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Abstract  

Neurological disorders are the leading cause of disability and death worldwide, 

with over 9 million deaths annually. They have a large socioeconomic impact for 

many countries with dementia generating costs of up to US$818 billion in 2015 

alone. Living with neurological conditions also has a significant effect on people’s 

lives, with many comorbidities associated with them. The complex and 

inaccessible nature of the nervous system, as well as its limited self-healing 

capacity, have made research translation challenging. To date, most neurological 

conditions remain poorly understood, incurable and difficult to treat, in spite of the 

considerable research that has been undertaken to better understand and treat 

them. The number of individuals affected by neurological conditions is growing 

yearly, and the need for more research that translates into clinical therapies has 

become unquestionable. Research translation has been limited by the lack of 

more physiologically relevant models. Animal models and traditional 2D tissue 

culture are the most widely used techniques to study neurological conditions and 

test potential therapeutic agents. However, they have proven to not be 

representative of in vivo conditions in humans. Particularly in 2D models, the cell 

architecture and arrangement are vastly different from the native tissue. To 

address these issues, tissue engineering and 3D culture models provide a new 

avenue to create a cell growth environment that better mimics the brain. However, 

healthy neural cells are still difficult to source for the creation of these 3D models. 

We may be able to overcome this issue by utilising human Adipose-derived stem 

cells (hADSCs). hADSCs are relatively easy to obtain and have the capacity to 

differentiate into neural cells and, therefore, may be an excellent source of cells 

for 3D models to study and treat neurological conditions.  

 

This thesis describes the investigation of a suitable 3D model to efficiently 

differentiate hADSCs into neural cells. Chapter One is an introduction to the field. 

Chapter Two assesses the effects of commercially available neural supplements 

(B27, CultureOne and N2) on 2D-grown hADSCs. These experiments found that 

while the supplements had neurodifferentiation effects on the cells, the 2D 

environment was not suitable for long-term differentiations, with cells starting to 

detach from the tissue culture plate after 7 days. Chapter Three explored the use 



 xvi 

of GelMa as a 3D matrix to mimic the brain environment. However, those 

experiments were not successful, and the focus moved to other matrices. 

Subsequently, Chapter Four explored the use of bioprinted PEG-based hydrogels 

at 1.1kPa with RGB and YIGSR peptides as a model to grow hADSCs for neural 

differentiation for 14 days. That research showed good cell viability as well as 

spontaneous neural marker expression from the cells, suggesting that the model 

was a suitable one to further explore neural differentiation of hADSCs in 3D 

matrices. Chapter Five explored the combination of the PEG-based 3D matrix 

studied in Chapter Four, together with the neural support supplements used in 

Chapter Two. Results showed that the addition of the supplements further 

enhanced neural differentiation marker expression in the hADSCs, suggesting 

that the use of both the PEG-based 3D matrix and the supplements are a good 

combination for ADSCs neural differentiation, warranting further research.  
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Chapter One: Background and literature review 

1.1. Introduction 

The nervous system is a complex and intricate network of organs, tissues and 

cells that are responsible for the coordination of all body activities. It facilitates 

communication between all bodily systems, governs all bodily functions from 

cognition and emotion, to movement, sensations (sight, hearing, taste, touch, and 

smell) and basic bodily functions including regulation of the circulatory, 

respiratory, renal, digestive, and reproductive functions [1].  

 

There are two main parts to the nervous system: the central nervous system 

(CNS), which includes the brain and spinal cord; and the peripheral nervous 

system (PNS) which includes all the nerves that branch off from the spinal cord 

and extend to all parts of the body [2]. Disruption to the functions of either the 

CNS or PNS, either of traumatic or non-traumatic/degenerative nature, can lead 

to a wide range of neurological disorders such as Alzheimer’s disease, motor 

neuron disease, multiple sclerosis, stroke, brain and spinal cord injuries, 

infections and neuroinflammation that lead to poor health outcomes and suffering 

in affected individuals [3]. Furthermore, the nervous system has limited self-repair 

capacity. Neurological conditions are the leading cause of disability and death 

worldwide with 9 million deaths per annum attributed to such conditions [4-6]. 

They have devastating socio-economic impact for many countries, with dementia 

alone generating costs up to US$ 818 billion in 2015 [7] and predicted to surpass 

US$ 2.8 trillion by 2030 [8] . While considerable research has been undertaken 

to understand each disorder and identify potential therapeutic agents [9-11] most 

remain poorly understood, incurable and difficult to treat. With a growing number 

of affected individuals, the need for research and translation into clinical therapies 

has become unquestionable [11, 12].   

 

Unfortunately, studying the human nervous system in vivo is challenging due to 

the complex and inaccessible nature of the brain and spinal cord. Historically, 

researchers have been limited to studying these disorders using in vivo and ex 
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vivo animal models, and 2D culture models (Table 1), the results of which have 

proved to be ineffective in human clinical trials [11, 12]. This poor translation has 

been mainly attributed to the lack of an accurate in vitro model of the CNS to test 

treatments on human cells [10, 13-15], and highlights the need to develop a more 

suitable cell culture model for neurological diseases.  

 

Table 1 Current CNS modelling techniques: Advantages and disadvantages 

Model type Advantages Disadvantages References 

In vivo - Complex; suitable to 

characterise pathological 

conditions. 

- Fit for long term studies. 

- Anatomically relevant 

- Expensive 

- Not always relevant to humans 

- Limited sample size 

- Low control over variables 

- Challenging to quantify results 

[16, 17] 

Ex vivo  
tissue sections 

- Complex structure  

- All cell types present 

- Loss of tissue function 

- Short-term 

- Limited access to human tissue 

[18, 19] 

2D in vitro - Simple and Efficient 

- Reproducible 

- Low-cost 

- High throughput 

- Easily quantifiable 

- High control over variables 

and environmental 

conditions 

- Low complexity 

- Short-term only 

- Limited cell source availability 

- Not always physiologically relevant. 

lacks the bigger picture of full organ 

or tissue 

- Restricted insight into biological 

mechanisms and functions 

[20, 21] 

3D in vitro 
cell aggregates 

- High throughput 

- Quantifiable 

- 3D environment – more 

physiologically relevant 

- Restricted in variables vs complexity. 

Cannot have both high complexity 

and large amount of variables 

- Shorter-term 

- Cells become necrotic in the centre 

[22] 

3D in vitro 
scaffolds 

- Reproducible 

- Controlled complexity 

- Suitable for long term studies 

- Quantifiable 

- Better understanding of 

biological mechanism 

- Physiologically relevant 

- Not well-established protocols 

- Limited human cell sources 

- Limited to tissue size 

- Require bioreactors for long term 

experiments 

[23, 24] 

 

 

This chapter will explore the different models and techniques being used to study 

the nervous system and its disorders. It will range from animal models, 2D tissue 

culture models and 3D tissue culture. It will touch on the different stem cells being 

looked at in the regenerative medicine field and their potential as treatment for 
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the multiple neurological disorders as well as the scaffolds and cells chosen for 

this research project.  

 

1.2. Nervous system modelling techniques 

In vivo animal models 

In vivo animal models involve the use of a living organism to study pathologies, 

drug toxicity and efficacy, and more. Typically, they involve animals, which may 

be genetically modified and thus predisposed to the pathologies of research 

interest, subsequently exposed to traumas, infections, therapeutics and/or other 

experimental treatments [25]. Animal experiments are more complex and can be 

used to mimic pathological conditions more accurately than other models. They 

are suitable for long term studies to assess disease progression overtime, identify 

potential therapeutic targets, assess efficacy of potential treatments as well as to 

investigate and better understand pathogenesis [26, 27]. 

 

Common animal models for neurological conditions in vertebrates include 

rodents (mice and rats), monkeys and zebrafish. In vivo animal models have been 

used to study neurological disorders for decades and several animal models for 

diseases including Parkinson’s Disease, Alzheimer’s, epilepsy, stroke have been 

established [25, 28]. While these have provided invaluable insight into 

pathogenesis and potential treatment avenues [27], they imperfectly model 

human disease progression and systems and thus the observations often 

translate poorly. Host responses to disease and therapeutics can vary greatly 

between species and this can lead to expensive and unsuccessful clinical trials 

[29-33]. Additionally, experiments involving animal models typically run for long 

periods, are time consuming and costly. Sample sizes are often restricted for 

logistical and ethical reasons and such models provide researchers with limited 

ability to study specific cellular and molecular mechanisms, and control certain 

variables (i.e. animal behaviour). Behavioural studies of such animals are often 

semi-quantitative in nature, which can limit their utility. Using animals for research 

purposes also presents ethical concerns [34]. Animals are sentient and many 
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disease models can cause physical pain and psychological distress. Additionally, 

the captive living conditions of research animals are vastly different to their 

natural habitat which can add to the suffering and impact the reliability of the 

results. Contrary to human subjects, animals are also unable to consent to 

participate in a particular study or clearly articulate when a procedure is too 

painful or be able to cease their participation when they chose to [34]. It is 

important to note that there aren’t always alternatives to animal models, 

highlighting the need to investigate and improve models to study the nervous 

system.  

 

Ex-vivo models 

Ex-vivo models are also commonly used to study the nervous system. This 

approach hybridises in vivo models and tissue culture through excising tissue 

sections from living organisms and maintaining them in in vitro conditions similar 

to the tissue of interest [35-37]. For example, thin slices of brain or spinal cord 

are commonly cultured and studied as neural models in vitro [38, 39]. A particular 

region of interest can be selected from a target organ, for example the 

hippocampus, excised from fresh tissue and used to assess effects of treatments 

or study the interactions of different cells in that area [39-42]. In ex-vivo slices, 

the cellular architecture as well as intercellular connections are retained providing 

a better representation of in vivo conditions allowing investigation of specific 

cellular interactions and molecular mechanisms of disease progression and 

development in neurological disorders such as spinal cord injury [43], Alzheimer’s 

disease [44], and Parkinson’s disease [45, 46]. These are also often used to study 

tumours and cancerous growth [47]. 

 

While ex-vivo models have the ability to maintain more complex cellular 

interactions than in 2D culture models, they do not retain the entirety of 

interactions and functions present in vivo. Additionally, ex vivo slices of brain can 

only be maintained in tissue culture for a short time with cell loss becoming 

apparent after only a few hours post extraction [39, 48] which limits their utility in 

disease progression or treatment studies which typically occur over longer 
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periods of time. They also have low reproducibility, especially for tumour and 

cancerous growth study given each tumour is different [47]. Furthermore, typically 

ex vivo models for the nervous system utilise animal tissues [40, 43-46] due to 

the limited accessibility of fresh human nervous system samples [39, 48]. 

Similarly, as with in vivo animal models, study findings from ex vivo animal 

models often translate poorly to human applications [39, 48]. 

 

In vitro tissue culture: 2D vs 3D models 

Tissue culture is a widely used technique for understanding the mechanisms of 

cell behaviour in vitro. It has become a fundamental tool to examine the 

biophysical and biomolecular mechanisms and functions of how cells assemble 

into tissues and organs [49]. Tissue culture is also essential to understand the 

mechanisms that cause underlying conditions in a cost-effective manner [49], 

allowing for tests to be conducted on human cells rather than using cost-intensive 

animal testing that may or may not be suitable, while reducing the ethical 

implications of animal models [15]. However, traditionally tissue culture has been 

conducted in 2D conditions where the cells grow in a 2D plane and rely on cell 

adherence to a flat surface, commonly polystyrene or glass, for mechanical 

support (Figure 1). The stiffness of these materials is magnitudes higher than that 

seen in soft tissues, poorly representing the tissue of origin. It is known that 

stiffness has a direct effect on cell adhesion, spreading, migration and 

differentiation [50]. Furthermore, the monolayer arrangement creates an 

unnatural environment where homogenous growth occurs on an XY plane only 

and provides equal exposure to oxygen, nutrients, growth factors and waste 

products [49, 51] (Table 2), which is not the case in an organ. This XY 

arrangement also limits cell-cell interactions and cells lack the stimulation to self-

organize and become incapable of producing a biochemically relevant, tissue-like 

environment [49, 51, 52].  
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Figure 1 Adhesive, topographical mechanical and soluble cues, which affect cellular development 
(A) in 2D (B) in 3D. Surface interactions in 2D and ECM interactions in 3D have been marked in 
red. Cell-to-cell interactions can be observed only on cell edges in 2D, as opposed to creating a 
complex network in 3D. Imaged adapted from Baker et al. 2012 [50]

Table 2 A comparison of 2D and 3D tissue culture models 

*in this context, response to mechanical stimuli, refers to the cells actively interacting with the 

matrix provided

In addition to these physical spatial restrictions, numerous 2D models tend to 

consist of single cell type cultures (monocultures), which fail to allow 

investigations of interactions among different cell types [61]. Although 2D tissue 

culture is simple, reproducible and efficient, they are not a complete 

representation of in vivo processes [49] meaning the data obtained from 2D tissue 

culture experiments cannot be directly translated into clinical trials [15, 53, 61]

Key 
Characteristics

2D cell culture 3D cell culture References

Cell Shape Flat and stretched     
(apical-basal polarity)

Natural shape retained 
(aggregate/spheroid structures)

[49, 51, 53, 54]

Cell exposure
to 
medium/drugs

Cells have equal exposure    to 
growth medium

Gradient of medium availability, 
resembling physiological 
conditions

[49, 51, 53]

Cell 
differentiation

Poor differentiation Physical pressures can induce 
cell differentiation

[55] [56] [57] [58]

Drug 
sensitivity

Altered drug response due to 
unnatural microenvironment. Cells 
are equally exposed

Cells frequently more resilient, 
drugs show less potency. More 
accurate predictions of in vivo
drug responses

[14, 15] [59]

Cell 
proliferation

Proliferation rate is higher than in 
vivo conditions 

Proliferation rate depends on 
cell type and 3D cell culture 
technique.

[49, 51]

Response to 
mechanical 
stimuli*

Poor response Well-established response [60] [57] [58]
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More recently, 3D in vitro models have shown promise in a breadth of disease 

models. 3D tissue culture aims to bridge the gap between whole-animal studies 

and the use of traditional 2D cell culture by creating an environment that is closer 

to the original tissue physiology and phenotype. Table 2 summarises the 

differences between 2D and 3D. 3D culture creates a more realistic physiological 

state by mimicking spatial organization and cell-cell interactions.  It intends to 

accurately simulate the extracellular matrix (ECM)  and the native tissue as 

closely as possible by enabling the cells to grow in a 3D structure, taking into 

account the original spatial organization of the cells in their native tissue 

environment and, therefore, mimicking the biological responses of these cells [15, 

49, 52]. 

 

Additionally, the presence of ECM allows for accumulation of proteins and growth 

factors, which diffuse freely into the media in 2D conditions [52]. The cues 

encountered by the individual cells influence tissue development and 

homeostasis and, ultimately, regulate cell fate. There is increasing evidence that 

cells grown in 3D conformations show cell responses more comparable to in vivo 

behaviours with cells varying considerably both morphologically and 

physiologically from cells grown in 2D monolayers [15, 62-64]. Cells can be at 

various stages of the growth cycle; ranging from actively proliferating, quiescent, 

apoptotic, hypoxic and necrotic due to the heterogeneous exposure to nutrients 

and waste similar to in vivo conditions. They also retain their natural shape and 

proliferation capacity, and differentiation can be induced by the mechanical 

pressures of the scaffolds the cells are grown in [49, 55, 65]. Figure 1 and Table 

2 illustrate the main differences that cells experience between 2D and 3D tissue 

culture, and the following section will describe the intricacies of 3D models and 

considerations regarding their use in neural cell culture.  

 

1.3. 3D tissue culture  

An ideal 3D culture model would simulate a tissue specific physiological 

microenvironment where cells can proliferate, aggregate, and differentiate [66]. 

The model would include cell to cell interactions as well as cell to ECM 
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interactions. The stiffness would resemble that of the tissue of origin, and there 

would be oxygen, nutrient, and metabolic waste gradients as well as tissue-

specific scaffolding cells [67]. A variety of promising model techniques have been 

developed (Table 3) however, they do not meet all the criteria listed above and 

therefore researchers must choose the most appropriate model for the study 

being conducted. Additionally, there is a considerable breath of parameters that 

require optimisation specific to particular tissue types. These include the specific 

cell line, whether it needs to be a primary cell, the tissue of origin to be modelled 

and the final aim of the study.  It is crucial to consider these parameters before 

choosing the 3D cell culture technique [66, 68].  
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Table 3: 3D tissue culture techniques advantages and disadvantages 

 

3D models can be broadly divided into those with or without structural support, 

including scaffold-free and scaffold-based 3D culture systems [77]. Figure 2 

visually represents the different methods available with and without scaffold.  

 

 

 

 

 

 

 

 

 

Figure 2 Visual representation of the different 3D tissue culture methods with and without 

scaffold. Image reproduced from faCellitate [78] 

Scaffold-free systems are anchorage independent and instead rely on the cells’ 

ability to self-assemble and aggregate into non-adherent spheroids. Spheroids 

Model type Advantages Disadvantages References 

Scaffold-free 
E.g., Hanging 
drop, low 
attachment 
plate, magnetic 
levitation 

- Cells self-assemble into 

spheroids. 

- Does not require a scaffold. 

- Mimics cell-cell interactions 

- Simple  

- Good for tumour reproduction 

- Limited control of size and shape 

- High variability between 

organoids 

- May not represent mechanical 

properties of tissue.  

- ECM-cell interactions not 

represented. 

- Limit in size – difficult to scale up 

for high throughput applications. 

- Necrotic centre  

[51, 61, 66-
69] 

Scaffold-
based 

- Reproducible  

- Tuneable environment 

- Mimics ECM-cell and cell-cell 

interactions 

- Suitable for long term studies 

- Physiologically relevant 

 

- Not well-established protocols 

- Many variables to 

control/optimise. 

- Limited in size 

- High manufacturing complexity 

- Downstream analysis difficulties 

[66, 70] [71] 
[55, 61, 72, 
73] 

Organ on a 
chip 

- Suitable for drug testing 

- Physiologically relevant 

- Suitable for long term studies 

 

- High manufacturing complexity 

- Higher need for expertise. 

- Costly  

- No standardised protocols  

- Limited scalability 

[74-76] 
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enable for a better reproducibility of cell-to-cell physiology of tissues and tumours 

[66]. There are several approaches for spheroid formation (Figure 2). Forced 

floating methods (eg. low-adhesion plates; magnetic levitation technique) where 

cells are grown in conditions that prevent cell attachment and promote cell 

aggregation and spheroid formation. The use of low adhesion plates prevent cell 

attachment by using round bottom plates treated with hydrophilic or hydrophobic 

coating like the non-adherent polymer poly-HEMA while magnetic levitation 

forces the cells into floatation and aggregation by using an externally applied 

magnetic field to the magnetic nanoparticle preloaded cells [70].  Another 

spheroid formation approach is the hanging drop method (eg. hanging drop 

microplates) where cells are placed in specialized plates with open, bottomless 

wells that are designed for the formation of a small droplet that is big enough for 

cells to aggregate and become a spheroid. However, hanging drop method is 

limited by size, and spheroids need to be moved to low adhesion plates for 

analysis [53]. Agitation-based approaches (eg. bioreactors) are another 

technique used in scaffold-free tissue culture where cells are pushed to self-

aggregate by creating dynamic culture conditions. This approach allows for large-

scale production of spheroids; however, the cells are under shear stress and the 

spheroids are not always uniform in size [53].  

 

So far, spheroids have successfully been used in modelling tumour growth and 

metastasis studies [79] and in the context of nervous system modelling, 

neurospheres or spheroids made from a mixed culture of progenitor, neuronal 

and glial cells, have been successfully used for the study of the interactions 

between the different cell types of the nervous system and their role in 

differentiation [80]. This has also been a promising model for drug testing as it is 

a more physiologically relevant culture system [69]. While scaffold-free tissue 

culture provides great insight into cell-cell interactions with highly reproducible 

results, cell aggregates require careful exchange of nutrients and gases and are 

only viable in small size. Cell death problems arise when the aggregates become 

larger than 1-2mm given the limited exchange of metabolites and waste products. 

The centres can easily become hypoxic past a certain size and cells become 
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necrotic. Additionally, they also do not represent the interactions with the ECM 

and lack the mechanical effects from the external environment. So, as the size 

and complexity of the 3D model increases, the need for a scaffold becomes 

unquestionable [51, 61, 66-69]. 

 

Scaffold-based systems are anchorage-dependent and involve the presence of 

a scaffold that provides a physical support element. Scaffolds can be defined as 

synthetic 3D structures made of various materials that have different porosities, 

permeability, chemical composition, and mechanical properties. These are 

designed to mimic the environment of specific tissues [70].  In scaffold-based cell 

culture, the cells are embedded within the matrix and are affected by the chemical 

and physical properties of the material. Scaffold porosity facilitates oxygen, 

nutrient and waste transportation as well as allowing for cell’s proliferation, 

migration, and interaction with the scaffold and each other [66, 70].  

The scaffolds can be polymeric hard scaffolds or hydrogel-based scaffolds and 

can be of natural origin or synthetically engineered to mimic ECM properties like 

stiffness, charge, or adhesive motifs. In some synthetic scaffolds, growth factors, 

hormones and other biologically active molecules can be added to enhance 

proliferation, attachment, and specific cell phenotype [71] (Figure 2). 

 

When selecting a scaffold, researchers will need to carefully consider the tissue 

of origin and the material properties of the scaffold of choice as scaffold and 

material properties can regulate cell adhesion, proliferation activation and 

differentiation, as well as requirements for the intended application and use [55, 

61, 72, 73]. For example, if the intended use is for transplantation, the scaffold 

will need to be biodegradable and easily remodelled by the body and replaced by 

native tissue to restore original function. In this case, the scaffold needs to 

support growth and differentiation. Additionally, the scaffold needs to disintegrate 

without toxic or immunogenic reactions. On the other hand, if a scaffold is 

intended as an in vitro model for treatment testing or disease modelling, the 

scaffold will need to closely mimic the native tissue structure [61].  
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Furthermore, the stem cell-material interface is a complex and dynamic 

environment. The cell and the material interact with one another and dictate their 

fate. The cells remodel the scaffold and the material through its properties 

(stiffness, adhesivity, degradability, porosity, permeability etc.) affects the cells’ 

fate. Hard polymers are a suitable scaffold for specialised tissues such as skin, 

tendons or bone and softer scaffolds and hydrogels are good for softer tissues 

like brain, [66, 70]. For example, mesenchymal stem cells (MSCs) are known to 

be extremely sensitive to substrate stiffness. MSCs were neurogenic on soft 

matrices but myogenic on matrices with muscle stiffness and osteogenic on rigid 

matrices that mimic collagenous bone [55].  

 

Organ-on-a-chip (OaC) are another 3D culture model currently used in 

bioengineering and drug discovery where artificial models of human organs are 

created using microfluidic cell culture chips [75]. The microfluidic chips have really 

well-defined structures, patterns or scaffolds that are generated using 

microfabrication techniques like soft lithography, photolithography and contact 

printing [74]. OaC is designed to mimic the key structural environment and 

complexity of organs at a smaller scale where the position, shape, chemical and 

physical environment of the cells in culture can be controlled to reproduce key 

organ functions and physiology using microfluidics [76]. These can contain an 

array of channels, valves and pumps that offer precise control over fluid flow [75, 

81]. The key functions and structure of major organs such as lung, gut, liver, 

kidney and more recently brain are being developed using OaC method [82-86].  

 

OaC are a great tool to explore drug efficacy and toxicity on cell and are the 

perfect next step after having a 3D structure and cell population to test on.  

However, while they are starting to become commercially available, OaC are not 

easily accessible to all researchers as they require specialised knowledge and 

equipment. They are technically challenging and time consuming to create. 

Furthermore, they are also expensive to develop and maintain given the 

specialised equipment and materials required. Additionally, while some platforms 

are being designed for high-scale, overall, they can have limited scalability and 
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protocols need to be further validated and standardised [75, 76]. Amirifar et al. 

2022 has written an in depth review about organ-on-a-chip models for neural 

studies and the nervous system [87]. 

 

With all this information in mind, the current research project will be using 

scaffold-based 3D techniques. The cells and matrix of choice to develop the 

model will be further discussed in the following sections.  

 

1.4. Stem Cells used for nervous system modelling. 

Stem cells have been widely used for research purposes as they have 

considerable capacity to be of clinical benefit. In research, stem cells can be used 

for two main types of research: as a research model to further understand disease 

processes, disease modelling, cell metabolism, differentiation potential, drug 

testing among others, or to develop therapeutic treatments like transplants and 

transfusions. [88]. Stem cells are the backbone of regenerative medicine, the field 

that merges tissue engineering and cell therapies with the aim to harness and 

improve the human body’s self-healing capacity, to heal and restore damage 

caused by age, disease, trauma, or congenital disorders [89-92].  

 

Stem cells have two main characteristics: they self-renew (i.e. they have the 

ability to divide and form another stem cell), and they can differentiate into 

different cell types and give rise to different tissues [93].  Depending on their origin 

and potency, stem cells can be classified into two main types: embryonic stem 

cells (ESCs) and adult stem cells [94, 95]. ESCs are pluripotent stem cells that 

originate from the blastocyst of an embryo and they were first isolated from 

humans in 1998 [96]. They can self-renew and can differentiate into every 

somatic tissue, however these have ethical concerns given the embryo death 

during cell isolation [97]. Adult stem cells, also known as somatic stem cells or 

non-embryonic stem cells, are multipotent cells and can be isolated from many 

different adult tissues including blood, bone, and adipose tissue, among others 

[98]. They can self-renew but their differentiation potential is limited when 
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compared to ESCs however, they do not have the same ethical concerns as 

ESCs and do not have the same immune rejection concerns as ESCs if returned 

to the host they were isolated from [95]. 

 

The CNS is composed of neurons, astrocytes, and oligodendrocytes as well as 

other non-neural cells. Neurons process the information entering and leaving the 

CNS; astrocytes are the support cells [99] and oligodendrocytes are responsible 

for myelinating axons [100]. In the adult human brain, neurogenesis occurs in two 

regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone 

(SGZ) in the hippocampus. These are the only regions where neural stem cells 

(NSCs) and neural progenitor cells (NPCs) can be found in the adult brain. 

Oligodendrocyte progenitor cells (OPCs) on the other hand, can be found in the 

corpus callosum where oligodendrogenesis occurs in in the adult brain. [18, 101, 

102].  

 

Neural tissue culture models of the nervous system have been established using 

an array of different stem cells ranging from animal cells to human cells and 

immortalised cell lines. Table 3 summarises the advantages and disadvantages 

of the different cell types that will be discussed.  

 

Table 3 Stem cells used for nervous system regeneration. Advantages and disadvantages.  
ESCs = Embryonic stem cells; NSCs = Neural stem cells; iPSCs = induced pluripotent stem cells; MSCs = Mesenchymal stem cells 

 

 

Neural stem cells (NSCs) and Neural progenitor cells (NPCs) are commonly used 

primary cells for the study of the nervous system. While they can be obtained 

 ESCs NSCs Immortalised 
cells 

iPSCs MSCs 

Differentiation 
capacity 

Very good Good Low Very good Good 

Harvest/access Controversial Difficult NA  Easy Easy 

Tumorigenicity High Low High High Low 

Suitability for stem 
cell therapy 

Moderate Moderate No Low Moderate 

Immune 
complications 

High High NA Moderate Low 
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from both human and animal origin, human cells are difficult to source and most 

of these studies are done in neural primary cells from animal origin [103, 104]. 

While these cells offer important insight into the disease mechanisms and drug 

responses, they suffer from some of the same limitations as animal models, like 

costs, ethical implications, and obvious inter-species differences as they do not 

always reflect the cellular interactions and responses comparable to human cells. 

Additionally, human sourced NSCs and NPCs transplants would be faced with 

potential immune rejection.[104-107].  

 

Immortalised cell lines have also been widely used to create nervous system 

models [105, 108]. The first immortalised neuronal line was derived from lymph 

node, bone marrow and liver tissue that was infiltrated with neuroblastoma cancer 

[109]. From this, SK-N-SH neuroblastoma cell line was isolated from metastatic 

bone tumour [110] which was then further subcloned to establish the now widely 

used SH-SY5Y neuroblastoma cell line [111]. NT2 Is another human neuronally 

committed teratocarcinoma immortalised cell line used to create neuronal 

cultures [108]. This cell line was originally derived from a malignant pluripotent 

embryonal carcinoma isolated from the testicles of a 20-year-old male [112]. 

While these cells are widely used in in vitro neural models [103] like traumatic 

brain injury models [113, 114], cigarette effect models [115], Parkinson disease 

models [116] among others, the main concern with the use of these cell lines is 

their genetic and metabolic abnormalities as well as their oncogenic nature which 

may not represent normal human cell proliferation and interactions accurately 

[105, 108, 117] furthermore, these cells are not suitable for potential transplants 

and regenerative medicine purposes given their cancerous nature.   

 

ESCs are another commonly used cell source as they are pluripotent cells. They 

can be isolated from the blastocyst from an embryo and can differentiate into 

neural cells [95]. Motor neurons have been successfully generated from both 

rodent [118] and human ESCs [119, 120] and in vitro differentiated ESCs are able 

to quite accurately reproduce neuroectoderm formation with structures and 

cellular organisation similar to the ventricular and sub-ventricular zones [121-
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124]. While these cells have provided invaluable information in the process of 

neural differentiation and neuron formation, these cells have well documented 

ethical concerns; ESCs originate from the blastocyst of a 5-day embryo and in 

the process of generating the cells, the embryo dies. Furthermore, there are also 

concerns around potential immune rejection as well as possible tumorous growth 

given their fast uninhibited proliferative nature which can hinder their use in 

transplants and regenerative medicine [95, 125].  

 

Induced pluripotent stem cells (iPSCs) are another type of widely used cells for 

the study of the nervous system. These cells have been genetically 

reprogrammed from adult somatic cells into ESCs-like cells. iPSCs were first 

generated in 2006 from mouse fibroblasts by genetically modifying the cells to 

pluripotent stem cells [126]. In 2007, the same was achieved for the first time in 

human adult fibroblasts [127]. These cells are remarkably similar to ESCs 

however they are generated in a completely different way. While ESCs are 

isolated from an embryo [95], iPSCs are adult somatic cells that have been 

reprogrammed into an embryonic-like state [127, 128].  iPSCs have shown great 

potential as a treatment avenue for neurological disorders, having been 

successfully differentiated into oligodendrocytes, glial cells, neurons and 

astrocytes [129, 130]. They have served as a source of much information for 

disease modelling and have enabled the use of cells from patients with particular 

diseases like Parkinson’s disease so that genetic code is in the cells [131]. 

However, their genetic reprogramming, as well as their high proliferation, are a 

concern when applied as stem cell therapies or transplants, as there can be 

immunogenic issues, as well as tumorigenic growth and more work, is required 

to see if these would become problematic (cancerous or otherwise) [132]. 

Additionally, iPSCs are notoriously time-consuming to maintain and require 

significant optimisation [133].  

 

Mesenchymal stem cells (MSCs) are another cell type that have been researched 

in the field of nervous system repair. MSCs are multipotent adult stem cells that 

can self-renew and differentiate into tissues from mesenchymal and non-
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mesenchymal origin [134]. These multipotent cells have the capacity to 

differentiate into cells from the mesodermal lineage (adipose, chondrogenic and 

osteogenic cells) and transdifferentiate into cells from the ectodermal (neurogenic 

and epithelial cells) and the endodermal lineages (myogenic cells).  [135-143] 

 

While adult stem cells have restricted growth potential when compared to ESCs 

they do not have the same ethical concerns. Furthermore, they can be isolated 

with minimal complications meaning they are ideal for autologous transplants 

reducing the potential immune rejection [144-149]. Additionally, adult stem cells 

proliferate at slower rates than pluripotent stem cells and are less prone to 

unrestrained proliferation and hence are less tumorigenic [125]. 

MSCs can be isolated from different tissues such as bone marrow, adipose 

tissue, and foetal tissue [150]. Bone Marrow stem cells (BMSCs) are extracted 

from the central region of the bone marrow, a process that is painful and has 

significant risk of morbidity [151]. Furthermore, the number of MSCs in the bone 

marrow is low, meaning that they yield low numbers of stem cells and need to be 

expanded in vitro [150]. On the other hand, adipose derived stem cells (ADSCs) 

are obtained via tissue liposuction which has low invasiveness and risk and the 

number of stem cells obtained from adipose tissue is significantly higher than 

those obtained from bone marrow reducing the need to expand in vitro [144-149]. 

Additionally, there are minimal differences in morphology, immune phenotype, 

and differentiation capacity between BMSCs and ADSCs. Lastly, ADSCs can be 

maintained in vitro for longer periods with higher proliferation rates and low levels 

of senescence when compared to BMSCs [149, 152, 153] making ADSCs a 

superior candidate for regenerative medicine and clinical applications.  

 

Given the easy accessibility, differentiation potential, few ethical concerns, 

potential for autologous transplants and the low risk of tumorous growth in 

transplants, ADSCs were the cells chosen for this research project and will be 

further explored in more detail in the following section.  
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1.5. Adipose-derived stem cells 

ADSCs were first introduced in the early 2000s when Zuk et al [154] characterised 

a multipotent, undifferentiated, self-renewing cell population isolated from 

adipose tissue that exhibited similar morphology and phenotype to MSCs. These 

newly isolated stem cells also displayed similar differentiation capacity and stem 

cell marker expression to MSCs [154]. ADSCs can be repeatedly harvested, with 

more ease, with higher stem cell yield, quality, and proliferation capacity via a far 

less invasive procedure with low morbidity from subcutaneous adipose tissue, 

making them a superior alternative cell source for regenerative medicine to 

BMSCs [144-149, 152, 153].   

 

ADSCs are commonly isolated from adipose tissue lipoaspirates via collagenase 

digestion followed by centrifugal density gradient separation [155]. In vitro the 

cells are plastic adherent and can be expanded as monolayers on plastic 

displaying spindle-shape morphology and lacking intracellular lipid droplets seen 

in adipocytes [155]. Moreover, these cells are further characterised by the 

expression of the stem cell-specific surface markers CD90, CD105, CD73, CD44 

and CD166 and the lack of hematopoietic markers CD45 and CD34 expression 

[156].  

 

ADSCs are a great candidate for regenerative medicine and cell therapy not only 

because of their differentiation potential; ADSCs have been differentiated 

towards the mesodermal lineage (adipose, chondrogenic and osteogenic cells) 

and transdifferentiated into cells from the ectodermal (neurogenic and epithelial 

cells) and the endodermal lineages (myogenic cells) [135-143] but also because 

of their self-renewal capacity, their low immunogenicity, their capacity to migrate 

to damaged sites, their autocrine and paracrine secretion capacity of a broad 

selection of cytokines, chemokines and growth factors, as well as for their anti-

apoptotic, anti-inflammatory, proangiogenic, immunomodulatory and anti-

scarring effects [157-159]. 

 



 

19 

 

 

To date, according to the National Institute of health registry (NIHR), there have 

been over 400 human clinical using ADSCs in regenerative medicine for an array 

of conditions, including respiratory conditions, arthritis, connective tissue disease, 

joint diseases, bone fractures, musculoskeletal diseases, central nervous system 

disorders among others [160]. It is important to note, however, that there is a  

shortage of easily accessible clinical trial results to assess the success rate of 

these experiments[161]. Results of clinical trials are not always reported on the 

NIHR website, and there is no easy access database to find them, making it hard 

for researchers to track down the results and make solid conclusions to pivot, 

adapt and improve bench-based research. Furthermore, there is no regulation or 

standardisation for isolation procedures for clinical application which can lead to 

inconsistencies [159, 161]. There is also a lack of standardisation for adipose-

derived stem cell nomenclature; there are many different names used to refer to 

the same cells in the literature making it difficult to collate all research currently 

available [162]. All these issues complicate research as it creates barriers to 

faster advancements, highlighting the need to standardise nomenclature and 

methods for clinical purposes. All these issues are covered in depth in Koh-Belic 

(2020) doctoral dissertation [162]. 

 

Nevertheless, the therapeutic potential of ADSCs is vast, and while there is a 

need for improved clinical protocols and standardisation, ADSCs hold genuine 

potential in the clinic. ADSCs have been used in animals and humans for bone 

regeneration [163-166] as well as for cartilage and interverbal disc regeneration 

[167-172]. Fat reconstruction is also an area where ADSCs have been 

successfully used to treat soft tissue defects in humans [173-176]. The 

cardiovascular and myocardial regeneration potential of ADSCs has also been 

investigated and has shown positive outcomes by other researchers.  ADSCs 

have improved regeneration of ischemic myocardium, reduced apoptosis of 

cardiomyocytes and improved cardiac function, perfusion and remodelling after 

acute myocardial infarction in animal models [177, 178] and in human trials using 

autologous ADSCs in patients with ischemic cardiomyopathy ADSCs seemed to 

play a role in preserving ventricular function, myocardial perfusion and exercise 
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capacity of patients treated [179].  Furthermore, animal models have also 

revealed the hepatic regeneration potential of ADSCs [180, 181].  

 

In the context of neural regeneration, there are several clinical trials currently 

listed in the NIHR [160], and many animal models using ADSCs for nervous 

system regeneration showing promising results, adding to the evidence that 

ADSCs could be an ideal candidate to treat neurological diseases such as 

Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s 

disease, stroke, Parkinson’s disease among other neurological conditions [182, 

183]. Animal models of AD using ADSCs have shown memory deficit restoration, 

reduction of Aβ deposition and restoration of learning and memory functions [184, 

185]. ALS rodent models showed that ADSCs treated mouse showed a delay in 

motor deterioration and an increase in glial-derived neurotrophic factor and basic 

fibroblast growth factor as well as increased number of lumbar motor neurons 

[186]. Huntington’s disease models also show significant improvement of lesions, 

improved rotarod performance, increased survival, diminished loss of neurons 

and reduced huntingtin aggregates suggesting ADSCs slow disease progression 

[187, 188]. In Ischemic stroke animal models, ADSCs administration improved 

functional recovery, reduced cell death and reduced reactive gliosis [189-193] 

and in Parkinson’s rodent model ADSCs also showed to have neurogenic and 

anti-inflammatory effects as well as improving cognitive performance after 

administration [194].  

 

While there is a need for more research into the use of ADSCs as a treatment for 

neuroregeneration, and better standardisation of procedures for clinical studies 

and reporting of clinical trials results is required, the potential of these cells as a 

therapeutic avenue for neurological disorders and for personalised medicine is 

strong, and it is worth pursuing.  

 

In this project, we will be focusing on studying the neural development on ADSCs 

in 2D and 3D cell culture models. The 3D model of choice will be further explained 

below. 
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1.6. Choosing a Scaffold 

The brain is a complex and intricate organ made of billions of cells, including 

neurons, astrocytes and oligodendrocytes, each with unique functions and spatial 

arrangements. The organisation and structure of the brain plays a critical role in 

its function as it allows for the formation of complex networks and interactions of 

cells for information processing learning, and memory. When selecting scaffolds 

to create a nervous system model, the brain structure needs to be taken into 

consideration. Other tissues with simpler arrangements or different tissue 

stiffness will require a different scaffold with different properties.  

 

Three main requirements need to be taken into consideration when selecting a 

scaffold for tissue engineering; the physical properties of the scaffold (stiffness, 

pore size and degradation rate); the biochemical properties (biological activity 

and toxicity) and practicality (cost and reproducibility) [10]. A balance is required 

between competing constraints and limiting factors. 

 

Scaffolds need to be designed and customised for each tissue of interest and by 

the desired end use of the model (i.e. for clinical applications or drug testing). The 

brain and brain cells have a low elastic modulus (stiffness) ranging from 0.1 kPa 

to 1.6 kPa [195, 196] (Figure 3) whereas the spinal cord, surprisingly, has a high 

elastic modulus that ranges from 100-1000 kPa [197-200]. Brain and spinal cord 

are naturally softer than bone (106- 107 kPa)[201]. Therefore, a softer and more 

porous material is required for neural tissue engineering, whereas for the growth 

of bone tissue, a stiffer more compact scaffold may be more realistic [61]. 

Consequently, the scaffold of choice for a 3D model of the brain should ideally 

have an elastic modulus of <2 kPa, resembling the softness of the brain tissue.  
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Figure 3 Stiffness of different tissues. Reproduced from Liu et al. 2015 [202] 

 

Stem cell growth and differentiation to differing lineages can be influenced by 

different factors including physical, chemical, and biological signals, such as the 

use of growth factors to drive neural stem cell differentiation [203-212]. ADSCs 

have been previously differentiated towards osteogenic, chondrogenic and neural 

lineages using different chemical and biological factors [135-137, 155, 213-219]. 

Physical signals seem play an important role in stem cell differentiation, such as 

MSCs undergoing osteogenesis when placed in stiffer substrates [220-222], and 

there is increasing evidence that MSCs differentiate towards neural lineages 

when placed in softer matrices [55, 57]. Her et al., (2013) demonstrated that 

MSCs fate could be manipulated towards the neuronal lineage when placed in a 

soft matrix (~1 kPa) and towards a glial lineage when placed in a stiffer substrate 

(~10 kPa) [57], showing that substrate stiffness can direct neural stem cell 

attachment, survival, growth and differentiation [57]. It has also been previously 

shown that substrates with an elastic modulus closer to brain tissue positively 

affects and supports neuronal attachment, growth, and expansion [58, 223]. 

When neurons are placed in soft hydrogels, they present typical neuron 

morphology, penetrating the hydrogel and forming a neurite meshwork, 

expressing neuronal markers like β-tubulin III [58, 223-225]. Neural stem cell 

(NSC) proliferation has been previously observed in soft (1kPa) hydrogels with 

neuronal differentiation being favoured [226, 227] while harder gels (>7kPa) 

seem to promote glial cultures [226, 227]. 

 

1.7. Hydrogels 

Hydrogels have become of great interest for 3D tissue-engineered constructs due 

to their tuneable chemical and mechanical properties, their biocompatibility and 

they how they mimic the ECM [58, 228] and thus are an ideal candidate for CNS 

3D modelling. Hydrogels are solid gels of cross-linked polymer networks that 

expand when immersed in aqueous solutions, allowing them to easily transport 

oxygen, nutrients, waste and biological factors [229] and are currently used in 

biomedical scenarios such as contact lenses and wound dressings [230]. They 
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are simple to use, non-toxic, non-immunogenic, have a high degree of 

biocompatibility, and are biodegradable, being able to be tuned to have a low 

degradation rate, which makes them ideal for long-term use [231]. Furthermore, 

the stiffness of the hydrogel can be adjusted to match the original tissue by 

controlling the mechanical properties [231]. Hydrogels have been successfully 

characterized and used in medical applications for bone and cartilage 

reconstruction, heart tissue regeneration, angiogenesis and drug delivery [232-

235] and to a certain extent in developing 3D neural models with different stem 

cell types [129, 236-240]  

 

1.7.1. Selected hydrogels: GelMa and PEG 

Two types of hydrogels that are currently on the market and are considered highly 

used hydrogels for developing neural 3D models using different types of stem 

cells are gelatin-methacrylate (GelMa) and Polyethylene glycol (PEG) based 

hydrogels [239, 241-252]. GelMa and PEG will be the focus of this study and are 

discussed further below. 

 

GELMA 

GelMa hydrogels have suitable biological properties for tissue engineering and 

are highly biocompatible, biodegradable, non-cytotoxic, non-immunogenic, 

inexpensive and a cell-responsive biomaterial [253, 254]. GelMa hydrogels have 

been previously used in muscle [255, 256], epidermal [257], cardiovascular [258] 

and cartilage [259, 260] tissue engineering. However, neural tissue engineering 

models using GelMa hydrogels are still in early stages of development [253, 254].  

GelMa hydrogels are reported to have versatile physical characteristics that 

closely mimic properties of the ECM; Gelatin contains many RGD (arginine-

glycine-aspartic acid) sequences found in ECM proteins that allow for attachment 

of cells [256]. It also contains matrix metalloproteinases that aid in cell 

remodelling [261], allowing cells to attach, proliferate and spread within the 

scaffold [253, 254]. GelMa hydrogels also covalently crosslink when exposed to 

UV light (365-405nm) in the presence of a photo-initiator, and its physical and 
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mechanical properties can be tuned by varying its synthesis process, making it 

reportedly one of the most versatile hydrogels for a 3D culture that is currently 

being used [262-264]. 

 

Stiffness can be controlled by the degree of methacrylate substitution [262-264] 

where the number of methacrylate groups bound to an individual gelatin molecule 

proportionally controls the number of inter-gelatin crosslinks, and therefore, the 

stiffness of the hydrogel [253]. GelMa stiffness can also be tailored by selecting 

higher gelatin concentrations leading to higher stiffness and should be selected 

based on the desired tissue of interest [241, 265].  

 

Studies have shown GelMa hydrogels are a suitable candidate for human ADSC 

growth in several models [263, 266-268]; with cells expanding to higher yields at 

lower stiffness (50% degrees of substitution) while stiffer substrates reduced the 

cell spreading and viability [263]. This could be attributed to the smaller hydrogel 

pore size in stiffer gels [263].  

 

GelMa hydrogels have been reported as a promising hydrogel for neural cell 

culture models. NSCs have been shown to differentiate towards neuronal lineage 

expressing β-tubulin III and extending neurites when GelMa stiffness and 

concentration was low [241]. Furthermore, low GelMa stiffness and concentration 

has also allowed for neural cell growth, adhesion, proliferation and phenotype 

stability [242]. In contrast, if stiffness increases, neuronal outgrowth, viability, 

spreading and neurite length decrease [243]. GelMa has also been successfully 

used with other polymer composites for nerve tissue engineering [244] and for in 

vivo testing in traumatic brain injury models and Spinal Cord Injury (SCI), models 

showing no immune reaction or inflammation when implanted [242, 245]. 

 

PEG 

PEG is highly biocompatible, non-immunogenic and resistant to protein 

adsorption. Its chemical structure is versatile and can be chemically modified, 

enabling it to form a hydrogel and bind to biomolecules, with its degradation rate 
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able to be controlled [269]. PEG hydrogels are made using photo-polymerisation 

that uses UV light (365-405nm) to convert a liquid PEG macromer solution into a 

solid gel at physiological temperature and pH allowing the hydrogel fabrication to 

occur in situ with spatial and temporal control and encapsulation of cells and 

biological agents. PEG alone is not bioactive, and therefore it requires other cell-

adhesive molecules like diacrylate to form Polyethylene Glycol Diacrylate 

(PEGDA), or GelMa to form a PEG-GelMa composites. This process is important 

to obtain cell-attachment onto the hydrogel [269, 270]. 

 

PEG-based hydrogels have previously been used to differentiate MSCs into bone 

[271, 272], cartilage [273] and culture human organoids [274, 275]. When neural 

cells have been encapsulated in a PEG-based 3D polymer network, they created 

their own microenvironment for survival, proliferation and differentiation, forming 

electro-physiologically responsive neurons and glia [246]. Furthermore, by 

varying the degradation rate of the polymer, the time-scale over which neural 

cells extend their processes can be regulated [246]. Additionally, cross-linked 

PEG-based hydrogels have been shown to promote neuronal survival and axon 

outgrowth via cell-ECM interactions and allowed neurons to remodel their 

extracellular environment [239], demonstrating that PEG-based hydrogels permit 

cell survival for over a week and allow for strong motor axon extensions [239]. 

Compared to 2D cultures, cells grown in 3D PEG hydrogels cultures are reported 

to demonstrate higher metabolic activity, lower apoptotic activity and higher cell 

proliferation [247]. Furthermore, PEG hydrogels maintain increased neural 

progenitor cell (NPC) numbers and a decreased number of glial cells compared 

to monolayer cultures [248] and enhance NSC survival, proliferation and 

differentiation [252].  

 

This information in a rapidly growing new field shows that hydrogels, with GelMa 

and PEG-based hydrogels, are a promising avenue for supporting neural 

regeneration and should be further explored using ADSCs and considering the 

endpoint applications.  
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For this project, I hypothesise that ADSCs will show enhanced neural 

differentiation in 3D environments that mimic neural tissue stiffness and that 

differentiation will be enhanced by the addition of neural growth supplements in 

the 3D environments. The supplements that will be used will be the commercially 

available B27, CultureOne (C1) and N2 from Gibco (Life Technologies). C1 is a 

supplement designed to support the differentiation of NSCs to neurons  [276], 

while B27 and N2 are designed to support mature neural cells [277, 278].   

 

The aims of this thesis are to:  

1. Differentiate of ADSCs towards neural cells under 2D conditions using the 

neural supplements B27, C1 and N2. (Chapter Two) 

2. Culture undifferentiated ADSCs in a 3D environment that mimics brain 

stiffness using 

a. GelMa (Chapter Three) 

b. PEG-based hydrogels (Chapter Four) 

3. Differentiate of the ADSCs towards a neural lineage under the optimised 

3D conditions (PEG-based hydrogels) using neural growth supplements 

B27, C1 and N2 (Chapter 5)  
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CNPase activity increases, pH will decrease (32), and when 

will result in a drop in absorbance (33). 

Test samples consisted of cells treated with either B27, N2, 

incubation of ADSC with either B27, N2, C1, or DMEM. 

30 min interval reads and then during a further overnight 
incubation with reads every hour in the TECAN Infinity 
200 plate reader. The blanks included consisted of Phenol 

DMEM). A colourimetric result indicates the presence 
of CNPase secreted by the ADSC. An increase from 
the baseline DMEM sample indicates that the cells are 
differentiating towards an oligodendrocytic cell lineage in 
the presence of a growth factor. 

Statistical analysis

Data analysis for the raw imaging data was conducted using 

statistically significant. Data analysis for Bioplex results 

tail dendrogram heatmap was generated using Euclidean 
hierarchical clustering using R software for grouping 

© Stem Cell Investigation. All rights reserved.

cytokines trends over the different time points within each 
treatment. 

Results

Cell culture

Cell morphology and survival
Morphological changes were observed between the 
treatments and the DMEM (undifferentiated control) 
(Figure 2
morphology in the treatment groups becomes more 
polarised, and cells align more with each other in parallel 
bundles compared to the undifferentiated control cell 

and the undifferentiated control DMEM (Figure 2I). 

Immunocytochemistry and cellular differentiation
CNPase was not detected in undifferentiated cells and was 
expressed in all treatment groups (Figures 3,4), with the 
highest expression levels seen in the C1 group (Figure 4A) 
(P 0.0001) and N2 group (Figure 4B) (P 0.01). Doublecortin 
expression was absent in the undifferentiated ADSCs 
(Figure 3B1, Figure 4B) and only seen at low levels in the 

the N2 treatment group (Figure 3B3, Figure 4B) (P 0.0001). 
GFAP was absent in the undifferentiated ADSCs (Figure 3C1, 
Figure 4C
all treatment groups compared to the undifferentiated control 
(Figure 3C2-C4, Figure 4C) (P 0.0001); however, these levels 
were lower than CNPase and Doublecortin expression 
levels in each treatment. b-III tubulin was expressed in the 
undifferentiated ADSCs (Figure 3E1

Stem Cell Investig 2023;10:7 | https://dx.doi.org/10.21037/sci-2022-015
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The worked published in the article included in this chapter only comprised of the 

first 7 days of the experiment. The experiment was initially designed, and cell 

culture was completed for 42 days and had 4 time points (D7, D14, D28 and D42) 

at which the differentiation of the cells was going to be assessed. One of the key 

problems that was encountered was the significant amount of cell detachment 

that occurred during the differentiations, which led to cell loss. Additionally, the 

cells also started to form sheets/aggregates that lifted when we attempted to fix 

the cells in formalin at the endpoint times. That increased as the treatments 

proceeded, and by day 42, the cells were not able to be fixed to the plate, and 

staining could not be performed in a way that was able to be quantified. Different 

ways to try to mitigate those problems were tried. Gelatine was added on top of 

the remaining cells in the wells after fixing to try to keep them in place; however, 

that interfered with the staining protocol and the diffusion of the antibodies to 

reach the cells at the bottom of the plate. The staining protocol was not able to 

be optimised to image the cells in the environment they were in, and only week 1 

of the experiments was suitable for performing downstream analysis. This led to 

the design of the following experiments presented in this thesis, looking at 

creating a suitable 3D model for neural differentiation of ADSCs.
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Chapter Three: ADSCs in 3D GelMa matrices 

3.1. Introduction 

In this work, Gelatin Methacrylate (GelMa) was the first hydrogel selected for 

exploring neural differentiation of ADSCs in 3D matrices. GelMa was chosen as 

it is a highly desirable biomaterial for tissue engineering and 3D cell culture, given 

it is reported to be a highly biocompatible, biodegradable, non-cytotoxic, non-

immunogenic, inexpensive, and a cell-responsive biomaterial [1, 2]. Additionally, 

GelMa has versatile physical and chemical characteristics that are reported as 

being tuneable to closely resemble the properties of the extracellular matrix 

(ECM) [1-4]. GelMa contains many RGD (arginine-glycine-aspartic acid) 

sequences found in ECM proteins that allow for cell attachment and contains 

matrix metalloproteinases that aid in cell remodelling [1, 3, 4]; these allow cells to 

attach, proliferate and spread within the scaffold [1-4]. Modification of gelatin with 

methacrylate to create GelMa allows it to be covalently crosslinked via UV light 

(365-400nm) exposure with the addition of a photo-initiator. Some commonly 

used photoinitiators are Irgacure 2959 and lithium acylphosphinate (LAP) [5]. 

Furthermore, GelMa’s physical and mechanical properties can be modified by 

varying its synthesis process, making it a tuneable hydrogel for a 3D culture [6-

8]. Stiffness can be controlled by changing the degree of the methacrylate 

substitution [6-8], where the number of methacrylate groups bound to an 

individual gelatin molecule proportionally controls the number of inter-gelatin 

crosslinks, and therefore, the stiffness of the hydrogel [1]. GelMa stiffness can 

also be tailored by selecting higher gelatin concentrations, leading to higher 

stiffness allowing the parameters to be modified based on the desired outcome 

and based on the mechanical properties of the tissue that is being studied [9, 10]. 

In the case of this project, brain stiffness will be mimicked by creating <2kPa 

hydrogels [11].  

 

GelMa has been reported to be successfully used in creating muscle [3, 12], 

epidermal [13], cardiovascular [14] and cartilage [15, 16] tissue models. While 

neural tissue engineering models using GelMa hydrogels may be a promising 
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avenue for neural cell culture models, these models remain in the early stages of 

development [1, 2]. Neural stem cells (NSCs) have been shown to differentiate 

towards neuronal lineage expressing β-tubulin III and extending neurites when 

GelMa stiffness and concentration were low [10]. Furthermore, low GelMa 

stiffness and concentration have also allowed for neural cell growth, adhesion, 

proliferation and phenotype stability [17]. In contrast, if stiffness increases, 

neuronal outgrowth, viability, spreading, and neurite length decrease [18]. GelMa 

has also been successfully used with other polymer composites for nerve tissue 

engineering [19] and for in vivo testing in traumatic brain injury models and Spinal 

Cord Injury (SCI), with models showing no immune reaction or inflammation when 

implanted [17, 20]. 

 

Additionally, studies have also shown that similar to NSCs, ADSCs expand to 

higher yields at lower stiffness (50% degrees of substitution (DoS)) while stiffer 

substrates reduce the cell spreading and viability [7]. This could be attributed to 

the smaller hydrogel pore size in stiffer gels [7]. With ADSCs having been 

successfully grown in GelMa in the past, [7, 21-23] and its tuneable 

characteristics, GelMa seemed a promising material for the development of a 3D 

model for neural differentiation of ADSCs.  

 

The following chapter will detail the approaches used to cast low-stiffness GelMa 

hydrogels based on the hypothesis that GelMa hydrogels can be optimised to 

develop a 3D neural model for neural differentiation of hADSCs.   

 

GelMa hydrogels have not been used in this context previously, and the goal is 

to explore and change different parameters in order to create a suitable low-

stiffness 3D matrix in which to grow and differentiate hADSC.  

3.2. Materials, Methods  

3.2.1. GelMa synthesis 

GelMa synthesis was performed using the protocol for GelMa type A from Lee et 

al. (2016). In brief, 10% (w/v) gelatin solution of type A (porcine, Bloom strength 
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175, Sigma-Aldrich) or gelatin solution of type A (porcine, Bloom strength 300, 

Sigma-Aldrich) was dissolved under stirring in 0.1 M carbonate-bicarbonate 

buffer pH 9 at 60°C. The derivatisation of gelatin proteins was performed by the 

addition of methacrylic anhydride (MAA) at 50°C with rigorous stirring at 500 rpm. 

MAA was added in sequential steps, giving a total MAA amount equal to the 

defined ratio in each recipe (x mL MAA/g gel,). (Table 4).  

 

Table 4 Table showing the different amounts of MMA added for each recipe. 

 

Product Gelatin Type Ratio (MMA 

(ml/gel (g)) 

CB-Buffer pH control DoS (%) Name 

GelMA A1 A 0.05 0.1M Sequential 71.2 A70 

GelMA A2 A 0.0375 0.1M Sequential 45.3 A50 

GelMA A3 A 0.025 0.1M Sequential 39.7 A40 

 

The pH was adjusted back to 9 after each methacrylate addition and the reaction 

was carried out for 60 min and terminated by pH adjustment to 7.4. After 

completion, the reaction mixture was filtered using standard paper filters 

(Whatman™, 90 mm diameter) and dialyzed with a 14 kDa molecular-weight-cut-

off (MWCO) membrane at 40°C for 36 h against ultrapure water. GelMA solution 

after dialysis was frozen and lyophilized before being used for GelMa hydrogel 

casting.  

 

GelMa hydrogels were cast using 2.5% and 5% w/v GelMa and 0.5% of the 

photoinitiator Irgacure 2959 and crosslinked under 360nm UV for 1min and 

1.5min. This protocol was repeated using the same ingredients and two different 

gelatin bloom strengths, 175 and 300. Bloom is a measure of gelatin strength and 

stiffness [24] 

 

3.2.2. Commercially available GelMa hydrogels casting 

3.2.2.1. Manual casting 

GelMa (300 bloom 60% degrees of substitution; Sigma- Aldrich #900622) was 

mixed with 0.5% Irgacure 2959 photoinitiator in PBS at different concentrations 
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and crosslinked using 365nm UV light for different time lengths. All parameters 

were tested in triplicate. All parameters tested can be found below in Table 5. 

Irgacure concentration and gelatin setting time parameters were left unchanged 

at 0.5% w/v for Irgacure and 20 minutes at 5°C setting time for GelMa. Irgacure 

concentration was not changed as it is known to be toxic to cells and to 

significantly decrease cell viability when used above 0.5% w/v concentration [5, 

25].  
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Table 5 Variables tested to cast commercially available GelMa hydrogels. 

 

 

 

 

*Parameters used for subsequent experiments 

 

After GelMa crosslinking optimisation, 3% GelMa (300 bloom 60% degrees of 

substitution Sigma- Aldrich #900622) with 0.5% Irgacure 2959 crosslinked for 

10min at 365nm UV light was the selected parameters to use with cells. See 

Table 6 in results section 3.3.2 for results on GelMa crosslinking optimisation and 

why those were the selected parameters. 

 

Percentage UV exposure time Crosslinking check 

3% 30sec 1hr at 37°C 

5% 30sec 1hr at 37°C 

10% 30sec 1hr at 37°C 

3% 60sec 1hr at 37°C 

5% 60sec 1hr at 37°C 

10% 60sec 1hr at 37°C 

3% 90sec 1hr at 37°C 

5% 90sec 1hr at 37°C 

10% 90sec 1hr at 37°C 

3% 5min 1hr at 37°C 

5% 5min 1hr at 37°C 

10% 5min 1hr at 37°C 

3% 10min 1hr at 37°C* 

5% 10min 1hr at 37°C 

10% 10min 1hr at 37°C 
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3.2.2.2. Cell culture 

150uL of GelMa at 3% GelMa (300 bloom 60% degrees of substitution Sigma- 

Aldrich #900622) with 0.5% Irgacure 2959 was crosslinked in a 24 well plate for 

10min at 365nm UV light. Once GelMa discs were crosslinked, given that the 

GelMa only cross-linked at high exposure to UV light (see results table 3), the 

cells were seeded on top of the gels to avoid prolonged UV exposure as it is 

known to cause cell damage [26, 27]. Previous studies using mesenchymal stem 

cells showed that higher UV light exposure and increased Irgacure concentration 

were linked to reduced cell viability [25].  

 

ADSCs, Glioblastoma cells (GBCs) U87MGs and neuroblastoma cells (NBCs) 

SHSY5Y cells were seeded at 30,000 cells/mL on top of the GelMa discs in a 24-

well plate. A control plate was also set up where cells grew on plastic. Cells were 

maintained in media mixture containing DMEM/F12 + Glutamax media (Gibco, 

Life Technologies, Carlsbad, CA, USA) with 10% heat inactivated FBS (Gibco, 

Life Technologies, Carlsbad, CA, USA) and incubated at 37°C at 5% CO2 for 10 

days with media changes every 84hrs.  

  

3.2.2.3. Cell viability & proliferation: Alamar blue 

Alamar blue cell viability assay was performed at the endpoint time at day 10 on 

both plates. Alamar blue is a non-toxic cell viability assay that detects 

metabolically active cells. When Alamar blue is added to cells, the main active 

ingredient is reduced by metabolically active cells, and the solution becomes red 

in colour and highly fluorescent. 

Alamar blue was added to the same media mixture described above to yield a 

10% concentration of alamar blue to media ratio. The Alamar blue and media 

mixture was added to the cells and left to incubate for 16hrs to allow enough time 

to penetrate through the 3D matrices. To minimise variability between treatments, 

the same was done on the 2D cells. Negative control wells were included, 

containing alamar blue and media mixture only. After the incubation period, the 

alamar blue and media mixture was transferred to a different 24-well plate to keep 

the cellular growth environment as undisturbed as possible from outside factors 



 

68 

 

 

and new fresh media was added to remaining cells before terminating 

experiments.  The collected Alamar blue media was then measured using the 

fluorescence bottom-up mode in a Tecan M200Plate Reader using 530-560nm 

excitation and 590nm emission wavelengths. The results were averaged for both 

test samples and negative controls and compared to each other. The data were 

analysed as absolute fluorescence values.  

 

3.2.2.4. Phase Imaging 

Phase images at 10x magnification were taken of each cell type at every media 

change, D3.5, D7 and D10 on the same marked area using the EVOS XL Core 

microscope (Thermofisher, Massachusetts, USA). 

 

3.2.2.5. Bioprinting – CELLINK 

A CELLINK bioprinter (BIO X pneumatically driven extrusion 3D bioprinter 

CELLINK Life Sciences, Boston, MA, USA) was also used to cast GelMa 

hydrogels. The CELLINK GelMa casting protocol was followed [28]. In brief, 

GelMa at 300 bloom and 60% degrees of substitution (Sigma- Aldrich #900622) 

was mixed with Irgacure 2959 in PBS to obtain a final concentration of 7% GelMa 

and 0.5% Irgacure 2959. After, 9 million U87MG cells/mL were added to the 

GelMa mixture before bioprinting.  Once the cells were evenly suspended in the 

GelMa solution, it was transferred to the bioprinter, and bioprinting commenced 

on a 24-well plate. The following parameter combinations were tested for GelMa 

bioprinting: 

 

1. Bed base plate temperature 10°C; Pinter head temperature 24°C; printing 

pressure 25kPa, extrusion time: 1s, needle gage 25G. UV exposure time 

30s.  

2. Bed base plate temperature 10°C; Pinter head temperature 24°C; printing 

pressure 25kPa, extrusion time: 1s, needle gage 25G. UV exposure time 

2min. 
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3. Bed base plate temperature 10°C; Pinter head temperature: 7°C; printing 

pressure 55kPa, extrusion time: 1s, needle gage 25G. UV exposure time 

1.5min  

4. Bed base plate temperature 10°C; Pinter head temperature 27°C; printing 

pressure 55kPa, extrusion time: 1s, needle gage 25G. UV exposure time 

2min.  

 

After the gels were bioprinted, they were checked under the microscope to 

assess hydrogel structure and cell spread. After, the cells were maintained in 

DMEM/F12 + Glutamax media (Gibco, Life Technologies, Carlsbad, CA, USA) 

with 10% heat inactivated FBS (Gibco, Life Technologies, Carlsbad, CA, USA) 

and incubated at 37°C at 5% CO2 overnight. The following day, the 3D constructs 

were checked under the microscope, and the media was removed.  

 

3.3. Results 

3.3.1. GelMa synthesis 

On all occasions, after crosslinking the GelMa at different percentages and for 

different amounts of time, the GelMa mixture was placed at 37°C to assess its 

crosslinking. GelMa went back into solution every time, indicating a lack of 

crosslinking by the methacrylate, making the synthesised GelMa unsuitable to 

use for tissue culture. This could be due to a lack of derivatisation of the gelatin 

with the methacrylate, but this was not able to be investigated with the resources 

and expertise available.  

 

3.3.2. GelMa hydrogel manual casting 

In order to reduce variability in the gels and assess if the synthesised GelMa was 

not crosslinking due to synthesis methodology or due to crosslinking 

methodology, commercially available GelMa was also tested. Manual casting of 

the GelMa hydrogel using commercially available GelMa mixture only worked for 

GelMa exposed to UV light for 10 minutes, suggesting that the crosslinking 

methodology was not robust enough. Different 360nm UV light sources were 
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tested, and a new Irgacure 2959 reagent was also purchased to investigate the 

reason for failed crosslinking however, the results remained the same. All results 

of the different parameters tested can be found in Table 6. The lowest stiffness 

matrix that crosslinked was 3% commercially available GelMa exposed to 10min 

of UV. That was the selected matrix to test with cells.  

Table 6 Results for each set of parameters tested using commercially available GelMa.  

*Parameters used for subsequent experiments 

  

Percentage UV exposure time Crosslinking check Crosslinking 

3% 30sec 1hr at 37°C No 

5% 30sec 1hr at 37°C No 

10% 30sec 1hr at 37°C No 

3% 60sec 1hr at 37°C No 

5% 60sec 1hr at 37°C No 

10% 60sec 1hr at 37°C No 

3% 90sec 1hr at 37°C No 

5% 90sec 1hr at 37°C No 

10% 90sec 1hr at 37°C No 

3% 5min 1hr at 37°C 
Partial crosslinking 
Meniscus formation 

5% 5min 1hr at 37°C 
Partial crosslinking 
Meniscus formation 

10% 5min 1hr at 37°C 
Partial crosslinking 
Meniscus formation 

3% 10min 1hr at 37°C Yes* 

5% 10min 1hr at 37°C Yes 

10% 10min 1hr at 37°C Yes 
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3.3.2.1. Cell viability & proliferation: Alamar blue

Alamar blue results (Figure 4) showed that after 10 days in culture, ADSCs, 

GBCs and NBCs viability decreased significantly (p-value <0.001) compared to 

the respective 2D-grown control cells. ADSCs had a viability 2/3 lower than their 

2D control counterparts and NBCs being ½ lower than the control cells. 

Figure 4 Alamar blue results at day 10 comparing GelMa grown cells vs. 2D grown cells. 

3.3.2.2. Phase Imaging

Phase imaging revealed noteworthy variability in the gel construct appearance 

between replicates and between cell lines (Figure 5). Broken pieces of hydrogel 

can be observed in many of the 3D constructs (Figure 5). Additionally, cell 

numbers appear much lower compared to the 2D controls. When doing media 

changes and assessing the cells visually under the microscope, many cells were 

observed floating and therefore, are likely lost during media changes. 

Furthermore, the integrity of the gel can be seen to deteriorate over time. 
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Figure 5 Phase imaging at 10x magnification for cells grown in either GelMa or 2D conditions 

over time at time points D3.5, D7 and D10. (a-c): ADSCs grown in 2D conditions; (d-f) ADSCs 

grown on GelMa; (g-i) GBCs grown in 2D conditions; (j-l) GBCs grown on GelMa; (m-o) NBCs 

grown in 2D conditions; (p-r) NBCs grown on GelMa. Scale bar 100um.
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3.3.3. GelMa hydrogel bioprinting

To further reduce GelMa variability and optimise structural gel integrity, GelMa 

was tested using the CELLINK bioprinter. In all instances tested, when the 3D 

constructs were checked under the microscope 24 hours after bioprinting, the 

cells were in suspension in the media, and the GelMa had dissolved, meaning 

the GelMa hydrogels were not crosslinked correctly. 

Figure 6 schematic summarises the methodology used for all experiments and 

outcomes in all instances. 

Figure 6 Schematic summarising the different 
methodologies used to create GelMa hydrogels and respective 
outcomes.

Figure 6 Schematic summarising the different 
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3.4. Discussion  

GelMa was the hydrogel of choice to test with ADSCs due to its reported success 

with other cell types [3, 12-16]. Unfortunately, a 3D environment with the 

characteristics desired to create a 3D ADSCs neural differentiation model was 

not able to be created. Throughout the experiment stages, attempts to reduce 

variables as much as possible were made by purchasing commercially available 

synthesised GelMa, using different UV lamps, purchasing new reagents, and 

using a bioprinter to reduce manual casting gel variability. Nevertheless, the key 

issue remained the same: the GelMa crosslinking did not work to the required 

standards to encapsulate cells in a low stiffness (1kPa) matrix that mimicked the 

brain. 

 

 A possible reason for the crosslinking problems could be due to UV light’s tissue 

and hydrogel penetration limits [29] however, negative results are not well 

documented or communicated in the literature, making it hard to conclude what 

the problem in crosslinking has been. Furthermore, the caveats and difficulties 

encountered while attempting to make the hydrogel work in a reproducible 

manner were more than anticipated. It was found that the reproducibility of a 

GelMa protocol was low, likely due to the number of variables influencing the 

process of casting GelMa hydrogels, especially when bioprinting GelMa.  It was 

found that to cast GelMa hydrogels and keep them at the required stiffness, there 

are many variables that need to be accounted for that are not always clearly listed 

in published protocols: Gelatin bloom will impact gel stiffness, as it is a measure 

of gelatin strength and stiffness [24], gelatin’s degrees of substitution with 

methacrylate will affect gel stiffness, the photoinitiator type used will affect gel 

structure and crosslinking; Irgacure 2959 uses a different UV wavelength 

compared to LAP and Irgacure 2959 has been reported to generate GelMa gels 

that have larger pore size and faster degradation rate than those crosslinked with 

LAP [5]), The photoinitiator amount will impact GelMa stiffness and the gels’ 

ability to fully crosslink. However too high amounts can cause toxicity for the cells 

[25]); GelMa concentration, UV wavelength, UV intensity and UV exposure time 

will also impact gel stiffness and crosslinking [30]. GelMa distance from the UV 
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source will impact UV intensity which in turn affects crosslinking and stiffness. 

Furthermore, we also found that GelMa polymerisation prior to crosslinking, and 

the temperature at which the GelMa is polymerised prior to crosslinking will also 

affect crosslinking [30]. These are the major variables that need to be accounted 

for when creating GelMa hydrogels. Additionally, when manually casting gels, 

manual pipetting adds variability from gel to gel.  

For GelMa bioprinting, the variables increase. In addition to those listed above, 

when bioprinting one needs to also account for bed base plate temperature, 

printer head temperature, printing pressure, extrusion time and needle gauge. It 

was observed when using the bioprinter that, due to the nature of the machine 

and where the UV lamp is located relative to the 24-well plate, the UV exposure 

varied between wells; the ones right below the lamp would get higher, more direct 

exposure to UV than those in the edges of the plate meaning all variables were 

not kept stable for all wells. Additionally, plate height could not be automatically 

set to a particular height which meant that one had to manually adjust the 

distance each time, adding human error and bringing more variability between 

runs.  

 

In conclusion, we were unable to optimize a robust enough protocol to create the 

neural model to study the cells' neural development potential. Through this 

research, it has become apparent that 3D culturing with GelMa requires 

substantial expertise due to the high variability in products. Additionally, the 

current methodologies found in the literature differ significantly from one another. 

For example, some methodologies using Irgacure 2959 photoinitiator, crosslink 

the gels using 365nm UV light exposure for 1minute and 30 seconds [31] while 

others use 15minutes of UV light exposure to crosslink the gels [32].  

 

Further advice was sought from the engineering department at the University of 

Technology Sydney to improve the quality and reproducibility of the GelMa 

casting; however, we were unable to optimise a viable and robust method within 

a reasonable timeframe. The testing of different GelMa crosslinking 

methodologies using different photoinitiation systems like LAP, Ribofablin, 
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carboxylated camphorquinone, Eosin Y [29, 33-35] would have been the next 

best option. However, the time and costs involved in acquiring the necessary 

reagents and technical expertise (i.e., paid labour from biomaterials experts), as 

well as the additional equipment required for precision engineering of GelMa 

casts, were excessive. To ensure the timeliness of project progression, we 

identified a more user-friendly and streamlined approach to casting hydrogels 

using a RASTRUM bioprinter (Inventia, Sydney, Australia) which removed all 

variability in the hydrogel casting side and allowed for the focus to be solely on 

the biology. Rastrum provided ready-to-go optimised mixtures to create PEG-

based hydrogels at the stiffness required, as well as ongoing support for 

troubleshooting at no extra cost. That work will comprise the remaining chapters 

of this thesis.  
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After successfully creating a 3D model using PEG-based hydrogels where the 

cells survived and even showed signs of neural differentiation, the next step 

was to introduce the differentiation supplements utilised in Chapter Two.  

Chapter Five will explore the combination of supplements  used in Chapter Two  

together with the 3D model developed in Chapter Four. 
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Chapter Six: Concluding remarks and Future 
Directions. 
 

6.1. Conclusions 

Neurological disorders account for over 9 million deaths per annum globally and 

are the leading cause of disability and death worldwide [1-3]. Despite significant 

efforts to understand and treat the different disorders, most remain poorly 

understood, incurable and difficult to treat [4-6]. These treatment difficulties can 

be attributed to the limited self-repair capacity of the nervous system as well as 

its complex and inaccessible nature, with research translation being limited by 

the lack of more representative nervous system models to test treatments and 

better understand disease [7-9]. Traditional 2D tissue culture has been one of the 

more widely used techniques to understand cell interactions and test drugs; 

however, it has proven not to be representative of in vivo conditions as the cell 

architecture and arrangement are far from that of the tissue of origin [10-12]. 

Tissue engineering and 3D tissue culture offer a new avenue to research 

neurological conditions in environments that better mimic the brain [13]. ADSCs 

have previously been identified as a suitable candidate to create models to further 

understand nervous system disorders as well as potential therapeutics for 

neuroregeneration, given their neurogenic differentiation potential and their 

sourcing ease [14-16].  

 

In this project, a new model to differentiate ADSCs towards neural lineage in 3D 

culture was tested based on our hypothesis that ‘ADSCs will show enhanced 

neural differentiation in 3D environments that mimic neural tissue stiffness, and 

that differentiation will be enhanced by the addition of neural growth supplements 

in the 3D environments’. 

 

Prior to creating 3D models, Chapter Two explored the effects of commercially 

available neural support supplements B27, C1 and N2 on hADSCs. Cells were to 

be treated for 42 days using those supplements, however, due to the cells lifting 
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from the 2D plastic surfaces, downstream analysis was only able to be performed 

on the cells treated for 7 days. The neural differentiation potential of those 

treatments over 7 days was then assessed using cell morphology, 

immunocytochemistry, cytokine analysis and a CNPase functional assay. The 

results showed that even at a short time frame of 7 days, cells treated with C1 

and N2 showed significant changes in neural marker expression, with C1 

expressing high levels of functional CNPase, while B27 did not show significant 

changes in the same period of time. This chapter reiterated the need for more 

robust tissue culture models that better support cells undergoing neural 

differentiation, as exemplified by the cell monolayer lifting, and confirmed that 

B27, C1 and N2 should be further explored as potential neural differentiation 

mixtures.  

 

Chapter Two has been published and can be found here:  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076228/  

Pelegri NG, Milthorpe BK, Gorrie CA, Santos J. Neurogenic marker expression 

in differentiating human adipose derived adult mesenchymal stem cells. Stem 

Cell Investigation 2023 Mar 23;10:7. doi: 10.21037/sci-2022-015. PMID: 

37034185; PMCID: PMC10076228. 

 

Chapter three sought to develop a more suitable environment to further assess 

neural differentiation of hADSCs using those treatments. The use of GelMa, a 

commonly used biomaterial, was explored as a matrix to create a 3D model to 

mimic the brain environment to assess ADSCs neural differentiation. However, 

GelMa matrix experiments were not able to reproduce what appears in the 

published literature, and therefore the work moved on to use other 3D matrices 

that proved to be much more successful and user-friendly.  

 

Chapter four explored the suitability of a PEG-based 3D matrix as a model to 

mimic the brain environment. The model was developed using the RASTRUM 

bioprinter (Inventia, Sydney, Australia), where RGB and YIGSR peptides, a 

feature of the mammalian extracellular matrix, were added to the matrix for cell 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076228/
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adhesion, and the cell/matrix printed at a 1.1kPa stiffness. Cells were maintained 

in the gel for 14 days, and cell morphology, viability, proteome changes and 

immunocytochemistry neural marker expression were assessed. Results showed 

that cells continued to proliferate over time, meaning the matrix did not negatively 

impact cell health. Furthermore, cells showed significant cytoskeletal changes, 

with the morphological and proteome changes suggesting that the cells started 

to form dendrites and axons. CNPase was also detected in the cells, further 

suggesting the initiation of neural differentiation of the cells by the 3D 

environment alone. The findings of this chapter are promising and suggest that 

PEG-based hydrogels with RGB and YIGSR peptides at 1.1kPa are a 3D model 

worth further investigating for neural differentiation of hADSCs. 

 

The work that resulted from chapter four has been published in the International 

Journal of Molecular Sciences and received the paper of the month award at UTS 

Science faculty. It can be found here: 

https://www.mdpi.com/1422-0067/24/15/12139  

Gomila Pelegri, N.; Stanczak, A.M.; Bottomley, A.L.; Milthorpe, B.K.; Gorrie, C.A.; 

Padula, M.P.; Santos, J. Adipose-Derived Stem Cells Spontaneously Express 

Neural Markers When Grown in a PEG-Based 3D Matrix. Int. J. Mol. Sci. 2023, 

24, 12139. https://doi.org/10.3390/ijms241512139 

 

Chapter 5 followed on from the findings in Chapter 4 and explored the 

combination of the PEG-based 3D matrix developed in Chapter 4 together with 

the neural support supplements B27, C1 and N2 used in Chapter 2 to assess the 

differentiation potential of the combined 3D environment and chemical 

environment on hADSCs. Cells were grown for a total of 10 days and treated for 

7 days with B27, C1 and N2, similarly to Chapter 2. Following cell culture, cell 

morphology, viability, proteome changes and immunocytochemistry of neural 

marker expression were assessed using similar methodologies used in Chapter 

4. Results showed that B27 and C1 supplements further enhanced neural 

differentiation of the ADSCs and pushed them down neuronal pathways.  

 

https://www.mdpi.com/1422-0067/24/15/12139
https://doi.org/10.3390/ijms241512139
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The work that resulted from chapter five has been published to the International 

Journal of Molecular Sciences. It can be found here:  

https://www.mdpi.com/2558502 

Gomila Pelegri, N.; Stanczak, A.M.; Bottomley, A.L.; Cummins, M.L.; Milthorpe, 

B.K.; Gorrie, C.A.; Padula, M.P.; Santos, J. Neural Marker Expression in Adipose-

Derived Stem Cells Grown in PEG-Based 3D Matrix Is Enhanced in the Presence 

of B27 and CultureOne Supplements. Int. J. Mol. Sci. 2023, 24, 16269. 

https://doi.org/10.3390/ijms242216269 

 

In conclusion, this thesis details proof of concept experiments that identified and 

assessed potential 3D matrices suitable to create more physiologically relevant 

models for the neural differentiation of hADSCs. The results suggest that PEG-

based hydrogels with RGB and YIGSR at 1.1kPa, combined with commercially 

available neural supplements B27, C1 and N2, are a promising model for neural 

differentiation of hADSCs. While additional research needs to be conducted to 

further confirm the suitability of this model as a neural differentiation model for 

ADSCs, the results presented in this dissertation show that it is an area of 

research worth further attention.  

 

6.2. Limitations and Future Directions 

There are various future directions that need to be explored for this research to 

become more robust and overcome some of the limitations encountered in this 

project.  

 

Firstly, experiments to maintain the differentiating ADSCs in the 3D PEG-based 

matrix with and without treatments should be conducted for longer periods of 

time. Due to the difficulties encountered in Chapter 3 when exploring GelMa 

hydrogels, time constraints and limitations in resources became a drawback in 

this project, and biological time frames were not reflected appropriately. Cortical 

neurogenesis in the human brain takes up to 108 embryonic days [17]. 

GABAergic neurons formed from ESCs protocols are run from 20 days [18] to 

https://www.mdpi.com/2558502
https://doi.org/10.3390/ijms242216269
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over two months for oligodendrocytes, astrocytes and glial cells [19]. However, 

ADSCs differentiation protocols in 2D range between 7 to 14 days only [20-25] 

showing the need for longer experiments in more suitable environments. It is 

certain that cells will show a different phenotype if left for longer and that the 

ultimate fate of the cells can be determined, with the potential for different cells 

to differentiate down different lineages, which should be further explored in future 

research. 

 

Ideally, Chapter 4 and 5 experiments should be conducted for up to 42 days, 

similar to what was conducted for Chapter 2, if not more, given the time required 

for cells to differentiate. Furthermore, during the treatment course, multiple time 

points should be included where cell viability via Alamar blue, live/dead cell 

staining, proteomics and immunocytochemistry analyses are performed. For 

example, cells should be grown for up to 42 days and analysed at 7 days, 14 

days, 30 days, and 42 days. This would give better insight into the effects of the 

matrix alone on the cells as well as better assess the supplements' role in 

enhancing neural differentiation.  

 

Additionally, the PEG-based matrix could be further modified to include more of 

the now available peptides to better mimic the brain ECM. Some examples that 

could be added and are available via Rastrum are hyaluronic acid, a key 

component of the brain ECM [26], GFOGER as a biomimetic component for 

collagens and known part of the brain ECM [27, 28], as well as Fibronectin and 

IKVAV given the role of fibronectin and laminin in the brain ECM [27, 29, 30]. 

These would need to be optimised and used in combination as well as individually 

to conclude which matrix would be ultimately the best to direct ADSCs 

differentiation towards neural cells. 

 

Treatment-wise, it may be interesting to explore the supplements in combination, 

given that different supplements support different cells. C1 is designed to support 

the differentiation of neural stem cells (NSCs) to neurons [31], while B27 and N2 

are designed to support mature cells [32, 33]. It would be interesting to see if 
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combining, for example, C1 and N2 would provide an environment that better 

supports heterogeneous growth rather than one with homogeneous cell growth.    

 

To better phenotype the cells, using more immunocytochemistry markers at each 

time point, as well as including functional assays, would allow for a more robust 

assessment of the cell differentiation stages. Immunocytochemistry markers that 

could be included to further assess the different cell lineage as well as cell 

differentiation stages are Nestin, NCAM, NeuN, Double cortin, NeuroD1, PDGFR 

alpha, OSP, SOX10, Olig2, EAAT1, EAAT2.  

 

Furthermore, as technology matures, it would also be interesting to examine 

individual cellular phenotypes within the hydrogel and at a proteomic level [34]. 

This would answer questions such as:  

• Are all the ADSCs becoming the same cell type?  

• Are cells differentiating towards multiple cell populations?  

• Are all cells at the same stage of differentiation?   

 

Single-cell proteomics would allow exploration of these questions. Single-cell 

transcriptomics would also be a useful tool to assess what individual cellular 

phenotypes; however, it should be companioned with proteomics to examine the 

mature proteome of those cells [35]. Targeted proteomics would also be useful 

as it offers an alternative method to detect protein groups and proteoforms of 

interest with high sensitivity, quantitative accuracy and reproducibility  [36, 37], 

making the data more specific.  

 

Additionally, to properly assess hADSCs differentiation and neural similarity, the 

use of normal brain cell lines as positive controls would be highly desirable 

instead of using cancer cell lines. Healthy human brain tissue and cells are hard 

to source and expensive. However, it would still be beneficial to include them in 

future research to properly assess the degree of differentiation of ADSCs and 

their similarity to the native tissue.  
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Another important challenge to mention is the difficulties faced when adapting 2D 

analysis methods to 3D models. An example is live imaging performed during the 

duration of the experiment. Many microscopes could not be used due to the 

objective working distance, and the ones that were able to be utilised had to be 

used at low magnification, meaning that getting high-resolution live cell images 

was not possible. Additionally, we also encountered significant challenges in 

conducting immunocytochemistry imaging. The biggest barrier to data 

interpretation has been the inability to get high-quality microscopy images using 

traditional imaging techniques and staining techniques. It seems to be apparent 

that antibodies diffuse poorly through the matrices, creating difficulty in removing 

any unbound antibody and causing speckling in the images. Inventia Life 

Sciences does not provide the pore size of the gels (proprietary information), 

making it hard to know what the best solution for this would be. A potential 

solution would be using mass spectrometry imaging techniques to maintain 

spatial organisation and overcome antibody labelling issues, given its ability to 

image thousands of molecules and maintain spatial distribution without labelling 

[38]. This would require sequential sectioning for imaging and then in silico 

reconstruction of the 3D image. Another option would be retrieving the gels, 

slicing them, staining them using immunohistochemistry and reconstructing the 

plug afterwards. However, for this thesis, we wanted to explore the cells within 

their 3D environment as much as possible. Tissue clearing and light sheet 

microscopes are also alternative options worth exploring if one wants to assess 

the entire plug. Unfortunately, we did not have access to that technology at the 

time.   

 

During immunocytochemistry imaging, interference from out-of-plane light also 

made data analysis more complicated, and data storage also became a 

challenge; when we imaged in Z-stacks, the imaging files went from 2-3 GBs 

each to over 10GB per replicate, making it difficult for everyday computers to 

open the files, let alone analyse the data.  
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Lastly, it is worth mentioning that while the 3D modelling that has been used 

in this research was to specifically investigate hADSCs neural differentiation 

potential, other researchers could apply these condition to  iPSC or other cell 

types in the future. 

 

6.3. Significance 

My research has furthered our understanding of hADSCs and their potential for 

growth and neural differentiation in 3D environments, which is the first step in 

using hADSCs in the autologous treatment of neurological conditions. While well 

outside the scope of the current project, the potential applications of these 

strategies for regenerative medicine have a bright future.  
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