data by SUM and SPM, where both are located 

within the same local broker. The reinforcement optimisation for a decentralised 

service placement policy (RODSPP) algorithm also ignores the remaining child in 

the route to the cloud, where each fog node recomputes the shortest path once the 

previous criteria are satisfied. This strategy reduces operational conditions' 

dependency on the remaining distant fog nodes. 
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Because this algorithm aims to improve service availability in the fog nodes, the 

system sometimes downloads the services from the cloud. To download the service 

𝑆𝑥
𝑦

 in the candidate fog device 𝐷𝑖 (Line 6), the candidate node must have adequate 

resources to serve the requested tasks; the device overload must also be within the 

acceptable threshold, and the tasks must be recognised as part of delay-sensitive 

applications (Line 5). Eventually, the algorithm uniquely guarantees the 

maintenance of the overload of all computing nodes, while the POP algorithm 

focuses only on the guaranteed availability of services at the nodes (Guerrero, Lera 

et al. 2019). 

The proposed algorithm then installs services with the highest rate (Line 8); 

otherwise, the candidate service is migrated to the upper level (Line 17). The 

migration process extends the computing capacity by alleviating current loads. If the 

service is recognised as a high priority, the interoperated services for the lowest 

service rate must be migrated together (Line 11). The number of spaces must be 

identified to create the required computation space to perform the top services 

(Line 9). The placement algorithm sequentially migrates the lowest and 

interoperated services to its child (Lines 12-14). Thus, the node begins by sending 

𝑆𝐴𝑅𝑆𝑥

𝐷𝐶ℎ𝑖𝑙𝑑to its child. Every child identifies their child to communicate directly. The 

required services are downloaded once the migrated services are deallocated from 

the father device (Line 15). 

We now consider the case study device 𝐷𝑖  is currently allocated s1, s2, and s4 in 

Figure 3.3. Due to emerging popular services and limited resources, SPRM may 

migrate s2 as the lowest service usage. This action had several consequences. First, 

D1 is assigned as the father device, and D2 is assigned as the child, where the shortest 

route 𝐷1 → 𝐷2 → 𝑆𝐶𝑙𝑜𝑢𝑑 has two hops, and the other route has one more step 𝐷1 →

𝐷3 → 𝐷2 → 𝑆𝐶𝑙𝑜𝑢𝑑. Second, the most popular service requirements must be less than 

the currently available computing resources, and the node configurations must 

satisfy computing requirements; the latter condition avoids overloading the 

computing nodes. Then, we are obligated to migrate s2 and its interoperated 

services s4, and the first migration process occurred for s2, followed by s4. Finally, 

the required service triggers the download, while the migrated services commence 

finding another child host in the shortest path. 
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Algorithm 1 shows the pseudocode of the proposed resource optimisation 

algorithm. The migration request is activated only when the requested service 

exceeds the currently available resources. We have provided a service for data 

classification using a lightweight module (Guerrero 2019). The service allocation 

request is sent to the gateway and then onto the fog layer. In this layer, the controller 

estimates the service requirements and sorts the devices accordingly. Thus, time 

and complexity are limited in sorting and job allocation. Devices that have the 

required capacity will be identified and allocated for computing in a predictive 

manner; thus, the tasks will be assigned to those nodes that have the ability and are 

available for operation. Also, complex tasks will be assigned to nodes that are not 

busy and have sufficient power to perform effectively. Simple tasks are thus 

assigned to busy nodes with less capacity. This approach minimises latency and 

power consumption, and reducing power consumption generally reduces overall 

operational costs. 
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3.4. EVALUATION AND EXPERIMENTAL RESULTS. 

3.4.1. EVALUATION 

We used the iFogSim simulator (Gupta, Vahid Dastjerdi et al. 2017) for the 

microservice-based simulation. The module placement class has been modified to 

evaluate the proposed model. This evaluation compared the POP (Guerrero, Lera et 

al.) with the edge based on iFogSim's built-in placement policy. Different scenarios 

were considered to evaluate the proposed algorithm by varying the parameters of 

the number of applications, fog devices, and users/clients. The configurations of the 

devices in the simulation environment are shown in Table 3.3, and the experiments 

followed the same configuration parameters in the POP study (Guerrero, Lera et al. 

2019).  

Table 3.3: THE SUMMARY OF CONFIGURATIONS OF EXPERIMENTS. 

 

The experiments used a tree-based network topology to manipulate the number 

of devices in a system. Each fog device interacted with another fog device at the next 

level via the shortest path to the cloud. This forwarding process represents the 

migration activity for the lowest-priority task. For simplicity, the network device's 

behaviour was not changed and was fixed with the shortest path once identified. 

This proposal identifies the number of children at each level, as shown in Figure 3.5. 

As discussed in Section 3.1, cloud servers are assumed to provide unlimited 

computational resources. The memory in fog devices was sufficiently large in these 

experiments; thus, we can ignore memory's immediate influence, which is the 
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current trend in fog devices: memory is rarely a limitation. Although computational 

capacity is the prime evaluation vector, network bandwidth was also considered to 

affect migration, which relies on data exchange between devices. As the number of 

migrations increased, the number of hops also increased. Thus, we considered the 

number of hops as the metric to evaluate network usage. 

 

Figure 3.5: Proposed network. 

Microservice-based applications are common in IoT domains. In microservice-

based applications, the number of service placement requests describes service 

popularity. System latency is a critical factor for real-time services because delays 

may not be tolerated in some cases. The case considered in these experiments was 

an online store application, as shown in Figure 3.6. A similar benchmarking 

experiment is discussed in (Guerrero, Lera et al. 2019). 

This microservice-based online store application is widely used in IoT 

modelling and is called a shock shop (Vögler, Schleicher et al. 2016). The 

configurations for this application in the proposed container followed the 

benchmark (Guerrero, Lera et al. 2019). 
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Figure 3.6: Application edges for online store-based case study. 

3.4.2. EXPERIMENTAL RESULTS 

The experimental setup for the proposed system followed existing 

recommendations. A different set of models was used in the experiment to compare 

and evaluate performance. The execution of simulation-based applications varies 

from machine to machine, depending on its scalability level. The details of the device 

model, operating system (OS), random access memory (RAM), hard disk drive 

(HDD), and processors that participated in the experiment are shown in Table 3.4. 

Table 3.4: SYSTEM SPECIFICATION. 

 

CloudSim (Buyya, Pandey et al. 2009) is a requirement for iFogSim for cloud-

based operations, and the data centre is managed by this tool. Java and JavaScript 

Object Notation (JSON) are used to program the proposed algorithm, while common 

math is the library used for complex mathematical computations in the simulations. 

The experimental evaluation results are presented in terms of CPU usage, 

system latency, and network usage. The equations used to calculate these two 

metrics were programmed in the simulator. By analysing the iFogSim source code, 

we obtained the equation used to calculate them, as shown in Equation. 3.4 and 

Equation. 3.5, respectively: 

𝑁𝑒𝑡𝑈𝑠𝑔 =  
∑ (𝑇𝐷𝑥→𝐷𝑦

𝑙𝑡𝑠𝑦
× 𝑅𝑒𝑞𝑆𝑖𝑧𝑒)

𝑅𝑒𝑞𝑢(𝐷𝑥,𝐷𝑦)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
      

(3.4) 
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where 𝑇𝐷𝑥→𝐷𝑦

𝑙𝑡𝑠𝑦
is the time consumed to migrate the request from one device to 

another and 𝑅𝑒𝑞𝑆𝑖𝑧𝑒 is the size of the request that travels through the network. 

Network usage is the amount of data transferred from the original or the loaded 

device to the destination device, which enriches free resources at a specific time. 

An increase in the number of devices leads to more complex network usage 

scenarios, that can result in network congestion, which indicates low system 

performance. A network usage comparison shows the low or high performance of a 

system. Compared to the edge policy, the proposed solution reduces network usage 

by executing most tasks closer to the clients and by a well-formed job allocation 

mechanism at the fog layer. This strategy minimises cloud usage, which eliminates 

the use of data transfer/communication networks by default. 

System latency is the time required to perform a set of interoperated services 

to achieve the required application. iFogSim measures system latency by 

determining the average time needed to execute the complete path of the 

interoperated services. Latency is the most essential characteristic of the computing 

paradigm: the lower the system latency is, the more reliable the system. Equation 

3.5 was used to calculate the system latency (𝐿𝑡𝑦𝑠𝑦𝑠) as configured in the simulation 

tool: 

𝐿𝑡𝑠𝑦𝑠𝑦𝑠 =  
∑ 𝑇𝑛

𝑆𝑟𝑡 − 𝑇𝑛
𝐹𝑛𝑙𝐶𝑛

𝑅𝑒𝑞𝑢
     ∀ 𝑅𝑒𝑞𝑢  ∈ interoperated task (3.5) 

where 𝑇𝑛
𝑆𝑟𝑡and 𝑇𝑛

𝐹𝑛𝑙  are the start and final times required by the nth service, 

respectively; and 𝑅𝑒𝑞𝑢 is the total number of requests in the interoperated service 

list. The following figures show a comparison of the three algorithms. The results of 

the proposed algorithm are labelled as RODSPP; those for Guerrero, Lera et al. 

(2019) are labelled as POP, and the edge is the label for the base policy of iFogSim. 

Figures 3.7-3.9 include two subfigures that show the effects of variation in the 

setting of execution: (a) variations in the number of users connected to one leaf 

device or gateway to examine varying levels of workloads; and (b) variations in the 

number of devices in the fog environment to study the influence of the route length 

on the network performance. 
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Figure 3.7 shows the hop count outcomes and plots the weighted average hope 

count proposed in the POP manuscript (Guerrero, Lera et al. 2019), representing 

how the most popular services are closer to customers. Figure 3.8 shows the latency 

results for a representative loop of the application. The experiment configured most 

parameters at their highest rates, such as accounts, orders, frontend, and edges. The 

simulator calculates the time the edge server takes to complete the requested tasks. 

CPU usage is an important performance metric of a system because the 

processing quality of a system in a scalable manner is measured in terms of the CPU. 

If CPU usage is too high, delays occur during processing. The results of CPU usage, 

𝑈𝐶𝑃𝑈, are determined by the following equation: 

𝑈𝐶𝑃𝑈 =
(𝑇𝑏−𝑇𝑖)×𝑅𝑡

𝑇𝑚𝑖𝑝𝑠−𝐹𝑚𝑖𝑝𝑠
× 100   (3.6) 

where 𝑇𝑏 is the busy task rate, 𝑇𝑖 is the idle task rate, Rt is the average tuple time, 

𝑇𝑚𝑖𝑝𝑠 is the total number of MIPS (million instructions per second) in the host, and 

𝐹𝑚𝑖𝑝𝑠 is the final MIPS in the control of the CPU. 

Figure 3.9 shows the CPU usage of the devices by varying the number of users 

in each device. The experimental setup was configured as follows: two applications, 

up to five users per gateway, one child per device, and two fog devices per level. This 

setup is similar to the experimental benchmarking setup. 

3.5. DISCUSSION 

System latency is an important performance metric in FC. The weighted average 

hops effectively measure the proximity between the services and users, providing 

some sense of system complexity. Thus, we used both metrics to answer the fourth 

research question. Therefore, the series labelled Edge, POP, and RODSPP in Figure 

3.7 were analysed. In Figure 3.7 (a), the graph shows a marked increase in the 

number of hops for all three approaches when the number of users increases, 

implying that the system would slow down once the number of users increases and 

the resources conflict. The weighted average hops indicated that RODSPP consumed 

4% more hops than POP and 23.1% fewer hops than edges. The increase in hops in 

the RODSPP was due to migrating the interoperated services, which have low 

request rates and matching the task size with the node resources to avoid overload. 
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RODSPP prevented overload for the computing nodes in all layers by migrating 

excessive tasks from the overloaded ones. 

POP and edge were not affected by the changes in the number of fog devices; 

RODSPP tended to migrate more services to the upper levels closer to the cloud. Due 

to adding two more service categories to activate the RODSPP algorithm, such as 

delay-sensitive applications, even with a low request rate, the migration process 

increased with an increasing number of fog levels in the system, as shown in Figure 

3.7 (b). Therefore, RODSPP did not decrease the number of hops while maintaining 

the most usable and delay-sensitive services in the edge-fog network. This 

behaviour is acceptable if we try to solve many issues with limited resources in leaf 

nodes.  

  
Figure 3.7: Hops count with different situations. Experiment with two applications, two users, and 
two levels of fog devices: (a) changing the number of devices associated with the edge device and (b) 
changing the number of proposed fog levels. 

In Figure 3.8, after we split the tasks into high and low request rates, Figure 3.8 

(A) shows that there has been a marked rise in the time latency incurred by the 

highest popularity applications. What is striking in the chart is the outperformance 

of RODSPP by 24.1%, which is due to matching the workloads with the capability of 

the computing nodes. Although RODSPP recorded a noticeable increase in hops, it 

achieved fair results in the overall performance scheme. 

POP ignores low-requested services without considering their sensitivities. We 

added a delay-sensitive application with a low request rate to the proposed 

experiment. RODSPP allocates low-popularity applications on a leaf device if it is a 

delay-sensitive application. To answer the second research question, we consider 

Figure 3.8, which shows the performance of the POP and RODSPP for applications 

with low popularity but high time sensitivity. The chart shows the comparable 

behaviours of the RODSPP and POP policies in non-time-sensitivity applications. 

The chart shows that there has been a sharp decline in system latency for RODSPP 
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in delay-sensitive applications. Thus, despite its low popularity, RODSPP is a valid 

policy for delay-sensitive applications. Generally, even though the system places all 

services at the border with one user, the gateway still engages the cloud to 

accomplish complex tasks in real life. The third question in this study addresses the 

performance of RODSPP, among other models, in CPU, network usage, and system 

latency. The system latency parameter has already been discussed in the second 

question. The RODSPP showed outstanding outcomes for delay-sensitive 

applications with low request rates, as shown in Figure 3.8. Thus, RODSPP can be 

highly recommended for time-sensitive applications. 

  
Figure 3.8: Service latency in different situations. Experiment with two applications, two users, and two levels 
of fog devices: (A). 

Figure 3.9 shows the relation between the CPU usage in different layers and the 

network usage. Figure 3.9A shows the CPU usage of the father nodes in the proposed 

algorithm, which outperformed POP by matching the workloads with the available 

resources. This feature has improved the use of border CPUs. The proposed 

algorithm tends to decrease the load of children's CPUs once a new layer appears, 

which increases network usage. Although RODSPP consumes 4.5% more network 

bandwidth than POP, it decreases all fog resource usage by 20%. 

This study's primary contribution was synthesising well-disciplined resource 

allocation approaches using them in local optimisation through a divide-and-

conquer strategy in a carefully articulated realistic IoT fog networking environment. 

This study demonstrates successful IoT fog resource allocations in terms of 

controlled response time and constrained computing resource usage, thus 

providing significant insights and guidelines for the community to refer to and seek 

further enhancements in real-time IoT fog applications. 
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Figure 3.9: CPU usage of the devices regarding their topology distribution. Experiment with two 
applications and two users. 
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3.6. CONCLUSION 

The span of IoT devices is growing daily, generating large amounts of data. However, 

due to its centralised and distant architecture, the cloud cannot manage and process 

an increasing number of IoT devices for real-time processing, which requires low 

latency and reduced resource consumption. Server mobility and decentralisation 

are requirements for IoT devices for real-time data processing. An FC paradigm is 

thus proposed in this study to meet the needs of future IoT networks. The proposed 

LB algorithm enables the FC mechanism to satisfy real-time performance 

requirements of the Internet of Everything (IoE), and the results demonstrate the 

scope of the proposed algorithm for utilising FC technology. This experiment paved 

the way for future evaluation. 
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4. CHAPTER, HYBOFF: A HYBRID APPROACH TO 

IMPROVE LOAD BALANCING IN FOG 

NETWORKS 
 

Abstract: LB is crucial in distributed systems like FC, where efficiency is paramount. 

Current static offloading methods fall short in heterogeneous networks, 

necessitating dynamic offloading to reduce latency in time-sensitive tasks. However, 

existing offloading solutions often have hidden costs that impact sensitive 

applications, including decision time and distance offloading. This paper introduces 

the Hybrid Offloading (HybOff) algorithm, which enhances LB and resource 

utilization in fog networks, addressing issues in both static and dynamic approaches 

while leveraging clustering theory. Its goal is to optimize static offloading and 

enhance IoT application performance regardless of network size. Experimental 

results using the iFogSim simulation tool show that HybOff significantly reduces 

offloading messages, distance, and decision-offloading consequences. It improves 

LB by 97%, surpassing SOS (64%) and DOS (88%). Additionally, it increases system 

utilization by an average of 50% and enhances system performance 1.6 times and 

1.4 times more than SOS and DOS, respectively. In summary, HybOff substantially 

contributes to LB and offloading research in FC. 
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4.1. INTRODUCTION 
Central computing has emerged as a prevalent concept in various fields in the era 

of the internet, supported by 5G access networks. The central computing systems 

encompass technologies that empower enterprises to collect, process, analyze, and 

archive data from distributed clients worldwide (Datta and Bonnet 2017). This 

concept has become so integral to the internet that reverting to primitive (Peng, 

Zhao et al. 2023), decentralized systems are no longer feasible. In practice, cloud 

computing represents the tangible implementation of the central computing 

concept. It has gained widespread recognition as the ideal infrastructure for 

efficiently managing widely distributed Internet of Things (IoT) devices (Cheng, 

Wang et al. 2017). IoT, a telecommunication system facilitating data exchange 

among interconnected objects over a public network, streamlines operations with 

minimal human intervention (Lv, Wu et al. 2022). As a fundamental framework, IoT 

enables cloud computing to interact with the environment, facilitating the 

widespread adoption of IoT technology and the gradual growth of its data. 

However, it also presents implications for the efficiency of public networks (Khan, 

Laghari et al. 2022, Alsharif, Jahid et al. 2023). 

Numerous critical applications rely on the same public network infrastructure, 

designed to support all cloud-connected applications (Cao, Li et al. 2021, Wang, 

Zhang et al. 2022). When slowdowns occur in the public network, time-sensitive 

applications such as e-health, smart grids, and unmanned vehicles, which have 

strict timing requirements for proper functioning, are severely affected (Jiang, Xiao 

et al. 2020). Cloud computing often struggles to consistently deliver the required 

level of service for these time-sensitive applications due to the unpredictable 

efficiency of public networks (Cao, Sun et al. 2021). 

To address this challenge, Cisco introduced a new layer seamlessly integrated 

into cloud computing, forming FC. It integrates storage, computing, and 

networking at the network's edge, reducing data transfer to the cloud, lowering 

latency, and enhancing efficiency (Apat, Nayak et al. 2023). This technology is 

crucial for decentralized computing, especially in real-time IoT applications. 

However, the continuous growth in the number of IoT devices and their generated 
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data, along with the unpredictable nature of distributed IoT clients, places an 

increasing load on fog servers (Xu, Liu et al. 2023). 

These factors drive researchers in FC to enhance the resource management 

system, particularly the LB system. It aims to allocate incoming tasks among 

servers with limited resources to prevent overloading or underutilizing fog 

resources. Effective LB management is vital to maintaining a stable computing 

environment and improving network availability and flexibility (Jiang, Dai et al. 

2022, Goel and Chaturvedi 2023).  

A steering algorithm is required to direct user requests to the most suitable 

fog server based on application requirements to achieve effective fog load 

balancing. Offloading is the primary mechanism for relieving overloaded servers, 

thus achieving LB in a distributed system (Goel and Chaturvedi 2023). A well-

designed resource allocation policy is essential for creating an effective offloading 

strategy to balance load. In general, there are two fundamental approaches to 

offloading: static and dynamic (Cao, Zhang et al. 2021). Most recent offloading 

algorithms favour the dynamic approach due to its superior features to the static 

algorithm (Sulimani, Sajjad et al. 2022). However, dynamic offloading does have 

inherent drawbacks, including decision-making time, increased offloading 

messages, and distance-related issues (Xiao, Shu et al. 2022). These challenges 

result in significant network costs, often considered hidden expenses. Many 

articles view these costs as a trade-off for the reliability gained from dynamic 

approaches (Sulimani, Alghamdi et al. 2021). 

The motivation for this research is rooted in the pressing need to address the 

formidable challenges posed by large-scale networks and time-sensitive issues, 

which, despite various studies on the subject (Meurisch, Seeliger et al. 2015, Li, 

Zhuang et al. 2018, Cao, Zhao et al. 2020), have yet to see a comprehensive solution 

that considers the hidden expenses associated with these challenges. This research 

introduces a novel approach, a hybrid algorithm, designed to simultaneously 

tackle these issues and ensure the selection of a suitable destination server for 

offloading. The imperative drives the impetus for this research to meet the 

escalating demands of time-sensitive applications in a world characterized by the 

continuous proliferation of IoT devices. Cisco's introduction of FC, which 
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seamlessly integrates storage, computing, and networking at the network's edge, 

is a notable development (Apat, Nayak et al., 2023). With its capability to reduce 

data transfer to the cloud, diminish latency, and improve efficiency, FC represents 

a significant step forward. However, the critical need remains for establishing an 

effective resource management system, particularly a LB system, to optimize the 

utilization of FC resources and establish a stable environment for time-sensitive 

applications. This research aims to develop a solution that simultaneously tackles 

the challenges of fog load balancing for large-scale networks, particularly in the 

context of time-sensitive applications. The research questions guiding this paper 

include: 

1. How can fog load balancing be improved to support time-sensitive applications 

like e-health and unmanned vehicles efficiently? 

2. What is the impact of offloading strategies on fog load balancing, and how can 

the hidden expenses associated with dynamic offloading be minimized? 

3. Can a hybrid LB algorithm combining the strengths of static and dynamic 

offloading approaches provide a comprehensive solution to these challenges? 

We introduce a hybrid LB algorithm that combines the strengths of both static 

and dynamic offloading approaches. The proposed algorithm offers five key 

contributions to fog load balancing: 

• Reintroducing static offloading. 

• Minimizing message exchanges. 

• Reducing decision-making time for offloading. 

• Encouraging servers to handle time-sensitive applications locally, 

eliminating the need for global allocation. 

• Efficiently managing networks of all sizes using a cell-based approach, 

reducing latency, alleviating network congestion, and enhancing LB. 

• Comprehensive experiments evaluate our algorithm from various 

perspectives, illustrating its superiority over other state-of-the-art fog 

load balancing algorithms in extensive studies. 

Our work marks the implementation of the true essence of hybrid offloading, 

merging static and dynamic offloading behaviours. Additionally, the proposed 

algorithm incorporates various features, including a central-distributed control 

system, fog server clustering, and prioritization of critical applications while also 
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addressing hidden expenses such as distance-based offloading, decision messages, 

and network congestion. Compared to the static offloading scheme (SOS) and the 

dynamic offloading scheme (DOS). The experiments demonstrate that the 

proposed algorithm enhances LB by 52.1% and 38.2%, improves system 

performance by 60% and 38.8%, and increases the system utilization ratio by 

62.4% and 42.7% compared to SOS and DOS, respectively. 

The rest of this paper is organized as follows. The next section presents the 

literature review. Section 3 describes the proposed algorithm in detail. Section 4 

shows the experiments and results, followed by the discussion and conclusion in 

sections 5 and 6, respectively. 

4.2. LITERATURE REVIEW  

In this section, the literature review explains the foundational concept of FC systems 

and the LB strategies devised to enhance offloading. 

4.2.1. FOG COMPUTING 

FC, a pivotal concept in distributed computing, is engineered to efficiently support 

Internet of Things (IoT) applications, especially those demanding real-time 

responses (Mukherjee, Shu et al. 2018). As a complement to traditional cloud 

computing, it aspires to leverage edge resources strategically positioned closer to 

end-users (Das and Inuwa 2023). The core objective is reducing reliance on remote 

cloud data centres, reducing latency and decreasing network bandwidth 

requirements. Embracing FC presents various innovative advantages, including 

cost savings in cloud operations and fortified system stability (Burhan, Alam et al. 

2023). 

However, the continuous proliferation of IoT devices and the surge in data 

generation has strained FC's capacity to meet performance expectations (Alsharif, 

Jahid et al. 2023). This strain is particularly acute in specialized applications, 

especially time-sensitive ones. Varied growth rates in user density across different 

regions have resulted in an uneven distribution of workloads, causing some fog 

servers to become overloaded while others remain underutilized (Jebur 2023). 

This imbalance leads to resource wastage and misalignment within the fog layer 

(Jiang, Dai et al. 2022). To tackle these challenges, researchers have explored 
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dynamic offloading as a potential solution (Meurisch, Seeliger et al. 2015, Li, Zhuang 

et al. 2018, Lu, Gu et al. 2020, Tran-Dang and Kim 2023, Xu, Liu et al. 2023). 

Notwithstanding the merits of FC, due to inherent resource limitations within the 

fog layer, certain applications necessitate offloading to the cloud, emphasizing the 

enduring significance of web-based computing applications (Aazam, Zeadally et al. 

2018). 

To better comprehend the structure of computing networks in the proposed 

system, Figure 2.2 illustrates the three interconnected layers. Cellular or WiFi 

networks are wireless links connecting fog servers to client servers in the IoT edge 

layer (Jiang, Xiao et al. 2020). The internet is the primary medium connecting the 

fog layer and the cloud (Cao, Zhao et al. 2019). Within the fog layer, tasks are 

managed by surrounding fog servers, with results forwarded to the source server 

if necessary. The cloud layer is dedicated to specific purposes, such as heavy 

processing or data archiving. This research focuses on applications predominantly 

processed within the fog layer (Li, Zhuang et al. 2018). 

All user-sent applications adhere to a common operational algorithm, as 

outlined by Mukherjee, Shu et al. (2018): 

• Edge servers receive application requests from end-users. 

• Received applications are decomposed into a set of sub-tasks for distribution. 

Heavy fog servers either redirect the sub-tasks to idle fog servers for 

processing or add them to their processing queues. The processing results are 

subsequently sent back to the original server. 

4.2.2. RELATED WORKS 

The offloading technique is a pivotal solution for LB aimed at conserving 

computing and storage resources, particularly in decentralized systems (Tran-

Dang and Kim 2023). A plethora of research efforts are dedicated to minimizing 

inefficiencies. However, prevalent task offloading schemes come with unavoidable 

hidden costs due to their specific requirements. These costs include offloading 

decisions, distance offloading, and network congestion (Wang, Han et al. 2023). 

Conversely, low-cost static offloading encounters numerous challenges, such as 

reliability concerns. This section delves into relevant publications and prior works 
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that validate the algorithm's novelty, which successfully addresses many of these 

obstacles. 

In dynamic offloading, overloaded servers continuously gather data from 

other fog servers to distribute incoming tasks among the active servers (Tang, Xie 

et al. 2020). Once the system evaluates and processes this collected data, it makes 

an offloading decision, typically referred to as a 1-out-n process, where it selects 

the optimal target server (1) from among the available options (n) (Sethi and Pal 

2023). However, this decision process leads to network congestion due to the 

periodic exchange of critical messages known as decision messages (Qu, Liu et al. 

2022). In addition to network congestion, it also introduces high communication 

latency when identifying the target servers for offloading, termed decision latency 

(Zhang, Wen et al. 2022). While decision messages and decision latency may be 

minimal individually, they occur continually in affected areas, collectively 

impacting the effectiveness of dynamic offloading when following this approach. 

On the other hand, the primary goal of most network operators is to 'serve 

more clients, earn more profit' (Jiang, Li et al. 2021). Expanding their coverage can 

increase the number of clients they serve, making coverage expansion a valuable 

metric for evaluating any network, as it correlates with increased network rank 

(Pavlovic 2008). While expanding the number of fog servers enhances system 

availability, it can have a negative impact on dynamic offloading. In such networks, 

dynamic offloading may offload tasks to remote servers, as many algorithms have 

no distance limits (Li, Zhuang et al. 2018, Jiang, Li et al. 2021). This can result in 

unfavourable outcomes, particularly for time-sensitive tasks, adding a burden on 

network bandwidth and total execution time due to messages travelling among 

remote servers (Meurisch, Seeliger et al. 2015). Therefore, distant offloading and 

offloading decisions hinder the effectiveness of dynamic offloading. 

However, there are severe consequences if the fog system fails to deliver the 

expected services. Many critical applications that have recently emerged are time-

sensitive, including unmanned vehicles, healthcare, and the smart grid (Gupta and 

Gupta 2022, Dhyani 2023, Kumar, Karunakaran et al. 2023). These applications 

rely on the fog layer for proper operation, where any delay can lead to catastrophic 

outcomes (Mutlag, Abd Ghani et al. 2023). Network congestion is another adverse 
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effect. The conventional offloading approach increases the number of messages in 

the network due to present system state requirements (decision messages) and 

distant offloading (in some algorithms). Consequently, the network infrastructure 

can deteriorate rapidly (Dhyani 2023).  

Various LB algorithms and solutions have been proposed. In (Jiang, Chen et al. 

2018), the authors introduce an energy-efficient offloading decision mechanism 

and an offloading dispatcher designed to balance energy consumption and 

response time for fog servers serving multiple applications in the IoT. This 

mechanism employs energy-aware cloud-fog offloading (ECFO), which aids in 

selecting the optimal target server with minimal utilization from the available 

servers. To address the issue of distant offloading and its associated consequences, 

ECFO assesses the cost of offloading decisions concerning bandwidth and energy 

consumption. This assessment is conducted through an energy-aware module by 

comparing it with the cost of local server execution. The proposed algorithm is 

evaluated against two state-of-the-art algorithms, and the results demonstrate 

that ECFO outperforms the others. 

In (Ebrahim and Hafid 2023), the authors introduce a privacy-aware LB 

algorithm that employs reinforcement machine learning techniques to reduce the 

number of waiting tasks in the queues of fog nodes. The proposed algorithm, 

DDQN, does not rely on load or resource information from fog servers to determine 

the optimal server for offloading. Instead, it leverages Markov theory to estimate 

the availability of free servers. This approach significantly enhances system 

performance while maintaining privacy at an acceptable level. Interactive 

experiments demonstrate that DDQN outperforms a search-based optimization 

algorithm from the literature and traditional baseline approaches. 

Albalawi, Alkayal et al. (2022) introduced a hybrid LB algorithm called 

PSOSVR, which combines particle swarm optimization (PSO) with support vector 

regression (SVR). PSOSVR reduces response time and energy consumption while 

improving resource utilization (RU) and throughput. The outcomes of this 

proposed algorithm notably enhance various metrics, with energy consumption 

improving by 56%. Using deep reinforcement learning, Lu, Gu et al. (2020) tackled 

the offloading problem in large-scale systems and multiple service clusters. Their 
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paper compares average execution time, latency, LB, and energy consumption, 

demonstrating that the IDRQN algorithm outperforms others. Tran-Dang and Kim 

(2023) proposed a dynamic collaborative task offloading (DCTO) algorithm to 

reduce execution time delays in fog systems. The algorithm has two main 

components: a task division technique and parallel execution. It seeks to identify 

the optimal target server for offloading among the servers in four layers. However, 

the algorithm does not prioritize sensitive applications over others. 

In (Gowri and Baranidharan 2023), a dynamic energy resource allotment 

(DERA) technique that combines oppositional sparrow search (OSS) with the 

gravitational search algorithm (GSA) is introduced. DERA aims to improve energy 

efficiency and overall computing cost in FC environments, focusing on LB by 

reducing broadband costs, duration, and energy consumption. The proposed 

algorithm includes four layers: terminal servers, FC, cloud computing, and 

applications. The fog layer's controller module coordinates these layers. The DERA 

algorithm outperforms the DRAM algorithm by 6.96 percent in resource 

management through LB in most experiments. However, DERA does not prioritize 

sensitive applications and follows a centralized approach, which may limit 

flexibility and reliability. 

Hussein and Mousa (2020) introduced two task offloading algorithms using 

nature-inspired meta-heuristic schedulers: ant colony optimization (ACO) and 

particle swarm optimization (PSO). They aim to minimize task response times 

while considering network latency, bandwidth, and fog server loads. Comparing 

these algorithms with the round-robin (RR) approach in extensive experiments, 

the ACO-based scheduler notably improves IoT task execution times. This ACO 

algorithm considers completion deadlines and optimizes fog server efficiency by 

finding the shortest path between the source and resources. However, it maintains 

some aspects of traditional offloading methods, relying on a central server for 

decision-making and processing time determination. 

Lu, Wu et al. (2023) proposed a resource provisioning strategy to reduce the 

total mandatory cost in time-sensitive applications. The authors conducted a study 

in unlimited-processor and limited-processor fog nodes. Their paper introduces a 

heuristic algorithm that delivers exceptional performance in enhancing resource 
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provisioning, even under challenging conditions. Li, Zhuang et al. (2018) 

presented a Self-Similarity-based Load Balancing (SSLB) algorithm for large-scale 

FC systems. The authors introduced the concept of the 'cell,' which is sized to 

address distance offloading issues. While SSLB exhibits excellent performance 

compared to other algorithms, it does not offer advantages for Time-sensitive 

application (TSA), which has numerous restrictions. Additionally, the algorithm 

enforces uniform cell sizes, leading cells to be allocated to servers that may be 

located at a distance. 

The previous section discussed various LB solutions summarized in Appendix 

I. These solutions primarily aim to mitigate the impacts of dynamic offloading 

rather than addressing the root cause of the problem. Despite their use of 

innovative technologies, they often entail hidden costs that can create an 

inconspicuous burden. 

A summary of the current literature review reveals that dynamic offloading 

has gained widespread acceptance in FC. However, it is beset by inherent 

limitations, leading to significant consequences. Existing research has 

predominantly concentrated on improving dynamic offloading performance and 

catering to time-sensitive applications. Nonetheless, a noticeable gap exists in 

integrated solutions that can effectively address the inherent challenges of 

dynamic offloading, particularly those concerning offloading decisions and distant 

offloading. 

This work aims to bridge these gaps and propel LB capabilities to new heights 

within the FC environment. To achieve this goal, it necessitates the development 

of a novel offloading strategy capable of surmounting these formidable challenges. 

4.3. HYBRID APPROACH TO ENHANCE LOAD BALANCING  

In this section, we dive deeper into the complexities of LB for Edge Computing and 

the innovative workload offloading solution we propose to solve these issues. Our 

proposed solution aims to directly address these challenges by providing an 

efficient offloading strategy that combines algorithms and real-time analytics to 

make informed task allocation decisions. By optimizing LB at the edge, we aim to 
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optimize resource usage, reduce latency, and provide a smooth and responsive 

experience for end users and devices. 

As mentioned previously, many challenges and difficulties persist in fog load 

balancing, including distant and dynamic offloading issues, which drove us to create 

the hybrid offloading solution. The design of this proposed algorithm adheres to the 

following guiding principles, to address some of the shortcomings observed in 

prevalent algorithms: 

• Flexibility: Given the decentralized behaviour of fog servers, where servers 

can randomly connect to or leave the fog environment, it is crucial to design 

a flexible mechanism that instantly reflects the status of connected and 

reconnected servers. Flexibility is enhanced by identifying a central server in 

each cluster that tracks clustered servers as they join or leave. 

• Low Latency: Despite the minimal impact of offloading decisions 

individually, they occur continuously across affected servers. A novel 

offloading approach is followed to mitigate these effects, partly inspired by 

static offloading principles. The hybrid approach is crucial in minimizing the 

consequences of offloading decisions. Moreover, the proposed algorithm 

compels fog servers to serve locally, meeting the requirements of time-

sensitive applications. 

• Scalability: While increasing the number of fog servers enhances system 

availability, it can negatively affect dynamic offloading. The proposed 

algorithm mitigates distant offloading issues by grouping distributed servers 

into sets of cells. The clustering concept ensures that all adjacent servers 

interact with each other. 

This work introduces the Hybrid Offloading (HybOff) algorithm, which aims to 

enhance LB efficiency and resource utilization in fog networks. The development 

of this hybrid offloading approach was motivated by the persistent challenges and 

difficulties outlined in the problem statement. Dynamic offloading mitigates these 

issues but has drawbacks: network congestion, high decision latency, and 

inefficiency with increased servers and distant offloading. These challenges are 

critical for time-sensitive applications like unmanned vehicles and healthcare. 

HybOff addresses these issues to provide adequate LB. Figure 4.1 illustrates the 
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estimated costs associated with prevalent offloading and the essential features it 

offers.  

Figure 4.1: Prevalent offloading, costs, and solutions. 

4.3.1. PROBLEM FORMULATION AND TERMINOLOGY 

At the beginning, Table 4.1 presents the essential notations used in this work, to 

facilitate the reading. 

LB in fog networks demands innovative task allocation for end-user service 

requests, which are transformed into applications, underscoring the need for 

efficient task management (Zhang, Wang et al. 2022). In this context, this work 

assumes that the fog layer consists of a single level of fog servers with no vertical 

dimension, utilizing only the horizontal dimension for offloading. Additionally, we 

consider the fog layer to comprise W fog servers or nodes, denoted as Fn1 to 𝐹𝑛𝑤  , 

alongside n applications represented as cloud services. 

𝐴𝑝𝑝 = {𝐴𝑝𝑝1,𝐴𝑝𝑝2,…,𝐴𝑝𝑝𝑛} (4.1) 

In this work, we categorize applications based on their task partitioning. 

Applications that are not partitioned into more than one task, and have time-

sensitive requirements with deadlines, are classified as lightweight or TSA. On the 

other hand, applications with multiple tasks are categorized as Heavy applications 

(HA). Each HA, upon reception by the fog server, can be subdivided into a group of 

tasks, as shown below: 

Appi = {AppTski1
x , AppTski2

y
, … . , AppTskiq

z }  (4.2) 
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Each HA is divided into tasks, such as AppTski1
x  (the 1st task in the application 

i assigned to 𝐹𝑛𝑥), AppTski2
y

 (the 2nd task in the application i assigned to 𝐹𝑛𝑦), and 

so on, with AppTsk
𝑖𝑞
𝑧  representing the 𝑞𝑡ℎ task assigned to 𝐹𝑛𝑧 .  

Table 4.1: ESSENTIAL NOTATIONS. 

Symbol Definition 

TSA Time-sensitive application: Refers to applications with strict time constraints, where 
processing and response times are critical. 

HA Heavy application: Denotes applications that require significant computational resources 
and are resource-intensive. 

CPD Cooperating paired servers: Represents servers that work in tandem or cooperation, often 
used for LB or redundancy. 

SOT The Static Offloading Table: A data structure or table that contains information about how 
tasks are offloaded from one server to another in a static manner. 

𝑊 A complete set of system fog servers: Refers to the entire collection of fog servers in the 
system, which collectively provide computing resources. 

𝑛 Number of system applications: Represents the count of applications within the system. 
𝑁 Number of cells constituted after clustering: Indicates the total number of cells formed 

after applying a clustering algorithm or process. 
𝑄𝑘 The queue of the 𝒌𝒕𝒉 fog server: Denotes the queue or waiting line for tasks that need to be 

processed by the 𝑘𝑡ℎ fog server. 
Fni The 𝒊𝒕𝒉 fog server: Refers to the specific or 𝑖𝑡ℎ fog server in the system. 

Fni
CoDx  The complementary server of 𝒙𝒕𝒉 cell for 𝑭𝒏𝒊: Denotes the server in cell x that 

complements or cooperates with the 𝑖𝑡ℎ fog server 𝐹𝑛𝑖 . 

Fni
RU% The utilization percentage of the 𝒊𝒕𝒉 fog server: Represents the percentage of 

computational resources used by the 𝑖𝑡ℎ fog server 𝐹𝑛𝑖 . 

Fni
Mx  𝒊𝒕𝒉 fog server which acts as a master of cell x: Refers to the 𝑖𝑡ℎ fog server that serves as the 

primary or controlling server for cell x. 

Celi
Sz The number of servers in 𝒊𝒕𝒉 cell: Indicates the count of servers present within the 𝑖𝑡ℎ cell. 

Celi
RU% The average utilization of the 𝒊𝐭𝐡cell: Denotes the percentage of resources used, on 

average, within the 𝑖th cell. 
Appi The 𝒊𝒕𝒉 application: Refers to a specific application, often in the context of multiple 

applications running within the system. 
AppTskxy

z  The 𝒚𝒕𝒉 task of application x computed in 𝑭𝒏𝒙: Describes the task y within application x 
that is processed by the server 𝐹𝑛𝑥. 

𝜇 The theoretical difference between each consecutive server in SOT: Represents the 
calculated or theoretical variance or difference between consecutive servers listed in the 
Static Offloading Table (SOT). 

SysRU%̅̅ ̅̅ ̅̅ ̅̅ ̅̅  The average system resource utilization: Denotes the mean or average utilization of 
resources within the system. 

SysLB̅̅ ̅̅ ̅̅ ̅ The average load balance of the system's cells: This represents the average distribution of 
computational load among the cells in the system. 

HAs are distributed to different servers for parallel processing once the 

partitioning process is completed. In contrast, TSAs are executed locally and 

receive the highest priority in the server's private queue, which is used to sort and 

re-sort received tasks. 

Q = Q1, Q2,…,QW  (4.3) 

Tasks are generally queued on the system's servers when the server's 

computing power is insufficient to handle them immediately. For example, tasks 

from Appi are organized as follows: 
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Appi = {AppTski1
5 , AppTski2

4 , AppTski3
7 } (4.4) 

It is important to note that application i is concurrently served by 

𝐹𝑛4, 𝐹𝑛5, 𝑎𝑛𝑑 𝐹𝑛7. In contrast, HybOff is designed to accept application subsets 

from a single server, reducing the load on network bandwidth. For instance, 𝐹𝑛6  

maintains tasks in its private queue, and it cooperates with 𝐹𝑛9, as shown in 

Expression 4.5: 

Q6 = {AppTskax
6 , AppTskbx

9 , AppTskbz
9 , AppTskay

6 } (4.5) 

This proposed algorithm describes the workload as the number of tasks listed 

in the server queue for execution. Equation 4.6 shows the total time consumed for 

the workloads in the queue. 

TETQi
= ∑ ETAppTskx

ix ∈ Qi
  (4.6) 

where, ETAppTskx
i  represents the execution time in milliseconds (ms) per task, 

with 'x' denoting its index. To improve the TET, a set of tasks (AppTskx
i must be 

managed in each server queue, where the ET cannot be enhanced in this study (it 

is assumed to be fixed). Therefore, the LB issue can be addressed by efficiently 

redirecting the workload within each server's queue, as described in Equation 

(4.5). 

Except for TSAs, this study employs a fixed-price algorithm for evaluating the 

available servers (Wu, Jin et al. 2022). Consequently, all servers have identical 

offloading costs. The system prefers to select a target server with sufficient 

resources, necessitating an evaluation process. Due to the homogeneity in server 

specifications, a suitable metric is utilized to identify the most appropriate servers 

for offloading. In the case of HybOff, the resource utilization percentage (RU%) for 

each server serves as an indicator to assess its available capacity, as computed in 

(Gupta, Vahid Dastjerdi et al. 2017). This metric depends on the computing power 

required to execute offloaded and local tasks. It's worth noting that HybOff does 

not factor in offloading costs in its calculations, as time-sensitive applications are 

executed locally (Cao, Sun et al. 2021). 
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4.3.2. HYBOFF DESIGN 

In essence, control systems in multi-processing environments come in two forms: 

central and distributed. Central control, a traditional algorithm, suffers from 

reliability issues, as system failure can occur if the primary controller malfunctions 

(Sulimani, Alghamdi et al. 2021). Consequently, recent research favours 

distributed systems, where each computing unit functions independently. 

However, distributed systems lack certain central system advantages, like 

centralized server selection based on a comprehensive system analysis (Deepak 

and Pradeep 2012). 

This work adopts a central-distributed control system as the optimal solution 

to combine central and distributed control aspects. It segments the extensive 

system into autonomous mini-controlled systems, forming the HybOff algorithm. 

This algorithm comprises interconnected computing cells, each housing a cluster 

of adjacent fog servers governed by an elected fog server known as the master fog 

server (Fni
M). Conversely, the other cell servers are referred to as followers. This 

design empowers Fni
M to monitor and supervise the performance of the followers, 

enhancing system flexibility. Even if a cell loses connection with others, each 

maintains an autonomous control system (Yang, Zhu et al. 2022). The 

interconnection of these cells forms the central-distributed control system, a 

framework that facilitates the implementation of HybOff, which requires multi-

cells with distributed control. 

In implementing the autonomous control system, each fog server has three 

modules: HybOffMonitor, HybOffComm, and HybOffSched. These modules handle 

monitoring, communication, and offloading, creating an independent control 

system for the fog servers, as depicted in Figure 4.2. As detailed in Table III, fog 

servers operate in two modes: basic and advanced. The advanced mode is 

activated in the master server, while the followers remain in the primary mode. 
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In the basic mode, followers continuously use their monitor module to assess 

their workload and report it to the master server. The master server's scheduler 

module processes the data collected by the monitor module, determining the 

offloading policy needed for task allocation. The offloading process commences 

once the necessary information is disseminated within the cell via the 

communicator module. The communicator module is responsible for facilitating 

communication and message exchange among servers within the cell. The 

communicator module's thread is periodically generated to ensure all servers 

receive the necessary information. Additionally, it uses heartbeat information to 

address churn issues that may arise due to server crashes or new servers joining 

the network (Cao, Wang et al. 2021). 

In summary, each master server collects workload data from the followers, 

processes it centrally, and then broadcasts the required offloading information to 

the cell servers to initiate static offloading. Table 4.2 shows the basic and advance 

features of each module. 

Table 4.2: Features of HybOff Modules. 

Module Basic (Followers) Advanced (Master) 
Monitoring 
Module 

Reporting the utilization 
percentage periodically. 

Reading the utilization percentage of the followers 
periodically.  

Comm. 
Module 

Acknowledging and updating the 
target server for offloading process. 

Maintaining static offloading table policy updating 
to create the list of targeted servers. 

Sched. 
Module 

Exchanging the server messages 
across the cell. 

Working as a gateway to block internal messages 
within the cell and handle the outboard messages. 

4.3.3. HYBRID FRAMEWORK 

The HybOff algorithm's structure comprises a network of interconnected, 

distributed, and autonomously managed fog servers called cells. To initiate and 

operate the proposed algorithm, several steps must be performed: 

Figure 4.2: Architecture of HybOff algorithms. comprising three essential 
components: HybOffMonitor, HybOffComm, and HybOffSched, consistently 
maintained across all fog servers (Li, Zhuang et al. 2018). 



Clustering:

W

W N

Cel1, Cel2, Cel3, ..., CelN

2 ≤ Celi
Sz ≤ 𝑊 | ∀ i ∈ 𝑁

Master server

Follower

Figure 4.3: 
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where, Celi
Sz represents the number of fog servers in the ith cell, which can be 

odd or even. For instance, in Figure 4.4, the system consists of 19 fog servers 

(W=19) as per the clustering algorithm, and they are organized into four cells 

(N=4). Each cell accommodates a different number of fog servers, as 

determined by Expression 4.7. 

 

 
 
 
  

𝑖 𝐹𝑛𝑖 𝐹𝑛𝑖
𝑅𝑈% 𝑆𝑡𝑎𝑡𝑢𝑠 𝐹𝑛𝑖

𝐶𝑜𝐷 𝐶𝑃𝐷 𝐶𝑃𝐷𝑖
𝑢% 

1 𝐹𝑛1 0.24 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 1 𝜔 

2 𝐹𝑛2 0.3 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 2 𝜔 + 𝜇1 

3 𝐹𝑛3 0.501 𝐻𝑒𝑙 𝐷𝑖𝑠𝑏. 𝐼𝑛𝑑𝑣. 𝜔 + 𝜇1 + 𝜇2 

4 𝐹𝑛4 0.712 𝐻𝑒𝑣 𝐹𝑛2 2 𝜔 + 𝜇1 + 𝜇2 + 𝜇3 

5 𝐹𝑛5 0.804 𝐻𝑒𝑣 𝐹𝑛1 1 𝜔 + 𝜇1 + 𝜇2 + 𝜇3 + 𝜇4 

Figure 4.4: Static Offloading Table in the Master Server. 

2. Master Server: In each initialized cell, a controller server is randomly elected 

to oversee cell activities (Lu, Zheng et al. 2023). The master server (Fni
𝑀) 

assumes various responsibilities, including: 

A. Collecting resource utilization (RU) information from cell servers, 

including its data. 

B. Updating the offloading table in the scheduler module. 

C. Periodically broadcasting the required offloading information within the 

cell. 

D. Monitoring cell servers to exclude any deactivated servers from the 

offloading process. 

E. Serving as a gateway, connecting followers with external systems, and 

keeping exchanged cell messages confined within the cell, thereby 

preserving system bandwidth. 

For example, if the master server in a specific cell fails, followers will lose 

external connections, such as those with the cloud and offloading functions. 

Nevertheless, followers can continue to perform essential computing functions 

until another master is selected. 

3. SOT Policy and CPDs: Besides the HybOff architecture, the SOT policy plays a 

pivotal role in its design. A static table is inadequate for a system that requires 

flexibility. Therefore, SOT is a dynamic template within the master's scheduler 

module. It is unnecessary to offload all fog servers in the cell; instead, SOT 
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contains crucial cell data, including fog identification, FnRU%, and the target 

offloading server. Fog identification is a unique number connecting to each 

server's Internet Protocol (IP) address, acting as a reference number. Each fog 

server corresponds to an individual row in the SOT. 

Once the necessary data is available, SOT ranks active fog servers in 

ascending order based on resource utilization. This approach follows an 

ascending pattern, placing heavy servers at the end of the table and lighter 

servers at the top. After sorting the cell servers, SOT creates cooperating paired 

servers (CPDs). A CPD consists of two fog servers within the same cell with 

opposite resource utilization readings. The first server has the highest reading, 

while the second, a complementary server (CoD), has the lowest reading. This 

pairing is illustrated in Figure 4.4, where Sysavg
RU% = 54%, CPDs are formed by 

pairing opposite servers using Algorithm 1. Equation 4.8 specifies the servers 

participating in each pair, with Cel𝑠𝑧 − 𝑖 + 1 representing the index for the fog 

node paired with fog node i: 

CPDi = {Fn𝑖, Fn𝑗},    where 𝑗 = CelSz − 𝑖 + 1 (4.8) 

Algorithm 1: Building and Maintaining SOT in the Master Server. 

 Output: Fn𝑖
CoDx  

 Input: ∀ Fn ∈  Cel𝑎 , CelRU%, Cel𝑎
Sz 

 

Start;    

mid = approx (
Cel𝑎

Sz

2
) ;   

 Do    

  If (OddSize(Cela
Sz)   

   disabOff(Fnmid) //Disable the offloading function 

  for (𝑖 = 1: mid; 𝑖 + +)  

   CPD𝑖 = (Fni, FnCela
Sz−𝑖+1 ) //Creating a CPDs 

   BroadCast(Fn
Cela

Sz−i+1

CoDi ) // Update CPDs 

  End  

 End  

4. Broadcasting: After the creation of CPDs, the master server broadcasts 

complementary server information throughout the cell. The "broadcast()" 

function informs cell servers about their complementary servers. In contrast, 

the middle server (in the SOT when N is odd) disables the offloading function 

to operate independently without participating in the offloading process, 

achieved through "disabOff()". Light followers must also disable the offloading 
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function to prevent the system from entering a thrashing state. In a thrashing 

state, all servers spend time forwarding tasks among themselves without 

executing their primary functions (Kaur and Sachdeva 2020). The HybOff 

algorithm avoids this state by employing the "disable" function, which restricts 

specific and unnecessary servers from forwarding tasks. However, the 

"disabOff()" function only prevents servers from offloading within the cell, 

allowing them to continue offloading outside or to the cloud when necessary. 

5. Static Offloading: Heavy servers initiate offloading as soon as they receive 

information about their complementary servers (Algorithm 2). They forward 

heavy tasks using the Last In, Last Out (LIFO) procedure, with priority given to 

all TSAs in their queue. Servers continue to utilize their complementary servers 

until they receive updated information from SOT. 

ALGORITHM 2: STATIC OFFLOADING (ALL SERVERS) 
  Output: Provide destination server 
  Input: CelRU%, FnRU% 
  Start; 
  Do (Fn𝑎

RU% ≥  CelRU%) 
   Fn𝑏

CoD ← Offload(Fn𝑎 , HA(AppTskxy
𝑎 )               //Static Offloading 

    End 

HybOff requires verification that heavy servers surpass the average load of the 

cell. In this algorithm, offloading occurs independently within each cell once a 

server is categorized as heavy. To establish the appropriate categorization criteria 

for servers, the average utilization ratio of each cell must first be calculated. 

Equation 4.9 provides the formula for categorizing each cell: 

Cel𝑖
RU% =

∑ (Fn𝑥
RU%×Fn𝑥

𝜑
)

Celi
Sz

𝑥=1

(Celi
Sz−∑ Fn𝜑)

 (4.9) 

where, Cel𝑖
RU% represents the average utilization ratio for cell i, and Fnφ is 1 if the 

fog server is active and 0 otherwise. The cell servers will not initiate offloading 

until the categorization criteria are met. In this algorithm, if Fni
RU% ≥ CelRU%, 𝐹𝑛𝑖  

is considered a heavy server; otherwise, it is categorized as a healthy server. This 

condition deactivates the algorithm when all servers are not overloaded. For 

example, if all cell servers have a low load, no offloading process will commence, 

and each server will manage its workload locally. Thus, we can define this cell as a 

balanced cell, a feature that significantly benefits network bandwidth. 
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Let's consider an illustrative example to comprehend the relationships among 

cell servers. In previous Figure 4.4, if the clustering algorithm forms a cell with five 

fog servers, let's assume that the first server, after ranking in the SOT, has a 

utilization percentage of Fn1
RU% = 𝜔. It's important to note that there are 

variations in the utilization percentages among the sequentially ranked servers, 

denoted as 𝜇1, 𝜇2, 𝜇3 , 𝑎𝑛𝑑 𝜇4 in our calculations. In this example, we have two 

CPDs, CPD1 and CPD2, each with a unique utilization reading. However, to 

calculate the RU for the ith pair, we need to apply the following relationship: 

CPD𝑖
RU%(𝑖, Cel𝑖

Sz) = 2ω + ∑ 𝜇𝑎 + ∑ 𝜇𝑏
CelSz−𝑖
𝑏=1

𝑖−1
𝑎=1 ,  (4.10) 

where, CPD𝑖
RU% represents the utilization percentage of CPDi in the cell. Using 

Equation 10, CPD1 contains Fn1 and Fn5, while CPD2 contains Fn2 and 𝐹𝑛4. When 

the load reaches the average cell load, 𝐹𝑛4 and 𝐹𝑛5 will offload their workloads to 

𝐹𝑛1 and 𝐹𝑛2, respectively. 𝐹𝑛3 operates independently as it has an adequate load. 

In cases where the number of cell servers is even, all servers are included in 

computing pairs. The utilization percentage in each pair is as follows: 

CPD1
RU% = 2ω + 𝜇1 + 𝜇2 + 𝜇3 + 𝜇4. (4.11)  

CPD2
RU% = 2ω + 𝜇1 + 𝜇1 + 𝜇2 + 𝜇3  (4.12) 

Unfortunately, there is no mathematical relation that can predict μi. For 

simplicity, we assume that the utilization value between each sequential server is 

constant (μ1  = μ2  = ⋯ = μ(𝑠𝑧−1)  = μ). If so, we can conclude that: CPD1
RU% =

CPD2
RU% = 2ω + 4μ, which represents the utilization percentage for any CPD in the 

previous example. In other words, HybOff equalizes the loaded pairs cell-wise. 

This work predicts the RU% for the cooperative pair servers using the following 

formula: 

CPDRU%(Celi
Sz) = 2ω + (Cel𝑖

Sz − 1)μ  (4.13) 

Mathematically, all CPDs in the cell have the same load. However, the load of 

CPDs depends on the number of fog servers in the cell. For example, 

Cel𝑎 and Cel𝑏contain 6 and 13 servers, respectively, after the clustering algorithm 

builds the cells. According to Equation (13), CPD𝑎
RU% = 2ω + 5μ, and CPD𝑏

RU% =
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2ω + 12μ. This means the shared computational load for each CPD increases with 

the cell size.  

4.3.4. THE PROPOSED ALGORITHM 

The identified drawbacks will be effectively addressed by integrating the cell 

concept within our hybrid offloading framework. In this design, Fog servers are 

structured into cells, where each server pairs up for resource sharing. Our proposed 

algorithm aims to maintain consistent average load levels across Fog servers within 

each cell, and you can visualize the algorithm's flowchart in Table 4.5. 

 

Figure 4.5: HybOff Process Flowchart. 

As depicted in Figure 4.1, this hybrid LB algorithm capitalizes on the strengths 

of static and dynamic offloading strategies. Our proposed algorithm brings five 

crucial enhancements to fog load balancing: 

• Reintroduction of Static Offloading: We're reintegrating the efficiency of static 

offloading into our approach. 

• Minimal Message Exchanges: Our algorithm minimizes message exchange 

between servers, streamlining the LB process for greater efficiency. 
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•  Reduced Decision-Making Time: We've significantly reduced the time 

required to make offloading decisions. 

•  Local Management of Urgent Applications: Our approach encourages servers 

to handle urgent applications locally, eliminating the necessity for global 

allocation. 

• Efficient Network Management: We employ a cell-based approach for 

network management, reducing latency, alleviating network congestion, and 

enhancing overall LB. 

The subsequent section illustrates these improvements through a series of 

comprehensive experiments. 

4.4. EXPERIMENTS AND RESULTS  

4.4.1. PRELIMINARY EXPLANATIONS 

This section assesses the proposed algorithm and demonstrates how the hybrid 

offloading structure outperforms other classical LB schemes. Generally, the 

essential requirement of effective LB is to keep all the computing units equally 

loaded by avoiding overloaded or underloaded cases (Sulimani, Alghamdi et al. 

2021). The RU% of servers are used to evaluate the effectiveness of LB. 

  

           (a)          (b) 

  

          (c)             (d) 

Figure 4.6: Balance of resource utilization-mathematical, (a) before offloading, (b) sorted servers, (c) 
paired servers, and (d) after offloading. 
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To demonstrate the efficiency of HybOff, we consider the example depicted in 

Figure 4.6 for a mathematical analysis. As shown in Figure 4.6 (a), the scheduler 

module collects the 𝐹𝑛𝑅𝑈% for cell servers with a fixed difference (μ). The servers 

in the cell are ranked in ascending order, and the master creates the CPDs as 

depicted in Figure 4.6 (b) and (c). These figures illustrate how opposite servers 

share their load while the middle server operates independently. After a period of 

offloading, all cell servers have the same load, as shown in Figure 4.6 (d). Using 

Equation (13), we find 𝐶𝑃𝐷𝑅𝑈% = 2ω + 4μ for each pair, where the 𝐹𝑛𝑅𝑈% for the 

cell servers is ω + 2μ. Fortunately, the middle server also has the same load of ω + 

2μ. HybOff achieves LB by dividing the cell servers into multiple pairs and ensuring 

an equal load distribution through sharing. HybOff successfully balances the load 

and creates balanced cells by ensuring that opposite servers share the load. On the 

other side, three metrics are employed to evaluate the proposed algorithm: 1) 

resource utilization ratio of the fog system, 2) loading balancing resource usage 

among fog servers, and 3) system performance. Resource utilization measures the 

usage of all the distributed fog servers' computing resources. LB determines the 

distributed tasks among computing servers in the fog layer. The system 

performance checks the efficiency of the entire algorithm.  

4.4.2. ENVIRONMENT DESCRIPTION  

Simulation Setup: The experiment follows the algorithm described in Figure 2.2, 

as outlined in the work by Lu, Zheng et al. (2023). It consists of W distributed fog 

servers and N created cells. Cloud services, denoted as 'n', are available on all fog 

servers, and offloading is initiated only in cases of computing power shortage. 

Tasks of varying sizes are processed on the fog servers. The initial experiment 

settings are summarized in Table 4.3: 

Table 4.3: Initial Parameters of Experiment. 

Parameter W n 𝜔 𝜇 ET/task 

Value Up to 300 15 apps 18% 7% 3 ms 

It's important to note that this experiment focuses exclusively on the fog layer 

and does not consider the cloud. The simulation tool is iFogSim, which creates the 

necessary environment (Gupta, Vahid Dastjerdi et al. 2017). The experiment 

assesses various parameters across different server scales and data sizes (Cao, 
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Zhao et al. 2019) and examines resource utilization over time, considering random 

combinations of data sizes and scales, as detailed in Table 4.3 and 4. 

• Fog Server Specifications: The specifications of the fog servers used in the 

experiment are provided in Table 4.4: 

Table 4.4: SPECIFICATIONS OF FOG SERVERS. 

Fn𝑖  Capacity RAM CPU 

Fn1 100 MB 7 MB 120 MHz 
Fn2 150 MB 15 MB 80 MHz 
⋮ ⋮ ⋮ ⋮ 
Fni 200 MB 10 MB 100 MHz 

• Evaluation Metrics: To evaluate the algorithm's performance, we 

measured resource utilization (RU) in the described case studies using 

three different schemes: the static SOS, the DOS, and our proposed HybOff 

scheme. DOS is adapted from (Li, Zhuang et al. 2018), while SOS is 

configured using classical static offloading. The resource utilization ratio of 

the system in the experiment is calculated using Equation (4.14), where 

certain function components from the HybOff algorithm were modified and 

reused to implement SOS and DOS: 

Sys𝑅𝑈%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑
∑ Fn𝑎

RU%Cel𝑏
Sz

𝑎=1

Cel𝑏
Sz

N
𝑏=1 , if Fn𝑎

RU% ≅ ∓5% SysAvg
RU% (4.14) 

• Task Specifications: The specifications of the tasks used in the experiment 

are detailed in Table 4.5: 

Table 4.5: TASK SPECIFICATIONS. 

Process Process size Partitions Sensitivity Priority 

P1 5 MB 1/1 TSA High 
P21 6 MB 1/3 HA Low 
P22 6 MB 2/3 HA Low 
P23 9 MB 3/3 HA Low 

⋮ ⋮ ⋮ ⋮ ⋮ 

4.4.2.1. RESOURCE UTILIZATION 

In this work, the resource utilization ratio of the system (SysRU%) refers to the 

ratio between the number of resources utilized and the total amount of system 

resources. The used resource is any processor of a fog server that consumed more 

than or equalled the average cell utilization of its processing power. To do this, the 

RU must be calculated at every detection time using SysavgRU (Equation 4.15).  

SysavgRU = ∑ Sys𝑖
RU% 𝑡⁄ ,𝑡

𝑖=1   (4.15)                                                                    



SysRU% =
∑ Celi

RU%N
𝑖=1

𝑁

Figure 4.7:
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4.4.2.2. LOAD BALANCING 

To assess the effectiveness of the proposed algorithm, this section evaluates the 

level of balanced RU among servers in the fog layer. It compares it to SOS and DOS, 

with the target level defined in (Sulimani, Alghamdi et al. 2021) where all fog 

servers were equally loaded. LB is the percentage of healthy fog servers in the cell, 

with a ±5% threshold value of (SysRU%). In this experiment, however, we 

considered any server close to the average system utilization as a healthy server. 

To do this, we need to count the healthy server's cell-wise during the experiment, 

which satisfies the criteria previously mentioned. Equation 14 is used to calculate 

the RU for the HybOff algorithm, while Equation 4.17 is used to calculate the 

average RU for the SOS and DOS. 

SysRU%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑ Fn𝑎

RU%𝑁
𝑎=1 ,if Fn𝑎

RU% ≅  ∓5% SysAvg
RU% (4.17) 

Figure 4.8 (a) depicts the percentage of fog servers classified as balanced 

across various system scales, with experiments ranging from 1 to 300 servers, all 

using a fixed data size. The graph underscores HybOff's ability to consistently 

maintain a high percentage of healthy servers, closely aligning with the ideal curve. 

At 150 fog servers, SOS, DOS, and HybOff achieved 64%, 88%, and 97% for 

balanced servers, respectively. Impressively, HybOff continued to perform 

exceptionally well even with 230 fog servers. However, the dynamic scheme's 

performance deteriorated when the number of fog servers reached 300, revealing 

communication overhead as a bottleneck. 

The performance of the static approach exhibits a decreasing slope, consistent 

with its strategy. Nevertheless, the results indicate that HybOff excels in large-

scale networks, primarily because it is fragmented, and the central-distributed 

approach makes it easier to control and maintain. In contrast to the theoretical 

estimation of HybOff, which suggests effective load equalization among all 

computing servers, the experimental results do not align with this mathematical 

estimation. This discrepancy arises from the variable and uncontrolled nature of 

μ. The uncontrolled differences among consecutive servers diminish the 

performance of HybOff. 
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(a) (b) 

Figure 4.8: The percentage of healthy servers for the three algorithms with the same mean value but 
different standard deviations, where (a) is the percentage of balanced servers, and (b) is the standard 
deviation for algorithms. 

However, standard deviation (σ) is crucial for assessing data dispersion. A 

smaller standard deviation signifies that data points are closely clustered around 

the central measure (Martinez and Bartholomew 2017). All algorithms were 

tailored to maintain equal load distribution among computing servers in this work. 

As previously defined, fog servers with computing loads within the 47.5% to 

52.5% range are considered healthy. In this experiment, we tallied the number of 

servers loaded at approximately 50% for each class within each algorithm. Figure 

4.8 (b) demonstrates that HybOff exhibited the lowest standard deviation, while 

SOS showed the highest. This indicates that HybOff had the most servers meeting 

the balanced criteria. Although DOS also upheld a substantial number of balanced 

servers, SOS struggled to keep servers within the target range. The performance 

results were 39%, 68%, and 95% for SOS, DOS, and HybOff, respectively. All three 

algorithms had the same mean value, 𝑥=17. SOS, DOS, and HybOff had standard 

deviations of 20.4, 16.9, and 9.7, respectively. HybOff outperformed the other 

algorithms. 

4.4.2.3. SYSTEM PERFORMANCE  

It is essential to compare the performance of HybOff with SOS and DOS to assess 

the proposed algorithm's effectiveness. To evaluate each system's performance, 

we analyzed the execution of time-sensitive applications. As previously 

mentioned, all servers in the fog layer are tasked with serving time-sensitive 

applications locally without offloading. For resource-intensive applications, 

offloading is only considered when the computing servers are fully loaded (Xiao, 

Shu et al. 2022). 



Figure 4.9:

Key Findings: 
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• Decision Time: HybOff's hybrid approach allows for direct offloading, 

eliminating the delay associated with decision-making in the offloading process. 

This contributes to faster and more efficient resource allocation. 

• Distance Offloading:  Unlike other algorithms that struggle with large-scale 

networks, HybOff excels by avoiding offloading to unknown fog locations, a 

characteristic more reflective of real-world FC scenarios. This reduces latency 

and improves system efficiency. 

• Decision Messages: HybOff's static behaviour reduces the need for current 

system state messages, minimizing the exchange of messages among servers and 

reducing network bandwidth usage. This is crucial for optimizing network 

performance. 

•  Superfluous Offloading: While other algorithms may experience performance 

degradation when handling time-sensitive applications (TSAs), HybOff excels by 

keeping TSAs local, saving transmission time and network resources. It also 

efficiently manages heavy applications (HAs) by offloading them only to adjacent 

servers, thus minimizing network congestion. 

• Anti-Thrashing State: HybOff effectively prevents the system from entering a 

thrashing state by employing the "disable offloading" function. This ensures that 

underloaded servers within each area share their resources with the most 

affected servers, ultimately optimizing system utilization. 

These findings align with existing literature that underscores the effectiveness 

of dynamic offloading as a strategy for LB in FC. However, our study further 

demonstrates the viability of incorporating classical static offloading into modern 

network design. These results mark the first direct demonstration of this hybrid 

approach, offering valuable insights for future research in FC. 

Limitations and Future Directions: Despite the promising findings, this study has 

identified two potential limitations: 

•  High Load Scenarios: HybOff may not operate efficiently in scenarios with a 

substantial load within a single cell. When all computing nodes in a cell reach 

their utilization limits, the "disabOff()" function activates, leading to offloading 

processes across cells or to the cloud, which may introduce undesired 
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consequences such as network congestion and distant offloading. Future 

research should explore sustainable solutions for high-load scenarios within a 

single cell. 

• Metric Selection: While HybOff uses CPU load and network state as reference 

metrics to assess fog server loads, it does not consider other server metrics like 

memory usage and energy consumption. Future investigations could consider a 

more comprehensive set of metrics for a nuanced assessment. 

Implications: These findings have both theoretical and practical implications. 

Reviving the use of static offloading techniques, previously deemed impractical in 

modern network design, emerges as a critical consideration. Adopting approaches 

like HybOff in industrial computing platforms may help reduce unnecessary 

network expansion and enhance system performance. In conclusion, HybOff offers 

a robust and efficient computing environment for fog systems, outperforming 

prevalent dynamic algorithms and providing valuable theoretical and practical 

insights for LB in FC scenarios. Future research can build on these insights to 

address the identified limitations and further advance the field of FC. 

4.6. STAGE 1C, OPTIMUM LB SOLUTION 

This part of the research attempts to identify the optimum solution among task 

offloading and service placement models to improve the level of LB in the system 

after testing them with their peers in stages 1a and 1b. According to the real 

implementation of this research, Figure 1.5, this is stage 1c. It is related to research 

question 6, “How could the performance of the proposed systems be evaluated in a fog 

environment in RQ4 and RQ.5 ?”. Whereas the central issue of this research is LB, 

resource utilization ratio and LB level are the main metrics that need to be evaluated 

according to (Kadhim and Seno 2018). Moreover, the number of hops is required to 

evaluate the impacts of the proposed models. 

The comparison uses the fog architecture in Figure 2.2 to implement HybOff and 

RODSPP models. As clustering is the core solution in the HybOff model and cannot 

be avoided, a comparison must be held between two cells in both models. However, 

RODSPP does not have the cell concept. However, the shortest route towards the 

cloud is supposed to be a cell. Figure 4.10Error! Reference source not found. 
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shows the difference between cell construction in both models. To construct the 

experiment fairer, the cells in both models must have the same number of devices 

or computing power. While in RODSPP, we built a three-level of fog devices, we 

forced the HybOff model to create a cell with three devices by locating the other 

devices away. However, the formed cells have three devices in both models. In the 

experiment, all devices can receive the tasks directly from the IoT layer, even in 

the second two levels in RODSPP. 

In HybOff, we did migrate the location of the services where all devices have all 

services, while RODSPP is changed according to its configuration. The experiment 

uses the exact configurations for both models, as shown in Table 3.3, except no 

gateway is used. It follows procedures in (Sulimani, Sajjad et al. 2022) and 

subsection 3.4.1 using iFogSim.  

 

Figure 4.10: The definition of cell in models. 

Resource utilization (CPU usage) is the first evaluation metric to be tested; this 

research considers CPU as a core resource while ignored the others as discussed 

in subsection Figure 4.11. Equation 4.9 calculates the utilization level in the cell 

system for both models.  

All task offloading processes are initiated by the father to the following two 

levels. Figure 4.10 depicts that there is a possibility that two fathers might use the 

same intermediate devices. On the other hand, in HybOff, all devices work 

independently and offload to their CPDs; device one cooperates with device three 

in this experiment while device two works independently. Because this study is 

more concerned with sensitive applications, we have generated more light (time-

sensitive) than heavy applications by twenty percent. 
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models show identical performance between 350 and 400 MB. Even though HybOff 

outdoes RODSPP, it is mandated to invent a comprehensive solution for HybOff to 

confound this situation. 

Figure 4.12 shows the performance of both models to balance the load. Even 

though RODSPP records a high level of LB, it is clear that it cannot maintain its 

performance, and there is a fluctuation. This behaviour is due to the device in the 

third level not being used and waiting for workloads. On the other hand, HybOff 

maintains its performance by keeping all devices have the same load. The 

cooperative opposing-load philosophy is behind this performance.  

In summary, the HybOff approach can secure a stable and robust computing 

environment for fog systems. It achieves outstanding performance compared to 

the RODSPP models. 

4.6.2. LIMITATIONS 

This subsection is concerning to answer the seventh research question, named: 

“What are the limitations of the optimum LB solution in this research?”. However, 

there are at least two potential limitations concerning the results of this study. The 

first limitation concerns with a massive load in one cell. A second potential 

limitation is using CPU utilization as the only considered metric while ignoring 

other metrics. 

One limitation of this study is that if one cell faces a high amount of arrival 

tasks and they are fully loaded, HybOff achieves unexpected outcomes, in this case, 

there is no benefit in Hybrid offloading. It is possible that all computing nodes 

reach to the utilization limit which allow the disabOff( ) function to block the 

offloading feature inside the cell. Consequentiality, HybOff, in this case, will start 

the offloading process across cells or the cloud to find free resources which might 

be located a distance away; in this scenario, HybOff will follow prevalent 

offloading, which, as mentioned, has drawbacks. It generates the undesirable 

phenomena, such as network congested and distant offloading. Accordingly, 

HybOff cannot work efficiently within overloaded cells. 

While HybOff uses the load of the CPU and network state as references to 

evaluate the load of fog devices, it ignores other metrics in the device, such as 
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memory usage and energy consumption. However, the authors believe that the 

CPU is the core of any computing system; it is considered a primary metric in the 

evaluation process.  

To address the first limitation, we need to find a solution with a sustainable 

concept that might be suitable for future work. Although the present research 

cannot rule out this limitation, it seems useful to point out issues that may conflict 

with the proposed model.   

Despite this limitation, these results suggest several theoretical and practical 

implications. For example, igniting the static offloading technique is critically 

essential, which programmers have avoided using in the past, as it is considered a 

non-practical strategy in network design. Moreover, Industrial computing 

platforms can improve their system performance by following this approach, 

which attempts to prevent superfluous network expansion. 
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4.7. CONCLUSION. 

This work aimed to enhance the performance of critical applications in large-scale 

fog networks by introducing a novel algorithm named "HybOff". HybOff represents 

a LB offloading technique that adeptly harnesses the benefits of both static and 

dynamic offloading methods, resulting in substantial performance improvements 

for time-sensitive applications, regardless of network scale. The offloading 

strategies generated by each algorithm in this investigation were simulated utilizing 

the iFogSim platform. Through a comparative analysis of diverse metrics 

encompassing resource utilization, load distribution, and system performance, we 

discerned the merits and demerits of each approach. These algorithms' outcomes 

affirm that regardless of network size, HybOff consistently fulfils the requisites of 

Application Service Dependencies (ASD). 

Furthermore, the experimental results strongly corroborate the efficacy of HybOff. 

It demonstrates a notable reduction in the volume of offloading messages, distance 

traversed, and the repercussions of offloading decisions. These outcomes effectively 

mitigate the inherent deficiencies encountered in traditional offloading techniques. 

Notably, the proposed algorithm enhances LB by an impressive 97%, a substantial 

improvement compared to the 64% and 88% achieved by SOS and DOS, 

respectively. Moreover, it elevates the average system utilization rate by 50% and 

enhances system performance by 1.6 times and 1.4 times compared to SOS and DOS, 

respectively. 
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5. CHAPTER, A COMPREHENSIVE SOLUTION: A 

SUSTAINABLE LOAD BALANCING MONITORING 

SYSTEM FOR THE HIDDEN COSTS IN FOG 

COMPUTING  

Abstract: Due to the complex behaviour in the LB process, prevalent offloading 

techniques in fog computing incur hidden costs, such as network congestion, 

distance offloading, and decision time. Earlier, in our previous work, we introduced 

the Hybrid Offloading Approach (HybOff) to improve the performance of time-

sensitive applications for large-scale fog networks, which marked the first attempt 

to mitigate these costs. Although HybOff is designed to address these issues, there 

are specific cases where it loses its effectiveness and reverts to the behaviour of 

prevalent techniques. This article presents a SlbmS to provide a comprehensive 

solution for the HybOff model. It has struggled with the increased demand for data 

processing in highly loaded cells and their limited physical resources. SlbmS is a tool 

that collaborates with HybOff using machine learning to restore its features if it 

implements SlbmS’s recommendations. According to the framework, SlbmS is 

constructed in two sequential stages to achieve the research objective. The 

investigation assesses the performance of HybOff with and without SlbmS in 

congested cells. The simulation experiment demonstrates that implementing the 

proposed recommendation of quality or quantity results in HybOff regaining its 

features. Adequate planning for the expansion process enables HybOff to overcome 

the challenges posed by exceptional cases. This work proves that offloading is an 

alternative solution for resource provisioning. 
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5.1. INTRODUCTION 

In the internet era, the central computing concept has become so vital that we can 

no longer revert to primitive, decentralised systems. On the ground, cloud 

computing is the practical implementation of central computing infrastructure. Any 

business must establish direct connections and communication with its intelligent 

products to manage its operations. For this purpose, the cloud computing model has 

been widely recognised as the appropriate infrastructure for efficiently running and 

managing widely distributed IoT (Internet of Things) products. IoT is a 

telecommunication system that enables many processing devices (things) to 

exchange data over a public network, thus allowing businesses to operate with 

minimal human intervention (Catruc and Iosifescu 2020). It is considered a 

fundamental tool that facilitates the interaction between cloud computing and the 

environment. Most of the surrounding intelligent products, which overcome daily 

challenges, rely on IoT technology, implying that they may not operate or function 

fully without an internet connection (Madakam, Lake et al. 2015). This setup allows 

IoT technology to increase widely and its data to grow gradually, enhancing cloud 

systems’ popularity while influencing public networks’ efficiency. 

On the other hand, when the public network slows down, time-sensitive 

applications are the ones that suffer the most. IoT applications that rely on timing 

must be served within a reasonable time limit for them to perform well. It’s 

important to note that all IoT applications utilise the same public network, designed 

to serve all applications impartially (Wójcicki, Biegańska et al. 2022). Consequently, 

providers of time-sensitive applications must consider this when introducing 

critical services, such as e-health, smart grids, and unmanned vehicles (Goel, Abeni 

et al. 2002, Lu, Wu et al. 2023). 

Unfortunately, cloud computing cannot offer the required level of service for 

these types of applications due to the unpredictable performance of public networks 

(Ferrer, Marquès et al. 2019). As extensively discussed in prior research, creating a 

well-balanced fog system is crucial to overcoming this situation (Chandak and Ray 

2019). However, this work considers offloading the appropriate technique to 

enhance LB in FC, enabling cloud technology to continue functioning effectively for 
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time-sensitive applications. Therefore, providing a robust solution for offloading is 

essential. 

Conceptually, once LB systems start offloading, local fog resources become 

exhausted, and the workload significantly increases. Effective resource provisioning 

strategies are crucial to address a situation characterised by resource shortages. 

Most existing resource provisioning research in FC employs granularity services 

such as virtual resource allocation, container-based provisioning, and task 

allocation to enhance the capabilities of available local resources (Shakarami, 

Shakarami et al. 2022). However, these solutions are constrained by physical 

resources and do not expand beyond that, as it has not been explored previously. 

Therefore, this research aims to explore this new research dimension in resource 

provisioning. 

Considering the gap in this research, this work needs to incorporate the concept 

of to assess the validity of this new dimension. Sustainability in Information 

Technology (IT) fields generally refers to keeping the system running efficiently 

with minimal changes. Due to the proposed avoidance of expanding physical 

resources, however, all prevalent offloading solutions are incongruent with this 

concept. Hence, the solution explored in this study aims to develop a long-term-

based solution (Gonzalez-Mejía, Eason et al. 2012). 

To achieve this, we need to refine resource provisioning in the offloading model 

by studying fog devices’ quality and quantity of coverage (Lu, Wu et al. 2023). 

Quality of resource provisioning entails the system reorganising the range of 

underutilised fog devices to assist nearby overloaded devices, considering each fog 

device has a limited geographical area to cover (Hermann, Emmelmann et al. 2007). 

On the other hand, the quantity of resource provisioning involves altering the 

physical number of fog devices. This work primarily focuses on offloading, which 

can be considered an alternative technique for resource provisioning. If we succeed 

in this study by increasing local resources at the lowest cost, we will regard 

offloading as a viable alternative to resource provisioning in a fog environment. 

The primary objective of this research is to address the challenges faced by the 

Hybrid Offloading (HybOff) model, which have arisen due to the high demand for 
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data processing in already congested cells and the limited physical fog resources. 

This inevitable scenario compels HybOff to adopt the behaviour of prevalent 

offloading solutions. While existing research has consistently advocated for 

offloading as a critical solution (Aazam, Zeadally et al. 2018, He, Lu et al. 2020, Dai, 

Xiao et al. 2022, Chakraborty and Mazumdar 2023), this work, in contrast, aims to 

minimise or even eliminate offloading processes and their associated consequences 

(Lin, Kar et al. 2023). To achieve this, we propose a novel approach involving 

minimal changes to the network topology using genetic algorithms and 

reinforcement learning (RL) (Ray 2019). As far as our knowledge extends, this 

research problem remains unresolved, and we aim to provide a solution in this 

work. Importantly, our approach may also resolve the challenges prevalent 

offloading techniques pose. 

• Key contributions of this paper include: 

• The introduction of a new method for creating a sustainable LB system. 

• A comprehensive discussion of the hidden costs involved in ensuring the 

performance of HybOff as an innovative solution. 

• A demonstration of how the concept of sustainability can be applied to the 

proposed model. 

• Presentation of the results obtained from the comparative experiments 

conducted in this study. 

The subsequent sections of this manuscript are structured as follows: Section 2 

provides background information on the research area. Section 3 outlines the 

research problem. In Section 4, we describe the proposed sustainable load-

balancing monitoring system. Section 5 details the implementation and evaluation 

aspects, while Section 6 discusses the results. Finally, Section 7 presents the 

conclusion and outlines avenues for future research. 

5.2. BACKGROUND OF THE RESEARCH AREA 

In this section, we provide a brief introduction to sustainability, LB, and Machine 

Learning (ML). 

5.2.1. SUSTAINABILITY 

In the General Conference of the United Nations in 1984, the World Commission on 

Environmental and Development (WCED) introduced the term “sustainability” with 
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a broad meaning (Gonzalez-Mejía, Eason et al. 2012). The concept of sustainability 

now extends across various fields, including agriculture, manufacturing, health, and 

information technology (IT). While numerous definitions of sustainability exist in 

the computing field, they all share a common core idea. For instance, Gonzalez-

Mejía, Eason et al. (2012) define sustainability in IT as “maintaining the functionality 

of a system without experiencing significant changes in its conditions over time.” 

However, to apply sustainability in this research, we need to introduce the concept 

of system utilisation. Utilisation is a process that not only maximises the usage of 

available resources but also minimises waste to keep the system fully equipped 

(Kadhim and Seno 2018). Therefore, we can redefine sustainability as the process 

aimed at maintaining the functionality of a system at the highest level of utilisation, 

thus increasing the benefits of system components during their limited lifetimes 

without significant changes in their conditions over time. This research adopts this 

definition to address the current research dilemma. 

5.2.2. REINFORCEMENT LEARNING (RL) 

Machine Learning (ML) is a process that enables a computer program to improve its 

performance on specific tasks by learning from past experiences. ML algorithms are 

generally classified into three main categories: supervised, unsupervised, and 

Reinforcement Learning (RL) (Kaelbling, Littman et al. 1996). Supervised learning 

involves training the system using labelled data to predict continuous values. 

Unsupervised learning focuses on labelling or clustering based on similarities. In 

real-life scenarios, systems acquire knowledge by testing all possible action 

combinations before identifying the optimal solution. RL is the challenge an agent 

faces that learns behaviour through trial-and-error interactions with a dynamic 

environment. It comprises three key elements: agents, actions, and rewards, 

collectively determining the policy. The policy is developed as the agent interacts 

with the environment, earning rewards while striving to achieve a specific task 

(Prudencio, Maximo et al. 2023). Therefore, the selected policy represents a 

sequence of actions that lead to the endpoint with the fewest rewards. 

For instance, consider a scenario where you are tasked with escaping from an 

escape room using a series of moves (actions). At each step, you have three activities 

to choose from: forward, left, or right. Hitting an obstacle forces you to restart, with 
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each successful action yielding rewards. If you start moving and after x actions hit 

an obstacle, you collect x points. On the next attempt, the agent chooses a different 

activity and, after y steps, hits an obstacle, earning y points (y > x). The system 

continues to explore the environment until it finds the optimal policy. Consequently, 

the selected policy should guide the agent to reach the endpoint via the shortest 

path. 

5.2.3. LOAD BALANCING IN A FOG ENVIRONMENT 

In FC, LB is a mechanism that enhances the efficiency of resource allocation by 

determining the optimal device to receive streaming tasks. Its goal is to distribute 

incoming tasks evenly to equip all active computing units fully. Each LB algorithm 

employs a distinct mechanism to achieve this objective. Generally, when managed 

effectively, LB is utilised to increase system throughput, resource utilisation, 

performance, and reliability. Although LB research has inspired various solutions to 

optimise resource allocation, the explosive growth of IoT data, users, and 

application requirements has significantly burdened the fog layer, which possesses 

limited resources. 

5.2.4. RELATED WORKS 

Most LB schemes typically acknowledge hidden costs as an inherent factor that 

cannot be avoided. They aim to minimise the adverse effects of these costs. However, 

in this section, we delve into LB-related works attempting to circumvent these costs 

or significantly mitigate their impact through sustainable research solutions. 

Puthal, Obaidat et al. (2018) propose an innovative LB technique to authenticate 

Edge Data Centres (EDCs) and identify less loaded EDCs for task allocation. Their 

process employs the Breadth First Search method to explore neighbouring EDCs, 

enabling overloaded EDCs to find optimal destinations for offloading. However, this 

work introduces a bi-objective approach where cooperation among EDCs involves 

an identification process that can lead to cooperation termination if it fails. While 

this paper includes sustainability in its title, it does not provide a long-term 

resolution for the ongoing challenge of numerous offloading processes among EDCs. 

Abedin, Bairagi et al. (2018) introduce an LB algorithm designed to redistribute 

tasks among edge centres in metropolitan networks, focusing on reducing average 
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response times, especially in wireless networks. Rafique, Shah et al. (2019) propose 

a bio-inspired hybrid algorithm (NBIHA) for LB in fog environments. They reduce 

average energy consumption and response times by employing efficient task 

scheduling. NBIHA operates meta-heuristic particle swarm optimisation (MPSO) as 

a scheduler within the fog layer. Simulations using iFogSim demonstrate favourable 

outcomes in terms of resource management. 

Arshad, Khattak et al. (2018) analyse nature-based algorithms, precisely the 

binary bat algorithm (BBA) and pigeon-inspired optimisation (PIO), within a fog 

architecture comprising smart homes in the first layer and cloudlets in the second 

layer. The study evaluates the energy consumption of the cloudlets. (Javaid, Butt et 

al. 2019) propose a nature-inspired Cuckoo search algorithm combined with flower 

pollination and levy walk distribution to enhance processing and response times 

while reducing microgrid and data transfer costs. Lu, Wu et al. (2023) investigated 

a multi-user mobile edge computing architecture for high-reliability and low-

latency scenarios, analysing the task queue using extreme value theory. Singh 

(2022)designed an LB system based on fuzzy logic with various levels of fuzzy 

control design and tuning for analysing links and managing traffic. 

 In the context of fog/cloud platforms, Maswood, Rahman et al. (2020) introduce 

a mixed-integer linear programming (MILP) LB model. This model aims to optimise 

network bandwidth and server resource utilisation, evaluating the model 

holistically at both the network and server levels. 

5.3. RESEARCH PROBLEM 

FC is strategically designed to deliver instantaneous services near clients, ensuring 

the continuous provision of critical cloud services. FC has evolved in various 

dimensions to meet the demands of time-sensitive applications and accommodate 

the recent surge in IoT devices and users. However, a pressing need remains for 

enhancing LB techniques explicitly tailored to fog environments to optimise the 

utilisation of fog resources as clients deplete ground resources and the burden on 

devices escalates. 

Recent research underscores that offloading is pivotal to LB in distributed 

environments. Numerous studies have introduced various offloading approaches, 
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including dynamic, age-based, and hybrid strategies, to enhance the efficiency of fog 

environments (Hussein and Mousa 2020, Liu, Xu et al. 2020, Dai, Xiao et al. 2022, 

Sheikh Sofla, Haghi Kashani et al. 2022, Tran-Dang and Kim 2023). 

In our prior work, we introduced the HybOff algorithm as a novel solution to 

address certain inherent limitations of static and dynamic offloading approaches, 

such as reliability issues and high communication latency associated with static and 

dynamic offloading methods. In this research, we develop a sustainable solution that 

operates with HybOff. The goal is to mitigate the weaknesses of the HybOff 

algorithm and restore its key features to ensure robust and efficient offloading in 

fog environments. 

5.3.1. THE PREVALENT SOLUTION 

According to our observation, we have noticed that all the prevalent offloading 

approaches use the present system state theme, in which the heavy devices read the 

environment (gathering attributes) and give an offloading action to redirect the 

excess tasks to the target device. This is repeated several times when there is a 

necessity for extra resources. This theme generates a high volume of exchanged 

messages with the peer devices; we can call it decision messages. They seek to 

explore unused resources to cover the shortage in the affected areas without the 

intention to increase the number of served devices (Sheikh Sofla, Haghi Kashani et 

al. 2022). Although all research approaches seek to enhance offloading strategy, 

they ignore these hidden costs.  

As illustrated in Figure 5.1, an infinite series of interaction and offloading 

processes among devices will occur due to the unchanging quantity or quality of 

physical resources in the field. These processes make the network situation seem to 

get worse over time. Keeping the networks congested will escalate the latency in the 

system (Kuempel, Adams et al. 2018), which is a decline in the main objective of FC. 
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Figure 5.1: Prevalent Offloading Process Flowchart. 

While HybOff is designed to address the challenges in FC, there are specific 

scenarios where it tends to adopt the behaviour of prevalent algorithms, 

particularly when confronted with heavy loads in particular cells. In such cases, 

HybOff resorts to “distance offloading,” sending tasks to other cells or the cloud, 

increasing system latency. This research assumes that HybOff operates efficiently in 

maintaining balanced and fully utilised computing nodes, except under these 

circumstances. Therefore, without improving the physical resources in these 

affected areas, HybOff may have long-term adverse consequences, diminishing the 

effectiveness of software solutions. 

Given this scenario and following the flowchart, enhancing the quantity of 

physical resources emerges as the most viable approach to breaking this endless 

loop. This step aims to minimise or halt the constant message exchanges. 

Consequently, expanding the network, either partially or entirely, appears to be the 

logical solution to support the affected areas. However, this decision may not be 

suitable if there is uncertainty about the full utilisation of all fog devices, especially 

considering the varying efficiency of LB algorithms. 

In such cases, network expansion can lead to a unique network state, which we 

propose as “network oversizing.” This state arises when the network expands 

without adequate planning. Excess resources and power are wasted when the 
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provided resources surpass the demand. Network oversizing is particularly 

prevalent in smaller businesses that may not conduct thorough network studies or 

planning before expanding. Importantly, network oversizing contradicts the 

sustainability definition adopted in this research, which seeks to avoid significant or 

unwarranted physical changes. 

Therefore, engaging in meticulous planning for the expansion process is 

imperative, including estimating the number of Access Points (APs) required before 

actual implementation. Adequate planning ensures that the performance of FC 

remains at an acceptable level without incurring excessive costs. 

5.3.2. EXPLORING THE NEW DIRECTION OF RESEARCH  

To tackle the dilemma effectively, it is imperative to implement an intelligent and 

autonomous monitoring system capable of monitoring, evaluating, and proposing 

solutions to enhance the resource management system. The proposed solution 

should bridge the gaps left by existing solutions, addressing issues such as decision 

messaging, network congestion, and network oversizing. The primary focus of the 

proposed solution should be to augment the computing power available on the 

ground through meticulous resource planning, as depicted in Figure 5.2. 

 
Figure 5.2: Possible Solutions for the Problem of Research. 

Hence, this is the opportune moment to create a comprehensive solution that 

allows for physical modifications (both in terms of quality and quantity) in the 
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network topology. Constructing this proposed system will unfold in two sequential 

phases. The initial phase aims to enhance the quality of coverage provided by 

computing devices or Access Points (APs). In contrast, the subsequent phase seeks 

to augment the quantity of computing devices or APs. Both phases are designed to 

bolster physical resources. 

In the first phase, the proposed model will continuously monitor the load 

readings of fog devices and provide recommendations for altering the network 

topology based on analysing the system’s load data. In this phase, the proposed 

model will utilise genetic algorithms to study, analyse, and simulate (offline) all 

feasible recommendations before selecting and implementing the most suitable one. 

In this phase, a critical piece of advice is repositioning fog devices closer to 

overloaded areas, thereby enhancing coverage quality in those affected regions. 

However, suppose the simulation results for rearrangement (quality) are 

deemed insufficient. In that case, the model will transition to the second phase, 

involving the evaluation of the impact of adding a certain number of APs (quantity). 

This step constitutes a partial or complete network expansion within the overloaded 

areas if deemed necessary. This approach provides overloaded devices with 

additional physical resources, resulting in a natural reduction or cessation of 

offloading processes. This, in turn, alleviates the strain on network bandwidth and 

puts an end to the cycle of infinite processes. As a result, the concept of sustainability 

is effectively preserved and realised. 

5.4. THE PROPOSED SUSTAINABLE LOAD-BALANCING MONITORING SYSTEM 

(SLBMS) 

This section introduces the architecture and structure of the proposed sustainable 

solution, SlbmS. It is not an LB solution but a recommendation system to facilitate 

sufficient planning for enhancing local resources. SlbmS heavily relies on the HybOff 

algorithm, as depicted in Figure 5.3, where HybOff represents the endorsed LB 

algorithm in this research due to its exceptional resource utilisation capabilities. 
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Figure 5.3: The Proposed Model Architecture. 

Time-sensitive applications demand a highly reliable and continuously 

available FC system. This research predominantly investigates such applications, 

making SlbmS potentially applicable to a wide range of critical fog environments. 

Consequently, this research is focused on designing a robust IoT fog system 

primarily geared toward serving essential applications. 

The outcome of this research stage comprises a set of recommendations for 

implementing physical changes in the network topology. These recommendations 

should be executed by repositioning fog devices or Access Points (APs). In this work, 

we delve into the theoretical aspects of sustainable theory. SlbmS is subjected to 

testing both before and after these changes through simulation. 

5.4.1. THE ARCHITECTURE 

The proposed model’s architecture, as illustrated in Figure 5.4, comprises four 

distinct layers: (1) IoT Edge Layer, (2) Fog Layer, (3) Monitoring Fog Layer (MFL), 

and (4) Cloud Data Centre Layer. Each layer serves a specific purpose within the 

system. 

• IoT Edge Layer: This layer connects IoT objects with limited processing 

capabilities, including mobile phones, laptops, actuators, and sensors, to the 

fog system. It facilitates interaction between these IoT devices and the fog 

environment. 
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• Fog Layer: The fog layer is designed to manage the influx of user requests 

and data, processing them locally or redirecting them to other fog devices or 

the cloud. It is subdivided into cells based on relative distances, following the 

HybOff model’s proposal. Additionally, this layer houses the LB algorithm, 

which plays a crucial role in optimising resource allocation. 

• Monitoring Fog Layer (MFL): The third layer, MFL, has direct access to the 

fog devices. Within MFL, the SlbmS model is situated. SlbmS is responsible 

for enhancing HybOff’s performance and devising long-term solutions to LB 

challenges. Significantly, MFL’s absence does not disrupt the fog system’s 

operation since it is not involved in data processing. This layer seamlessly 

complements the HybOff architecture. 

• Cloud Data Centre Layer: The cloud layer manages data exchanges with the 

fog layer while fulfilling its primary responsibilities. It encompasses many 

high-performance servers that deliver stable and reliable services. 

 
Figure 5.4: The Effect of RPQ-Stage One. 

The organisation responsible for the FC system’s administration oversees the 

operation and maintenance of devices in the second and third layers. Conversely, a 

third-party organisation, such as Google or Amazon, owns the fourth layer, which 

provides on-demand cloud services. 
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5.4.2. THE STRUCTURE OF THE MODEL 

In this section, SlbmS is introduced and located within the MFL. SlbmS is a remote 

system that establishes direct connections with the master fog devices in the fog 

layer. SlbmS comprises a Resource Provisioning Quality module (RPQ) and a 

Recommendation System for Resource Provisioning (RRP). However, the following 

subsections will detail the construction of these systems. 

5.4.2.1. RESOURCE PROVISIONING QUALITY SYSTEM (RPQ) 

RPQ is a software module aimed at reorganising the distribution of Access Points 

(APs) in the fog layer to provide additional computing resources in highly affected 

areas. It represents the first stage of SlbmS. RPQ operates through the following 

steps when called: 

• Data Collection: RPQ gathers the necessary attributes to build a background 

understanding of device loads. 

• Data Preparation: Using a genetic algorithm, it prepares the required data 

to identify extra resources near the overloaded APs. 

• Evaluation: The system evaluates the effectiveness of these changes. 

• Recommendations: Finally, the system sends suggestions to be applied. 

Once this phase is completed, the system remains inactive until requested 

again. 

• RPQ comprises two sub-modules: the Classifying Cells and Devices Module 

(CrM) and the Arrangement and Simulation Module (ASM). Figure 5.4 

illustrates the benefits of the first phase. 

• Classifying Module (CrM): This module’s primary objective is to prepare 

the necessary data from the IoT layer. CrM is responsible for executing the 

first two steps of RPQ, involving the classification process by collecting the 

required attributes of the fog devices. CrM also contains additional features 

not used in HybOff. 

      Various evaluation metrics are employed to study and assess the proposed 

model. According to HybOff, devices are classified as either heavy or light. RPQ seeks 

to reclassify fog devices into overloaded, balanced, and underloaded categories. The 

core goal of this research is to address the main weaknesses of HybOff, such as 

network congestion and distant overloading. Therefore, more straightforward 

metrics focusing on network traffic and computing unit load are preferred. Studying 

the number of incoming and migrated tasks is a suitable indicator for classification. 
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These attributes are stored in the Device Attributes Table (DAT) in MFL, as 

shown in Figure 5.5. To represent the attributes of fog devices as described, you can 

use the following notation: 

a) Average Arrival Tasks from the IoT Layer: 
Symbol: (𝑨𝑻𝒊

𝝋𝑰𝒐𝑻), 

Description: The average number of tasks per second from the IoT layer to fog 

device 𝑖. 

b) Arrival Tasks from Paired Devices: 

Symbol: (𝐴𝑇𝑖
𝜑𝑂𝑃),   

Description: The number of tasks per second from paired devices to fog devices 

𝑖. 

c) Offloading Tasks: 

Symbol: (𝑂𝑇𝑖
𝜑

), 

Description: The number of tasks per second that need to be offloaded by fog 
device 𝑖. 

d) Distance Offloading Tasks: 
Symbol: (𝑶𝑻𝒊

𝝋𝑫𝑶),    

      Description: The number of tasks per second that require distance offloading 
involving other fog devices or the cloud by fog device 𝑖. 

e) Device Capacity in Data Processing per Second:  

Symbol: 𝐹𝑛𝑖
𝐶𝑎𝑝 

Description: The capacity of arrival tasks to fog device i in terms of tasks 
processing per second. 

These attributes can evaluate fog devices and make decisions in a fog 

environment. These attributes are utilised for AP evaluation. 

 
Figure 5.5:  Type of exchanged data in APs. 

On the other hand, the Adapted Weight (AW) serves as a gain factor in the 

evaluation process. It confirms that fog devices are eager to increase the number of 
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free resources in the cell and identifies the least engaged device (𝜏). Equation 1 

outlines the formula used to calculate the AW for each device in the fog layer:  

AWi = 𝛽 ×  
𝐴𝑇

𝑖

𝜑𝐼𝑜𝑇+𝐴𝑇
𝑖

𝜑𝑂𝑃+𝐹𝑛𝑖
𝐶𝑎𝑝

 

𝑂𝑇𝑖
𝜑

+𝑂𝑇𝑦
𝜑𝐷𝑂

 , (5.1) 

where AW is adjusted based on the value of 𝛽 , used to ensure fair evaluation of APs, 

considering offloading processes that collectively reduce the load in the cell. The 

subsequent submodule generates updated values of 𝛽. After this step, the data is 

ready for the classification process. 

• Arrangement and simulation module (ASM) 

ASM is a software submodule of RPQ that leverages the calculations made by CrM to 

make informed decisions after thorough planning. ASM is responsible for carrying 

out the second two steps of RPQ. It employs a genetic algorithm (GA) to determine 

the optimal value of 𝛽 to enhance the AW for each device. Algorithm 1, OBS, outlines 

the overall steps of the GA for the optimisation process, which aims to find the ideal 

value of 𝛽. The GA’s population comprises all fog devices in the system and a set of 

virtual tasks. This step leads to the classification of fog devices, as depicted in Table 

5.1. 

ALGORITHM 1: Optimal Beta Setting (OBS) 

 Output: Optimised 𝛽 (𝛽°) 

 Input: Set of available FSs, Set of assumed tasks, Initial values for 𝛽 

 1. Generate a new random population of chromosomes for pair (𝛽). 

 2.  For each new population do 

 3.   For each chromosome containing (𝛽) do 

 4.    Assign tasks and calculate LB level (LBL). 

 5.   Next 

 6.   Do mutation: (i) Select a random particle. (ii) Change its value. 

 7.   Do crossover: (i) Select two random particles. (ii) Exchange them. (iii) Calculate 
their fitness. (iv) Chose the best of them 

 8.   Calculate the best values for (𝛽) with the highest LBL. 

 9.  Next 

After finding the AW for each AP, the ASM determines the Average AW (AAW) 

and the Threshold AW (TAW) using Equation 5.2. 

𝑇𝐴𝑊 = 𝐹𝑛𝐴𝑊𝑇
𝑖 |( 𝛾𝑖 ≤ 10%), (5.2) 

where 𝛾𝑖 is the average of the arrival tasks in the cell. The ASM is responsible for 

periodically updating the attributes of APs to classify them as (1) balanced, (2) 

overloaded, or (3) underloaded, according to Table 5.1 and the accompanying rules. 

Note that the capacity of Fog devices (AP) is 50 Tsks/s. 
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• AP ==> Underloaded if AW >= TAW. 

• AP ==> Balanced if TAW > AW >= AAW. 

• AP ==> Overloaded if AW < TAW. 

Table 5.1: DEVICES ATTRIBUTES TABLE (DAT). 

𝑭𝒏𝒎 𝑪𝒆𝒍𝒍 𝑨𝑻𝒊
𝝋𝑰𝒐𝑻 𝑨𝑻𝒊

𝝋𝑶𝑷 𝑶𝑻𝒊
𝝋

 𝑶𝑻𝒚
𝝋𝑫𝑶 𝑨𝑾𝒊 Status 

𝐹𝑛1 3 150 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 3 𝑇𝑠𝑘/𝑠 70 𝑇𝑠𝑘/𝑠 0.2 OL 

𝐹𝑛3 3  180 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠   5 𝑇𝑠𝑘/𝑠 98 𝑇𝑠𝑘/𝑠 0.15 OL 

𝐹𝑛4 3 192 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠   3 𝑇𝑠𝑘/𝑠 122 𝑇𝑠𝑘/𝑠 0.14 OL 

𝐹𝑛2 2 4 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠   0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 3.78 UL 

𝐹𝑛1 2 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠   4 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 1.4 UL 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

On the other hand, to classify the cells in this model, the most affected cell (MaC) 

is calculated. It is the metric that represents the status of system cells; MaC is the 

most important metric to find out the affected area and increase resources there. 

Equation 5.3 shows how it should be calculated, where n is the number of APs in the 

cell: 

𝐶𝑒𝑖
𝑀𝑎𝐶 =

𝛾𝑖

∑ 𝐹𝑛𝑖
𝐶𝑎𝑝𝑛

𝑖=1

 (5.3) 

ASM’s outcome is finding the set of APs to be moved into overloaded cells. The 

relocation cost of APs is ignored in this study. Despite the drawbacks of the 

relocation process for some clients, it will improve service in other congested 

network parts. The ASM sends the recommendation, and the system administrator 

will decide whether to reposition them; if there is no recommendation, RPQ will 

hand over the overloaded cells to RRP to increase the quantity of APs in the system. 

5.4.2.2. RECOMMENDATIONS SYSTEM OF RESOURCE PROVISIONING (RRP) 

The recommendations system for resource provisioning (RRP) is the second phase 

of the comprehensive solution. The RRP has an agent: RL-based resource 

provisioning (RP). RRP utilises a modified weight parameter. It prioritises the 

available APs in congested cells based on the AW value to be enhanced. The priority 

is given to the cell with the highest AW. The goal of the RRP module is to estimate 𝜏 

which represents the number of added APs to the specific cell. 𝜏 has a minimum 

arrival task and offloading process ratio value with sufficient moving resources. 𝜏 is 

the less effective device on the network coverage that gains the highest score of AW, 

such as 𝐹𝑛2 in cell two, as shown in Table 1. The following equations show the 

formula that governs this calculation: 
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𝜏𝑖 = 𝑛𝑖 −
𝛾𝑖

𝛼 × 𝐹𝑛𝑖
𝐶𝑎𝑝 (5.4) 

where 𝛼 is the minimum reserve computing power. The system considers the cell as 

one block of computing cells. We ignore the exact location. As shown in Table 2, 

suppose cell three has a MaC of 3.3 and cell two has a MaC of 0.06; they are classified 

as overloaded and underloaded, respectively. In this case, the RRP tests all 

combinations to add nine APs to cell 3, where 𝜏 equals nine, while cell two can move 

out one AP to cell three. Despite the high number of APs recommended, this capacity 

gives space for future loads. Figure 5.6 depicts the overarching stages of the 

proposed SlbmS. 

Table 5.2: STATES OF THE CELLS OF THE SYSTEM. 

𝒊 𝒏 𝑪𝒆𝒊
𝑴𝒂𝑪 𝝉 Status 

1 3 2.17 7 B 
2 2 0.06 -1 UL 
3 5 3.3 9 OL 
⋮ ⋮ ⋮ ⋮ ⋮ 

 
Figure 5.6: SlbmS model. 

This section proposes a novel, comprehensive system for LB in fog 

environments. The recommendation module is based on an RL algorithm to increase 

the number of physical resources virtually at the ground of a fog environment. RL is 

an AI technique in which agents act in each environment to receive rewards. The 

agent gets the rewards condition of the environment and responds accordingly. The 

action performed causes a change in the state of the environment, which is then 

communicated to the agent through rewards. The RRP learns to select the optimal 

AP to which virtual APs are added near it and to evaluate its effects. The total RRP 
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phases are depicted in Algorithm 2. However, Algorithm 3 demonstrates the three 

fundamental stages of RL in general. 

ALGORITHM 2: RL based Resource Provisioning 

 Output: Number of APs required to improve the quality of the cell.  
 Input: Overloaded cell, Set of APs, Initial values for 𝛼 𝑎𝑛𝑑 𝛽 
 1. For each new Overloaded cell do 
 2.  Create a Q-table containing two columns {State: Available Overloaded Cell, Action: 

Selecting the best number of APs to be installed} initialised to zero. 
 3.  //Taking Action 
 4.  The agent interacts with the environment (APs) and updates the state action pairs 

in the Q-table Q[state, action]. 
 5.  The Q-table is used as a reference by the agent to view all possible actions (all 

available APs) for a given state. Then, it selects the best number of APs based on 
the height of LBL. 

 6.  //Updating the Q-table 
 7.  //Update the data in DST 
 8.  The LBA updates the data in the DST (update the AW and the status for each FS) 
 9. Next 

 

ALGORITHM 3: Q-learning based RL Algorithm 

 Output: Update the Q-table with the most recent Q-values. 
 Input: A Q-table with initial values. 
 Step: 
 1.  Create a Q-table with the state and action columns initialised to zero. The agent 

reviews the Q-table to determine the optimal action based on the Q-value. 
    import numpy as np 

# Initialize Q-table values to 0 
Q = np.zeros((state_size, action_size)) 

 2.  //Taken Action 
The agent interacts with the environment and modifies the state-action 
pairings contained within the Q-table Q {state, action} 

    import random# Set the percentage you wish to investigate to epsilon = 
20% 
if random.uniform(0, 1) < epsilon: 
    """ 
    Explore: select a random action 
    """ 
Else: 
    """ 
    Exploit: select the action with max value (future rewards) 
    """ 

 3.  // Updating the Q-table 
   The updates occur following each step or action and conclude when an episode 

is completed. 
    # Update Q-values 

Q[state, action] = Q[state, action] + lr * (reward + gamma * 
np.max(Q[new_state, :]) — Q[state, action]) 

5.5. IMPLEMENTATION AND EVALUATION 

To validate the effectiveness of the proposed algorithm, this section compares the 

SlbmS model and the HybOff LB algorithm using Python. 

5.5.1. USED ACCESS POINTS DATASET 

Contemplate Tables 5.2 and 3, cells set and their APs that will be used throughout 

this paper to illustrate the distinctions between the SlbmS and HybOff LB 
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algorithms. Table 5.3 shows the states of any cell generated under the HybOff model. 

We attempt to present the different cases of cells. Overloaded, balanced and 

underloaded cells are different cases. For that, we increased the generated IoT tasks 

for one cell while others received medium and low rates of generated tasks.  

Table 5.3: DA-TABLE OF THE SYSTEM. 

𝐃𝐞𝐯𝐢𝐜𝐞 𝑪𝒆𝒍𝒍 𝑨𝑻𝒊
𝝋𝑰𝒐𝑻 𝑨𝑻𝒊

𝝋𝑶𝑷  𝑶𝑻𝒚
𝝋𝑫𝑶  𝑶𝑻𝒊

𝝋
 𝑨𝑾𝒊 Status 

Fn1 3 150 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 70 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.2 OL 
Fn2 3 180 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 98 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.16 OL 
Fn3 3 110 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 40 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.28 OL 
Fn4 3 192 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/s 122 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.14 OL 
Fn5 3 200 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 120 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0.15 OL 
Fn1 1 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 7 OL 
Fn2 1 200 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 50 𝑇𝑠𝑘/𝑠 100 𝑇𝑠𝑘/𝑠 0.12 OL 
Fn3 1 25 𝑇𝑠𝑘/𝑠 50 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 1 𝑇𝑠𝑘/𝑠 8.75 OL 
Fn1 2 4 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 54 𝑇𝑠𝑘/𝑠/s 0 𝑇𝑠𝑘/𝑠 3.78 UL 
Fn2 2 2 𝑇𝑠𝑘/𝑠 0 𝑇𝑠𝑘/𝑠 52 𝑇𝑠𝑘/𝑠/s 0 𝑇𝑠𝑘/𝑠 3.64 UL 

To compute the value of MaC for each cell, the initial value for the study’s variables 

must be initialised, such as optimised beta (𝛽0) and the value of TAW must first be 

determined. The following table shows the initialisation for our experiment: 

Table 5.4: THE INITIAL VALUES OF THE PARAMETERS. 

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔es 𝜷𝟎 𝑭𝒏𝒊
𝑪𝒂𝒑

 𝑨𝑨𝑾𝑭𝒏 𝑻𝑨𝑾𝑭𝒏 𝑴𝒂𝑪𝑪𝒆𝒍𝒍 

𝑉𝑎𝑙𝑢𝑒𝑠 0.07 50 Tsk/s 2.42 4.08 2 

According to the model’s formulas, Cell3 is overloaded, while Cell1 is balanced, and 

Cell2 is underloaded. Table 5.3 provides detailed information about all the APs. 

5.5.2. A MATHEMATICAL RL ILLUSTRATION MODEL 

Q-learning is the most prevalent reinforcement learning method, where Q 

represents the long-term utility of an action. Q-learning is the process of acquiring 

Q-values via observation. The Q-learning steps are: 

Create a Q-table with two columns [State: A list of overloaded APs in the system, 

action: select the best AP to add extra resources nearby it] with zero-initialised 

values, as shown in Table 5.5. This implies that we have no information regarding 

the long-term rewards of each state-action combination.  

Table 5.5: Q-TABLE- INITIALISED. 

𝑺𝒕𝒂𝒕𝒆 (𝒔) 𝑨𝒄𝒕𝒊𝒐𝒏 (𝒂) 
0 0 
0 0 
0 0 

As the agent learns, it performs actions denoted as ‘a’ in a particular state s and 

receives a reward r for its action. The agent also records that the system’s state has 
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transitioned to a new state 𝑠′. The Q-value for a state-action pair 𝑄(𝑠, 𝑎) is updated 

using the following formula: 

𝑄(𝑠, 𝑎) = (1 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒)𝑄(𝑠, 𝑎) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 × (𝑟 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑡𝑒 ×

max
a

𝑄(𝑠′, 𝑎))  
(5.5) 

Here, the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 controls the weight given to new information, and the 

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑡𝑒 represents the discount factor for future rewards. The ‘max’ function 

identifies the maximum Q-value for the successive state-action pairs available to the 

agent. 

The agent interacts with the environment (the list of overloaded APs) and 

modifies the state-action pairings in the Q-table 𝑄[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛]. As in Tables 2 and 

3, we have ten action options (𝐹𝑛1
1, 𝐹𝑛2

1, 𝐹𝑛3
1, 𝐹𝑛1

2, 𝐹𝑛2
2, 𝐹𝑛1

3, 𝐹𝑛2
3, 𝐹𝑛3

3, 𝐹𝑛4
3, and 𝐹𝑛5

3). 

In some states, however, action options are restricted. For instance, in state 1 (the 

initial state), the agent has three action options: 𝐹𝑛1
1, 𝐹𝑛2

1, or 𝐹𝑛3
1. There are five 

possible actions in state three: 𝐹𝑛1
3, 𝐹𝑛2

3, 𝐹𝑛3
3, 𝐹𝑛4

3, or 𝐹𝑛5
3. 

When the agent takes the maximum AW, the agent receives a negative reward 

(-1). When it takes an average AW, it receives no reward. When it takes the lowest 

AW, it is rewarded with 1. Note, however, that this one-time reward differs 

significantly from Q-values. Indeed, we have 

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛1
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 0.7) = 0.11 

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛2
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 0.12) = 0.02 

𝑄(𝐶𝑒𝑙𝑙1, 𝐹𝑛3
1) = 0.7 ∗ 0 + 0.2(0 + 0.8 ∗ 8.75) = 1.4 

With a learning rate of 0.2 and a discount rate of 0.8%. 𝐹𝑛2 is the premium 

action for Cell1 and Fn4 in Cell5. We notice that the algorithm chosen is loaded and 

overused for the cloud. Update the Q-table values according to Table 5.6. 

Table 5.6: Q-TABLE-UPDATED. 

𝑺𝒕𝒂𝒕𝒆 (𝒔) 𝑨𝒄𝒕𝒊𝒐𝒏 (𝒂) 
𝐹𝑛1

1, 𝐹𝑛2
1, 𝐹𝑛3

1 𝐹𝑛1
1 

𝐹𝑛1
2, 𝐹𝑛2

2 𝐹𝑛1
2 

𝐹𝑛1
3, 𝐹𝑛2

3, 𝐹𝑛3
3, 𝐹𝑛4

3, 𝐹𝑛5
3 𝐹𝑛5

3 
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5.5.3. EVALUATION METRICS 

The performance of the SlbmS and HybOff LB algorithms can be compared using 

the metrics presented in Table 5.7. The main comparison points are Average 

Waiting Time (𝑊𝑇) and the rate of offloaded tasks.  

Firstly, WT is the difference in time between the Turnaround Time (TAT) and 

the burst time (BT), as shown in Equation 5.6. WT indicates the state of queues in 

the APs. To calculate the WT, TAT must be calculated first. TAT is the difference in 

time between the completion and arrival times. However, Average WT is the metric 

used to explore the HybOff model that suffers from congested cells. 

𝑇𝐴𝑇 = 𝐶𝑇 − 𝐴𝑇, 
(5.6) 

𝑊𝑇 = 𝐶𝑇 − 𝑇𝐴𝑇, 

Secondly, this counter has two kinds: external offloading (eTs) and internal 

offloading (iTs). The latter is used to count the processes if it targets the paired 

device, while external offloading is used when the target device is the cloud or other 

fog device in another cell. eTs reveal whether the system successfully avoids 

distance offloading and network congestion. The counter counts the number of 

offloading processes in each fog device. We prefer to keep iTs at the top level and 

the eTs at the bottom for each cell. Equations 5.7 and 8 depict the formulas of 

internal and external offloading rates: 

𝑖𝑇𝑠𝑆𝑦𝑠 =
∑ ∑ 𝑂𝑇𝑥𝑦

𝜑𝑛
𝑦=1

𝑚
𝑥=1

∑ 𝑛𝑖
𝑚
𝑖=1

, (5.7) 

𝑒𝑇𝑠𝑆𝑦𝑠 =
∑ ∑ 𝑂𝑇𝑥𝑦

𝜑𝐷𝑂𝑛
𝑦=1

𝑚
𝑥=1

∑ 𝑛𝑖
𝑚
𝑖=1

, (5.8) 

Table 5.7: EVALUATION METRICS. 

Metric Uses Justification 

𝑊𝑇̅̅ ̅̅ ̅ 
The average execution time of the APs 
consumed to execute the tasks includes the 
queued time. 

To verify the resource management 
efficiency of an algorithm. 

𝑖𝑇𝑠 
It is a metric that counts, device-wise, the 
number of exchanged messages inside the 
cell. 

It is a good indicator of the ability of the LB 
algorithm to keep the exchanged messages 
inside the cell. 

𝑒𝑇𝑠 
It is a metric that counts the number of 
exchanged messages with external devices, 
including the cloud, device-wise. 

It is a good indicator of the ability of the LB 
algorithm to keep the exchanged messages 
inside the cell. 

𝑆𝑦𝑠𝐿𝐵̅̅ ̅̅ ̅̅ ̅̅  
It is a metric that computes the average 
level of LB in the system. 

Using this metric allows for an excellent and 
fair comparison between the algorithms 
regarding LB. 



Table 5.8:

𝑴𝒐𝒅𝒆𝒍 𝑨𝑾𝑻 (𝒎𝒔) 𝑻𝑨𝑻 (𝒎𝒔)

HybOff B,UL 8

HybOff OL 3.5 1.5

HybOff SlbmS 3 2.1

HybOff SlbmS

HybOff SlbmS

Figure 5.7:

HybOff (OL)

HybOff (UL,B)

SlbmS

WT (ms)



Figure 5.8:

support the hypothesis that “Even though the software solution has a noticeable 
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has explored a new research dimension for improving LB by increasing the number 

of computing nodes with sufficient planning. RL has been used to provide adequate 

planning where the approved numbers of APs must satisfy many criteria. The new 

model kept network congestion and distance offloading at the bottom. The 

experiment uses Python, which provides a suitable simulation environment. The 

outcomes of this stage have shown that HybOff works efficiently with the 

recommendation system, SlbmS, which devastates HybOff and avoids the bottleneck 

of the particular case. 
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5.7. CONCLUSION 

HybOff is introduced as a novel solution for the offloading technique used mainly to 

balance the load in the distributed computing environment. To empower HybOff, it 

is essential to fill the gap generated in some cases, such as overload cells. Leaving 

HybOff in this state, exposure to those high-probability situations causes an 

apparent decrease in efficiency. However, this chapter presents the second and last 

phase of this dissertation. SlbmS is the comprehensive solution for HybOff that 

introduces a competitive solution for the problem of time-sensitive applications in 

large-scale fog networks. The idea behind SlbmS is how to increase the physical 

quality and quantity of computing nodes with sufficient planning. It works through 

two sequential phases, each concerned with one side compatible with the 

sustainable concept. The proposed solution utilises the genetic algorithm in phase 

one, while RL is in phase two. The experimental outcomes by Python show an 

apparent enhancement in the system performance. The experimental result shows 

a return of HybOff to its original performance. This work is the first to engage the 

precise meaning of sustainable concepts within LB in Fog environments. Although 

this work has some limitations, future work is essential to find a better way to 

reintroduce this work. 
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6. CHAPTER, CONCLUSION AND FUTURE 

RESEARCH 

Abstract: In this thesis, we have planned to present five articles that have 

contributed to the development of LB in FC, including improving service placement 

policy, a novel offloading algorithm, and a comprehensive solution that seeks to 

support a long-term solution in FC. In Chapter One, we depict the thesis framework 

and the elements for this research, while we analyse the extant FC literature from 

theoretical and practical perspectives in Chapter Two. Then, we presented three of 

our most representative works in FC in Chapters Three to Five, respectively. 

However, this chapter presents the research phases, proposed solutions, and their 

limitations on the words. Moreover, future works are offered, including the 

technical contributions of this thesis. 
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6.1. INTRODUCTION 

This study sought to identify effective LB strategies in a fog environment. Based on 

experimental analysis of the fog model under different conditions, it can be 

concluded that a hybrid offloading technique with a sustainability concept is crucial 

when designing a distributed computing system. This proposed design aims to 

override the dilemma of LB in a fog environment. The outcomes indicate that fog 

devices are running balanced with minimal network traffic. 

The primary research questions for this study were as follows: 

• Research Question 1: What is the required technique to minimise the 
consumed time by offloading the decision process? 

• Research Question 2: What is the required strategy to minimise the number of 
offloading messages? 

• Research Question 3: What is the suitable strategy to avoid the distant 
offloading phenomena? 

• Research Question 4: What is a new solution for optimal placement policy over 
fog physical resources to overcome the inherent issues of prevalent resource 
allocation mentioned in RQ1, RQ2, and RQ3? 

• Research Question 5: What is a new solution for optimal offloading over fog 
physical resources to overcome the inherent issues of prevalent resource 
allocation mentioned in RQ1, RQ2, and RQ3?  

• Research Question 6: How could the performance of the proposed systems be 
evaluated in a fog environment in RQ4 and RQ5?  

• Research Question 7: What are the limitations of the optimum LB solution in 
this research? 

• Research Question 8: How should reinforcement learning be designed to 
apply sufficient planning before expansion? 

• Research Question 9: How to design a comprehensive model to monitor the 
entire system and suggest a recommendation to tackle the overload situation 
by proposing hardware modifications? 

6.1.1. RESEARCH OVERVIEW 

In the earlier times of this research, the research gap and the general framework 

were proposed; it consists of two phases. The first phase enhances the LB level, 

while the second phase provides the sustainability concept. As a result, the general 

framework was identified and approved to be constructed in two phases. 

However, there are many approaches to solving the problem of LB in FC. We 

explore the optimum solution between offloading and service placement 
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approaches to enhance the research problem. This process is the output of the first 

phase. In the following lines, we present the methodology used to solve these 

questions: 

• The methodology applied to answer question 1: The offloading decision is 

the process required to find the optimum accessible server to offload the 

exceeded tasks. It consumes a lot of time. All prevalent offloading follows the 

same behaviour, while static offloading does not require time to decide. 

However, this research has used hybrid offloading to eliminate this problem. 

HybOff is the actual implementation of hybrid offloading. The algorithm depends 

mainly on the clustering technique to give the system a limited number of fog 

servers. 

• The methodology applied to answer question 2: The offloading decision 

generates an uncontrolled number of exchanged messages. We utilise two 

techniques to reduce the number of exchanged offloading messages. Firstly, 

hybrid behaviour, which operates static behaviour, uses a limited number of 

messages to update the servers' information. Moreover, the clustering technique 

can limit the messages inside the generated cell.  

• The methodology applied to answer question 3: The nature of the network 

and the offloading algorithm make the offloading to a distant server possible. To 

overcome this problem, HybOff utilises the cell structure to hold the messages 

inside the cell. 

• The methodology applied to answer question 4: Placement policy is one of 

the techniques used to improve the level of LB. In this technique, we consider 

the number of servers in the shortest path to the cloud as one cell. Thus, RODSPP 

uses the shortest path toward the cloud instead of the clustering technique. The 

father's server forwards to its child. However, RODSPP outperforms its peers 

and dramatically improves LB. 

• The methodology applied to answer question 5: This part attempts to 

respond to the fifth research question, "What is a new solution for optimal 

offloading over fog physical resources to overcome the inherent issues of 

prevalent offloading mentioned in RQ1, RQ2, and RQ3?". It relies heavily on 
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clustering theory and hybrid offloading. This technique's primary contributions 

are reviving static offloading and improving the efficacy of IoT applications, 

particularly time-sensitive ones, regardless of network size. 

• The methodology applied to answer question 6: Measuring the performance 

of the proposed algorithms is the only way to judge the optimum solution. 

Utilisation and LBLs are critical metrics that aim to evaluate them. 

• The methodology applied to answer question 7: The main drawback of 

HybOff is that if a cell encounters many arrival tasks and is entirely loaded, 

HybOff achieves unanticipated results; in this case, Hybrid offloading provides 

no benefit. All computing nodes may reach the utilisation limit, allowing the 

disabOff() function to block the offloading feature inside the cell. 

Consequentiality, HybOff, in this case, will start the offloading process across 

cells or the cloud to find free resources that might be located a distance away; in 

this scenario, HybOff will follow prevalent offloading, which, as mentioned, has 

drawbacks. It generates undesirable phenomena, such as network congestion 

and distant offloading. Accordingly, HybOff cannot work efficiently within 

overloaded cells. 

• The methodology applied to answer question 8: Increasing the ground 

resources is the only way to overcome the limitations of HybOff. Sufficient 

planning for network expansion is a suitable approach to avoid network 

oversizing and congestion. Reinforcement learning works to study the effect of 

increasing the number of fog servers virtually or offline. By analysing several 

arrivals and offloaded tasks, we can identify the unused servers to move them to 

the loaded area. 

• The methodology applied to answer question 9: By answering this question, 

we present a SlbmS that seeks to find a comprehensive solution for a HybOff 

model that has suffered from the increased demand for data processing in the 

highly loaded cells and, on the other hand, their limited physical resources. 

SlbmS is designed to satisfy the requirements of time-sensitive applications 

using machine learning to acquire the sustainable concept. According to the 

framework, SlbmS constructs in two sequential stages to achieve the research 
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aim. The investigation examines the performance of HybOff with and without 

SlbmS in congested cells. 

6.1.2. RESEARCH PHASES 

The first phase consists of three stages. In stage one, chapter four, we focused on 

studying the service placement technique, which enhances the LB in the fog layer. 

Consequently, reinforcement optimisation for a decentralised service placement 

policy (RODSPP) was proposed for fog networks that leverage service placement 

theory. Later and in chapter five, a novel hybrid offloading (HybOff) algorithm was 

proposed to overcome the inherent issues of prevalent offloading algorithms, 

representing stage two in the research. 

The third stage in phase one seeks to adopt the ideal technique to balance the 

load with the minimum cost. Both the proposed algorithms enhanced the level of 

the research problem. Even though the service placement technique has an 

outstanding outcome compared to its peers, it costs the network an immense 

number of exchanged messages due to its attitude, which relies substantially on 

offloading, considered a hidden cost, to find the required service. RODSPP cannot be 

controlled to reduce the traffic in the network. On the other hand, HybOff seems to 

be an ideal solution due to its solvable disadvantages that do not conflict with its 

essential attitude. Hence, HybOff is the approved pilot solution for the second phase. 

However, the experimental results of phase one reveal that HybOff follows the 

attitude of prevalent solutions in some unavoidable cases. However, the second and 

last phase of the thesis research aims to create a comprehensive solution for a 

HybOff model that has suffered from the increased demand for data processing in 

the highly loaded cells and, on the other hand, the limited physical resources to 

satisfy the requirements of time-sensitive applications. Thus, this work proposes a 

SlbmS that seeks a long-term concept using machine learning. 

According to the framework, SlbmS constructs in two sequential stages to 

achieve the research aim. While enhancing the coverage quality of the fog layer is 

the outcome of the first stage, proposing recommendations to strengthen the 

resource provisioning of the fog layer is the result of the second stage. The explicit 

goal of SlbmS is to decrease the number of offloading processes in the fog layer by 
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improving the coverage quality and quantity of fog devices, which can be implicitly 

considered resource provisioning. Squeezing offloading procedures into the system 

enables it to override the network-congested phenomenon. 

To verify the efficiency of the proposed model, a proper simulation experiment 

was held using MATLAB. The investigation examines the performance of HybOff 

with and without SlbmS in congested cells. The experiment shows that when the 

proposed recommendation of quality or quantity was implemented, HybOff 

enormously benefited. Sufficient planning for the expansion process allows HybOff 

to overcome the problems of exceptional cases. The results reveal that HybOff 

reverted to its original performance. 

The remainder of this chapter is structured as follows: Section two concludes 

the techniques used in this research. The research limitations are presented in 

Section Three. Section four discusses possible future works. 

6.2. LOAD BALANCING SOLUTIONS 

In Chapter 4, we examined the problem of LB in fog networks using service 

placement policy; RODSPP is a reinforcement optimisation for a decentralised 

service placement policy (RODSPP) scheme for fog networks that leverages service 

placement theory. It represents stage one (in phase one) to examine the 

performance of service placement police to balance the load. By matching the 

overhead of the fog nodes to the cloud's shortest route, the modified placement 

policy outperforms its peers significantly. RODSPP follows the vertical dimension 

toward the cloud in its solution. RODSPP reduces latency and computing 

consumption by 24.1% and 4%, respectively, in task performance, as demonstrated 

by simulation and trace-driven evaluation outcomes. In contrast, its computational 

complexity has decreased significantly over time. 

Chapter Five examines how the offloading theory can assist fog nodes in burden 

sharing. We have proposed the offloading in the horizontal dimension, upon which 

our hypothesis relies, no vertical offloading except to the cloud centre. In this stage, 

HybOff is the proposed offloading algorithm. The hybrid offloading algorithm aims 

to increase the periphery computing utilisation rate. It executes sensitive tasks 

locally while sending other tasks to neighbouring nodes. Clustering techniques 
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reduce communication bandwidth costs by preventing outsourcing to remote 

devices. On the other hand, hybrid offloading combines the benefits of static and 

dynamic offloading, thereby reducing the time required to identify the optimal node 

for offloading. The outcomes are exceptional compared to the service placement 

policy implemented through vertical offloading. 

Thereby, stage three selects HybOff to represent phase one, whose primary 

objective is to ensure that all fog nodes in their layer perform the same quantity of 

tasks. Extensive stage two experiments demonstrate that HybOff confronts 

significant challenges in continuing to show outstanding results. The challenges 

manifest when most fog nodes are loaded in specific cells. The laden nodes will 

transfer their weighty tasks to other cells or the cloud at that moment. However, this 

behaviour attempts to replicate the traditional offloading pattern. Therefore, the 

prototype HybOff algorithm requires further reinforcement from another system. 

Fortunately, stage two relies on the concept of sustainability. Accordingly, stage two 

is modified to address the HybOff issue. 

In Chapter Six, we discussed SlbmS, a LB monitoring system that enables fog 

networks to share workload and offload computations equitably. The SlbmS 

incorporates the hybrid offloading theory and the sustainable notion to create a 

robust LB model for a fog environment. We have devised the system model of 

computation offloading and formulated the LB problem to maximise fairness. 

Adopting the 'two-stage' paradigm, we have presented a comprehensive algorithm 

design for LB and conducted exhaustive evaluation studies by performing 

simulations and experiments on various cases. The experimental findings indicate 

that SlbmS effectively achieves LB with a guaranteed performance of a near-optimal 

fairness index of up to 0.85 and a 50 % improvement over conventional baseline 

methods. 

6.3. MODEL LIMITATIONS IN THE REAL WORLD 

This research seeks to create a competitive solution for LB issues in a fog 

environment. However, as a requirement for academic research, we must mention 

the limitations noticed during our study to pave the way for the following 
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researchers. The following points depict the most significant restrictions and 

drawbacks of this work: 

1. Cost: In the real world, using this solution requires a physical modification 

in the position of APs to benefit from this work. Generally, the enterprise 

performs the network expansion through its team or a contractor. This action 

costs the enterprise human resources to reinstall or install the computing 

nodes. Despite the cost, the development of the network remains the ultimate 

solution for the research topic. 

2. Distrust: In the real world, many enterprises have a lower level with the 

automated recommendations systems to be applied. They trust the second 

party, the consultant, to decide the expansion process. 

3. Interruption of services: Reinstalling or installing some APs might cause a 

denial of service. Reinstallation of some APs will disconnect some clients 

from the system. The enterprise must reposition APs with many users near 

zero regarding arrival and offloading tasks. Fortunately, the expansion 

process occurs typically rarely.  

4. Installation time: It is the time required to install, and, in some rare cases, 

the installation process may take longer, which may extend the service 

interruption time.  

Despite these limitations, this research can be recognised as a first step toward 

integrating the study aims, LB in FC and sustainability, which have yet to be directly 

linked to our knowledge. 

Moreover, this study has enhanced our understanding of the rapport between 

LB in FC and sustainability. We hope that the current research will stimulate further 

investigation of this vital area. 

Therefore, it contributes to an embarking body of evidence suggesting that 

sufficient planning in the expanding process is required. Although the generality of 

the current results must be established by future research, this study has supported 

the software/hardware solution. Not only was the software solution the key to LB's 

dilemma in a fog environment. 
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6.4. FUTURE WORKS 

The following points highlight some of the future research topics that are considered 

to be hot spots of current research: 

Though the proposed algorithm (RODSPP) achieves the best performance 

within the requirements considered in this study, we plan to improve upon these 

results by adding more dimensions to the service placement policy. Thus, we plan 

to work toward a near-zero-delay system by combining static and dynamic 

offloading mechanisms for LB in FC. 

In the future, we will investigate the optimal number of cell servers to reduce 

energy consumption. Since this work concentrates only on the outsourcing decision-

making process, we intend to examine the issue of task migration and virtual 

machine migration in the future. Thus, after the initial decision for the task has been 

made, the task migration will be determined based on the circumstances. 

In addition, iFogSim, a Java-based framework for modelling and simulating FC 

infrastructures and services, will be utilised to simulate relevant experiments. We 

intend to affect the task migration and mobility issue using the Markov decision 

process, the deep learning method, and actual datasets. 

We intend to analyse the negative and positive effects of VM migrations in future 

work. In addition, we will create a method to balance the negative and positive 

impacts of service migrations. 

Location-awareness: future research needs to study to include the nearby nodes 

by expanding the coverage of cells. This action required us to be aware of the 

physical location of all APs. 
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APPENDIX 

 
Appendix I: COMPARISON OF RELATED WORKS . 

Authors Contributions Offloading-in Offloading Approach Clustering TSA Control System Metrics Pros/Cons 

Jiang, Chen et 
al. (2018) 

Offloading 
dispatcher and an 
energy-efficient 
offloading decision 
mechanism 

Fog nodes Find the optimum 
destination device after 
studding the offloading 
cost- Dynamic  

No Yes Decentralized Response time, 
Energy 
consumption 

The algorithm costs the 
system a high number 
of exchanged messages 
to explore the suitable 
device for offloading. 

Ebrahim and 
Hafid (2023) 

A LB algorithm 
based on 
Reinforcement 
Learning (RL), 
DDQN. 

Cloud and Fog 
Servers 

The algorithm aims to 
minimize the waiting 
delay of IoT workloads in 
dynamic environments 
with unpredictable traffic 
demands, using intelligent 
workload distribution. 

Yes No Distributed Latency, Waiting 
time, Execution 
time, Response 
time 

The author does not 
solve the inherent 
issues of traditional 
offloading. 

Albalawi, 
Alkayal et al. 
(2022) 

PSOSVR: based on 
a many-objective 
Particle Swarm 
Optimization (PSO) 
algorithm with 
Support Vector 
Regression (SVR) 

 

Fog nodes Dynamic- AI 

 

No No Centralized- The 
control unit 
locates in Fog 
layer - FSM 

Response time, 
Energy 
consumption, 
Resource 
utilization, and 
Throughput 

The authors have not 
given an advantage in 
execution for time-
sensitive applications 
or distant offloading. 
The architecture has 
low scalability. 

Lu, Gu et al. 
(2020) 

DRL: based on the 
improved IDRQN 
algorithm. 

 

Cloud and Fog 
Servers 

DRL is proposed to solve 
the offloading problem of 
multiple service nodes for 
the cluster and multiple 
dependencies for mobile 
tasks in large-scale 
heterogeneous MEC. 

Yes Yes Decentralized Energy 
consumption, 
load balancing, 
latency and 
average execution 

The study considers 
TSA and distant 
offloading. However, it 
follows the traditional 
offloading approach, 
which may consume 
unnoticeable time. 
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Tran-Dang and 
Kim (2023) 

Proposing DCTO, a 
dynamic 
collaborative task 
offloading, 
algorithm. 

Fog nodes Using partitioned tasks 
and parallel computation 

No No Decentralized Average of task 
execution delay 
and utilization 
ratio of fogs 

The authors did not 
give advantage for 
sensitive applications 
or distant offloading. 

Gowri and 
Baranidharan 
(2023) 

A dynamic energy 
resource allotment 
(DERA) technique 

Cloud and Fog 
Servers 

The proposed algorithm 
used two algorithms to 
find the optimum target 
device. 

No No Centralized- The 
control unit 
locates in Fog 
layer - Controller 

Broadband costs, 
duration, and 
energy 
consumption. 

The algorithm shows 
outstanding results 
among others. 
However, it ignores 
sensitive application 
and distant offloading. 

Hussein and 
Mousa (2020) 

Two nature-
inspired meta-
heuristic 
schedulers, namely 
ant colony 
optimization (ACO) 
and particle swarm 
optimization 
(PSO), 

Cloud and Fog 
Servers 

The proposed model 
considers the network 
latency and the service 
rate of the fog nodes 

No No Centralized- The 
control unit 
locates in Fog 
layer –Fog Master 
Node 

Communication 
cost and 
Response time  

The authors do not 
prioritize the critical 
application to be 
executed locally. 
Moreover, they ignore 
other critical problems. 

Li, Zhuang et al. 
(2018) 

A self-similarity-
based load 
balancing (SSLB) 
mechanism for 
large-scale fog 
computing. 

Fog nodes address the LB challenges 
caused by fog’s ‘large-
scale’ characteristic 
through clustering. 

Yes Yes Decentralized Execution time, 
clustering 
overhead 

Even though SSLB 
presents many features, 
it faces the inherent 
issues of prevalent 
offloading, such as 
decision time and 
messages. 

Lu, Wu et al. 
(2023) 

Two scenarios are 
considered: 
Unlimited-
Processor Fog 
Nodes (UPFN) and 
Limited-Processor 
Fog Nodes (LPFN). 

Cloud and Fog 
Servers 

minimize the total 
monetary cost by 
considering the deadline. 

and capacity constraints. 

No Yes fog nodes’ 
distributions are 

concentrated 

Average cost and 
Makespan 

The manuscript does 
not find a solution for 
large-scale networks 
and other phenomena 
in dynamic offloading. 



3 
 

Sarma, Kumar 
et al. (2019) 

A smart gateway 
as a load balancer 
in a fog 
environment 

Cloud and Fog 
Servers 

The authors proposed a 
smart gateway that 
control the arrival tasks 
with minimum cost. 

No No Centralized- - The 
control unit 
locates in Fog 
layer –Smart 
gateway 

Network delay 
and Computing 
time 

Despite the outcomes of 
the centralized system, 
the proposed solution 
did not consider other 
inherent issues of 
offloading costs. 

Chakraborty 
and Mazumdar 
(2023) 

Hybrid 
metaheuristic 
Greedy 
Randomized 
Adaptive Search 
Procedure and 
Genetic Algorithm 
(GRASP-GA).  

Cloud and Fog 
Servers 

Hybrid metaheuristic 

 == > Dynamic- AI. 

A dynamic edge server 
selection mechanism for 
task offloading. 

 

Yes Yes Centralized. The 
control unit 
locates in cloud 
layer. 

 

total execution 
time and energy 
consumption 

 

The authors did not 
study the implications 
of distant offloading on 
critical applications. 
The proposed model 
highly uses a cloud 
server. Even though its 
outstanding results, 
assigning sensitive 
applications to the fog 
devices is a better 
approach. 

HybOff A comprehensive 
offloading 
algorithm that 
override most of 
inherent issues in 
static and dynamic 
offloading. 

Fog layer The proposed algorithm 
aims to utilize many 
features, such as 
clustering, static 
offloading, and local 
execution, to present a 
comprehensive solution. 

Yes Yes Central-
distributed 

RU, LB level, and 
system 
performance 

It solves many inherent 
issues in prevalent 
offloading, such as 
offloading decision, 
distant offloading, 
network  



 

 




