
Advanced Machine Learning for

6G Networks

by Hoai Nam Chu

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of

A/Prof. Diep N. Nguyen

A/Prof. Hoang Dinh

Prof. Eryk Dutkiewicz

School of Electrical and Data Engineering

Faculty of Engineering and IT

University of Technology Sydney

February 22, 2024

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Hoai Nam Chu, declare that this thesis is submitted in fulfilment of the require-

ments for the award of Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis. This document has not been submitted for qualifications at any other

academic institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature:

Date: February 22, 2024

ABSTRACT

Advanced Machine Learning for

6G Networks

by

Hoai Nam Chu

Beyond 5G and 6G communications are foreseen to transform the world, connect-

ing not only people but also vehicles, wearables, devices, sensors, and even physical

and digital worlds. To achieve that, 6G systems are expected to employ various

disruptive technologies (e.g., non-terrestrial networks (NTNs), mmWave communi-

cations, pervasive artificial intelligence, and ambient backscatter communications) to

enable/support new use cases, e.g., autonomous cyber-physical systems and Meta-

verse/holographic teleportation. Thus, this thesis aims to leverage the latest ad-

vances in machine learning (ML) to address different problems facing 6G systems.

We first envision that UAVs will play a critical role in 6G and NTNs, e.g., flying data

collectors. To tackle the uncertainty in the data collection process and the UAV’s

energy capacity limitation, we propose an innovative deep reinforcement transfer

learning approach to control the UAV’s speed and energy replenishment process

and allow UAVs to “share” and “transfer” learning knowledge, thus reducing learn-

ing time and improving learning quality significantly.

6G is also envisioned as ubiquitous sensors thanks to the Integrated Commu-

nications and Sensing (ICAS) technology, e.g., for flood sensing/warning or in au-

tonomous vehicles (Avs). Optimizing the waveform structure for ICAS applications

to AVs is one of the most challenging tasks due to the strong influences between

sensing and data communication functions under dynamic environments. There-

fore, we develop a novel framework that intelligently and adaptively optimize its

waveform structure to maximize sensing and data communication performance.

Another key application/service of 6G is to enable the seamless deployment and

operation of Metaverse. Building and maintaining the Metaverse not only demand

enormous resources but also need to address the dynamic, uncertain, and real-time

resource demands. Thus, we develop a novel ML-based framework that offers a

highly effective and comprehensive solution for managing various resource types for

Metaverse by leveraging the similarities among applications.

Security is always one of the top concerns in wireless communications, espe-

cially for 6G connected by a massive number of heterogeneous devices. We design

a lightweight framework leveraging ambient backscatter communications and deep

meta-learning to counter eavesdropping attacks, effectively decode weak backscat-

tered signals without requiring perfect information, and quickly adapt to new envi-

ronments with very limited knowledge.

The above results demonstrate the great potential of advanced machine learning

in addressing the emerging issues of 6G and enabling new applications/services. As

future works, one may look into the applications of Generative AI to 6G and how

to design 6G systems to enable Generative AI as a service.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervi-

sors, A/Prof. Diep N. Nguyen, A/Prof. Hoang Dinh, and Prof. Eryk Dutkiewicz,

for their unwavering support, guidance, and encouragement. Without them, com-

pleting this dissertation would have been impossible. Throughout my studies, they

not only provided valuable guidance for pursuing impactful research but also offered

invaluable advice for my career. I consider myself truly privileged and fortunate to

have had the opportunity to be supervised by them.

I would like to thank all my colleagues and friends at the University of Technology

Sydney for their support, discussion, and friendship. Additionally, I extend my

thanks to the SEDE admin team for efficiently handling all the paperwork and

forms during my PhD study.

I would like to thank the Vingroup Scholarship Program, University of Tech-

nology Sydney, and the University of Transport and Communications for providing

me with numerous opportunities and invaluable financial support throughout these

past years.

I would like to express my heartfelt gratitude to my family and friends for their

endless love and unwavering support, which gives me the strength to overcome

life’s difficulties. I am especially grateful to my beloved wife, Thao Pham, and

our wonderful son, Viet Chu (aka. Beau). My parents and my sister also deserve

heartfelt thanks for their belief in my abilities and constant motivation. Their

support, understanding, and encouragement throughout this journey have been the

cornerstone of my success. Thank you all from the bottom of my heart.

Contents

Certificate of Original Authorship i

Abstract ii

Acknowledgments iv

Table of Contents v

List of Publications xi

List of Figures xiv

Abbreviation xvii

1 Introduction and Literature Review 1

1.1 Motivations . 1

1.2 Literature Review and Contributions 9

1.2.1 UAV-based data collection systems 9

1.2.1.1 Literature Review 9

1.2.1.2 Contributions . 13

1.2.2 Intergrated Communication and Sensing Systems based on

mmWave . 15

1.2.2.1 Literature Review 15

1.2.2.2 Contributions . 19

1.2.3 Resource Managent for Metaverse 21

1.2.3.1 Literature Review 21

1.2.3.2 Contributions . 24

CONTENTS vi

1.2.4 Counter Eaveasdopping Attacks based on Ambient

Backscatter Communications 26

1.2.4.1 Literature Review 26

1.2.4.2 Contributions . 30

1.3 Thesis Organization . 31

2 Background 33

2.1 Deep Learning . 34

2.2 Reinforcement Learning . 38

2.2.1 Markov Decision Process . 38

2.2.2 Q-learning . 40

2.2.3 Deep Reinforcement Learning 42

2.2.4 Deep Dueling Double Q-learning 43

2.2.5 Optimality and Computational Complexity Analysis 48

2.3 Transfer Learning and Meta Learning 49

2.3.1 Transfer Learning . 50

2.3.2 Meta-Learning . 52

3 Joint Speed Control and Energy Replenishment Op-

timization for UAV-assisted IoT Data Collection with

Deep Reinforcement Transfer Learning 55

3.1 System Model . 56

3.2 Optimal Operation Control Formulation 59

3.2.1 State Space . 60

3.2.2 Action Space . 62

3.2.3 Reward Function . 62

CONTENTS vii

3.2.3.1 Speed Selection Reward Function 63

3.2.3.2 Battery Replacement Reward Function 64

3.2.4 Optimization Formulation . 66

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement

Transfer Learning . 67

3.3.1 Transfer Learning in Reinforcement Learning 68

3.3.2 Deep Dueling Double Q-learning with Transfer Learning . . . 70

3.4 Performance Evaluation . 73

3.4.1 Parameter Setting . 73

3.4.2 Simulation Results . 75

3.4.2.1 Convergence and Policy 75

3.4.2.2 Performance Analysis 77

3.4.2.3 Transfer Learning Strategies 81

3.5 Conclusions . 83

4 AI-enabled mm-Waveform Configuration for Autonomous

Vehicles with Integrated Communication and Sensing 85

4.1 System Model . 86

4.1.1 Signal Models . 88

4.1.1.1 Transmitted Signal Model 88

4.1.1.2 Received Signal Models 90

4.1.2 Sensing Signal Processing . 92

4.1.3 ICAS Performance Metrics . 93

4.2 Problem Formulation . 95

4.2.1 State Space . 96

CONTENTS viii

4.2.2 Action Space . 97

4.2.3 Reward Function . 98

4.2.4 Optimization Formulation . 99

4.3 Reinforcement Learning-based Solutions for ICAS-AV Operation Policy100

4.4 Performance Evaluation . 101

4.4.1 Simulation Parameters . 101

4.4.2 Simulation Results . 105

4.4.2.1 Convergence Rate 105

4.4.2.2 Performance Analysis 106

4.5 Conclusion . 114

5 MetaSlicing: A Novel Resource Allocation Framework

for Metaverse 115

5.1 System Model . 116

5.1.1 MetaSlicing: Dynamic Resource Allocation Framework for

Metaverse . 117

5.1.1.1 Multi-tier Resource Allocation Architecture-based

Metaverse . 117

5.1.1.2 MetaSlice Decomposition 118

5.1.1.3 MetaInstance . 122

5.1.2 Admission Control and Resource Management 124

5.2 MetaSlicing Admission Control Formulation 126

5.2.1 Decision Epoch . 127

5.2.2 State Space . 128

5.2.3 Action Space . 129

CONTENTS ix

5.2.4 State Transition Probabilities 130

5.2.5 Immediate Reward Function 131

5.2.6 Optimization Formulation . 133

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice Admission

Management . 136

5.3.1 MetaSlice Analysis . 136

5.3.2 Deep Dueling Double Q-learning based-Admission Controller . 137

5.4 Performance Evaluation . 140

5.4.1 Simulation Parameters . 140

5.4.2 Simulation Results . 141

5.4.2.1 Convergence Rate 142

5.4.2.2 Performance Analysis 143

5.5 Conclusion . 149

6 Countering Eavesdroppers with Meta-learning-based Co-

operative Ambient Backscatter Communications 151

6.1 System Model . 152

6.2 Channel Model . 155

6.2.1 Direct Channel . 156

6.2.2 Ambient Backscatter Channel 157

6.2.3 Received Signals . 158

6.3 AmB Signal Detector based on Maximum Likelihood 161

6.3.1 Received Signals’ Likelihood Functions 161

6.3.2 Maximum Likelihood Detector 162

6.4 Deep Learning-Based Signal Detector 163

CONTENTS x

6.4.1 Data Preprocessing . 163

6.4.2 Deep Neural Network Architecture 166

6.5 AmB Signal Detector based on Meta-Learning 168

6.6 Simulation Results . 171

6.6.1 Simulation Settings . 171

6.6.2 Maximum Achievable Backscatter Rate 171

6.6.3 Anti-eavesdropper and Security Analysis 172

6.6.4 The Learning Process of DL-based AmB Signal Detector . . . 175

6.6.5 BER Performance . 176

6.6.6 Meta-Learning for AmB Signal Detection 178

6.7 Conclusion . 181

7 Conclusions and Potential Research Directions 183

7.1 Conclusion . 183

7.2 Future Works . 186

A Proofs in Chapter 5 189

A.1 The Proof of Theorem 1 . 189

A.2 The Proof of Theorem 2 . 190

B Proofs in Chapter 6 191

B.1 The proof of Theorem 6.1 . 191

Bibliography 193

List of Publications

Journal Papers

J-1 N. H. Chu, D. T. Hoang, D. N. Nguyen, N. V. Huynh and E. Dutkiewicz,

“Joint speed control and energy replenishment optimization for UAV-assisted

IoT data collection with deep reinforcement transfer learning,” IEEE In-

ternet of Things Journal, vol. 10, no. 7, pp. 5778-5793, Feb. 2022, doi:

10.1109/JIOT.2022.3151201 (Corresponding to Chapter 3).

J-2. N. H. Chu, D. N. Nguyen, D. T. Hoang, Q. V. Pham, Khoa T. Phan,

W.J. Hwang, and E. Dutkiewicz, “AI-enabled mm-Waveform configuration

for autonomous vehicles with integrated communication and sensing,” IEEE

Internet of Things Journal, vol. 10, no. 19, pp. 16727-16743, Apr. 2023, doi:

10.1109/JIOT.2023.3270420 (Corresponding to Chapter 4).

J-3. N. H. Chu, D. T. Hoang, D. N. Nguyen, K. T. Phan, E. Dutkiewicz, Dusit

Niyato, and Tao Shu, “MetaSlicing: A novel resource allocation framework

for Metaverse,” IEEE Transactions on Mobile Computing, Jun. 2023, doi:

10.1109/TMC.2023.3288085 (Corresponding to Chapter 5).

J-4. C. T. Nguyen, N. V. Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang, D. N.

Nguyen, Q. V. Pham, D. Niyato, E. Dutkiewicz and W. J. Hwang, “Transfer

learning for wireless networks: A comprehensive survey,” Proceedings of the

IEEE, vol. 110, no. 8, pp. 1073-1115, Aug. 2022.

J-5. N. H. Chu, N. V. Huynh, D. N. Nguyen, D. T. Hoang, S. Gong, T. Shu, E.

Dutkiewicz, and K. T. Phan, “Countering Eavesdroppers with Meta-learning-

based Cooperative Ambient Backscatter Communications,” submitted to the

IEEE Transactions on Wireless Communications, major revision (Corre-

sponding to Chapter 6).

LIST OF PUBLICATIONS xii

J-6. N. H. Chu, Nguyen Q. Hieu, D. N. Nguyen, D. T. Hoang, K. T. Phan,

E. Dutkiewicz, Dusit Niyato, and Tao Shu, “Dynamic Multi-tier Resource

Allocation Framework for Metaverse,” submitted to IEEE Network, minor

revision (Partially corresponding to Chapter 5).

J-7. Hai M. Nguyen, Nam H. Chu, Diep N. Nguyen, Dinh Thai Hoang, Minh

Hoàng Hà, Eryk Dutkiewicz, “Optimal Privacy Preserving in Wireless Fed-

erated Learning over Mobile Edge Computing,” submitted to IEEE/ACM

Transactions on Networking, under review.

J-8. Thai T. Vu, Nam H. Chu, Khoa T. Phan, Dinh Thai Hoang, Diep N. Nguyen,

and Eryk Dutkiewicz “Energy-based Proportional Fairness in Cooperative

Edge Computing,” submitted to IEEE Transactions on Mobile Computing,

under review.

Conference Papers

C-1. N. H. Chu, D. T. Hoang, D. N. Nguyen, N. V. Huynh and E. Dutkiewicz,

“Fast or slow: An autonomous speed control approach for UAV-assisted IoT

data collection networks,” in Proceedings of IEEE Wireless Communications

and Networking Conference, 2021, pp. 1-6. (Partly Corresponding to Chap-

ter 3).

C-2. N. H. Chu, D. N. Nguyen, D. T. Hoang, K. T. Phan, E. Dutkiewicz, Dusit

Niyato, and Tao Shu, “Dynamic resource allocation for Metaverse applications

with deep reinforcement learning,” in Proceedings of IEEE Wireless Commu-

nications and Networking Conference, 2023, pp. 1-6, (Partly corresponding to

Chapter 5).

C-3. N. V. Huynh, Nguyen Quang Hieu, N. H. Chu, D. N. Nguyen, D. T. Hoang,

and E. Dutkiewicz, “Defeating eavesdroppers with ambient backscatter com-

munications,” in Proceedings of IEEE Wireless Communications and Network-

ing Conference, 2023, pp. 1-6. (Partly corresponding to Chapter 6).

LIST OF PUBLICATIONS xiii

C-4. N. Q. Hieu, N. H. Chu, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “A

unified resource allocation framework for virtual reality streaming over wireless

networks,” in Proceedings of IEEE International Conference on Communica-

tions, 2023, pp. 1-6.

C-5. H. M. Nguyen, N. H. Chu, Diep N. Nguyen, D. T. Hoang, M. H. Ha, and

E. Dutkiewicz, “Optimal privacy preserving in wireless federated learning over

mobile edge computing”, in Proceedings of IEEE International Conference on

Communications, 2023, pp. 1-6.

Book Chapters

B-1 M. Aljumaie, H. C. Nguyen, N. H. Chu, C. T. Nguyen, D. N. Nguyen, D. T.

Hoang, E. Dutkiewicz, “Potential applications and benefits of Metaverse,” in

Metaverse Communication and Computing Networks: Applications, Technolo-

gies, and Approaches, JohnWiley & Sons, 2023. doi:10.1002/9781394160013.ch2

B-2 Diep N. Nguyen, Nam H. Chu, Dinh Thai Hoang, Octavia A. Dobre, Dusit

Niyato, and Petar Popovski, “Generative AI for Communications Systems:

Fundamentals, Applications, and Prospects,” John Wiley & Sons, in produc-

tion.

List of Figures

1.1 6G’s enabling technologies and emerging use cases [1–3]. 3

1.2 The thesis overview. 5

2.1 An example of Deep Neural Network, a feed forward neural

network(FNN). 36

2.2 Reinforcement learning. 39

2.3 The Deep Dueling Double Q-learning model. 43

2.4 The Deep Dueling Network Architecture. 45

2.5 An example of transfer learning in reinforcement learning. 50

3.1 System model for UAV-assisted IoT data collection network. 56

3.2 An example of the proposed battery replacement reward function. . . 65

3.3 The proposed D3QL-TL based models. 70

3.4 (a) Source MDP, (b) the first target MDP, and (c) the second target

MDP. 74

3.5 Convergence rate and policy. 76

3.6 Vary battery replacement time. 78

3.7 Vary the UAV’s return speed. 79

3.8 Vary the packet arrival probability of zone 3. 79

3.9 Vary the UAV’s energy capacity. 80

LIST OF FIGURES xv

3.10 Convergence of the proposed TL schemes. 82

4.1 The ICAS system model in which the ICAS-AV maintains a data

communication with AVX based on IEEE 802.11ad. At the same

time, the ICAS-AV senses its surrounding environment by utilizing

echoes of its transmitted waveforms. 87

4.2 The proposed i-ICS model, in which the ICAS-AV obtains an

optimal policy by gradually updating its policy based on its

observations of the surrounding environment. 100

4.3 Convergence rate of proposed algorithms. 106

4.4 Varying the data arrival rate λ under normal channel condition, i.e.,

pnc = [0.2, 0.6, 0.2], with the weight vector W1 = [0.05, 0.4, 0.5]. 107

4.5 Varying the data arrival rate λ under normal channel condition, i.e.,

pnc = [0.2, 0.6, 0.2], with the weight vector W2 = [0.025, 0.8, 0.5]. . . . 108

4.6 Varying the data arrival rate λ under poor channel condition, i.e.,

ppc = [0.6, 0.2, 0.2], with the weight vector W1 = [0.05, 0.4, 0.5]. 109

4.7 Varying the data arrival rate λ under poor channel condition, i.e.,

ppc = [0.6, 0.2, 0.2], with the weight vector W2 = [0.025, 0.8, 0.5]. . . . 110

4.8 Varying the data arrival rate λ under strong channel condition, i.e.,

pgc = [0.2, 0.2, 0.6], with the weight vector W1 = [0.05, 0.4, 0.5]. 111

4.9 Varying the data arrival rate λ under strong channel condition, i.e.,

pgc = [0.2, 0.2, 0.6], with the weight vector W2 = [0.025, 0.8, 0.5]. . . . 112

5.1 The system model of the proposed MetaSlicing framework. In this

framework, different resource types in different tiers can be used and

shared to create Metaverse applications (i.e., MetaSlices). 116

5.2 The proposed iMSAC-based Admission Controller for the

MetaSlicing framework. 139

LIST OF FIGURES xvi

5.3 Convergence rate of iMSAC. 142

5.4 Vary the total number of system resources. 144

5.5 Varying NL . 145

5.6 Vary the immediate reward of class-3. 146

5.7 The acceptance probability per class when varying the immediate

reward of class-3. 147

6.1 Anti-eavesdropping attack system model. 152

6.2 Message-splitting mechanism. 154

6.3 Our proposed AmB signal detector based on DL. 164

6.4 The maximum achievable AmB rate when varying (a) θ0 and (b) the

transmitter-to-receiver link SNR, i.e., αdt. 172

6.5 The upper bound of the expected number of guesses, i.e., E[G(X)],

vs. the message splitting ratio β. 174

6.6 The convergence of DL-based AmB signal detector when αdt = 1 dB

and the receiver has 10 antennas. 176

6.7 Varying (a) the transmitter-receiver SNR αdt and (b) the

tag-receiver SNR αbt. 178

6.8 The BER performance of different learning approaches. 179

6.9 Reliability of learning process with different training datasets’ sizes. . 180

6.10 Varying the size of training tasks’ datasets. 181

Abbreviation

5G/6G The Fifth/Sixth Generation of Wireless Networks

ACK Acknowledgment

AF Ambiguity Function

AI Artificial Intelligence

AmB Ambient Backscatter

API Application Programming Interface

AP Access Point

AV Autonomous Vehicle

BER Bit Error Ratio

C-PHY Control Physical Layer

CPI Coherent Processing Interval

CSCG Circularly Symmetric Complex Gaussian

CTMC Continuous-Time Markov Chain

D3QL Deep Dueling Double Q-learning

D3QL-TL Deep Dueling Double Q-learning with Transfer Learning

DDQN Double deep Q-network algorithm

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-network algorithm

DRL Deep Reinforcement Learning

eMBB Enhanced Mobile Broadband

FFT Fast Fourier Transform

ICAS Integrated Communications and Sensing

IoT Internet of Things

LRR Long-Range Radar

ABBREVIATION xviii

LSTM Long Short-Term Memory

MAML Model-Agnostic Meta-Learning

MCS Modulation and Coding Scheme

MDP Markov Decision Process

MIMO Multiple Input Multiple Output

MISP Metaverse Infrastructure Service Provider

MLK Maximum Likelihood

mmWave Millimeter Wave

mMTC Massive Machine-Type Communication

NF Network Functions

NLOS Non-Line-of-Sight

NSI Network Slice Instance

NTNs Non-Terrestrial Networks

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

PER Packet Error Ratio

QES Quality of Experience

QoS Quality of Service

RF Radio Frequency

RL Reinforcement Learning

SGD Stochastic Gradient Descent

sMDP semi-Markov Decision Process

sMP semi-Markov Process

SNR Signal-to-Noise Ratio

TL Transfer Learning

UAV Unmanned Aerial Vehicle

URLLC Ultra-Reliable Low-Latency Communication

VNF Virtual Network Function

VR Virtual Reality

XR Extended Reality

1

Chapter 1

Introduction and Literature Review

This chapter first overviews the specifications of the sixth-generation (6G) networks

with its emerging services and challenges. Then, the existing solutions for handling

these problems are comprehensively reviewed. After that, this chapter highlights

the main contributions of this thesis. Finally, the thesis structure is provided.

1.1 Motivations

Over the past decade, wireless communication networks have experienced re-

markable growth. While the fourth generation (4G) can only offer typical download

speeds of around 100 Mbps, the latest generation of cellular network, i.e., 5G, is

expected to deliver multi-Gbps peak data rates (such as 20 Gbps downlink and

10 Gbps uplink) and ultra-low latency communications (with delays as low as one

millisecond) [1–3]. Notably, the fifth-generation (5G) shifts the focus from data rate-

centric services (in previous generations) to supporting various service categories,

such as enhanced mobile broadband (eMBB), Ultra-reliable low-latency communica-

tion (URLLC), and massive machine-type communication (mMTC), making it the

enabler for emerging applications, e.g., Internet of Things (IoT) and smart cities.

However, existing 5G systems thus far do not reach the promised revolution.

In particular, most 5G mobile connections are operating at sub-6 GHz, making it

difficult to meet the 5G expectation rate [1]. Moreover, new services, ranging from

extended reality (XR)-based services to connected autonomous systems, may not

fit well the 5G focus of facilitating small packet and sensing based services [1]. For

1.1 Motivations 2

Table 1.1 : Comparison of technology standards for 5G, Beyond 5G, and 6G [1].

5G 6G

Application types

New applications:

- eMBB

- URLLC

- mMTC

New applications:

- mBRLIC

- mURLIC

- HCS

- MPS

Device types

- Smartphones

- Sensors

- Drones

- Sensors and DII devices

- CRAS

- XR and BCI equipment

- Smart implants.

Rate requirements 1 Gb/s 1 Tb/s

End-to-end delay 5 ms <1 ms

Radio-only delay 100 ns 10 ns

Processing delay 100 ns 10 ns

End-to-end reliability 99.999% 99.99999%

Frequency bands
- Sub-6 GHz

- MmWave for fixed access.

- Sub-6 GHz

- MmWave for mobile access

- THz bands (above 300 GHz)

- Non-RF (e.g., optical and VLC)

example, extended reality (XR)-based services (especially with the rise of Meta-

verse), haptics, holographic teleportation, and connected autonomous systems may

intentionally use large packet [1, 2]. Additionally, they also demand wireless com-

munications that can sustain high data rates (Terabit per second) for both up and

down links, high reliability (99.99999%), and ultra-low latency (microsecond-level

latency) [2,3]. To address these issues and facilitate emerging services, a disruptive

6G is required.

To shape 6G networks, many cutting-edge technologies (e.g., pervasive Artifi-

cial Intelligence (AI), mmWave and even higher frequency bands, unmanned aerial

vehicles-assisted communications, and passive communications such as ambient backscat-

tering for energy saving) are expected to be deployed [2], as illustrated in Figure. 1.1.

By doing so, 6G can offer various new use cases, such as Metaverse/holographic

teleportation, non-terrestrial communications, and autonomous cyber-physical sys-

1.1 Motivations 3

Mobile
mmWave &

THz

Ambient
Backscatter

Communications

Internet of Space
Things with UAVs and

CubeSats

Network
Automation

Pervasive
Artificial

Intelligence

Integrated Terestrial,
Airborne, and Satellite

Networks

Autonomous Cyber-
physical Systems

Metaverse/
Holographic Teleportation

Enabling Technologies
Emerging Use Cases

Smart Infrastructure and Environement

UAVs

Figure 1.1 : 6G’s enabling technologies and emerging use cases [1–3].

tems [1–3]. The integration of these technologies, on the one hand, provides an op-

portunity to overcome the limitations of current wireless communication networks.

However, on the other hand, it also introduces new challenges due to the heightened

complexity and strong correlations among network entities and users.

Firstly, non-terrestrial networks (NTNs) are important components in 6G com-

munications systems since they can provide seamless coverage as well as extend the

coverage to remote areas, where traditional terrestrial networks are expensive or

even unavailable. Thus, NTNs offer promising solutions for collecting data from IoT

devices in such areas, especially UAV-based solutions due to its flexibility and low

cost. In particular, when UAVs act as on-demand flying access points (APs), thanks

to their aerial superiority, they can establish good line-of-sight (LoS) links for the

IoT nodes. In remote areas without access to terrestrial infrastructures, UAVs can

1.1 Motivations 4

provide a much more economical solution to collect IoT data than other approaches,

e.g., long-range ground broadcasting stations, or high-cost satellite communications

in NTNs. Due to the flexibility, mobility, and low operational cost, UAVs have been

being deployed as flying APs for some real-world projects, e.g., Google’s Loon and

Facebook’s Aquila [4,5]. However, there are still some challenges that hinder the ap-

plications of UAVs in IoT data collection networks. In particular, unlike traditional

solutions for collecting IoT data (e.g., deploying fixed APs), UAVs have limited

energy resources supplied by batteries. When the UAVs’ batteries are depleted,

they must replenish their energy by flying back to the charging stations to charge

or replace their batteries. It is worth noting that given a fixed working duration,

the more time the energy replenishment process takes, the less time the UAVs can

spend for collecting IoT data. Alternatively, the energy replenishment process is

highly dynamic since it depends on the distance between the UAV and the charging

stations. Therefore, optimizing energy usage and the energy replenishment process

is critical to achieving high system performance, but very challenging in practice.

Moreover, the UAVs often fly around to collect IoT data, while IoT nodes are stati-

cally allocated over different zones, and their sensing data are random depending on

surrounding environments. To that end, optimizing operations of UAVs in different

zones to maximize data collection efficiency is another major challenge that needs

to be considered.

Secondly, Integrated Communications and Sensing (ICAS) technology plays a

critical role in enabling 6G systems to become ubiquitous sensors [1]. Additionally,

ICAS also emerges as a promising solution for Autonomous Vehicles (AVs), a use

case of 6G [2], where sensing and data communications are two important functions

that often operate simultaneously. The sensing function enables AVs to detect ob-

jects around them and estimate their distance and velocity for safety management,

(e.g., collision avoidance) or for other use cases of 6G, such as Metaverse/holographic

1.1 Motivations 5

Secure	exchanged	information
based	on	Ambient	Backscatter

communications

Joint	Communication	and Sensing

Advanced
Machine
Learning

for 6G
Networks

Non-
Terrestrial
Networks

Ubiquitous
sensors

Resource
Management

Data	Collection	Networks
UAV-assisted

Resource	Allocation
Framework	for
Metaverse

Chapter 3-[J-1]
Chapter 4 -[J-2]

Chapter 5 - [J-3]

Security

Chapter 6 - [J-4]

Figure 1.2 : The thesis overview.

teleportation. The data communication function allows AVs to exchange informa-

tion with other AVs or infrastructure via Internet of Vehicles (IoV). For example,

they can send/receive safety messages and even their own raw sensing data (e.g.,

traffic data around the AV) for applications such as transportation safety, trans-

portation monitoring, and user services distributed to the AVs [6]. Although auto-

motive sensing and vehicular communication can share many commonalities (e.g.,

signal processing algorithms and the system architecture [7]), they are typically de-

signed and implemented separately. As such, communication and sensing functions

require separate hardware components operating at different frequency bands that

become increasingly expensive and inefficiency because of an ever-growing number

of connected devices and services. Consequently, this makes the implementation

of communication and sensing functions in AVs more costly in hardware, complex-

ity, and radio spectrum resources. These challenges can be effectively addressed

by combining both communication and sensing functions into a unified system, i.e.,

ICAS that can offer an efficient spectrum sharing mechanisms to avoid interference

and coexist within a transmitter or other users. However, optimizing the wave-

form structure is one of the most challenging tasks due to strong influences between

1.1 Motivations 6

sensing and data communication functions. Moreover, as 6G systems aim to utilize

mmWave, it is necessary to investigate mmWave ICAS for AVs.

Thirdly, 6G will support a variety of emerging services and use cases with differ-

ent performance metrics, such as throughput, latency, and reliability. It also needs

to provide a consistent and satisfactory quality of service and user experience for

all the users and applications. Recently, Metaverse has just been attracting more

attention from academia and industry in the last few years, thanks to the recent

advances in technologies (e.g., extended reality and edge intelligence) along with

great efforts of many big corporations such as Facebook [8] and Microsoft [9]. The

Metaverse is expected to bring a new revolution to the digital world [10]. Unlike

existing virtual worlds (e.g., Second Life and Roblox), where the users’ presentations

(e.g., avatars/characters) and assets are limited in specific worlds, the Metaverse can

be realized as a seamless integration of multiple virtual worlds [11]. Each virtual

world in the Metaverse can be created for a certain application, such as entertain-

ment, education, and healthcare. Similar to our real lives, Metaverse users can bring

their assets from one to another virtual world while preserving their values, and vice

versa. Moreover, the Metaverse is expected to further integrate digital and phys-

ical worlds, e.g., digitizing the physical environment by the digital twin [12]. For

example, in the Metaverse, we can create our virtual objects, such as outfits and

paintings, and then bring them to any virtual world to share or trade with others.

We can also share virtual copies of a real object in different virtual worlds. Thus,

the Metaverse will bring total new experiences that can change many aspects of our

daily lives, such as entertainment, education, e-commerce, healthcare, and smart

industries [13–15]. However, extremely-high resource demand of Metaverse makes

resource management for the underlying infrastructure one of the biggest challenges

that is impeding the deployment of the Metaverse [10].

Fourthly, 6G is expected to accommodate a massive number of devices and users

1.1 Motivations 7

with diverse requirements and sensitivities, exposing new surfaces for cyber attacks.

Among security threats in wireless communications, the eavesdropping attack is one

of the most common types of wireless attacks. To perform the attack, the eaves-

dropper usually stays close to the victim system to “wiretap” the legitimate wire-

less channel and acquire exchanged information. Since the eavesdropper operates

passively without introducing noise or altering transmit signals, detecting and pre-

venting eavesdropping attacks are usually challenging. To deal with eavesdroppers,

conventional approaches primarily rely on implementing encryption at the applica-

tion and transportation layers [16]. Nevertheless, these approaches face several issues

that significantly limit their practical applications, especially in resource-constrained

devices. Moreover, an eavesdropper with sufficient computational capacity can de-

crypt the encrypted data, especially with the recent advances in quantum comput-

ing [17]. Furthermore, by using side-channel analysis, a strong eavesdropper can

defeat many cryptographic schemes, even those with very robust schemes [16, 18].

Unlike cryptography-based approaches, physical layer security leverages physical

characteristics of wireless channels (e.g., the signal strength) to protect information

from eavesdroppers without requiring additional distributing and managing of cryp-

tographic keys [19]. However, this approach often requires prior information of the

legitimate channel state information (CSI) in order to achieve effective protection

performance. In practice, acquiring such information is often challenging or even

impractical in real-world scenarios.

To overcome the shortcomings of existing methods, machine learning emerges

as a promising solution. Thanks to its ability of self-learning, machine learning

has capability of intelligently handling intricate and extensive challenges in diverse

domains, such as search engines, speech recognition, medical diagnosis, and com-

puter vision. In 6G networks, machine learning can bring transformative capa-

bilities (e.g., trainable radios), optimize network resources for enhanced perfor-

1.1 Motivations 8

mance, enable intelligent connectivity to support emerging real-time applications

like Metaverse/holographic teleportation. Moreover, personalized user experiences

and energy-efficient operations further highlight machine learning’s role, promis-

ing smarter, more adaptive, and sustainable 6G networks. However, conventional

machine learning approaches (e.g., deep learning and reinforcement learning) usu-

ally require a large amount of high-quality data for the training process [20]. This

requirement makes them less efficient in practice when data is expensive and/or con-

tains noise due to the wireless environment’s dynamics and uncertainty. Thus, this

thesis seeks to pioneer advanced machine learning-based solutions that effectively

and intelligently address the aforementioned challenges. Specifically, we leverage the

latest advances in ML/AI to address the following questions:

• How can UAVs be dynamically and optimally controlled for speed and energy

replenishment to enhance data collection efficiency in 6G non-terrestrial net-

works, considering the limitations of UAV energy capacity and the uncertainty

in data collection tasks?

• How can the waveform configuration of the Integrated Communications and

Sensing (ICAS) system be intelligently and adaptively optimized to maximize

sensing and data communication performance within dynamic environments,

and how does this address the intricate relationship between these functions?

• What machine learning-based framework can be developed to offer an effec-

tive and comprehensive solution for optimally managing enormous resource

demands in various resource types for the Metaverse, leveraging similarities

among applications to enhance resource management?

• How can wireless communication be secured in the presence of eavesdropper

with minimal additional resource requirements but highly effective?

1.2 Literature Review and Contributions 9

1.2 Literature Review and Contributions

This section begins by overviewing current studies in tackling the above prob-

lems. Then, it highlight gaps in the literature. Finally, this section emphasizes the

main contributions of this thesis.

1.2.1 UAV-based data collection systems

1.2.1.1 Literature Review

In the literature, several works study the UAV’s energy replenishment process for

a UAV-assisted IoT data collection system where a charging station is deployed to

prolong UAV serving time [21–25]. To minimize the age of information (AoI) under

the constraint of the UAV’s charging rate and battery capacity, the authors in [21]

propose a least-charging-timed Metropolis-Hasting trajectory and a least-visit-time-

based trajectory. They also point out that the UAV’s charging rate has much more

influence on the low bound of AoI than the UAV’s battery capacity. The study in [22]

aims to minimize the data collection time by optimizing the UAV trajectory and the

order of IoT devices that the UAV is going to visit. Specifically, they employ a deep

deterministic policy gradient-based algorithm to find a route between two positions,

and a Q-learning based scheduler to determine the order of visiting positions where

the IoT devices or charging stations are located. Furthermore, a transfer learning

model is introduced to speed up the training process. However, the effectiveness

of the proposed transfer learning technique is not well investigated. Similarly, the

study in [23] aims to minimize the total time that the UAVs need to collect data from

backscatter sensor nodes. If the UAVs’ remaining energy is insufficient to complete

the task, they can return to a charging station for charging. The authors first use

the Gaussian mixture model to group IoT nodes into different clusters and formulate

the trajectory optimization problem as a semi-Markov decision process. Then, deep

reinforcement learning (DRL) approaches are proposed to find the optimal policy

1.2 Literature Review and Contributions 10

for the UAV.

In [24], the authors consider that a UAV is wirelessly being charged during the

data collection task. They first formulate the problem as a Markov decision process

(MDP), then propose a Q-learning algorithm to maximize the energy efficiency and

system throughput. In [25], the authors propose a blockchain-enabled UAV-assisted

framework to provide security for IoT data collection networks. A charging coin

is introduced to reward UAVs when they successfully collect IoT data. Then, the

UAVs can use collected coins to recharge their batteries at a charging station. In

addition, they develop an adaptive linear prediction model to reduce the number of

transactions in the system, resulting in a decrease in energy consumption.

All of the above works [21–25] assume that the UAVs always fly at a constant

speed during the data collection process. However, in practice, a UAV can choose

different speeds during its data collection process depending on its surrounding

environment. Alternatively, the UAV’s speed can strongly influence the system’s

efficiency because it has a substantial impact on energy consumption during the data

collection process [26]. Thus, optimally controlling UAVs’ speed can significantly

improve the energy usage and data collection efficiency of the system, especially

in UAV-assisted IoT data collection networks where UAVs have limited battery

capacities. Unfortunately, this important factor is not investigated in all the above

studies.

Notably, only a few works investigate the speed control problem for UAV-assisted

IoT data collection networks [27–30]. In [27], the authors aim to minimize the flight

time for a data collection task by jointly optimizing the UAV’s speed, data collection

duration, and the IoT devices’ transmit power. Their numerical results show that

the UAV’s optimal speed depends on the distance between sensors, sensors’ energy,

and the data upload requirements. In [28] and [29], the authors aim to maximize

1.2 Literature Review and Contributions 11

the data collection efficiency by controlling UAV’s speed according to the IoT device

density. In particular, the authors in [28] first introduce an analytical model for the

transmission between the UAV and IoT nodes, then the UAV’s speed is optimized

based on this model. In [29], the authors reveal a tradeoff between system through-

put and IoT devices’ energy efficiency. By optimizing the UAV’s speed, altitude, as

well as the MAC layer frame length, we can achieve the balance between the two

conflict factors.

All the above works (i.e., [27–29]) apply the conventional optimization theories,

which statically optimize the UAV’s speed during the IoT data collection process.

Therefore, their algorithms need to rerun whenever the environments are changed,

leading to a high computational complexity. As a result, optimization-based solu-

tions are inefficient in addressing the high dimensional state space as that in the

considered problem. More importantly, they cannot be used in scenarios in which

the complete information about the surrounding environment is unknown, like what

we consider in this work (e.g., packet arrival probabilities for the whole network

and flight time for replacing the battery). In this context, reinforcement learning

emerges as the best approach to address the highly dynamic and uncertainty of the

environment since it can help the UAV adapt its behavior according to the environ-

ment’s changes. In [30], the authors employ deep Q-learning to control the UAV’s

speed during its data collection task, where the UAV can also wirelessly charge the

IoT devices while collecting their data. This work aims to minimize the data packet

loss by selecting the best devices to be charged and interrogated, together with the

optimal UAV’s speed. Their simulation results show that the UAV’s speed is pro-

portional to the number of IoT devices and inversely proportional to the data queue

lengths of IoT devices. Similar to [27–29], the study in [30] does not consider the im-

pacts of UAV’s energy consumption and energy replenishment processes during the

data collection task. It is worth highlighting that the energy replenishment process

1.2 Literature Review and Contributions 12

is a critical factor that cannot be ignored since the UAVs’ energy is limited.

It can be observed that all of the aforementioned works do not jointly optimize

energy replenishment and speed control activities simultaneously. However, they

are among the most important factors to achieve high efficiency in terms of energy

and data collection for UAV-assisted IoT data collection networks. In addition,

these proposed approaches require a high computational complexity that may be

inefficient to deploy on UAVs. Moreover, most RL-based optimal operation policies

for UAV-based collectors (i.e., [22–24, 30]) rely on conventional Q-learning or deep

Q-learning based algorithms that are prone to overestimating state-action values.

This problem can make the learning process unstable [31]. In addition, the work

in [22] applies transfer learning to speed up the learning process of the proposed

DRL algorithm. However, the impacts of transfer learning are not well investigated.

Note that transfer learning does not always improve or even can cause nega-

tive impacts on the learning process [32]. Furthermore, the study in [22] does not

consider the UAV’s speed control, one of the most important factors influencing to

decisions of energy replenishment. To fill these gaps, this study develops a highly

efficient solution based on deep reinforcement transfer learning for UAV-assisted IoT

data collection networks. Specifically, our proposed approach can effectively address

the overestimation problem and stabilize the learning process by adopting recent ad-

vanced techniques in RL, including deep Q-learning [33], deep double Q-learning [31],

and dueling neural network architecture [34]. In addition, the proposed solution can

simultaneously optimize the UAV’s speed and energy replenishment processes and

allow the learned knowledge to be effectively “shared” and “transferred” between

UAVs. Thus, leveraging the transfer learning technique can improve the learning

quality and reduce the learning time, thereby leading to a decrease of computa-

tional complexity. Therefore, our proposed solution can be effectively implemented

on UAVs.

1.2 Literature Review and Contributions 13

1.2.1.2 Contributions

Given the above, to jointly optimize the speed control and battery replacement

activities for a considered UAV under the dynamic and uncertainty of IoT data col-

lection process, we propose a dynamic decision solution leveraging the Markov de-

cision process (MDP) framework. This framework allows the UAV to make optimal

decisions (regarding the flying speed and battery replacement activities) based on

its current observations about the surrounding environment. Although Q-learning

can be used to find the optimal policy for the UAV, its convergence rate is slow,

especially in a highly complex problem as the one considered in this problem where

we need to jointly optimize the speed and energy replenishment activities for the

UAV. In addition, Q-learning-based algorithms usually suffer from overestimation

problems when estimating action values, especially for complicated problems with

hybrid actions like what we consider in this problem (i.e., speed selection and energy

replenishment actions) [31]. Thus, we develop a highly-effective Deep Dueling Dou-

ble Q-learning (D3QL) to address these challenges. The key ideas of D3QL are to

(1) separately and simultaneously estimate the state values and action advantages,

making the learning process more stable [34], and (2) address the overestimation

by using two estimators (e.g., deep neural networks), resulting in the stability of

estimating action values.

To further reduce the learning time and enhance the learning quality, we develop

transfer learning techniques to allow the UAV to learn more knowledge from other

UAVs learning in similar environments. In addition, these techniques also help the

UAV leverage knowledge obtained from different environments to improve its policy,

making our solution more applicable and scalable. Therefore, our proposed solution

can be deployed on resource-constrained devices, e.g., UAVs. Extensive simulation

results demonstrate that our proposed solution, i.e., D3QL with transfer learning

(D3QL-TL), can simultaneously optimize the energy usage and data collection, and

1.2 Literature Review and Contributions 14

thereby leading to the best performance compared to other methods. To the best of

our knowledge, this is the first study investigating a UAV operation control approach

taking the dynamic of the IoT data collection, energy limitation, and impact of the

energy replenishment process into considerations.

Our major contributions are summarized as follows.

• We propose a novel framework that allows the UAV to jointly optimize its

flying speed and battery replacement activities under the dynamic and un-

certainty of data collection and energy replenishment processes. In addition,

this framework can not only allow the UAV to dynamically and automatically

make optimal decisions through real-time interactions with the surrounding

environment but also enable the “share/transfer” learning knowledge among

UAVs working in the same and/or similar environments.

• We develop a highly-effective DRL algorithm leveraging recent advances of

deep Q-learning, deep double Q-learning, and dueling neural network archi-

tecture to stabilize the learning phase, thereby quickly obtaining an optimal

operation policy for the UAV.

• To reduce the learning time and improving learning quality for the UAV, we

develop advanced transfer learning techniques that allow UAVs to “share” and

“transfer” their learning knowledge. In addition, these techniques help UAVs

to utilize the knowledge and information learned from different environments,

making our approach more scalable and applicable in practice, e.g., scenarios

with multiple UAVs.

• Then, we perform extensive simulations to demonstrate the efficiency of our

proposed approaches and reveal critical elements that can significantly impact

on the performance of UAV-assisted IoT data collection networks.

1.2 Literature Review and Contributions 15

1.2.2 Intergrated Communication and Sensing Systems based on mmWave

1.2.2.1 Literature Review

Currently, two standards operating at 5.9 GHz for vehicular communication net-

works are C-ITS based on IEEE 802.11bd in Europe [35] and DSRC based on IEEE

802.11p in the U.S. [36]. Unfortunately, their data rates (i.e., up to 27 Mbps) do

not meet the requirements of AVs’ applications. For example, precise navigation

that needs to download a high definition three-dimension map and raw sensor data

exchange between AVs to support fully automated driving may require connections

up to a few Gbps [37]. In addition, the performance of communication and sensing

in ICAS systems operating at sub-6 GHz is limited due to the bandwidth availabil-

ity [38]. In this context, millimeter wave (mmWave), whose frequency is from 30

GHz to 300 GHz, has been emerging as a promising solution to address the above

challenges in ICAS systems [39]. First, owing to the high-resolution sensing and

small antenna size, mmWave is predominantly utilized for automotive Long-Range

Radar (LRR) [40]. Second, an mmWave system, e.g., a wireless local area network

(WLAN) operating at the 60 GHz band, can provide a very high data rate to meet

AVs’ intensive communication requirements.

However, several challenges are hindering the applications of mmWave ICAS sys-

tems in AVs. In particular, unlike the conventional approaches where sensing and

communication are separated, the ICAS-AV leverages a single waveform for both

sensing and communication functions. Thus, it needs to jointly optimize these two

functions simultaneously to achieve high performance of data communication and

sensing for ICAS systems. In addition, since the ICAS operates while ICAS-AVs are

moving, the surrounding environments of AVs are highly dynamic and uncertain.

This makes ICAS-AVs’ performance unstable as mmWave is more severely impacted

by wireless environments than those of the sub-6 GHz bands [41]. Therefore, the

1.2 Literature Review and Contributions 16

highly dynamic and uncertainty of mmWave ICAS’s environment is another crit-

ical challenge that needs to be addressed. To that end, mmWave ICAS systems

are demanding an effective and flexible solution that can not only jointly optimize

communication and sensing functions but also adaptively handle the highly dynamic

and uncertainty of the surrounding environment. As a result, it can best sustain

high data rate communication links (given the highly directional mmWave commu-

nications) and sensing accuracy, e.g., low target miss detection probability and low

estimation error of the target’s range and velocity.

A few works in the literature have recently studied communication mmWave

waveforms for ICAS systems [38, 42–46]. In [42] and [43], the authors exploit a

single IEEE 802.11ad data communication frame to provide the sensing function.

Specifically, the authors in [42] propose to use the preamble of the Single Carrier

Physical Layer (SC-PHY) frame in IEEE 802.11ad to extract sensing information.

The simulation results show that this approach can achieve a data rate of up to

1 Gbps with high accuracy in target detection and range estimation. However,

the velocity estimation is poor because the preamble is short. Particularly, the

proposed approach achieves the desired velocity accuracy (i.e., 0.1 m/s) only when

the Signal-to-Noise Ratio (SNR) is high, i.e., greater than 28 dB. In [43], the authors

aim to overcome this issue by using the IEEE 802.11ad Control Physical Layer (C-

PHY) frame that has a longer preamble than that of IEEE 802.11ad SC-PHY.

However, it is still not large enough to improve the velocity estimation, whereas the

data rate is only 27.5 Mbps, significantly lower than the desired data rate for AV’s

communication [37]. These results from the above studies (i.e., [42] and [43]) suggest

that a single frame processing is unable to satisfy the desired velocity estimation

accuracy for AVs.

Multi-frame processing has been recently considered to be a potential solution

for ICAS systems to improve sensing information extracted from targets’ echoes,

1.2 Literature Review and Contributions 17

e.g., [38, 44–46]. The authors in [44] propose velocity estimation algorithms that

leverage multiple fixed-size frames based on IEEE 802.11ad SC-PHY in a CPI.

Their results demonstrate that the proposed solution can achieve the desired velocity

accuracy of AVs (i.e., 0.1 m/s [40]) when the number of frames is greater than 20. In

[45], the authors develop a similar multi-frame processing method to embed sensing

functionality in IEEE 802.11ad physical layer frame for a Vehicle-to-Infrastructure

(V2I) scenario. By doing so, they can reduce the beam training time of 802.11ad up

to 83%. Instead of using the 802.11ad standard, the authors in [46] propose a ICAS

waveform based on Orthogonal Frequency-Division Multiple Access (OFDMA) for

a bi-static automotive ICAS system in which the sensing area is extended to non-

light-of-sight positions by exploiting reflected signals from other obstacles. However,

in this work, the maximum communication data rate is only up to 0.1 Mbps which

is dwarfed compared to the desired data rate in AVs.

Recently, reinforcement learning has been leveraged to address the dynamic and

uncertainty of environments in various aspects of wireless communication, such as

ICAS [47], spectrum sensing [48], and anti-jamming in wireless sensor networks [49].

In particular, the authors in [47] consider the ICAS system that is the combination

of two different subsystems (i.e., communication and sensing) working separately

at different beams and channels (i.e., frequencies). They develop a DRL-based

algorithm to optimally allocate resource blocks (i.e., a tuple of beam, channel, and

power) to sensing and communication tasks of UAVs. The major shortcoming of

[47] is that it does not consider the dynamic and uncertainty in the data arrival

process and wireless channel, which are addressed in our framework. In practice,

these dynamics and uncertainties are very important and cannot be ignored since

autonomous vehicles are of high mobility, and the transmission demand of users and

the AV system varies over time. Moreover, the system in [47] requiring separate

beams and channels (i.e., frequencies) for communications and sensing is not as

1.2 Literature Review and Contributions 18

spectrum-efficient as the ICAS system considered in our work that leverages the

same signal for both communication and sensing functions.

A common drawback in the above studies (i.e., [44–46]) is that the waveform

structures (e.g., number of frames in CPI) are not optimized. Instead, these param-

eters are manually set. In practice, the dynamic and uncertainty of the ICAS’s envi-

ronment (e.g., SNR and data arrival rate) can significantly influence the ICAS’s data

transmission rate as well as sensing accuracy in velocity/range estimation. Thus,

finding the optimal waveform structure according to the surrounding environment

and timely adapting the selected structure with the dynamics of the surrounding en-

vironment play vital roles. To address this problem, in [38], the authors propose an

adaptive virtual waveform design for mmWave ICAS based on the 802.11ad standard

to achieve the optimal waveform structure (i.e., number of frames in CPI) that can

balance between communication and sensing performance. The results show that

given a fixed length of CPI, increasing the number of frames in CPI can increase the

sensing performance, but it will degrade the communication performance (i.e., data

rate). However, this approach requires complete information about the surrounding

environment in advance, which may be impossible to obtain in practice. As such,

their proposed solution needs to be rerun from scratch if there is any change in the

environment.

In addition, none of the above studies (i.e., [38,42–46]) considers the dynamic and

uncertainty problem of the information and environment, e.g., the changes of the

wireless channel quality and the arrival rate of data that need to be transmitted via

ICAS. This problem is critical to the performance of the ICAS system because the

surrounding environment consistently changes as the ICAS-AV is moving. In partic-

ular, the rapid change of the wireless channel quality (e.g., SNR) highly impacts the

ICAS’s communication efficiency (i.e., packet loss due to transmission failure) and

sensing performance (i.e., target detection and targets’ range and speed estimation

1.2 Literature Review and Contributions 19

accuracy). The problem is even more critical for mmWave systems that are highly

directional and prone to blockages/fading. Moreover, the data arrival process at

the ICAS-AV is often unknown in advance since it varies in different applications

(e.g., navigation and automated driving). When the data arrival rate at the AV’s

ICAS system is higher than its maximum transmission rate, data starts to pile up

in a data queue/buffer. Since a data queue/buffer size is always limited, packet loss

will occur when the queue is full. This problem can cause serious issues for AVs

as they cannot communicate with other AVs and infrastructure. Given the above,

adaptively optimizing the waveform of ICAS is an effective approach to not only

jointly optimize both sensing and communication performance but also effectively

deal with the dynamic and uncertainty of the surrounding environment. However, to

the best of our knowledge, this approach has not been investigated in the literature.

1.2.2.2 Contributions

To fill this gap, this thesis aims to propose a novel framework to maximize the

performance of an ICAS system by adaptively optimizing the waveform structure

under the dynamic and uncertainty of the surrounding environment when the AV is

moving. It is worth noting that since the sensing processing for the 802.11ad-based

ICAS is well-investigated in [38, 42–45], this study only focuses on addressing the

waveform structure optimization problem for mmWave ICAS AVs under the dy-

namic and uncertainty of surrounding environments. To that end, we first model

the problem as a Markov Decision Process (MDP) because it can allow the AV

to determine the optimal waveform (e.g., the number of frames in CPI) based on

its current observation (e.g., channel state and number of data packets in the data

queue). Then, we adopt the Q-learning algorithm, which is widely used in Reinforce-

ment Learning (RL) due to its simplicity and convergence guarantee, to help the

ICAS-AV gradually learn the optimal policy via interactions with the surrounding

1.2 Literature Review and Contributions 20

environment. However, Q-learning may face the curse of dimensionality and overes-

timation problems that lead to a low converge rate and an unstable learning process

when the state space is large [31]. In our case, the state space that consists of all

possible observations of the surrounding environment is very large, while ICAS-AV

requires fast learning to promptly respond to the highly dynamic and uncertainty

of the ICAS-AV’s environment. Therefore, we develop a highly-effective learning

algorithm based on the most recent advances in RL, namely i-ICS, to deal with

these problems. First, i-ICS addresses the high dimensional state space problem by

utilizing a deep neural network (DNN) to estimate the values of states [33]. Second,

the overestimation is handled by using the deep double Q-learning [31]. Finally, the

learning process is further stabilized and accelerated by leveraging the dueling neu-

ral network architecture that separately and simultaneously estimates the advantage

values and state values [34]. Our major contributions are as follows.

• Design a novel framework by which the ICAS-AV can dynamically and au-

tomatically optimize the waveform structure under the highly dynamic and

uncertainty of its surrounding environment to jointly optimize the communi-

cation efficiency and sensing accuracy, thereby maximizing the ICAS’s perfor-

mance.

• Develop a highly-effective deep RL (DRL) algorithm taking advantages of

recent advances in RL, including deep Q-learning, deep double Q-learning,

and dueling neural network architecture, that can help the ICAS-AV quickly

obtain the optimal policy.

• Perform extensive simulations to investigate the effectiveness of our proposed

solution under different scenarios and reveal key factors that can significantly

influence the performance of the ICAS system.

1.2 Literature Review and Contributions 21

1.2.3 Resource Managent for Metaverse

1.2.3.1 Literature Review

Mountainous resource demand in the Metaverse is one of the biggest challenges

that is impeding the deployment of the Metaverse [10]. To fulfil the Quality-of-

Service (QoS) and meet the user experience requirements in the Metaverse, it de-

mands enormous resources that may have never been seen before. First, Metaverse

is expected to support millions of users simultaneously since each Metaverse appli-

cation can host a hundred thousand users simultaneously. For example, the peak

number of concurrent players of Counter Strike - Global Offensive is more than one

million in 2021 [50]. It is forecasted that data usage on networks can be expanded

more than 20 times by the operation of Metaverse [51]. Second, unlike the cur-

rent online platforms (e.g., massive multiplayer online role-playing games where the

uplink throughput can be much lower than that of downlink throughput [52]), the

Metaverse requires extremely-high throughput for both uplink and downlink trans-

mission links. The reason is that Metaverse users can create their digital objects

and then share/trade them via this innovation platform. Therefore, to maintain the

Quality-of-Experience (QoE) for users, the Metaverse’s demand for resources (e.g.,

computing, networking, and storage) likely exceeds that of any existing massive

multiplayer online application [10].

More importantly, the required resource types are highly correlated. In partic-

ular, the Extended Reality (XR) technology is believed to be fully integrated into

Metaverse’s applications such that users can interact with virtual and physical ob-

jects via their digital avatars, e.g., digital twin [10]. Therefore, it requires not only

extensive computing to render three-dimensional (3D) objects, a large amount of

data collected from perceived networks, e.g., the Internet of Things (IoT), but also

an ultra-low delay communication to maintain a seamless user experience. Thus,

1.2 Literature Review and Contributions 22

intensive resources are required not only to contain and operate Metaverse applica-

tions but also to support massive data forwarding over networks. Given the above,

resource management for Metaverse is a challenging task due to the mountainous

size of resources of different types and the correlations between these types.

In this context, although deploying the Metaverse on the cloud is a possible so-

lution, it leads to several challenges. First, the cloud is often located in a physical

area (e.g., a data center), making it potentially a point-of-congestion when millions

of users connect at once. Second, since users come from around the world, a huge

amount of exchanged data puts stress on the communication infrastructure. This

results in high delay, which severely impacts the Metaverse since the delay is one

of the crucial drivers of user experience [53]. In this context, multi-tier resource

allocation architecture, where the computing, storage, networking, and communi-

cation capabilities are distributed along the path from end-users to the cloud, is a

promising solution for the Metaverse implementation.

In the literature, there are only a few attempts to investigate the Metaverse

resource management [54–57]. Specifically, in [54], the authors consider comput-

ing resource allocation for a single-edge computing architecture that has limited

computing resources to allocate for some nearby Metaverse users. Similarly, in [55]

and [56], resource allocation at the edge is considered, but more resource types, i.e.,

computation and communication, are considered. In particular, the work in [55]

proposes a pricing model-based resource management to accelerate the trading of

Virtual Reality (VR) services between end-users and VR service providers. In [56],

the authors address the stochastic demand problem for an application of education

in the Metaverse. Specifically, they propose a stochastic optimal resource allocation

method to minimize the cost for the virtual service provider. Unlike the above works,

in [57], the authors propose an evolutionary game-based resource management for

perception networks (e.g., IoT) that are used to collect data for the Metaverse.

1.2 Literature Review and Contributions 23

It can be observed that none of the above studies considers the multi-tier com-

puting architecture for resource allocation problem. Instead, their approaches are

only appropriate for a single-tier edge computing architecture [54–57]. However,

as analyzed above, due to the extremely high resource demands of Metaverse ap-

plications, the single-tier computing resource model may not be appropriate and

effective. First, relying on a single-tier computing architecture may not guaran-

tee optimal performance for Metaverse applications. The available resources at the

edge (i.e., near end-users) are often much lower than those of the cloud and may

not satisfy the intensive resource requirements of Metaverse applications [58]. This

can lead to high computational latency or even disrupting services due to the lack

of resources. Second, all resources in the single-tier model concentrate in one place,

possibly resulting in a single point of failure problem, and thus this single archi-

tecture has a low ability of scalability and flexibility. Third, the single-tier edge

computing tends to initialize Metaverse applications near the user’s location. As

such, if the user moves far away from that location, the system cannot guarantee a

good Quality of Experience (QoE) [58]. Given the above, the single-tier architecture

may not be an optimal solution for deploying Metaverse applications.

Furthermore, it can be observed that in the Metaverse, many Metaverse appli-

cations may share some common functions. For example, a digital map is indeed a

common function between tourism and navigation applications. Currently, sharing

functions among applications has already been made. For instance, Google Map’s

Application Programming Interface (API) provides various functions (e.g., digital

map, check-in, display live data synching with location [59]) that can be shared

among many applications, e.g., Pokemon Go [60], Wooorld [61], and CNN iReport

Map [62]. This special feature of the Metaverse indeed can be leveraged to max-

imize resource utilization for Metaverse applications. However, none of the above

works can exploit the similarity among applications to improve resource utilization

1.2 Literature Review and Contributions 24

for the Metaverse. Moreover, in practice, users join and leave the Metaverse at any

time, leading to the high uncertainty and dynamic of resource demands. Among the

aforementioned works, only the study in [56] addresses the stochastic demands of

users. Nevertheless, it only considers resource allocation for a Metaverse education

application. In addition, this approach is only appropriate for a single-tier resource

allocation and could not leverage the similarities among Metaverse applications’

functions in order to maximize system performance. Thus, there is an urgent need

for an effective and comprehensive solution for the Metaverse to handle not only the

massive resource usage but also the dynamic and uncertain resource demand.

1.2.3.2 Contributions

To address all the aforementioned challenges, we propose a novel framework,

namely MetaSlicing, to intelligently allocate diverse types of resources for Meta-

verse applications by analyzing the incoming requests and allocating appropriate

resources, and thereby maximizing the whole system performance. Firstly, we intro-

duce the idea of decomposing an application into multiple functions to facilitate the

deployment and management of Metaverse, which are highly complex. In particular,

each function of an application can be initialized separately and placed at a different

tier in the system according to functions’ requirements and tiers’ available resources.

For example, functions with low latency requirements can be placed at a low tier

(e.g., tier-1), while those with low update frequency can be placed at a higher tier.

By doing so, the application decomposition can not only provide a flexible solution

for deploying Metaverse applications but also utilize all networks’ resources from

different tiers. Secondly, we propose a novel technique, called MetaInstance, to ad-

dress extreme-high resource demands of the Metaverse. The MetaInstance aims to

improve resource utilization by exploiting the similarities among Metaverse appli-

cations. To be more specific, applications with common functions will be grouped

1.2 Literature Review and Contributions 25

into a MetaInstance, and the common functions will be shared among these appli-

cations instead of creating one for each application. Therefore, this technique can

save more resources. Finally, to address the uncertainty and dynamic of resource

demands as well as the real-time response of applications in Metaverse, we develop

a highly-effective framework based on the semi-Markov decision process together

with a reinforcement learning algorithm that can automatically find out an optimal

policy under the dynamic and uncertain resource demand.

In summary, our contributions are as follows:

• We propose a novel framework in which different types of resources at different

tiers of the computing architecture can be allocated smartly to maximize the

system performance for the Metaverse.

• We introduce two innovative techniques, including Metaverse application de-

composition and MetaInstance, to maximize resource utilization for the pro-

posed multi-tier computing-based Metaverse.

• We propose a highly effective admission control model based on the semi-

Markov decision process that can capture the high dynamic and uncertainty

of resource demand as well as the real-time characteristic of the Metaverse.

• We develop an intelligent algorithm that can automatically find the optimal

admission control policy for the Metaverse without requiring the complete

information about the dynamic and uncertainty of resource demand.

• We perform extensive simulations not only to explore the resilience of our

proposed framework but also to gain insights into the key factors that can

affect the system performance.

1.2 Literature Review and Contributions 26

1.2.4 Counter Eaveasdopping Attacks based on Ambient Backscatter

Communications

1.2.4.1 Literature Review

To deal with eavesdropping attacks, conventional approaches primarily rely on

implementing encryption at the application and transportation layers [16]. Never-

theless, these approaches possess several issues that significantly limit their practical

applications, especially in resource-constrained devices. Firstly, these approaches

require additional computing resources to facilitate the encryption and decryption,

making them less practical or even infeasible for resource-limited devices such as IoT

devices [63]. Secondly, distributing and managing cryptographic keys also require

additional communication resources (e.g., frequencies and transmission power) and

are very challenging tasks, especially in decentralized systems comprising a large

number of mobile devices [64]. Finally, an eavesdropper with sufficient computa-

tional capacity can decrypt the encrypted data, especially with the recent advances

in quantum computing [17]. In addition, by using side-channel analysis, a strong

eavesdropper can defeat many cryptographic schemes, even those with very robust

schemes [16], [18].

Unlike cryptography-based approaches, physical layer security leverages physical

characteristics of wireless channels (e.g., the signal strength) to protect informa-

tion from eavesdroppers without requiring additional distributing and managing of

cryptographic keys [19]. In physical layer security, friendly jamming is a popular

approach in which artificial noise is intentionally injected into wireless channels to

disrupt eavesdroppers’ signal reception [65–67]. However, this approach may not

always ensure a positive secrecy rate, which is the difference of capacity between the

legitimate channel (from the transmitter to the intended receiver) and the “tapped”

channel (from the transmitter to the eavesdropper). Moreover, the generated inter-

1.2 Literature Review and Contributions 27

ferences may also severely degrade signal receptions at neighboring legitimate de-

vices, especially in densely populated wireless networks. Recently, friendly jamming

and beamforming techniques have been leveraged in cooperative transmissions to

counter eavesdropping attacks [68]. In particular, the cooperative transmission uses

relays to forward data from a transmitter to a receiver. In the cooperative jamming

mode, relays can also inject noises (i.e., jamming signals) to confuse eavesdroppers

in the relays’ coverages. Whereas in the cooperative beamforming mode, these re-

lays perform distributed beamforming toward the legitimated receiver to minimize

the signal strength at eavesdroppers. The main drawback of friendly jamming- and

beamforming-based solutions is that they generally require prior information of the

legitimate channel state information (CSI) in order to achieve effective protection

performance. However, acquiring such information is often impractical and challeng-

ing in real-world scenarios. Moreover, these techniques require additional resources

(e.g., energy and computing) for generating jamming signals and performing beam-

forming.

Given the above, this article leverages the cooperative Ambient Backscatter

(AmB) communications in which the transmitter is equipped with an AmB tag that

can backscatter ambient radio signals to convey information to the receiver [69]. In

the literature, the AmB communications have been well investigated in various as-

pects, such as hardware design [70], performance improvement [71,72], power reduc-

tion [73, 74], ambient backscatter-based applications [75, 76], and security [77–79].

However, utilizing AmB technology to counter eavesdropping attacks has not yet

been well investigated. For example, the works in [77, 78] investigate the security

and reliability of AmB-based network with imperfect hardware elements, while the

authors in [79] analyze the application of physical layer security for AmB commu-

nications. Unlike these works in the literature, our proposed solution exploits the

advantages of AmB communications together with a simple encoding technique to

1.2 Literature Review and Contributions 28

secure the transmitted information against eavesdroppers. In particular, the original

message is split into two parts: (i) the active message transmitted by the transmitter

using conventional active transmissions and (ii) the AmB message transmitted by

the backscatter tag using AmB transmissions. Then, the receiver reconstructs the

original message based on both active and AmB messages. Note that the AmB tag

operates in a passive manner, meaning that it does not actively transmit signals.

Instead, it utilizes the active signals from the transmitter to backscatter the AmB

message without requiring additional power. In this way, the AmB message can

be transmitted on the same frequency and at the same time as the active message.

However, the AmB signal strength at the receiver is significantly lower than that of

the active signal. Hence, the AmB signal can be considered as pseudo background

noise for the active signal [63, 80]. As such, without knowledge about the system

in advance (i.e., the settings of AmB transmission), the eavesdropper is even not

aware of the existence of the AmB message. Without accessing the AmB message,

the eavesdropper may not be able to recover the original message.

It is worth noting that if eavesdropper is aware of the AmB message, it is still

a challenging task to capture and reconstruct the original message. Specifically,

the values of resistors and capacitors in the AmB circuit are different for different

backscatter rates. As such, even if the eavesdropper deploys the AmB circuit but

do not know the exact backscatter rate, it still cannot decode the backscatter sig-

nals [70]. In addition, in the worse case in which the eavesdropper knows the exact

backscatter rate in advance, it still does not know how to construct the original mes-

sage based on the active and AmB messages since the message encoding technique

is unknown to them. To quantify the security of our proposed anti-eavesdropping

solution in the worst case, this thesis considers the guessing entropy metric [81]. It

is worth noting that due to the lower rate of AmB transmission compared to that

of the active transmission, the AmB message’s size is smaller than that of the ac-

1.2 Literature Review and Contributions 29

tive message. Thus, in a system with sufficient computing and energy capacities for

encryption/decryption, the AmB message can be used to carry the encryption key,

while the active message carries the encrypted message.

To detect backscattered signals at the receiver, traditional methods often em-

ploy MLK, which may require complex mathematical models and perfect CSI to

achieve high detection performance [82, 83]. Thus, this approach introduces signif-

icant complexity and dependency on accurate CSI. To overcome these limitations,

we develop a low-complexity Deep Learning (DL)-based detector that can effectively

detect the backscattered signals. The rationale behind is that DL has the ability

to learn directly from data (e.g., received signals), eliminating the need of complex

mathematical models and perfect CSI. Note that in the literature, several works

consider using DL for signal detection and channel estimation [84–88]. However,

most of them consider conventional signals (e.g., OFDM, BPSK, and QAM64 sig-

nals), and thus it may not perform well for very weak signals like AmB signals. In

particular, the authors in [84, 85] consider DL-based detectors for OFDM signals.

Whereas, the studies in [86] and [87] consider the signal classification task, i.e., pre-

dicting the modulation type of signals. Unlike the above works, in [88], the authors

propose an AmB signal detector based on the Long Short-Term Memory (LSTM)

architecture. Since LSTM requires more computing capability than that of the con-

ventional architecture, e.g., fully connected architecture [20], it does not fit well in

our considered lightweight anti-eavesdropping framework. Therefore, this work pro-

poses a new detector with low complexity elements, such as tanh activation, and a

few small-size fully connected hidden layers. By doing so, our DL-based detector

offers a more practical and efficient solution for backscatter signal detection at the

receiver.

Although DL-based detectors can achieve good detection performance, they usu-

ally require a large amount of high-quality data (i.e., a collection of received signals)

1.2 Literature Review and Contributions 30

for the training process [89]. This makes DL less efficient in practice when data

is expensive and/or contains noise due to the wireless environment’s dynamics and

uncertainty. For example, new objects (e.g. the passing of a bus) can significantly

impact wireless channel conditions, even changing links from line-of-sight (LOS) to

non-line-of-sight (NLOS). As a result, in conventional DL, models may need to be

retrained from scratch with newly collected data, and thus it is a time-consuming

task [90]. In this context, meta-learning (i.e., learning how to learn) emerges as a

promising approach to quickly learn a new task with limited training data [91].

1.2.4.2 Contributions

This work develops a meta-learning algorithm to train the DL model to quickly

achieve a good detection performance in new environments. Extensive simulation

results substantiate the effectiveness of our proposed solution in effectively miti-

gating eavesdropping attacks. They also show that the proposed DL-based signal

detector, without requiring perfect CSI, can attain a comparable Bit Error Ratio

(BER) to the MLK-based detector, which is an optimal detector requiring a complex

mathematical model and perfect CSI. The main contributions of this work are:

• Propose a novel anti-eavesdropping framework leveraging the AmB communi-

cations. In particular, we propose to use a low-cost and low-complexity AmB

tag to assist in transmitting a part of information to the receiver by backscat-

tering right on the transmit signals. This solution is expected to open a new

direction for future anti-eavesdropping communications.

• Develop the DL-based detector to detect the AmB signals at the receiver to

overcome limitations of the conventional MLK-based approaches. In particu-

lar, we propose a low complexity data preprocessing and design a lightweight

Deep Neural Network (DNN) architecture to effectively detect AmB signals.

1.3 Thesis Organization 31

• Develop a meta-learning algorithm to quickly achieve high detection perfor-

mance in new environments with little knowledge. The main idea of meta-

learning is to utilize knowledge obtained from similar environments in order

to reduce the size of the necessary training dataset, while still preserving the

quality of learning.

• Perform extensive simulations in several scenarios to get insights into various

aspects of our proposed framework, such as maximum achievable rate, security,

and robustness. We also analyze the security level of our proposed framework

based on the guessing entropy for the worse case when the eavesdropper has

some prior information about the AmB communication settings.

1.3 Thesis Organization

The remainder of this thesis is structured as follows.

• Chapter 2: This chapter presents the brief overview of machine learning. In

particular, Sections 2.1 and 2.2 provide a background of deep learning (DL)

and reinforcement learning (RL), respectively. After that, deep reinforcement

learning (DRL) and advanced machine learning techniques, i.e., transfer learn-

ing and meta learning, are discussed in Sections 2.2.3 and 2.3, respectively.

• Chapter 3: This chapter discusses our proposed framework that allows a UAV

to jointly optimize its flying speed and battery replacement activities under

the dynamic and uncertainty of data collection and energy replenishment pro-

cesses. Specifically, the system mode is described in Section 3.1. Section 3.2

presents the problem formulation in details. Our proposed Deep Reinforce-

ment Transfer Learning-based solution is proposed in Section 3.3. Evaluation

results are then discussed in Section 3.4. Finally, conclusions are given in

Section 3.5.

1.3 Thesis Organization 32

• Chapter 4: This chapter presents our proposed solution that can automati-

cally optimize the waveform configuration for the integrated communications

sensing of autonomous vehicles to strike a balance between these functions.

In particular, Sections 4.1 and 4.2 introduce the ICAS system model and the

problem formulation, respectively. Then, the Q-learning-based and the pro-

posed i-ICS algorithms are proposed in Section 4.3. In Section 4.4, simulation

results are analyzed. Finally, we conclude our study in Section 4.5.

• Chapter 5: This chapter introduces MetaSlicing, our proposed resource al-

location framework for Metaverse. Particularly, Sections 5.1 introduces the

system model based on multi-tier resource allocation architecture to facilitate

the deployment and operation of Metaverse applications. Then, the Metaverse

application admission control formulation is presented in Section 5.2. After

that, the Metaverse application analysis and the proposed deep reinforcement

learning-based algorithm are discussed in Section 5.3. In Section 5.4, simula-

tion results are analyzed. Finally, Section 5.5 provides the conclusion of this

work.

• Chapter 6: This chapter introduces a novel lightweight framework using am-

bient backscattering communications to counter eavesdroppers. Specifically,

Our proposed anti-eavesdropping system and the channel model are discussed

in Sections 6.1 and 6.2. Then, Sections 6.3 and 6.4 present the MLK-based

detector and our proposed DL-based detector for the AmB signal, respectively.

Our proposed deep meta-learning-based approach is presented in Section 6.5.

Section 6.6 discusses our simulation results. Finally, Section 6.7 wraps up our

study with a conclusion.

• Chapter 7: This chapter draws the conclusions and highlights future research

directions.

33

Chapter 2

Background

Machine learning (ML) is poised to play a pivotal role in the evolution and op-

erational efficacy of 6G networks, primarily due to the unprecedented complexity,

heterogeneity, and dynamism that these networks are expected to exhibit. The en-

visioned 6G ecosystem will likely incorporate a vast array of technologies, including

but not limited to, ultra-massive MIMO (Multiple Input Multiple Output) systems,

terahertz (THz) communications, and dense networks of small cells. All of these

emerging technologies are integrated with sophisticated sensing and communication

capabilities. This complexity introduces challenges in network management, opti-

mization, and the provisioning of services that conventional optimization approaches

may struggle to address effectively. Conventional solutions, which often rely on pre-

defined parameters, often fall short in dynamically adapting to the rapidly changing

network states and user demands inherent in 6G environments. In contrast, thanks

to its ability to learn from data, predict outcomes, and adapt in real-time, ML

offers a promising solution. It can optimize network operations, enhance resource

allocation, and improve service delivery through predictive analytics and intelligent

decision-making processes. This adaptability is crucial for managing the intricate in-

terplay between network elements in 6G, ensuring optimal performance, and meeting

the high expectations for speed, reliability, and latency that define next-generation

wireless networks.

Given the above, this thesis aims to develop advanced machine learning-based

solutions for addressing various challenges in 6G networks. In this chapter, the fun-

2.1 Deep Learning 34

damentals of deep learning is first presented. Then, the advanced machine learning

techniques, i.e., transfer learning and meta-learning, are discussed in details.

2.1 Deep Learning

Deep learning (DL) is an area in machine learning in which neural networks are

trained from a vast amount of data to perform some tasks automatically, e.g., clas-

sification and prediction. Although the concept of neural networks has been around

for decades, recent advances in computing power, availability of large datasets, and

breakthroughs in network architecture and algorithm design have brought a resur-

gence of interest and remarkable progress in DL. Nowadays, DL has been success-

fully applied in many applications supporting our daily lives, ranging from face and

voice recognition to intelligent assistance systems. In comparison with conventional

machine learning, DL has many advantages on various aspects [92]:

• Feature Learning and Representation: Conventional machine learning

often relies on a manual feature selection (i.e., expert-engineered features) that

is not only a time-consuming task but also may not able to capture complex

patterns in high-dimensional data effectively. Whereas, DL can automatically

learn hierarchical representations from raw data, thus eliminating the need for

extensive feature engineering and allowing relevant features to be extracted

directly.

• Handling unstructured data: Given the ability of automatic feature learn-

ing, DL is able to effectively handle unstructured data (e.g., images and audio)

while conventional machine learning (e.g., linear regression or support machine

vector) may struggle or even be unable to process such data.

• Handling Large-Scale Data: Traditional machine learning methods may

struggle with big data due to computational limitations and memory con-

2.1 Deep Learning 35

straints. In contrast, thanks to the ability to utilize parallel computing on

specialized hardware, e.g., GPU, DL can efficiently process massive amounts

of data, making them well-suited for big data tasks, such as optimizing large-

scale and heterogeneous 6G networks.

• Model Reusable: In DL, trained models (i.e., DNNs) can be partially or fully

reused to perform similar tasks. For example, convolution layers of AlexNet (a

model trained on 1.3 million high-resolution images to perform object recog-

nition) can be fine-tuned with datasets collected in communication systems to

classify signal modulations, e.g., (BPSK, QPSK, and 64QAM) [93]. Such a

situation is challenging for conventional machine learning methods since they

often require a dataset trained from the previous learning as well as the new

dataset [94].

In DL, a deep neural network (DNN) and a learning algorithm are two requisite

components. Inspiring by the structure and function of the biological neuron net-

work in the human brain, a DNN organizes neurons in multiple layers (hence the

word “deep”), and each neuron can connect to one or more neurons, as shown in

Figure 2.1. A connection between neurons is assigned a weight value. A neuron

performs a mathematical operation on its input and then passes the result through

an activation function af (·) to produce an output, as illustrated in Figure 2.1.

During the learning, a DL algorithm optimizes DNN’s parameters θ (i.e., weights

and bias) to minimize a loss function L(f(d; θ), ψ). Generally, a loss function cap-

tures the error between the DNN’s output f(d; θ) and the ground truth ψ, as follows:

min
θ

E
[
L(f(d; θ), ψ)

]
, (2.1)

where d is the input vector. There are many types of activation functions (e.g.,

X1

X2

X3

...

...

...

...

2.1 Deep Learning 36

Input layer Hidden layers Output
layers

Neuron

Figure 2.1 : An example of Deep Neural Network, a feed forward neural net-
work(FNN).

sigmoid, ReLU, and Tanh) and loss functions (e.g., the cross-entropy loss, mean

squared error loss, and Hinge loss) that can be used depending on specific prob-

lems [95].

The loss function L(f(d; θ) can be minimized by the Gradient Descent (GD),

which is the fundamental algorithm for minimizing deep learning loss functions

due to its simplicity in implementation [96]. However, GD requires calculating the

gradient and cost function for all data points at each time step, yielding a very high

processing time for large data. To that end, this thesis proposes to use the Stochastic

Gradient Descent (SGD) that only needs to compute gradients and cost function

for a mini-batch data, i.e., b, sampled uniformly from the dataset. By doing so,

SGD can accelerate the convergence rate while still guaranteeing the convergence of

learning [97]. Thus, SGD (presented in Algorithm 2.1) is widely used to optimize the

DNN parameters due to the simplicity in implementation while still achieving good

performance [95]. Specifically, at learning iteration t, a minibatch bt is sampled

2.1 Deep Learning 37

Algorithm 2.1 Stochastic Gradient Descent [95]

1: Input: Dataset consist of multiple data points, i.e.,(d, ψ).
2: Initialize DNN’s parameters θ0
3: for t = 1 to T do
4: Sample a minibatch bt from the dataset.
5: Calculate the cost function and update DNN parameters according to (2.2)

and (2.3), respectively.
6: end for

from the training dataset. Then, the cost function Jt is computed as follows:

Jt =
1

|bt|
∑

(d,ψ)∈bt

L
(
f(d; θt), ψ

)
. (2.2)

After that, the DNN’s parameters are updated by

θt+1 ← θt − γt∇θtJt(θt), (2.3)

where γt is the step size controlling how much the parameters are updated, and

∇θt(·) is the gradient operator with respect to the DNN parameters θt.

To effectively calculate the gradient of a cost function according to input data, DL

often uses the backpropagation algorithm. To do that, it calculates the output error

(i.e., a difference between predicted and actual values) when passing data from the

input to the output layers, i.e., forward pass. Then, this output error is propagated

backward through the network layer (i.e., back pass) to compute gradients. Through

the training process, DL can learn complex patterns in the dataset, making them

powerful tools for solving various data-driven tasks.

Note that the above discussion regards to the Feed Forward Networks (FNNs),

one of the most fundamental and widely used DNN architectures. Besides FNNs,

there are various types of DNNs (such as, Recurrent Neural Networks (RNNs),

Convolutional Neural Networks (CNNs), and Autoencoders), and each of them is

2.2 Reinforcement Learning 38

tailored to different types of data and tasks. Among existing DNN architectures,

the FNNs are the simplest and have the fastest inference latency [95]. Thus, this

thesis leverages the typical FNNs that are simple and suitable to be implemented

in wireless systems, which can well operate in rapidly changing environments with

heterogeneous resource-constrained devices.

2.2 Reinforcement Learning

In machine learning, Reinforcement Learning (RL) focuses on training agents

in environments so that they can automatically make decisions. Unlike supervised

learning, where the model is provided with labelled data, and unsupervised learning,

which deals with unlabelled data, RL operates in situations when we do not have

data to train. As a result, in RL, an agent needs to interact with its surrounding

environment to collect data to learn. Specifically, an agent in RL is employed to

take actions and interact with the environment. Once an action is taken, the agent

receives the immediate reward and observes the subsequent state of the environ-

ment, as shown in Figure 2.2. Then, the agent use these observations to learn and

derive the optimal policy. In this way, RL is a powerful approach for training agents

to make intelligent decisions in dynamic and complex environments, and its poten-

tial for solving real-world problems. In RL, underlying environments are typically

formulated as a Markov Decision Process. Then, the agent uses an RL algorithm to

gradually learn an optimal policy.

2.2.1 Markov Decision Process

The Markov Decision Process (MDP) functions as a mathematical framework to

address decision-making challenges in dynamic and uncertain systems. It is widely

utilized in dynamic programming and RL to formulate optimization problems. Gen-

erally, an MDP is described by four elements: (i) S ≜ {s} denoting the state space,

2.2 Reinforcement Learning 39

Agent
Policy

State

Immediate reward

Action Environment

Observing

Figure 2.2 : Reinforcement learning.

(ii) A ≜ {a} referring to the action space, (iii) Pa denoting the transition proba-

bility from the current state s to the next state s′ by taking action a, and (iv) ra

representing the immediate reward obtained by performing action a. A policy is

a mapping from the state space to the action space, i.e., π : S → A, indicating

the decisions made by the agent. The MDP aims to get the optimal policy π∗ that

maximizes the expected total reward calculated by
∑∞

t=0 η
trt (st, at = π∗(st)). Here

the discount factor η ∈ [0, 1] represents the importance of future rewards.

Note that the MDP divides time in equal time slots, and decisions are made

at every time slot. As such, MDP may work inefficiently in system with stringent

latency requirements, e.g., real-time processes. To address this shortcoming, the

semi-Markov Decision Process (SMDP) is widely used in the literature. Specifically,

in addition to the state space S and action space A, a SMDP is also characterized

by the a decision epoch ti (i.e., points of time at which decisions are made) and T ,

which refers to the state transition probabilities and also captures the duration of

time spent in each state [98]. While a conventional MDP makes decisions at every

time slot, an SMDP makes decisions whenever an event occurs, making it more

suitable for effectively modelling real-time systems in practical applications.

2.2 Reinforcement Learning 40

2.2.2 Q-learning

In RL, the value of state s at any time step t under policy π : S → A is calculated

by the state value function [99], i.e.,

Vπ(s) = Eπ
[∞∑
m=0

ηmrt+m

∣∣∣st = s

]
, ∀s ∈ S, (2.4)

where Eπ[·] is the expectation under policy π, and η is the discount factor that

indicates the importance of future rewards. Similarly, the state-action value function

under policy π evaluates how good to performing action a at state s then following

policy π, which is given by [99]:

Qπ(s, a) = Eπ
[∞∑
m=0

ηmrt+m

∣∣∣st = s, at = a

]
, (2.5)

Under the optimal policy π∗, the optimal state-action value function, i.e., Q∗(s, a),

is given by [99]:

Q∗(s, a) = E
[
rt + η max

a′∈A
Q∗(st+1, a

′)
∣∣st = s, at = a

]
. (2.6)

Thus, once Q∗(s, a) is obtained, the optimal policy is achieved by taking actions

that maximize Q∗(s, a) for all state s ∈ S.

In [100], the Q-learning algorithm is proposed to learn the optimal state-action

value function Q∗(s, a), also known as the optimal Q-function. Since then, Q-

learning has been one of the most widely used algorithms because it can guarantee

to converge to the optimal policy after the learning process [100]. The detail of the

Q-learning algorithm is presented in Algorithm 2.2. Specifically, this algorithm uses

a table, namely Q-table, making its implementation simple. Each cell of the Q-table

keeps the estimated value of Q-function (named Q-value) for taking action a at state

s, denoted by Q(s, a). The Q-table is iteratively updated based on interactions with

2.2 Reinforcement Learning 41

Algorithm 2.2 Q-learning

1: The agent establishes the parameters (i.e., η, α, and ϵ) and create a Q-table
arbitrarily (e.g., all cells are set to zero).

2: for t = 1, 2, 3, . . . do
3: The agent performs an action following the ϵ-greedy policy as follows:

at=

{
argmax
a∈A

Q(st, a), with probability 1− ϵ,

random action a∈A, otherwise.
(2.9)

4: The agent observes next state st+1 and reward rt, then updates Q(st, at)
by (2.7) and reduces ϵ.

5: end for

the surrounding environment. Given action at is selected under the ϵ-policy (2.9) at

state st at time t, the agent obtains the immediate reward rt and observes a next

state st+1. Based on this observation, Q(st, at) is updated by 2.7.

Q(st, at)←Q(st, at)+

αt
[
rt(st, at) + ηmax

at+1

Q(st+1, at+1)︸ ︷︷ ︸
Target Q-value Yt

−Q(st, at)

︸ ︷︷ ︸
Temporal difference (TD)

]
, (2.7)

where αt is the learning rate that controls how important of new knowledge (i.e., TD)

to the update of Q-function. By using (2.7) and αt that satisfies (2.8) to iteratively

updating the Q-function, it is proven that q(s, a) will converge to q∗(s, a) [100].

αt ∈ [0, 1),
∞∑
t=1

αt =∞, and
∞∑
t=1

(αt)
2 <∞. (2.8)

However, the usage of a table in Q-learning leads to the curse of dimensionality

problem that results in a long time for learning, especially for challenging problems

in 6G networks that often pose high dimensional state spaces, e.g., hundred thousand

2.2 Reinforcement Learning 42

states [101]. In addition, the uncertainty and dynamic of 6G networks’ environment

(e.g., the probability of frame loss, the packet arrival rate, and unprecedented re-

source demand) make it more challenging for the agent to achieve an optimal policy.

To that end, we will introduce the deep reinforcement learning approach that can

effectively address this problem to quickly achieve the optimal operation policy for

the agent, thus maximizing the system performance for 6G networks.

2.2.3 Deep Reinforcement Learning

To address the aforementioned problems of Q-learning, the study [33] proposes

DQN algorithm that uses DNNs as function approximators to handle large and con-

tinuous state spaces effectively, opening a sub-group of RL algorithms named deep

reinforcement learning (DRL). Recall that traditional RL methods (e.g., Q-learning)

often rely on tabular representations of state-action value functions (Q-values) or

policy functions, which become computationally infeasible and inefficient in high-

dimensional environments. In addition, the usage of the Q-table is only feasible

when values of states are discrete, but the state in many problem can consists of

real numbers. DRL addresses this limitation by leveraging DNNs to approximate the

value functions or policy functions in complex and high-dimensional environments,

making it highly applicable for addressing problems in 6G networks.

However, both DQN and Q-learning have the problem of overestimation when

estimating Q-values [31]. This issue makes the learning process unstable or even

results in a sub-optimal policy if overestimations are not evenly distributed across

states [102]. To that end, this thesis introduces a DRL algorithm, namely Deep Du-

eling Double Q-learning, that can address these above issues effectively by adopting

three innovation techniques in RL, including (i) Deep Q-Network (DQ) [33], (ii) Dou-

ble Deep Q-learning (DDQ) [31], and (iii) dueling architecture [34]. First, the DNN

is employed to estimate the state-action function so that the curse-of-dimensionality

2.2 Reinforcement Learning 43

Buffer B

Mini-batch

Q-network

Q-target

Loss
function

Learning loop

Epsilon
greedy

Environment

Action

Estimated
Q-values

Interaction loop

State

Update parameters

Experience

Update

Figure 2.3 : The Deep Dueling Double Q-learning model.

problem of Q-learning can be effectively handled [33]. Second, the overestimation

in Q-learning can be overcome by using DDQ that separates the action selection

and action evaluation processes instead of combining them in the Q-learning [31].

Finally, the learning process is stabilized by adopting the dueling neural network

architecture where the state value function and advantage value function are esti-

mated separately and simultaneously [34]. In this way, our proposed approach can

inherit all advantages of these techniques, thereby stabilizing the learning process,

improving the learning speed, and reducing the overestimation.

2.2.4 Deep Dueling Double Q-learning

The details of Deep Dueling Double Q-learning (D3QL) are provided in Algo-

rithm 2.3. Suppose that the learning phase consists of T time steps. At time step t,

the agent observes the current state st and takes action at according to the ϵ-policy.

After that, it observes a next state st+1 and gets a reward rt. This experience data,

represented by a tuple (st, at, st+1, rt), should not be used directly to train the DNN

2.2 Reinforcement Learning 44

Algorithm 2.3 Deep Dueling Double Q-learning

1: Initialize ϵ and buffer B.
2: Create Q-network Q with random parameters ϕ.
3: Create target Q-network Q̂ by cloning from Q.
4: for step = 1, 2, 3, . . . , T do
5: Get action at following the ϵ-greedy policy as follows:

at=

{
argmax
a∈A

Q(st, a;ϕt), with probability 1− ϵ,

random action a∈A, otherwise.
(2.10)

6: Perform at, then observe reward rt and next state st+1.
7: Save experience (st, at, rt, st+1) in B.
8: Create a mini-batch of experiences by sampling randomly from buffer B, i.e.,

(s, a, r, s′) ∼ U(B).
9: Obtain the Q-value and the target Q-value by using (2.13) and (2.15), respec-

tively.
10: Update ϕ based on SGD algorithm.
11: Decrease ϵ.
12: Set ϕ− = ϕ at every C steps.
13: end for

since the consecutive experiences are highly correlated, which may lead to a slow

convergence rate, unstable, or even divergence [33,103]. As such, the memory replay

mechanism is adopted, where experiences are stored in a buffer B, as illustrated in

Figure 2.3. Then, at each time step, experiences are sampled uniformly at random

to train the DNN. By doing so, correlations among experiences can be removed,

thereby accelerating the learning process. Moreover, as one data point can be used

multiple times to train the DNN, this mechanism can indeed improve the data usage

efficiency.

In the proposed D3QL, since a DNN is used to approximate the Q-values, we

define the input and output layers of the DNN according to the state- and action-

space dimensions, respectively. Specifically, feeding a state s to the DNN will return

Q-values for all actions at this state, each given by a neuron at the DNN’s output

layer. To improve the stability and increase the convergence rate, we propose to

2.2 Reinforcement Learning 45

In
pu

t l
ay

er

State

Fu
lly

 c
on

ne
ct

ed
 la

ye
r (

FC
)

A
gr

eg
ra

te
d

by
 (1

9)

Q
-v

al
ue

s

Optimal action

Advantage stream

Value stream

Figure 2.4 : The Deep Dueling Network Architecture.

use the state-of-the-art dueling neural network architecture [34] for D3QL’s DNN,

as shown in Figure 2.4. In particular, the dueling architecture divides the DNN into

two streams. The first one estimates the state-value function V(s), which indicates

the value of being at a state s. The second stream estimates the advantage function

D(s, a) that demonstrates the importance of action a compared to other actions at

state s.

Recall that the state-action value function Q(s, a) (namely Q-function) expresses

the value of taking an action a at state s, i.e., Q-value. Thus, the advantage function

under policy π can be given as Dπ(s, a) = Qπ(s, a)−Vπ(s) [34]. Then, we can obtain

the estimated Q-function for feeding state s to the Deep Dueling Neural Network

(DDNN) by

Q(s, a; ζ, β) = V(s; ζ) +D(s, a; β), (2.11)

where ζ and β are the parameters of the state-value and advantage streams, respec-

tively. It can be observed that given Q, V and D could not be determined uniquely.

For instance, Q is unchanged if D decreases the same amount that V increases.

As such, using (2.11) directly may result in a poor performance of the algorithm.

2.2 Reinforcement Learning 46

Therefore, similar to [34], we propose to use the following output of the advantage

stream:

Q(s, a; ζ, β) = V(s; ζ) +
(
D(s, a; β)−max

a′∈A
D(s, a′; β)

)
. (2.12)

In this way, for an optimal action a∗ at state s, i.e.,

a∗s = argmax
a∈A

Q(s, a; ζ, β) = argmax
a∈A

D(s, a; β),

the Q(s, a∗s; ζ, β) is forced to equal V(s, ζ). However, (2.12) still faces an issue, i.e.,

the advantage function changes at the same speed at which the advantage of the

predicted optimal action changes, making the estimation of Q-values unstable. To

address this issue, the max operator is replaced by the mean as follows [34]:

Q(s, a; ζ, β) = V(s; ζ) +
(
D(s, a; β)− 1

|A|
∑
a′∈A

D(s, a′; β)
)
. (2.13)

The root of the overestimation problem in Q-learning and DQN comes from the

max operation when estimating the target Q-value at time t as follows [31]:

Yt = rt + ηmax
at+1

Q(st+1, at+1), (2.14)

where η is the discount factor indicating the importance of future rewards. To

handle this issue, we adopt the deep double Q-learning algorithm [31] that leverages

two identical deep dueling neural networks. One deep dueling neural network Q is

for action selection, namely Q-network, and the other Q̂ is for action evaluation,

namely target Q-network. Then, the target Q-value is computed by

Yt = rt + γQ̂
(
st+1, argmax

a
Q(st+1, a;ϕt,);ϕ

−
t

)
, (2.15)

where ϕ and ϕ− are the parameters of the Q-network and target Q-network, respec-

2.2 Reinforcement Learning 47

tively.

As the aim of training the Q-network is to minimize the gap between the target

Q-value and the current estimated Q-value, the loss function at time t is given by [33]

Lt(ϕt) = E(s,a,r,s′)

[(
Yt −Q(s, a;ϕt)

)2]
, (2.16)

where E[·] is the expectation according to a data point (s, a, r, s′) in the buffer B.

To minimize the loss function Lt(ϕt), this thesis proposes to use the Stochastic Gra-

dient Descent (SGD), discussed in Section 2.1. Recall that SGD is one of the most

popular algorithms for minimizing deep learning loss functions due to its simplicity

in implementation [96]. Thus, it is well applicable for 6G networks, which often

comprise of resource-constrained devices.

It is worth mentioning that even though the target Q-value Yt in (2.16) looks

like labels that are used in the supervised learning, Yt is not fixed before starting

the learning process. Moreover, it changes at the same rate as that of the target

Q-network’s parameters, possibly leading to instability in the learning process. To

that end, instead of updating the parameters of Q̂ at every time step, ϕ− is only

updated by copying from ϕ at every C steps.

It is also important to note that the value of ϵ in the D3QL controls the environ-

ment exploration. Specifically, the higher the value of ϵ is, the more frequently the

agent takes a random action. The reason for decreasing ϵ stems from the fact that an

RL agent does not have complete information about its environment in advance. As

such, in the beginning, the agent should explore its environment by taking actions

randomly. By doing so, it can obtain information about the environment via the

feedback of its actions, e.g., corresponding rewards and next states. Then, the agent

adjusts its policy according to these experiences, i.e., the state, action, reward, and

the next state. Therefore, to converge to an optimal policy, the agent should take

2.2 Reinforcement Learning 48

actions based on its policy more frequently than the random action [99], leading to

the decrease of ϵ at every step.

2.2.5 Optimality and Computational Complexity Analysis

In RL, if a linear function approximates the value function, the learning process

can be guaranteed to converge to the optimal policy [104]. Whereas, if a nonlin-

ear function (e.g., a neural network) is used instead, it may not converge to the

optimal one [104]. In our proposed learning algorithms, we adopt two innovative

techniques (i.e., the dueling architecture and double Q-learning) and three trans-

fer learning approaches to stabilize the learning process and improve the learning

quality, thereby improving the convergence rate. Thus, even though the optimal-

ity of our deep reinforcement learning algorithm, i.e., D3QL, could not be proven

theoretically, the intensive simulation results show that D3QL obtains a stable and

superior performance compared to those of other approaches.

We now discuss the complexities of D3QL, which mainly depend on the training

process of the Q-network. In the Q-network, there is one input layer Li, one hidden

layer Lh, and two output layers Lv and La corresponding to the state value and

advantage streams, respectively. It is worth noting that training a DNN is typically

carried out with matrix multiplication. Thus, the complexity of feeding a mini batch

with size Sb to the Q-network is O
(
Sb
(
|Li||Lh| + |Lh||Lv| + |Lh||Lv|

))
, where |.| is

the layer’s size, i.e., a number of neurons in a layer. Given the training process

takes T iterations, the complexity of the proposed algorithms are O
(
TSb

(
|Li||Lh|+

|Lh||Lv|+ |Lh||Lv|
))

.

In general, more computing resource is required to train a DNN, especially the

one with a complex architecture. However, the DNN in our proposed algorithms

is only contains a few (e.g., four) layers in which only one is fully connected (i.e.,

the hidden layer). Therefore, the decision time (i.e., the inference time of the Q-

2.3 Transfer Learning and Meta Learning 49

network) is very marginal. In practice, while computational complexity presents a

significant consideration in integrating ML into wireless devices, research indicates

that with strategic optimizations, reduction techniques, and advancements in learn-

ing algorithms, ML can be effectively and efficiently implemented to enhance the

capabilities of wireless devices across various applications. For instance, techniques

like model pruning, model compression, and quantization become essential to navi-

gate computational limits, making ML models suitable for resource-constrained IoT

devices [105]. A few deep learning applications have been deployed in AVs, such as

Tesla Autopilot [106] and ALVINN [107]. Thus, they are clear evidence of the effec-

tiveness and efficiency of deploying machine learning algorithms on wireless devices

in practice. Notably, transfer learning and meta-learning methods can significantly

reduce the computational complexity of machine learning, such as deep learning and

reinforcement learning, as seen in the next section.

2.3 Transfer Learning and Meta Learning

Although DL-based approaches can perform at compatible human level, it faces

several shortcomings. First, the training process of DNN often requires a huge

amount of collected data for the training process to achieve good performance [89].

Thus, this makes DL less efficient in practice, especially when data is expensive and

contains noise due to the environment’s dynamic and uncertainty, as in the 6G net-

works with massive connected heterogeneous devices. Second, conventional DL may

face the over-fitting problem, i.e., performing excellently on training datasets but

very poorly on test datasets, if the training dataset does not contain enough samples

to represent all possible scenarios. Due to the dynamic nature of the wireless envi-

ronment, the channel conditions may vary significantly over time. For example, a

moving bus may change channel conditions from LoS to NLoS and vice versa. Con-

sequently, real-time data may greatly differ from training data, making these above

2.3 Transfer Learning and Meta Learning 50

Figure 2.5 : An example of transfer learning in reinforcement learning.

problems more severe. In wireless communication systems, the necessity to retrain

DNNs hinges on several key factors that reflect the dynamic nature of wireless envi-

ronments. These factors can include changes in environmental conditions, network

deployment and configuration changes, variations in traffic patterns and user mo-

bility, and performance degradation. Third, wireless channel conditions can also be

very different at different areas due to their landscapes, so the DL model trained

at one area may not perform well at other areas. As such, different sites may need

training different models from scratch, which is time-consuming and costly [90]. In

this context, transfer learning and meta learning emerge as promising solutions to

address the above problems.

2.3.1 Transfer Learning

Transfer learning is a method of leveraging knowledge obtained when performing

a source task in a source domain to enhance the learning process of target tasks in

target domains [32, 108–110]. In transfer learning, a model trained on a source

task, called the source domain, is adapted or fine-tuned to work on a target task,

known as the target domain. The idea behind transfer learning is to transfer the

knowledge gained from the source domain to the target domain, thereby reducing

the need for large amounts of data in the target domain and potentially improving

the generalization and performance of the target model.

2.3 Transfer Learning and Meta Learning 51

Typically, a domain contains labelled or unlabelled data given before the con-

sidered training process starts. However, data in RL is obtained via interactions

between the agent and its surrounding environment. As a result, both the domain

and task can be represented by an MDP, as shown in Figure 2.5. Note that transfer

learning for DRL may look like supervised learning since they both use existing

data, but they are very different. In particular, all DRL data used to train a DNN

are unlabelled and on-the-fly data generated by interactions between an agent and

its surrounding environment. Although the source data are collected in advance for

the agent, they are just observations of the agent about the source environment,

which do not have any label to indicate which action the agent should take. Thus,

the agent in the target domain still needs learning algorithms (e.g., DQN) to learn

the optimal policy gradually.

To measure the effectiveness of transfer learning, we can use three metrics, in-

cluding the jump-start, asymptotic performance, and time-to-threshold [32]. In par-

ticular, jump-start measures how much the agent’s performance at the beginning

of the learning process can be improved by applying TL, while the asymptotic per-

formance measures this improvement at the end of the learning process. The third

metric, i.e., time-to-threshold, measures how fast TL can help the agent achieve a

predefined performance level compared with the scenario without TL. It is worth

highlighting that transfer learning cannot guarantee improvement in the learning

curve. Notably, TL may even negatively impact the learning in the target domain

if the transfer knowledge is not carefully chosen. Thus, Chapter 3 will explore

the effectiveness of transfer learning that allows UAVs to “share” and “transfer”

learning knowledge, thereby reducing the computational complexity and resource

consumption for the UAV as well as significantly improving learning quality.

2.3 Transfer Learning and Meta Learning 52

2.3.2 Meta-Learning

Meta-learning has an ability of learning to learn, i.e., self-improving the learning

algorithm [90]. The main idea of meta-learning is to train the model on a collection of

similar tasks, e.g., image classifications. By doing so, it enables the model to acquire

generalization capabilities. Therefore, the trained model can quickly perform well

in a new task only after a few update iterations, even when provided with a small

dataset specific to the new task [91].

Generally, meta-learning comprises two nested loops:

• In the inner loop, a base-learning algorithm (e.g., SGD or Adam) solves task

τ , e.g., image classification. The objective of the inner loop’s learning is to

minimize the loss Lτ . Note that a base-learning algorithm can be a typical DL

algorithm, such as stochastic gradient descent (SGD). Thus, the inner loop

is similar to the training process of the conventional DL algorithms. Let θ

denote the DNN’s parameters. After p steps of learning at the inner loop,

the resulting parameters are denoted by θ̄ = Up
τ (θ), where U

p
τ (·) denotes the

update operator.

• Then, at the outer loop, a meta-learning algorithm (e.g., Reptile [89] and

MAMAL [91]) updates the model parameters as follows:

θ ← θ + ηo(θ̄ − θ), (2.17)

where ηo is the outer step size controlling how much the model parameters are

updated. By doing so, the generalization in learning is improved.

Note that if p = 1, i.e., performing a single step of gradient descent in the inner

loop, meta-learning becomes a joint training on the mixture of all tasks, which may

not learn a good initialization for meta-learning [89]. In this thesis, Chapter 6 will

2.3 Transfer Learning and Meta Learning 53

further examine the effectiveness of meta-learning when being used to help a DL-

based signal detector quickly achieve good performance in new environments with

minimal knowledge.

Given the above, transfer learning and meta-learning are both AI techniques

that aim to improve the performance and generalization of models on new tasks.

However, they differ in their objectives and approaches. Transfer learning focuses

on transferring knowledge from a source task to a target task, while meta-learning

aims to improve the model’s learning process itself so that it can quickly adapt

to new tasks with limited data. Both techniques have their unique strengths and

applications and are essential tools in advancing machine learning capabilities in the

6G networks. However, their efficiency may vary depending on specific problems,

and thus, this thesis will explore their applicability in addressing emerging challenges

for 6G networks. A detail comparison between popular machine learning methods

is presented in Table 2.1.

2.3 Transfer Learning and Meta Learning 54

Table 2.1 : Summary of Machine Learning Types and Their Suitability for Wireless
Networks

ML Type Advantages Disadvantages Suitability for Wire-
less Networks

Deep Learn-
ing

• Excellent at handling
large datasets.

• Can model complex
non-linear relation-
ships.

• Require significant
computational power.

• Prone to over-fitting
without sufficient
data.

Effective for signal
processing, image
and speech recogni-
tion, and complex
decision-making tasks
in advanced wireless
networks.

Reinforcement
Learning

• Learn through inter-
action with the envi-
ronment.

• Can adapt to chang-
ing conditions.

• Require a lot of com-
putational resources.

• Learning can be slow.

Well-suited for dynamic
resource allocation and
network optimization in
real-time.

Transfer
Learning

• Reduce the need
for large labelled
datasets in new tasks.

• Can leverage pre-
trained models to
accelerate learning.

• Performance heavily
depends on the source
and target domain
similarity.

Useful for adapting
models trained in one
part of the network to
similar tasks elsewhere,
enhancing scalability
and efficiency.

Meta-
Learning

• Enable models to
learn how to learn.

• Improve the model’s
ability to adapt to
new tasks with mini-
mal data.

• Complex to imple-
ment and requires
carefully designed
meta-tasks for effec-
tive learning.

Highly suitable for
dynamic environments
where the network
needs to quickly adapt
to new conditions or
tasks, such as pre-
dictive maintenance,
anomaly detection, and
optimizing network
configurations based on
evolving user demands
or spectrum availability.

55

Chapter 3

Joint Speed Control and Energy Replenishment

Optimization for UAV-assisted IoT Data

Collection with Deep Reinforcement Transfer

Learning

This chapter focuses on addressing a problem that hindering the application of

UAVs, an important component of NTNs in 6G networks. In particular, we in-

troduce a novel framework based on deep reinforcement transfer learning that can

jointly optimize the speed and energy replenishment process of the Unmanned aerial

vehicle (UAV). Recently, UAV-assisted data collection has been emerging as a promi-

nent application due to its flexibility, mobility, and low operational cost. However,

under the dynamic and uncertainty of IoT data collection and energy replenishment

processes, optimizing the performance of UAV collectors is a very challenging task.

Thus, this work introduces a novel framework that jointly optimizes the flying speed

and energy replenishment for each UAV to significantly improve the overall system

performance (e.g., data collection and energy usage efficiency). Specifically, we first

develop a Markov decision process to help the UAV automatically and dynamically

make optimal decisions under the dynamics and uncertainties of the environment.

Although traditional reinforcement learning algorithms such as Q-learning and deep

Q-learning can help the UAV to obtain the optimal policy, they often take a long

time to converge and require high computational complexity. Therefore, it is im-

practical to deploy these conventional methods on UAVs with limited computing

capacity and energy resource. To that end, we develop advanced transfer learning

techniques that allow UAVs to “share” and “transfer” learning knowledge, thereby

x
O

y

(x,y)

h

3.1 System Model 56

Broadcasting Transmition

Time slot

Station

UAV’s trajectory
IoT devices

Battery level

Speed selection Energy replenishment

Figure 3.1 : System model for UAV-assisted IoT data collection network.

reducing the computational complexity and resource consumption for the UAV as

well as significantly improving learning quality. As a result, our proposed solution is

more applicable to aerial computing than conventional DRL approaches. Extensive

simulations demonstrate that our proposed solution can improve the average data

collection performance of the system up to 200% and reduce the convergence time

up to 50% compared with those of conventional methods.

The rest of this chapter is structured as follows. The system model and operation

control formulation are described in Sections 3.1 and 3.2, respectively. Section 3.3

presents the proposed learning algorithms. Then, the simulation results are analyzed

in Section 3.4. Finally, Section 3.5 concludes this chapter.

3.1 System Model

In this work, we consider a UAV-assisted IoT data collection system where a UAV

is deployed to collect IoT data over a considered area, as illustrated in Figure 3.1.

We assume that the considered area is divided into N zones. The IoT devices

are distributed randomly over these zones to execute various tasks, e.g., sensing

temperature and humidity. In practice, the numbers of IoT nodes in these zones are

3.1 System Model 57

different due to different sensing demands in these zones. We consider time to be

slotted (as in [28, 29]) with an equal duration, and each time slot is split into two

consecutive intervals, broadcast and transmission, respectively. In the broadcasting

interval, the UAV uses a dedicated channel to broadcast a wake-up signal [111] to

all IoT nodes in its communication range. After acquiring this signal, these nodes

will send their data to the UAV during this transmission interval. The use of a

dedicated channel for wake-up signals is critical for reducing energy consumption

among IoT devices, as it allows these devices to remain in a low-power state until

they are activated by the wake-up signal. This strategy is particularly important for

IoT deployments in remote or inaccessible areas where power sources may be limited

or non-renewable. We assume that the communication link from IoT devices to the

UAV adopts the OFDMA technique, while the communication link from the UAV

to IoT devices uses the OFDM technique, as in [112]. In this way, the IoT devices

can simultaneously transmit data to the UAV. This dual approach leverages the

strengths of both OFDMA and OFDM to handle multiple access channels efficiently,

thereby enhancing the throughput and reliability of the wireless communication

system in dynamic and densely populated IoT environments. Let pn denote the

probability of a data packet successfully collected by the UAV in a time slot in zone

n. Because the IoT nodes are distributed unevenly over N zones, pn may vary over

these zones. In the considered a UAV-assisted IoT data collection network, the UAV

flies at a fixed altitude h (similar as that of [27,28,112–114]). Similar to the studies

in [27–29], we assume that the UAV follows a predefined trajectory to sweep through

all IoT devices of the system in each round.

However, unlike [27–29], we consider a more realistic scenario where the UAV

is equipped with a battery that has limited energy storage. It is worth mentioning

that the energy consumption for the wireless data collection process (i.e., broadcast-

ing the wake-up signal and receiving data packets) is much lower than that of the

3.1 System Model 58

flying operation [26]. In addition, the decision of the UAV at each time slot (i.e.,

speed selecting or returning for energy replenishment) does not influence the power

consumption for the wireless data collection process. Thus, our model can straight-

forwardly capture the communication power consumption by adding a constant to

the UAV’s energy consumption at each time slot, similar to that in [24]. To that

end, in this work, we only focus on optimizing energy consumption for the UAV’s

flying operation, similar as that in [21,26].

In a time slot, we assume that the UAV’s velocity is constant (as in [27, 112]),

but in different time slots the UAV can choose to fly at different speeds, e.g., vw =

{v1, . . . , vA}. Each speed may cost a different amount of energy. For example, if

the UAV flies faster, it may use more energy per time slot [26]. Note that UAVs in

UAV-assisted IoT data collection systems often fly at a low speed to maintain the

reliability of the data collection process.

When the UAV’s energy is depleted, it will fly back to the charging station placed

at a fixed location to replace the battery, as illustrated in Figure 3.1. Furthermore,

during the flight, the UAV can decide to go back to the charging station to change

the battery, for example, when it is near the charging station and its energy level

is low. Once the energy replenishment process is accomplished, the UAV will fly

back to its trajectory and continue its task. Here, we consider that the UAV has

a maximum of E energy units for its operation (i.e., flying to collect IoT data)

and a backup energy storage for flying back to the charging station for battery

replacement. During the energy replenishment process, including back-and-forth

flights and battery replacement, the UAV cannot collect data. Suppose that it

takes the UAV tf and tb time slots to fly from its current location to the station

and to replace the battery, respectively. Indeed, the battery replacement time,

i.e., tb, may be known in advance, while the return flight time, i.e., tf , is highly

dynamic depending on the distance between UAV’s current location and the charging

3.2 Optimal Operation Control Formulation 59

station. In addition, tf also depends on the return speed of the UAV, denoted by

vr. Assuming that UAV flies with a constant speed when returning to the station,

the duration of energy replenishment is calculated by the equation te = 2tf + tb.

Therefore, the energy replenishment process is also dynamic due to the dynamic of

flying time tf .

In practice, the surrounding environment is highly dynamic and uncertain. Specif-

ically, the UAV does not know the probabilities of receiving a packet in different areas

in advance, as they are very uncertain depending on sensing tasks. It is important to

note that the UAV may collect more data when moving in a zone with a high proba-

bility of receiving packets, i.e., a high value of pn. As a result, to maximize the data

collection efficiency, the UAV must gradually learn this knowledge in order to adapt

its operations accordingly, e.g., flying speed and energy level status. Moreover, the

returning flight time depends on the distance between the UAV’s current position

and the station, which is highly dynamic. Therefore, if the UAV appropriately de-

cides when to return for battery replacement (e.g., when it is near the station and

its energy level is low), the energy replenishment time will be reduced significantly,

resulting in high system performance. In contrast, if the UAV goes back to replace

its battery when its energy level is high and it is far from the station, it will waste

both time and energy, leading to low system performance. Thus, optimizing the

UAV’s operations to maximize the long-term system performance is a very challeng-

ing task. In the following sections, we will present our proposed learning algorithms

that can effectively and quickly obtain the UAV’s optimal operation policy under

the limited energy of the UAV and the uncertainty of the data collection process.

3.2 Optimal Operation Control Formulation

To overcome the uncertainty and highly dynamic of the data collection and en-

ergy replenishment processes under the limited energy storage of the UAV, we for-

3.2 Optimal Operation Control Formulation 60

Table 3.1 : The list of notations.

Symbol Description

S State Space
A Action Space
r Immediate Reward Function
rat Speed Selection Reward Function at Time t
rbt Battery Replacement Reward Function at Time t
E Maximum Energy Capacity of UAV
pn Probability of Data Packet Collection in Zone n
vw Set of Possible Flying Speeds
vr Return Speed of UAV to Charging Station
tf Time to Fly from Current Location to Charging Station
tb Battery Replacement Time
te Total Energy Replenishment Time
Ω Working Reward for Data Collection
w1, w2 Weights in Reward Function
ma

t Energy Consumption for Action a at Time t
dst Number of Collected Data Packets at State s at Time t

mulate the UAV’s operation control problem as the Markov decision process (MDP)

framework. This MDP is determined by three components, state space S, action

space A, and immediate reward function r. Based on the MDP framework, at each

time slot the UAV can dynamically make the best actions (e.g., flying at appropri-

ate speeds or returning for battery replacement) based on its current observations

(i.e., its location and energy level) to maximize its long-term average reward with-

out requiring complete information about data collection and energy replenishment

processes in advance.

3.2.1 State Space

In this work, we aim to maximize the efficiency of collecting data and energy

usage efficiency, and thus there are some important factors which we need to take

into considerations. The first important factor is the current location of the UAV.

The main reason is that the UAV’s location can reveal important information about

the expected amount of data that can be collected by the UAV and the time it takes

if the UAV chooses to fly back to the station for battery replacement. Specifically,

3.2 Optimal Operation Control Formulation 61

the UAV will likely collect more data when moving in a zone with a high probability

of receiving data than in a zone with a low probability of receiving data. In addition,

the farther the distance between the UAV and the station is, the more time it takes

to travel between these two positions. As mentioned above, the UAV always flies

at a fixed altitude so that the UAV’s position can be given by its 2D projection on

the ground, i.e., (x, y) coordinates. The second crucial factor is the current UAV’s

energy level, denoted by e, which affects the decision of the UAV at every time slot.

For example, the UAV should not select the battery replacement action (i.e., return

the station to replace the battery) unless its energy level is low. Otherwise, it may

waste time and energy for the flying back trip. To that end, this information is

embedded into the state space of the UAV, which can be defined as follow:

S =
{
(x, y, e) : x ∈ {0, . . . , X}; y ∈ {0, . . . , Y };

and e ∈ {0, . . . , E}
}
∪ {(−1,−1,−1)},

(3.1)

where X and Y are the maximum x and y coordinates of the UAV’s trajectory, and

E is the maximum energy capacity of the UAV. As a result, the system state can

be indicated by a tuple s= (x, y, e) ∈ S. Moreover, because of the energy replen-

ishment process, it is necessary to introduce a special state, i.e., s= (−1,−1,−1).

This special state is only visited when UAV’s energy is depleted (i.e., UAV’s state

is (x, y, 0)) or if the UAV selects the battery replacement action. Then, after the

energy replenishment process completes, the UAV will return to the previous po-

sition (where it decided to go back for battery replacement or where its energy is

depleted) with a full battery, i.e., s = (x, y, E). This design ensures that the system

process is continuous, i.e., no terminal state.

3.2 Optimal Operation Control Formulation 62

3.2.2 Action Space

During the operation, to maximize the system performance in terms of energy

usage and data collection efficiency, the UAV needs to not only choose the most

suitable flying speed but also decide when to go back to the station to replace the

battery. It is worth mentioning that given different states, the action spaces for these

states may be different. For example, at a non-working state, i.e., s = (−1,−1,−1),

the UAV cannot select a flying speed. Instead, the possible action at this state is

to stay “idle” until the UAV returns to its trajectory with a full battery. In other

words, the UAV will stay at the non-working state after performing an “idle” action

until the energy replenishment process completes. As a result, we can define the

action space for the UAV as follows:

A ≜ {a : a ∈ {−1, 0, 1, . . . , A}}, (3.2)

where action a = −1 is to indicate the “idle” action and action a = 0 is to express

that the UAV will choose to return to the station for replacing the battery, namely

battery replacement action. Actions a={1, . . . , A} are to represent the speed level

that the UAV selects to fly at the current time slot. In addition, given the state

s ∈ S the action space based on state s, i.e., AS, consists of all possible actions that

are feasible at this state. Thus, we can express AS as follows:

AS =

 {−1}, if s = (−1,−1,−1),

{0, . . . , A}, otherwise.
(3.3)

3.2.3 Reward Function

As discussed above, two main actions (i.e., flying speed and battery replacement

actions) have significant effects on the system performance. Specifically, choosing

3.2 Optimal Operation Control Formulation 63

an appropriate flying speed at each time slot can maximize the efficiency of the

collecting data process as well as energy usage. Alternatively, selecting the right

time to return for battery replacement can reduce the energy replenishment time,

thereby improving the overall system performance. For example, when the UAV is

flying near the charging station and its energy is low, it should return to the charging

station for battery replacement. Therefore, our proposed immediate reward function

consists of (i) speed selection reward function, i.e., rat , and (ii) battery replacement

reward function, i.e., rbt , as follows:

rt(st, at) =

rat (st, at), if at ∈ {A \ {0}},

rbt (st, at), if at = 0,

0, otherwise,

(3.4)

where at is the selected action at time t.

3.2.3.1 Speed Selection Reward Function

Since our objective is to maximize the system performance by striking a balance

between the data collection efficiency and energy usage efficiency, the speed selection

reward function needs to capture this information. We define data collection effi-

ciency as the number of collected data packets over a time slot and operation status

of the UAV. For example, given a time slot, if the UAV is moving to collect data,

it will receive a working reward, denoted by Ω > 0. Otherwise, it will not receive

the working reward, i.e., Ω = 0. In this way, the working reward will encourage the

UAV to collect data rather than return and then wait at the station for the battery

replacement. The energy usage efficiency can be represented by the cost of choosing

a flying speed, i.e., energy consumed by the UAV to fly at speed a during a time

slot t. Clearly, the selected speed determines the energy consumption per time slot

of the UAV, e.g., a low speed will cost the UAV less energy per time slot than that

3.2 Optimal Operation Control Formulation 64

of a high speed [26]. At time slot t, the cost of performing action a is denoted by

ma
t , and the number of collected data packets at the current state s is denoted by

dst . Thus, the speed selection reward function can be expressed by:

rat (st, at) = Ω + w1d
s
t − w2m

a
t , if at ∈ A \ {0}, (3.5)

where w1 and w2 are the weights to balance between collected data and energy

consumption of the UAV. It is worth noting that these weights can be defined in

advance based on the service provider’s requirements. For example, in case if the

data is more important and valuable than energy, we can set the value of w1 to be

higher than that of w2. In contrast, if the energy is scarce, we can set the value of

w1 to be lower than that of w2. Therefore, the speed selection reward function can

capture the UAV’s data collection efficiency and energy consumption efficiency.

3.2.3.2 Battery Replacement Reward Function

Although the speed selection reward function gives the UAV sufficient informa-

tion to learn the optimal speed control, it cannot help the UAV learn when it is good

to return to the station for the battery replacement. First, if the UAV performs the

battery replacement action, the values of Ω and dst in (3.5) will be zero, leading

to a negative value of rat . Consequently, the UAV may consider this action as a

bad choice and will not choose it in the future. Second, the speed selection reward

function is unable to guide the UAV to learn where is good to return for replacing

its battery, e.g., the further from the station the UAV is, the smaller reward for bat-

tery replacement action it may receive. Therefore, battery replacement action needs

a different reward function, which needs to take into account of both the UAV’s

current energy level, i.e., e, and the distance between its current position and the

station, i.e., l. However, in practice, it is challenging to design such a reward func-

tion for battery replacement action because the complex relationship between e and

3.2 Optimal Operation Control Formulation 65

Figure 3.2 : An example of the proposed battery replacement reward function.

l makes more difficulties for the UAV to decide whether it should go back or keep

flying to collect data. In particular, the UAV may choose the battery replacement

action if both e and l are small, while the UAV should continue its collection task

if any of these factors is large. To that end, in the following, we propose a reward

function for battery replacement action that can address this problem, and to the

best of our knowledge, this is the first work in the literature addressing the battery

replacement problem for UAV-assisted IoT data collection networks.

Suppose the UAV decides to return for battery replacement at time t, at which its

energy and the distance to the station are et and lt, respectively. Then, its immediate

reward is derived from the battery replacement reward function as follows:

rbt (st, at) = c− w3 exp(w4et)− w5 exp(w6lt), if at = 0, (3.6)

where c is a constant controlling the maximum value of rbt , which may affect the

learning policy of the UAV. For example, if c is smaller than the smallest value of

rat , the value of returning reward function is always lower than that of the speed

e(energy units)
0

10
20

30
40

l (m)

−5

−10

−15

−20

−25
0

10
20

30
40

Reward

0

5

10

−5

−10

−15

−20

0

5

3.2 Optimal Operation Control Formulation 66

selection reward function, making the return action always “worse” than those of the

speed selection actions. The second and third terms in (3.6) express the influence of

the energy level et and the distance lt to the UAV’s decision for battery replacement.

The tradeoff between the energy level et and the current distance lt is controlled by

four weights, i.e., w3, w4, w5, w6. Figure 3.2 demonstrates an example of the proposed

battery replacement reward function in which c= 10, w3 = w5 = 1, w4 = 0.06, and

w6=0.08. It can be observed that as e and l are large (e.g., greater than 36 and 17,

respectively), the UAV will receive negative rewards, meaning that the UAV is not

encouraged to return to replace its battery if its energy is high or it is far from the

station. In this way, this function will encourage the UAV to return to the station

for replacing the battery when its current energy and distance to the station are

small.

3.2.4 Optimization Formulation

In this work, our aim is to maximize the average long-term reward function by

finding a UAV’s optimal policy π∗, i.e., π∗ : S → A. In particular, given the UAV’s

current energy and location, π∗ determines an action that maximizes the long-term

average reward function as follows:

max
π

R(π) = lim
T→∞

1

T

T∑
t=1

E
(
rt(st, π(st))

)
, (3.7)

where R(π) is the long-term average reward obtained by the UAV according to

the policy π, π(st) is the selected action at state s at time slot t based on policy

π, and rt(st, π(st)) is the immediate reward by following policy π at time slot t.

Thus, the optimal policy π∗ will assist the UAV in dynamically making the optimal

action according to its current observation, i.e., its position and energy level. More-

over, Proposition 1 shows the optimality of the proposed immediate reward function

rt(st, at).

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 67

Proposition 1. “There always exists a maximum value of the immediate reward

function.”

Proof: We first prove the optimality for each component of the immediate

reward function, i.e., rat and rbt . From (3.5), the speed selection reward function is a

linear function of energy consumption ma
t and an amount of collected data packet

dst . Since the values of ma
t and d

s
t are always positive and finite, there always exists

a maximum value of the speed selection reward function rat (st, at). For the second

component, i.e., rbt (st, at), we can rewrite it as follows:

rbt (st, at) = c−
(
w3 exp(w4et) + w5 exp(w6lt)

)
, if at = 0. (3.8)

We now prove that f(et, lt) = (w3 exp(w4et) + w5 exp(w6lt) is convex. Specifically,

the Hessian matrix of f(et, lt) is calculated as follows:

H =

w3w
2
4exp(w4et) 0

0 w5w
2
6exp(w6lt)

 . (3.9)

Then, the determinant of H is computed by: detH = w3w
2
4exp(w4et)w5w

2
6exp(w6lt).

Since the weights in the immediate function are always positive, we have detH > 0.

Therefore, H is positive definite and f(et, lt) is convex, meaning that there always

exists a minimum value of f(et, lt). As a result, rbt (st, at) always has a global optimal

value. Given the above, there always exists a maximum value of the immediate

reward function as its components are optimality and independent.

3.3 Optimal Operation Policy for UAVs with Deep Rein-

forcement Transfer Learning

In the considered problem, the UAV does not have complete information about

the surrounding environment in advance (e.g., the data arrival probabilities and the

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 68

charging process) to obtain the optimal policy. In addition, the limited resource of

UAV requires a low computational complexity solution. Thus, Q-learning and D3QL

algorithms, discussed in Section 2.2.2, can be used to learn the optimal policy for

the UAV.

Although D3QL can effectively address the shortcomings of Q-learning, it still

poses some drawbacks inherited from conventional DRL when addressing scenarios

with high sample complexity, as the considered problem in this work where the

surrounding environment of the UAV is unknown in advance. Firstly, it often takes

a lot of time to train DNN, e.g., DQN’s training time is up to 38 days for each

Atari game [33]. If the environment dynamics (such as the data arrival process) or

the trajectory of the UAV changes, the DNN may need to be fine-tuned or even

retrained from scratch, yielding a high computational complexity. Consequently, it

is unable to deploy on a UAV that has very limited energy and computing resources.

Secondly, since the UAV should only return for replacing its battery when it is close

to the station or its energy level is low, it needs sufficient experiences in this region,

especially when flying over the station. However, as the UAV flies over its fixed

trajectory, experiences obtained from this region are often very small compared

with all obtained over the entire considered area. Therefore, the UAV may not

have adequate information to learn an optimal policy. To address these challenges,

we develop a novel framework leveraging transfer learning techniques, namely Deep

Dueling Double Q-learning with Transfer Learning (D3QL-TL).

3.3.1 Transfer Learning in Reinforcement Learning

Transfer learning is a method of leveraging knowledge obtained when performing

a source task in a source domain to enhance the learning process of target tasks in

target domains [32, 108–110]. Typically, a domain contains labelled or unlabelled

data given before the considered training process starts. However, data in RL is

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 69

obtained via interactions between the agent (i.e., the UAV) and its surrounding

environment. As a result, both the domain and task can be represented by an

MDP. Thus, we can define transfer learning in RL as in Definition 3.1 [109].

Definition 3.1. Transfer learning in RL: Suppose the source and target MDPs are

defined. Transfer learning (TL) in RL intends to leverage the knowledge KS obtained

from the source MDP, i.e., the policy, the environment dynamics, and the data, as

a supplement to the target MDP’s information KT to efficiently learn the target

optimal policy π∗
T as follows:

π∗
T = argmax

πT

Es∼ST,a∼πT [QπT(s, a)] , (3.10)

where πT is a target MDP’s policy approximated by an estimator, e.g., a table or a

DNN, that is trained on both KS and KT.

Note that transfer learning for DRL may look like supervised learning since they

both use existing data, but they are very different. In particular, all DRL data

used to train a DNN are unlabelled and on-the-fly data generated by interactions

between an agent (e.g., the UAV) and its surrounding environment. Although the

source data are collected in advance for the target UAV, they are just observations

of the source UAV about the source environment, which do not have any label

to indicate which action the UAV should take. Thus, the target UAV still needs

learning algorithms (e.g., D3QL) to learn the optimal policy gradually. Our proposed

TL can help the UAV utilize the knowledge from the source domain to avoid bad

decisions at the beginning of the learning process when the UAV is exploring the

environment by taking a random action, thereby improving the learning rate and

learning quality. Recall that to measure the effectiveness of TL, we can use three

metrics, including jump-start, asymptotic performance, and time-to-threshold, as

discussed in Section 2.3

… …

…

(, , ,)

+
+

Action

… …

…

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 70

p4

p1 p2

p3

Environment

Memory B

Agent
Action𝒂𝒕

Experience
(𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

𝑠,𝑎, 𝑟, 𝑠′ ∼ 𝑈(𝑩)

Target Q-network Q-network

Minibatch

Source MDP 1

Target MDP

𝑼𝐓

Tr
an

sf
er

p4 p3

p1 p2

p4 p3

p1 p2

p5 p8

p6 p7

Experiences

Source MDP 2 Source MDP N

Immediate reward 𝒓𝒕

State 𝒔𝒕

Immediate reward 𝒓𝒕

p4

p1 p2

p3

State 𝒔𝒕

Environment

Memory B

Agent
Action𝒂𝒕

Experience

𝑠,𝑎, 𝑟, 𝑠′ ∼ 𝑈(𝑩)

Target Q-network Q-network

Minibatch

Target MDP

Optimal Source MDP

Agent

Environment

Tr
an

sf
er

(a) Experience transfer (b) Policy transfer

Figure 3.3 : The proposed D3QL-TL based models.

It is worth highlighting that TL cannot guarantee improvement in the learning

process. It may even negatively impact the learning in the target MDP if the transfer

knowledge is not carefully chosen. Thus, in the following sections, we propose a

transfer learning framework that can reduce the learning time and learning quality

for D3QL.

3.3.2 Deep Dueling Double Q-learning with Transfer Learning

The details of D3QL-TL are presented in Algorithm 3.1. In particular, as il-

lustrated in Figure 3.3, we consider a UAV US working in an IoT data collection

environment formulated by the MDP framework MS. Then, the knowledge of US

can be leveraged to help a new UAV UT effectively learn the optimal policy for work-

ing in another environment formulated by the MDP framework MT. In practice,

MT can be the same or different with MS. Moreover, the transferring knowledge

can be in the form of the policy and/or experiences of the source UAV, i.e., US.

To that end, D3QL-TL defines three types of knowledge transferring as follows:

• Experience Transfer (ET): This approach aims to leverage a set of experiences

+
+

++

(𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

Q-network

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 71

Algorithm 3.1 The D3QL-TL

1: Establish memory B and ϵ.
2: Establish Q-network Q with random parameters ϕ, and target Q-network Q̂

with parameters ϕ− = ϕ.
3: if Experience transfer then
4: Copy the experience set of source MDPMS to B.
5: else if Policy transfer then
6: Re-initialize Q and Q̂ with the parameter of source Q-network’s parameters

ϕS.
7: else if Hybrid transfer then
8: Re-initialize Q and Q̂ with the parameter of source Q-network’s parameters

ϕS.
9: Copy the experience set of source MDPMS to B.
10: end if
11: for step = 1 to T do
12: Choose action at according to the ϵ-greedy policy (2.10).
13: Execute at, observe reward rt and next state st+1.
14: Save experience (st, at, rt, st+1) in B.
15: Sample mini-batch of experiences randomly from B, i.e., (s, a, r, s′) ∼ U(B).
16: Calculate Q-value Q(sk, ak;ϕ) and target Q-value Yt by (2.13) and (2.15),

respectively.
17: Take a gradient descent step with respect to the parameters of Q-network.
18: Decrease the value of ϵ.
19: Set Q̂ = Q at every C steps.
20: end for

ES, in which each element is an experience tuple < s, a, r, s′ >, obtained in

the source MDP, i.e.,MS, to improve the learning process of the target UAV,

i.e., UT, working in the target MDP, i.e., MT. Specifically, ES is first copied

to the memory buffer of the target UAV. Then, these transferred experiences

and target UAV’s new experiences are used to train the Q-network. In this

manner, the target UAV can quickly get adequate information, and thereby

significantly improving the learning speed. In addition, the quality of the

experiences also affects the learning process. For example, an experience does

not have much value if it is easy to be obtained by the target UAV. In contrast,

an experience is considered to be valuable if it is hard to obtain and highly

impacts the system performance. For example, experiences obtained when the

3.3 Optimal Operation Policy for UAVs with Deep Reinforcement Transfer
Learning 72

UAV is near the station may have high values because they not only contain

information about environment dynamics (i.e., packet arrival probabilities)

but also may reveal value information about the right time to take the battery

replacement action.

• Policy Transfer (PT): This approach directly transfers the policy of a source

UAV to a target UAV. In particular, UT starts the learning process with the

policy of US, which is represented by the Q-network of US, called the source

Q-network. Hence, the UT’s Q-network is initialized by the source Q-network

parameters ϕS. Then, the UT’s Q-network is trained with the new experiences

of UT obtained in the target MDPMT. Thus, starting with the source policy

can help UT to avoid random decisions caused by the randomness of action se-

lection at the beginning of the learning process, e.g., inappropriately choosing

the battery replacement action.

• Hybrid : This approach aims to leverage the benefits of both experience and

policy transfer types. Particularly, the hybrid scheme can improve not only

the jump-start but also the asymptotic performance.

Note that the efficiency of each transferring technique depends on the relation-

ship between the source and the target MDPs. For example, if the source and target

MDPs are very similar, policy transfer may yield a better result in terms of con-

vergence rate than that of the experience transfer technique. In contrast, when the

source and target MDP are not similar, e.g., differences in environment dynamics,

the experience transfer should be a better choice.

3.4 Performance Evaluation 73

Parameters Ω w1 w2 c1 c2 c3
Value 1 1 0.3226 5 0.5 0.5

Parameters c4 c5 E p tb vr
Value 0.022 0.2 300 [0.1, 0.25, 0.6, 0.15] 10 1

Table 3.2 : Simulation parameters.

3.4 Performance Evaluation

3.4.1 Parameter Setting

We first evaluate our proposed approaches in an IoT system, in which a UAV flies

over a predefined trajectory in a considered area to collect IoT data, as in [27–29].

This area is divided into four zones such that the UAV’s travel distance in each zone

equals 60 m, as illustrated in Figure 3.4(a). The station is located at the origin,

i.e., (0, 0). The probabilities of packet arrival in these zones are given by a vector

p = [p1, p2, p3, p4], e.g., p1 is the packet arrival probability when the UAV is flying

over zone 1 and so on. Since the UAV collects data while flying, it often flies at a

low speed (e.g., 5 m/s) to maintain the reliability of the data collection process [28].

Therefore, we consider that the UAV has three speeds: 1, 3, and 5 (m/s). The UAV

consumes 2, 3, and 4 (energy units/time slot) when flying at 1m/s, 3m/s, and 5m/s,

respectively. Note that our proposed MDP framework and learning algorithms can

help the UAV learn the optimal policy according to its observation (i.e., its current

position and energy level) regardless of the UAV’s specifications, i.e., its available

speeds and corresponding energy consumption. Here, the energy unit is used to

quantify an amount of energy (as in [115, 116]), and energy consumption values

are only to demonstrate how much energy the UAV uses at each time slot for its

operation. In practice, UAVs manufactured by different brands may have different

specifications, but the proposed algorithm still can obtain the optimal policy for the

UAV. The parameters of the reward function are provided in Table. 3.2.

3.4 Performance Evaluation 74

�

���

��� ���

���

�

��

��
� �

���

��� ���

���

�

��

��
� �

���

��� ���

���

�

��

��
�

(a)MS (b)M1
T (c)M2

T

Figure 3.4 : (a) Source MDP, (b) the first target MDP, and (c) the second target
MDP.

The settings for our proposed algorithms are set as follows. For the ϵ-greedy

policy, ϵ is first set at 1, then gradually decreased to 0.01. For all the proposed

algorithms, the discount factor is set at 0.9. In Q-learning, the learning rate β is 0.1.

The architectures of Q-network and target Q-network are illustrated in Figure 2.4.

We use typical hyperparameters for training DNN, e.g., the learning rate and the

frequency update of Q̂ are set to 10−4 and 104, respectively, as those in [33,95].

For the experience transfer approach in D3QL-TL, experiences are selected to be

transferred based on their valuable information. Recall that if the UAV performs the

battery replacement action when it is far from the station, it always receives a very

small reward compared with those of other actions, as in (3.4). Therefore, the UAV’s

experiences in this area can imply that it should not take the battery replacement

action. In contrast, experiences obtained when the UAV is near the station can

contain both information, i.e., when it not worth to return for charging (e.g., current

energy level is high) and when it is worth to take the battery replacement action

(e.g., current energy level is low). Thus, we choose experiences obtained when the

UAV flies near the station to be transferred.

We study a scheme where the UAV does not have complete information about

the surrounding environment in advance, e.g., the data arrival probabilities and the

3.4 Performance Evaluation 75

energy replenishment process. Hence, we compare our approach with three other

deterministic policies, i.e., the UAV always flies at (1) lowest speed (1m/s), (2)

middle speed (3m/s), and (3) highest speed (5m/s). In addition, the Q-learning

and D3QL are selected as the baseline methods to demonstrate the effectiveness of

our proposed TL techniques since they are widely used algorithms and the most

recent advanced techniques in RL, respectively. Moreover, to investigate impacts of

the battery replacement action on the system performance, we consider an approach,

namely D3QL-NoRA, where the D3QL will still be implemented on the UAV, but

the UAV will not select the battery replacement action.

3.4.2 Simulation Results

In the simulation, we first evaluate the performance of our proposed learning al-

gorithm, i.e., D3QL-TL, by examining the convergence rate and the obtained policy.

Then, we evaluate the system performance when varying some important param-

eters (e.g., battery replacement time, UAV’s energy capacity, return speed, and

packet arrival probabilities) to assess their influences on the system performance.

For the D3QL-TL, the experience transfer type is chosen because it can leverage

the experiences obtained during the learning phases of other algorithms, i.e., D3QL

and Q-learning. Finally, to gain more insights into the effectiveness of three trans-

ferring types in D3QL-TL, we compare their performance in different scenarios, i.e.,

changing the UAV trajectory and the probabilities of receiving a packet.

3.4.2.1 Convergence and Policy

In Figure 3.5 (a), we compare the convergence of proposed algorithms in terms

of average rewards. At the beginning of the learning processes, the average rewards

of proposed approaches are close to each other, approximately 0.35. However, only

after 4, 000 iterations, D3QL-TL’s average reward is nearly 170% greater than those

of other approaches. Then, D3QL-TL almost converges to the optimal policy after

3.4 Performance Evaluation 76

1 10 20 30 40 50 60 70
Iteration (2x103)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Re
wa

rd
 (r

ew
ar

ds
/ti

m
e

slo
t)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning

(a) Convergence rate of proposed algorithms (b) Policy obtained by D3QL-TL

Figure 3.5 : Convergence rate and policy.

7.5×104 iterations, and its average reward becomes stable at around 0.78, which is

more than 190% greater than those of other learning algorithms. Interestingly, D3QL

and D3QL-NoRA converge to policies that achieve similar average rewards. This

suggests that D3QL is unable to take advantage of the battery replacement action.

In other words, D3QL cannot effectively handle this complicated decision-making

situation. This result implies the outperformance of our proposed algorithm, i.e.,

D3QL-TL, compared with other methods when addressing the extremely complex

problem as the one considered in this study.

Next, we show the policy obtained by D3QL-TL after 1.5×105 iterations in

Figure 3.5 (b). In particular, a point indicates the energy level of the UAV at the

beginning of a time slot. The slope of a straight line between two points indicates the

selected action, e.g., the steeper this line is, the higher speed is selected. Generally,

the lowest speed is selected in a zone that has a high probability of successfully

collecting a packet. In contrast, the highest speed is selected in a zone that has

a low probability of receiving a packet, as shown in Figure 3.5 (b). Given p =

[0.1, 0.25, 0.6, 0.15], as in Table. 3.2, the D3QL-TL selects the lowest speed in zone

3, and the highest speed in zones 1, 2, and 4. More interestingly, the UAV experiences

3.4 Performance Evaluation 77

the middle and high speeds in zone 1. In particular, it travels at the highest speed

until its energy decreases to 55 energy units at time slot 88, then the middle speed

is selected. When its energy drops to 40 energy units at time slot 93, equivalent

to 13.3% energy level, the UAV takes the battery replacement action. Note that

Figure 3.5 (b) also reveals information of the location where the UAV should take

the battery replacement action by energy replenishment time, i.e., te. Particularly,

given te=12 time slots, the location that the UAV decides to return only 1m away

from the station. This result demonstrates the impacts of location and energy level

on the optimal policy of the UAV.

3.4.2.2 Performance Analysis

In this section, we perform simulations to evaluate our proposed algorithms

in terms of average reward, throughput, and system energy consumption. The

parameters are set to be the same as those in 3.4.2.1. The policies of proposed

learning algorithms, including Q-learning, D3QL, and D3QL-TL, are obtained after

1.5×105 iterations.

In Figure 3.6, we vary the battery replacement time, i.e., tb. Clearly, the av-

erage reward and throughput of all policies decrease as the battery replacement

time increases from 5 to 50 time slots. This is stemmed from the fact that given a

fixed duration, the less time the UAV needs to replace the battery, the more time

it can spend collecting data. As a result, the data collection efficiency of the sys-

tem reduces. It can be observed that D3QL-TL can significantly outperform other

approaches in terms of average reward and throughput, while it still obtains a rea-

sonable energy consumption per time slot. In particular, the average reward and

throughput achieved by D3QL-TL are up to 200% and 185% greater than those of

the second-best policy, i.e., D3QL, respectively.

Next, we vary the return speed vr of the UAV to observe the system’s perfor-

3.4 Performance Evaluation 78

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
R

ew
ar

d
(r

ew
ar

ds
/t

im
e

sl
ot

)
D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

5 10 15 20 25 30 35 40 45 50
Battery Replacement Time (time slots)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward (b) Average throughput (c) Average energy consumption

Figure 3.6 : Vary battery replacement time.

mance in terms of average reward, throughput, and energy consumption. Figures 3.7

(a) and (b) show that as the return speed vr increases from 1(m/s) to 10(m/s), all

policies have upward trends in terms of the average reward and throughput, except

that of the D3QL-TL. The reason is that the increase of vr leads to the decrease

of time for returning to the station, i.e., tf , and thus the UAV has more time to

collect data in a fixed duration. More interestingly, when the return speed is low

(e.g., lower than 3(m/s)), the lowest speed policy obtains a higher average reward

than that of the highest speed policy, as observed in Figure 3.7 (a). Nevertheless,

the lowest speed policy obtains the lowest performance (i.e., the average reward is

lowest) when the return speed is large. This emanates from the fact that given a

fixed serving time, the energy consumption of the highest speed is higher than that

of the lowest speed. Therefore, the UAV has to replace its battery more frequently if

it flies at the highest speed rather than if it flies at the lowest speed. Consequently,

as the return speed increases, the highest speed policy eventually performs better

than that of the lowest speed policy. Unlike other policies, D3QL-TL achieves a

stable average reward, approximately 0.8, that is always much higher than those

of other policies, as shown in Figure 3.7 (a). This is because the UAV equipped

with D3QL-TL can learn an excellent policy, e.g., taking battery replacement action

when the UAV is close to the station, making it more adaptable to the changes of

the return speed.

3.4 Performance Evaluation 79

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slots)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
R

ew
ar

d
(r

ew
ar

ds
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slots)

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

1 2 3 4 5 6 7 8 9 10
Return Speed (m/time slot)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

ry
 C

on
su

m
pt

io
n

(e
ne

rg
y

un
its

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward (b) Average throughput (c) Average energy consumption

Figure 3.7 : Vary the UAV’s return speed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Packet Arrival Probability in Cell 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward (b) Average throughput (c) Average energy consumption

Figure 3.8 : Vary the packet arrival probability of zone 3.

We then vary the packet arrival probability p3 of zone 3 while those of other

zones are unchanged, as provided in Table 3.2, and observe the performance of our

proposed approaches. Figures 3.8 (a) and (b) clearly show the increase of average

rewards and throughputs for all policies when p3 increases from 0.1 to 1.0. Interest-

ingly, as shown in Figure 3.8 (a), when p3 is small, e.g., lower than 0.4, the lowest

speed policy obtains lower rewards than those of the highest speed. However, when

p3 becomes larger, the lowest speed achieves a higher average reward than that of

the highest speed. This implies that the UAV should fly at the lowest speed if the

packet arrival probability is high, and vice versa. Figure 3.8 (c) demonstrates that

our proposed algorithm, i.e., D3QL-TL, can learn the environment’s dynamic, e.g.,

the packet arrival probability. In particular, when the probability of receiving a

packet is low, e.g., less than 0.4, the UAV’s average energy consumption is high,

approximately 3.65 energy units/time slot, indicating that the highest speed is se-

3.4 Performance Evaluation 80

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
R

ew
ar

d
(r

ew
ar

ds
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

100 200 300 400 500 600 700 800 900 1000
UAV's Energy Storage Capacity(energy units)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

E
ne

rg
y

C
on

su
m

pt
io

n
(e

ne
rg

y
un

its
/t

im
e

sl
ot

)

D3QL-TL
D3QL
D3QL-NoRA
Q-learning
Lowest speed
Middle speed
Highest speed

(a) Average reward (b) Average throughput (c) Average energy consumption

Figure 3.9 : Vary the UAV’s energy capacity.

lected more frequently than the lowest speed. In contrast, when this probability

becomes higher, e.g., larger than 0.5, the UAV’s energy consumption decreases to

around 2.6, implying that the lowest speed is the most frequently selected speed.

To that end, D3QL-TL can leverage this knowledge to consistently obtain the best

performance compared with other policies.

Finally, in Figure 3.9, we vary the UAV’s energy storage capacity E to study

its impact on the system performance. In particular, when E is varied from 100

to 1000 energy units, the average rewards and throughputs of all policies increase,

as shown in Figure 3.9 (a) and (b), respectively. It is worth highlighting that if

E is small, e.g., less than 500, the performance of the lowest speed is better than

that of the highest speed, as illustrated in Figure 3.9 (a). However, the highest

speed outperforms the lowest speed when E is larger than 500. This is due to the

fact that when E is small, the UAV’s battery has to be replaced more frequently,

leading to a downgrade of the UAV’s data collection efficiency. Thus, the UAV must

conserve more energy by flying at the lowest speed. By balancing between energy

usage efficiency and data collection efficiency, our proposed D3QL-TL approach can

always achieve the highest performance compared to other policies.

3.4 Performance Evaluation 81

3.4.2.3 Transfer Learning Strategies

In this section, we evaluate and compare the effectiveness of three TL types in

D3QL-TL (i.e., experience transfer (ET), policy transfer (PT), and hybrid transfer)

in different scenarios, as shown in Figure 3.4 (b) and (c). In particular, the source

MDP, i.e.,MS is defined as the MDP described in Section 3.4.1, and the simulation

parameters are also provided in Table. 3.2. Then, the optimal policy obtained by

D3QL-TL after 1.5×105 iterations and the UAV’s experiences gathered in the source

MDP are leveraged to reduce the learning time and learning quality. To gain an

insight of when and how much these transfer learning techniques can improve the

learning process of D3QL, we define two scenarios as follows:

• In the first scenario (illustrated in Figure 3.4 (b)), the target MDP (i.e.,M1
T)

is the same asMS except the trajectory. The UAV only flies over two zones,

i.e., zone 1 and 2. In each zone, it travels 80m.

• In the second scenario (illustrated in Figure 3.4 (c)), the difference between

target MDP (i.e.,M2
T) andMS is the probabilities of receiving a packet, i.e.,

p = [0.6, 0.15, 0.1, 0.25].

We first compare the convergence rate of several transfer learning schemes of

D3QL-TL and D3QL in the first scenario in Figure 3.10 (a). To investigate how

experiences impact on the learning process of D3QL-TL, we select two sizes of expe-

rience sets, which are 50 and 100. As shown in Figure 3.10 (a), after 5×104 learning

iterations, the average rewards obtained by all types of D3QL-TL can achieve up

to 179% greater than that of D3QL, except the ET with the size of 50. For the

ET group, when the experience size is small, e.g., 50, transfer learning does not

improve the learning process of D3QL since the average reward of ET is similar to

that of D3QL. However, when this size is large enough, e.g., 103, the asymptotic

3.4 Performance Evaluation 82

1 10 20 30 40 50
Iterations (2x102)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

Hybrid with 1000 experiences
Policy Transfer
Experience transfer with 1000 experiences
D3QL
Hybrid with 50 experiences
Experience transfer with 50 experiences

1 10 20 30 40 50
Iterations (2x103)

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

R
ew

ar
d

(r
ew

ar
ds

/t
im

e
sl

ot
)

Hybrid
Policy transfer
Experience Transfer
D3QL

(a) The first scenario (b) The second scenario

Figure 3.10 : Convergence of the proposed TL schemes.

performance of D3QL-TL is 171% greater than that of D3QL in terms of average re-

ward. Interestingly, for the hybrid approach, when the experience size decreases, the

D3QL-TL’s performance increases. Especially, the PT, which is equivalent to the

hybrid with zero experience size, consistently outperforms other transfer approaches

in all the metrics, i.e., jump-start, time-to-threshold, and asymptotic performance.

Specifically, only after 103 iterations, the PT obtains the optimal policy, and its

average reward is stable at around 0.68. Thus, the PT can help the UAV to reduce

the learning time up to 50% compared with those of other approaches. These results

demonstrate that if the environment’s dynamics in the target MDP, e.g., probabil-

ities of receiving a packet, are similar to those in the source MDP, PT is the best

choice. The reason is that the change of trajectory makes source experiences less

efficient than that of the source policy. It is worth noting that only schemes with

PT can improve the system performance at the beginning of the learning process

because this policy can help the UAV choose valuable actions in this period, e.g.,

selecting battery replacement action when it is near the station and its energy level

is low.

In Figure 3.10 (b), we show the results of the second scenario where the packet

3.5 Conclusions 83

arrival probabilities are different from that of the source MDP. In this scenario,

we set the experience size to 103 for the ET and hybrid schemes. Again, it can

be observed that only schemes with PT can improve the initial performance, e.g.,

during the first 2×103 iterations. Unlike the first scenario, the PT yields the worst

performance among the transfer learning schemes, and its asymptotic performance

is almost zero, meaning that there is no improvement in terms of average reward

at the end of the learning process. In contrast, the ET and hybrid schemes achieve

similar asymptotic performance, approximately 172%. However, hybrid’s jump-start

metric, i.e., 192%, is significantly higher than that of ET, i.e., 86%. These results

suggest that when the environment dynamics change, the hybrid scheme should be

selected.

Lessons learned: The above results demonstrate that applying TL to DRL

is not straightforward. If it is not carefully implemented, TL may not be able

to improve the performance of DRL, e.g., the ET with 50 experiences in the first

scenario and the PT in the second scenario. In the first case, the change in UAV’s

trajectory means that the UAV still works in the same environment, but it follows

another path. Therefore, the PT can quickly achieve the best policy because it

can directly improve the performance of the UAV instead of gradually transferring

the source knowledge in the ET. On the other hand, the probability of successfully

collecting a packet changes in the second scenario, meaning that the UAV is placed

in a different environment. In this context, the hybrid transfer technique can obtain

the highest performance since it can leverage both the policy and the important

experiences in the source MDP.

3.5 Conclusions

In this chapter, we develop a novel Deep Dueling Double Q-learning with Transfer

Learning algorithm (D3QL-TL) that jointly optimizes the flying speed and energy

3.5 Conclusions 84

replenishment activities for the UAV to maximize the data collection performance

of a UAV-assisted IoT system. The proposed algorithm effectively addresses not

only the dynamic and uncertainty of the system but also the high dimensional state

and action spaces of the underlying MDP problem with hundreds of thousands of

states. In addition, the proposed TL techniques (i.e., experience transfer, policy

transfer, and hybrid transfer) allow UAVs to “share” and “transfer” their learned

knowledge, resulting in a decrease of learning time and an improvement of learning

quality. The simulation results show that our proposed solution can significantly

improve the system performance (i.e., data collection and energy usage efficiency)

and has a remarkably lower computational complexity compared with other conven-

tional approaches. In the next chapter, we will explore an emerging technology, i.e.,

integrated communication and sensing (ICAS), that enables the ubiquitous sensing

capability of 6G networks.

85

Chapter 4

AI-enabled mm-Waveform Configuration for

Autonomous Vehicles with Integrated

Communication and Sensing

This chapter focuses on the Integrated Communications and Sensing (ICAS) tech-

nology that plays a critical role in enabling 6G systems to become ubiquitous sen-

sors [1]. Additionally, ICAS also emerges as a promising solution for Autonomous

Vehicles (AVs), a use case of 6G [2], where sensing and data communications are

two important functions that often operate simultaneously. For ICAS application

to AVs, optimizing the waveform structure is one of the most challenging tasks due

to strong influences between sensing and data communication functions. Specifi-

cally, the preamble of a data communication frame is typically leveraged for the

sensing function. As such, the higher number of preambles in a Coherent Processing

Interval (CPI) is, the greater the sensing task’s performance is. In contrast, commu-

nication efficiency is inversely proportional to the number of preambles. Moreover,

surrounding radio environments are usually dynamic with high uncertainties due to

their high mobility, making the ICAS’s waveform optimization problem even more

challenging. To that end, this chapter presents our proposed solution that can auto-

matically optimize the waveform configuration for the ICAS of autonomous vehicles

to strike a balance between these functions. In particular, we develop a novel ICAS

framework established on the Markov decision process and recent advanced tech-

niques in deep reinforcement learning. By doing so, without requiring complete

knowledge of the surrounding environment in advance, the ICAS-AV can adaptively

optimize its waveform structure (i.e., number of frames in the CPI) to maximize

4.1 System Model 86

sensing and data communication performance under the surrounding environment’s

dynamic and uncertainty. Note that the optimal waveform is not fixed, instead, the

ICAS-AV needs to optimally adapt its waveform configuration (i.e., the number of

preambles and their locations in a CPI) according to its surrounding environment

and system requirements. Since the IEEE 802.11ad is leveraged for the ICAS sys-

tem in this work, the optimized waveform has the same characteristics as the IEEE

802.11ad. According to [117], the waveform used in the IEEE 802.11ad system is

represented as a generalized form of the Gaussian family. Extensive simulations

show that our proposed approach can improve the joint communication and sensing

performance up to 46.26% compared with other baseline methods.

The content of this chapter is organized as follows. Sections 4.1 and 4.2 introduce

the ICAS system model and the problem formulation, respectively. Then, the Q-

learning-based and the proposed i-ICS algorithms are proposed in Section 4.3. In

Section 4.4, simulation results are analyzed. Finally, we conclude this chapter in

Section 4.5.

4.1 System Model

In this work, we consider an autonomous vehicle, namely ICAS-AV, that is

equipped with an intelligent millimeter wave integrated communication and sens-

ing (mm-Wave ICAS) system based on the IEEE 802.11ad SC-PHY specification.

Note that this work leverages the preamble in the SC-PHY for sensing task since it

is similar to those in Control Physical Layer (C-PHY) and OFDM Physical Layer

(OFDM-PHY), making the proposed solution easily to be extended to other physi-

cal layer types in IEEE 802.11ad. Moreover, according to [118], the OFDM-PHY is

obsolete and may be removed in a later revision of the IEEE 802.11ad standard. The

ICAS-AV maintains a communication link at a wavelength ζ with a vehicle AVX ,

called the recipient vehicle. Let dX and vX denote the distance and the relative

...

4.1 System Model 87

ICAS-AV

AVX

Target

Target

Frame

Data Data Data Data

IFS Preamble

0

Data Transmission Feedbacks

Time Slot

IFS: Interframe Spacing

Acknowledgement (ACK)
Data Transmission

Echoes

Coherent Processing Interval (CPI)

Figure 4.1 : The ICAS system model in which the ICAS-AV maintains a data
communication with AVX based on IEEE 802.11ad. At the same time, the ICAS-AV
senses its surrounding environment by utilizing echoes of its transmitted waveforms.

speed between ICAS-AV and AVX , respectively. At the same time, the ICAS-AV

gathers echoes of transmitted signals from surrounding targets (e.g., moving vehicles

AV1, . . . , AVX) to perform the sensing function, as depicted in Figure 4.1. This work

assumes that time is divided into equal slots. The time slot is small enough so that

the velocities of targets can be considered constant in a time slot [38,44].

In this work, similar to [38] and [119], the waveform structure is defined by the

number of frames and their locations in the Coherent Processing Interval (CPI). Note

that the maximum target’s relative velocity vmax can only be explicitly estimated

when frames are located at specific locations in the CPI time [38]. Specifically, the

n-th frame is located at nTd (as illustrated in Figure 4.1). Here, n ∈ [0, 1, . . . , N−1]

and Td ≤ 1/(2∆fmax) is a sub-Doppler Nyquist sampling interval with a maximum

Doppler shift ∆fmax = 2vmax/ζ [120]. The rationale of these setting is that pream-

bles of IEEE 802.11ad frames can act analogously as pulses in the pulsed radar

in which pulses are repeated after a Pulse Repetition Interval (PRI) [120]. At the

ACK Echoes

4.1 System Model 88

beginning of a time slot, the ICAS-AV decides the mm-Wave ICAS waveform struc-

ture (i.e., the number of frames in the CPI) that will be used to transmit data in

this time slot. Then, it observes feedback from the receiving vehicle AVX (i.e., the

acknowledgment of frame) and echoes signals from its surrounding targets at the

end of this time slot.

The ICAS-AV has a data queue with a maximum of Q packets, each with B

Bytes. When a new packet arrives, it will be stored in the data queue if this queue

is not full. Otherwise, this packet will be dropped. The packet arrival is assumed

to follow the Poisson distribution with the mean λ packets per time slot. Note

that the 802.11ad frame has a varying data field; therefore, each frame can contain

one or multiple packets. In the following, we first elaborate the proposed ICAS

transmit and receive signal models, then discuss the sensing processing and ICAS

performance metrics.

4.1.1 Signal Models

4.1.1.1 Transmitted Signal Model

In IEEE 802.11ad, the SC-PHY frame consists of a fixed-size preamble and a

varying length data field. The preamble contains multiple Golay sequences whose

Ambiguity Function (AF) exhibits an ideal auto-correlation without a side-lobe

along the zero Doppler axis, making it perfect to be utilized for sensing function,

e.g., range estimation and multi-target detection [44]. However, its AF is very

susceptible to Doppler shifts, leading to a poor velocity estimation. To that end,

multi-frame processing is proposed to address this problem [38, 44]. By doing so,

the preambles across frames act as radar pulses in a Coherence Processing Interval

(CPI). This work considers an ICAS waveform structure that consists of N IEEE

802.11ad frames in a CPI. The IEEE 802.11ad system can recognize this aggregated

frame as the block/no acknowledgment policy [121].

4.1 System Model 89

Table 4.1 : Table of Notations

Notation Description

Q Maximum number of packets in the data queue (Packets)
B Size of each packet (Bytes)
N Number of frames in a CPI
n Frame index in the Coherent Processing Interval (CPI)
ζ Wavelength of the communication link (m)
dX Distance to the recipient vehicle AVX (m)
vX Relative speed between ICAS-AV and AVX (m/s)
vmax Maximum target’s relative velocity (m/s)
Td Sub-Doppler Nyquist sampling interval (s)

∆fmax Maximum Doppler shift (Hz)
λ Mean packet arrival rate per time slot (Packets/time slot)
Gc Large-scale path loss in data communication

GTX , GRX Antenna gains of transmitter and receiver
σ2
c Variance of the complex white Gaussian noise

σb
o Radar cross-section of a scattering center (m2)

Go
b Large-scale channel gain for a scattering center

∆v Velocity resolution (m/s)
δ Velocity measurement accuracy (RMS error) (m/s)
S State Space
A Action Space
r Immediate Reward Function

w1, w2, w3 Weights in the reward function r

The maximum target’s relative velocity, denoted by vmax, can only be explic-

itly estimated when frames are located at specific locations in the CPI time [38].

Specifically, the n-th frame is located at nTd (as illustrated in Figure 4.1), where

n ∈ [0, 1, . . . , N − 1] and Td ≤ 1/(2∆fmax) is a sub Doppler Nyquist sampling inter-

val with a maximum Doppler shift ∆fmax = 2vmax/ζ [120]. Note that the desired

ICAS system performance can be achieved by optimizing the ICAS waveform pa-

rameters (e.g., the number of frames in the CPI), which will be described in more

details in Section 4.1.3. The transmit signal model is then defined as follows. Let

sn[k] denote the symbol sequence corresponding to n-th transmitted frame with Kn

symbols. Then, the complex-baseband continuous time of transmitted signal in the

4.1 System Model 90

CPI can be given by [38,122]:

x(t) =
N−1∑
n=0

Kn−1∑
k=0

sn[k]gTX(t− kTs − nTd), (4.1)

where gTX(t) is the unit energy pulse shaping filter at the transmitter of ICAS-AV

and Ts is the symbol duration. In this study, similar to [38, 123], we consider a

single data stream model where the adaptive analog beamforming can be applied to

achieve higher directionality beamforming. The use of multiple antennas in mmWave

communication systems facilitates beamforming techniques that can dynamically fo-

cus energy towards specific directions. This not only improves communication link

quality but also enhances sensing capabilities by increasing the signal-to-noise ratio

(SNR) of received signals from objects of interest. By leveraging the spatial diversity

and increased aperture provided by multiple antenna elements, a system can more

accurately determine the angle of arrival (AoA) and angle of departure (AoD) of sig-

nals. This is particularly beneficial in environments where high precision is required

for tracking or locating objects. Thus, the above received signals corresponding to

communication and sensing functions can be modelled in the following subsections.

4.1.1.2 Received Signal Models

Data communication received signal Suppose that the mmWave communi-

cation link between AVX and ICAS-AV is established, the large-scale path loss is

defined as follows [41]:

Gc =
GTXGRXλ

2

8π2d2X
, (4.2)

where GTX and GRX are the antenna gains of the transmitter (TX) and the re-

ceiver (RX), respectively. After beamforming, symbol and frequency synchroniza-

tion phases, the received communication signal is the composition of Pc attenuated

and delayed versions of x(t). Thus, the received communication signal corresponding

4.1 System Model 91

to symbol k in the n-th frame can be represented as follows [38]:

ycn[k] =
√
Gc

Pc−1∑
p=0

βc[p]sn[k − p] + zcn[k], (4.3)

where zcn[k] is the complex white Gaussian noise with zero mean and variance σ2
c , i.e.,

NC(0, σ2
c), and βc[p] is the small-scale complex gain of the p-th path. Note that we

assume that βc[p] is independent and identically distributed (i.i.d) N (0, σ2
p) where∑Pc−1

p=0 σ2
p = 1, as in [38, 44]. The SNR of the communication channel is defined as

SNRc ≜ EsGc/σ
2
c , where Es is the energy per symbol of the transmitted signal.

Sensing received signal Similar to [38, 44, 124], this work uses the scattering

center representation to describe the sensing channel. We consider that there are O

range bins, and at the o-th range bin there are Bo scattering centers (i.e., targets).

A scattering center (do, b) can be defined by its distance do, velocity v
b
o, radar cross-

section σbo, round-trip delay τo = do/c with c being the speed of light, and Doppler

shift ∆f bo = 2vbo/λ. The large-scale channel gain corresponding to a scattering center

(do, b) can be given as follows [38,44,124]:

Gb
o =

GTXGRXλ
2σbo

64π3d4o
. (4.4)

As in [38,125], only a target whose do is large in comparison with the distance change

during the CPI (i.e., do ≧ vboTCPI) is considered, so the small-scale channel gain βbo

can be assumed to be constant during the CPI. Thus, the received sensing signal

model corresponding to symbol k in the n-th frame can be given as follows [38]:

yn[k] =
O−1∑
o=0

Eon[k]
Bo−1∑
b=0

√
Gb
oe

−j2π∆fbo (kTs+nTd) + zsn[k], (4.5)

4.1 System Model 92

where zsn[k] ∼ NC(0, σ2
n) is the complex white Gaussian noise of the sensing channel,

and Eon[k] is the delayed and sampled Matched Filtering (MF) echo from the o-th

range bin, i.e., Eon[k] =
∑Kn−1

i=0 sn[i]g((k−i)Ts−nTd−τo), where g(t) = gTX(t)∗gRX(t)

is the net TX-RX pulse shaping filter.

In this study, similar to [38, 119, 125], we assume that the channel is stationary

during the preamble period of a frame due to the small preamble duration. As such,

the received signal model corresponding to the preamble Eot [k] of a frame can be

given as follows [38]:

ytn[k] =
O−1∑
o=0

Eot [k]
Bo−1∑
b=0

√
Gb
oe

−j2π∆fbonTd + zsn[k]. (4.6)

Note that kTs can be omitted from the phase shift term in the signal model cor-

responding to the preamble part since the channel is assumed to be time-invariant

within the preamble period.

4.1.2 Sensing Signal Processing

We now discuss sensing signal processing in the ICAS system. Based on the cross-

correlation output between the transmitted preamble of a single 802.11ad frame

and the received signal, the ICAS system can detect a target with high probability

(more than 99.99%) and achieve the desired range resolution (i.e., 0.1 m [40]) for

automotive LRR [44]. However, the AF of IEEE 802.11ad preamble is sensitive

to Doppler shift, making it less accurate in velocity estimation. Therefore, this

work only considers the velocity estimation of the ICAS system, which is more

challenging to obtain a high accuracy than those of target detection and range

estimation processes.

After detecting targets and obtaining the corresponding range bins, the velocity

estimation can be executed as follows. Given the n-th frame received in (4.6),

4.1 System Model 93

the sensing channel corresponding to detected targets at the o-th range bin can be

expressed as follows [38]:

hno =
Bo−1∑
b=0

uboe
−j2π∆fbonTd + zno , (4.7)

where ubo=γ
√
EsGb

o is the signal amplitude, γ is the correlation integration gain,

and zno is the complex white Gaussian noise NC(0, σ2
n). Then, the channel vector cor-

responding to the o-th range bin for N frames in the CPI, i.e., ho=[h1o, h
2
o, . . . , h

N−1
o],

can be given as follows:

ho = Douo + zo, (4.8)

where zo=[z0o , z
1
o , . . . , z

N−1
o] is the channel noise vector, uo≜ [u0o, u

1
o, . . . , u

Bo−1
o]T de-

notes the channel signal amplitude vector, d(vbo)≜ [1, e−j2π∆f
b
oTd , . . . , , e−j2π∆f

b
o (N−1)Td]T

is the vector of channel Doppler corresponding to b-th velocity at o-th range bin, and

Do ≜ [d(v0o),d(v
1
o), . . . ,d(v

Bo−1
o)] is the matrix of channel Doppler. The target ve-

locity can be estimated based on (4.8) by using Fast Fourier transform (FFT)-based

algorithms that are widely used in the classical radar processing [44,120].

4.1.3 ICAS Performance Metrics

As discussed in the previous subsection, this work focuses on the target velocity

estimation. Thus, the sensing performance for the ICAS can be determined by the

velocity estimation accuracy (i.e., velocity resolution). For the FFT-based velocity

estimation approach, the velocity resolution is defined by [44]:

∆v =
ζ

2NfTd
, (4.9)

where Nf is the number of frames used for the velocity estimation process. Then,

the velocity measurement accuracy can be characterized by the root mean square

4.1 System Model 94

error that depends on the SNR of the received sensing signal as follows [40,126]:

δ =
ζ

2NfTd
√
2SNRr

. (4.10)

Equation (4.10) implies that given a fixed CPI time, a fixed Td, and a constant data

rate, the velocity estimation accuracy increases (i.e., δ decreases) as the value of Nf

increases. Recall that frames are placed at consecutive multiples of Td in the CPI.

Therefore, the last frame’s size is larger than those of others if the total number

of frames is less than the maximum number of frames in the CPI. As such, as the

number of frames in the CPI increases, the size of the last frame decreases since the

CPI duration is constant.

The communication metrics for the ICAS must represent the data transmission

performance. Two typical communication metrics are the transmission rate and

reliability (e.g., packet loss). Thus, this work considers two metrics, 1) the length of

the data queue representing the efficiency of data transmission, and 2) the number

of dropped packets demonstrating the system reliability.

Note that unlike the system models in [38, 42, 46] that only consider static en-

vironments, in this work, we consider a more practical dynamic environment with

many uncertainties, such as the wireless channel quality and the number of arrival

packets. Compared with [38, 42, 46], such dynamics make the waveform optimiza-

tion problem more challenging. First, the wireless channel is dynamic and uncertain

due to the high mobility of the vehicle, resulting in time-varying successful data

transmission probability. Second, since the transmission demand of the user as well

as the vehicle’s autonomous system may change over times, the number of packet

requests arriving at the system may be different at different times. Therefore, the

data arrival process at the ICAS-AV is also highly dynamic. As a result, due to these

uncertainties and dynamics, optimizing the waveform structure without completed

4.2 Problem Formulation 95

knowledge of the surrounding environment is a practical yet very challenging task.

It is also worth noting that a large frame has a higher drop probability than that

of a smaller frame in the same wireless environment. Thus, using multiple small-size

frames can increase not only the reliability of transmission but also the sensing per-

formance (i.e., the velocity estimation accuracy). However, it leads to an overhead

because it increases the number of preambles that do not contain user data. Con-

sequently, packets pile up at the ICAS-AV, leading to packet drop in the queue. In

addition, the characteristics of the ICAS-AV’s surrounding environment (e.g., the

wireless channel quality, which can be represented through the packet drop proba-

bility and SNR, and the packet arrival rate) highly influence the ICAS performance

in regard to data transmission reliability and sensing accuracy. Therefore, the ICAS

system needs to obtain an optimal policy that optimizes the ICAS waveform (i.e.,

the number of frames in the CPI) to achieve the desired performance in terms of

data transmission and sensing accuracy. Furthermore, the ICAS-AV’s surrounding

environment may change significantly from time to time, especially in the ICAS en-

vironment where AVs usually travel. Thus, optimizing the ICAS waveform in each

time slot is an intractable problem. The following sections will describe our pro-

posed MDP framework for the ICAS operation problem that enables the ICAS-AV

to quickly and effectively learn the optimal policy without requiring complete infor-

mation from the surrounding environment, thereby achieving the best performance

compared with traditional solutions.

4.2 Problem Formulation

The ICAS-AV’s operation problem is formulated using the MDP framework to

deal with the highly dynamic and uncertain of the surrounding environment. The

MDP framework can help the ICAS-AV adaptively decide the best action (i.e., the

ICAS waveform structure) based on its current observations (i.e., the current data

4.2 Problem Formulation 96

queue length and channel quality) at each time slot to maximize the ICAS system

performance without requiring complete knowledge on the packet arrival rate, data

transmission process, and channel quality in advance. An MDP is generally defined

by the state space S, the action space A, and the immediate reward function r. The

following sections will discuss more details about the components of our proposed

framework.

4.2.1 State Space

As we aim to maximize the performance of the ICAS system with regard to data

transmission efficiency and sensing accuracy, we need to consider the following key

factors. The first one is the current data queue length (i.e., the number of packets

in the data queue) because it reflects the efficiency of the data transmission process.

For example, given a packet arrival rate, the lower the number of packets in the

queue is, the higher the data transmission efficiency is. The second one is the link

quality that can be estimated by using the SNR metric at the ICAS-AV. At the

beginning of a time slot, the link quality is estimated based on the feedback (i.e.,

the recipient vehicle’s ACK frame and targets’ echoes) of the transmitted frame in

the previous time slot. Although it does not represent the instantaneous channel

state, it help to provide valuable information about the surrounding environment.

In this work, we consider that the channel quality level can be grouped into C

different classes, which are analogous to the Modulation and Coding Scheme (MCS)

levels in IEEE 802.11ad [121]. These classes have different probabilities of bit errors

due to the different wireless channel qualities, denoted by a probability vector pe =

[p1, p2, . . . , pC]. Note that given the transmission link with bit error probability pb,

the error probability of an F -bit frame can be calculated by pf = 1− (1−pb)F [127].

In addition, if a frame drops, all packets in this frame will be lost. To that end, the

4.2 Problem Formulation 97

ICAS’s state space can be given as follows:

S =
{
(q, c) : q ∈ {0, . . . , Q}; c ∈ {0, . . . , C}

}
, (4.11)

where q is the current number of packets in the data queue and c is the channel

quality. Here, Q is the maximum number of packets that the data queue can store.

In this way, the system state can be represented by a tuple s = (q, c). By this design,

the ICAS system continuously operates without falling into the terminal state.

4.2.2 Action Space

As discussed in Section 4.1.3, the ICAS waveform plays a critical role in the

system performance. In particular, given a fixed CPI time T , using a large num-

ber of frames results in a high reliability of data transmission and a high sensing

accuracy. However, it reduces the efficiency of data transfer as there are more over-

head data. At each time slot, the ICAS-AV needs to select the most suitable ICAS

waveform structure (i.e., the number of frames in the CPI) to maximize the system

performance. Thus, the action space can be defined as follows:

A =
{
1, . . . , N

}
, (4.12)

where N is the maximum number of frames in the CPI. Recall that the beginning

of each frame needs to be placed at the multiple of Td consecutively, and thus

N = ⌊TCPI

Td
⌋, where TCPI is the CPI time and ⌊·⌋ is the floor function. As such,

if the number of frames in the CPI selected by the ICAS-AV is less than N , the

last frame will be longer than others. Note that when the data queue is empty,

the ICAS-AV can still send dummy frames (e.g., frames whose data fields contain

random bits) to maintain the ICAS’s sensing function continuously.

4.2 Problem Formulation 98

4.2.3 Reward Function

Since the ICAS system performs two functions simultaneously, i.e., data trans-

mission and sensing, we aim to maximize the ICAS system performance by balancing

the data transmission efficiency and the sensing accuracy. Thus, the reward func-

tion needs to capture both of them. The data transmission efficiency can be defined

according to the number of packets waiting in the queue and the number of dropped

packets. Specifically, the lower the number of packets in the data queue and the

number of dropped packets are, the higher the efficiency of the ICAS system is.

Suppose that at time slot t, the ICAS-AV observes state st and takes action at. Let

qt, δt, and lt denote the current size of the data queue, the sensing accuracy, and the

number of dropped packets that the ICAS-AV observes at the end of t, respectively.

Then, the immediate reward function can be defined as follows:

rt(st, at) = −(w1qt + w2δt + w3lt), (4.13)

where w1, w2, and w3 are the weights to tradeoff between the number of packets

waiting in the queue, the sensing accuracy, and the number of dropped packets due

to the data queue full. In practice, these weights should be determined carefully

based on the system requirements as well as the environment characteristics, e.g.,

wireless channel quality and/or data arrival rate at the transmitter of an ICAS-

AV. For example, in a system requiring high sensing accuracy, these weights can

be set such that the sensing accuracy contributes the largest share in the reward

function. Note that the value range and unit of each component in the reward

function are different. For example, the number of loss packets is the positive integer

number, e.g., 5 packets, while the sensing accuracy can be a fraction, e.g, 0.001 m/s.

Therefore, a higher value of its weight does not guarantee a higher contribution to

the immediate reward. In Section V.B.2, experiments are conducted to gain insights

4.2 Problem Formulation 99

into the impact of weights under various environmental conditions. The negative

function in (4.13) implies that the ICAS-AV should take an action that can quickly

free the data queue, lower the number of dropped packets, and achieve a high sensing

accuracy. Note that the lower the value of δt is, the higher the velocity estimation

accuracy of the system is. Given the above, the immediate reward function (4.13)

effectively captures joint performance of communication and sensing function of the

ICAS.

4.2.4 Optimization Formulation

The objective of this study is to find an optimal policy for the ICAS-AV that

maximizes the long-term reward function. Let R(π) denote the long-term average

reward function under policy π : S → A, then the problem can be formulated as:

max
π

R(π) = lim
T→∞

1

T

T∑
t=1

E
(
rt(st, π(st))

)
, (4.14)

where π(st) is the action at time t according to policy π. Thus, given the ICAS-AV’s

current data queue length and wireless channel quality, the optimal policy π∗ gives

an optimal action that maximizes R(π). In addition, Theorem 4.1 shows that the

average reward function is well defined regardless of the initial state.

Theorem 4.1. With the proposed MDP framework, the average reward function

R(π) is well defined under any policy π and regardless of a starting state.

Proof. We first prove that the Markov chain of the considered problem is irreducible

as follows. Recall that the state of the ICAS consists of two factors, i.e., the current

queue length q and the wireless channel quality c. For each time slot, the data arrival

rate is assumed to follow the Poison distribution and the channel quality is derived

from C class accordingly a probability vector pe = [p1, p2, . . . , pC]. Therefore, given

the ICAS is at state s at time t, it can move to any other states s′ ∈ S{s} after

Experience Buffer E

ICS-AV

Target

Target

AV
X

4.3 Reinforcement Learning-based Solutions for ICAS-AV Operation Policy 100

Experience Buffer E

Mini-batch

LossCopy

Learning loop

Epsilon
greedy

Environment

Current estimated

Q-values

Interaction loop

Experience Q-network

Target Q-network

Action

State

Update parameters

Figure 4.2 : The proposed i-ICS model, in which the ICAS-AV obtains an optimal
policy by gradually updating its policy based on its observations of the surrounding
environment.

finite time steps. As such, the proposed MDP is irreducible with the state space S,

thereby making the average reward function R(π) is well defined under any policy

π and regardless of a starting state.

4.3 Reinforcement Learning-based Solutions for ICAS-AV

Operation Policy

Due to the highly dynamic and uncertainty of the environment (e.g., packet drop

probability due to the channel quality and the data arrival rate), the ICAS-AV is

unable to obtain this information in advance. In this context, RL can help the

ICAS-AV obtain the optimal policy without requiring completed knowledge about

surrounding environment in advance. As such, this thesis proposes an approach

i-ICS, as illustrated in Figure 4.2. Specifically, i-ICS is based on D3QL, discussed in

Section 2.2.4, that can help the ICAS-AV gradually learn an optimal policy through

interacting with its surrounding environment.

function

4.4 Performance Evaluation 101

Generally, training a DNN requires a high computing resource, especially for

complex neural architectures. Nevertheless, the Q-network in i-ICS only contains

three layers in which only the hidden layer is fully connected. In addition, the Q-

network is built only from traditional simple component, e.g., neurons with Tanh

activation function. As such, our proposed approach can be effectively implemented

on AVs that are equipped with sufficient computing resources. It is also important

to mention that the decision of action for the ICAS-AV is an output of the Q-

network after feeding the state to the Q-network. Therefore, the decision time (i.e.,

the inference time of the Q-network) is very marginal. It is worth noting that since

i-ICS leverages DNNs, which are non-linear approximators, its optimality cannot

be guaranteed theoretically. However, our simulation results in the next section

demonstrate that i-ICS consistently outperforms baseline approaches. As i-ICS is

based on D3QL, its discussion of the optimality and computational complexity was

discussed in Section 2.2.5. In practice, a few deep learning applications have been

deployed in AVs such as Tesla Autopilot [106] and ALVINN [107]. Thus, they are

clear evidences of the effectiveness and efficiency when deploying machine learning

algorithms on AVs in practice.

4.4 Performance Evaluation

4.4.1 Simulation Parameters

In this work, we investigate our proposed solutions in a scenario that includes

three types of objects: (i) ICAS-AV, which is an autonomous vehicle equipped with

802.11ad based ICAS, (ii) a receiving vehicle AVX that maintains communication

with ICAS-AV, and (iii) a target AV1 moving at a distance of around the ICAS-

AV, as illustrated in Figure 4.1. Specifically, in the simulation, the related velocity

of the target is selected randomly between −45 m/s to 50 m/s, similar to those

in [38]. As such, the maximum related velocity between ICAS-AV and a target is

4.4 Performance Evaluation 102

50 m/s (i.e., 111.847 miles/h). Therefore, this setting is appropriate for practical

scenarios. Note that the proposed ICAS system uses the mmWave transmission,

a highly directional communication. Therefore, we only consider the line-of-sight

(LOS) scenario, similar to what considered in related works [38, 42, 119]. The CPI

time TCPI is set to 10Td, meaning that the maximum number of frames in the CPI

is 10, similar to that in [38]. Note that one frame in the CPI can contain multiple

packets. The ICAS-AV has a data queue containing a maximum of 50 packets.

Recall that the data queue is used to store data packets when the amount of arrival

data at the ICAS transmitter excesses the ICAS maximum transmission rate. All

packets’ sizes are assumed to be equal to 1500 Bytes, which is the typical value of

the maximum transfer unit (MTU) in WiFi networks and the Internet [128]. Other

parameters of the ICAS system are set based on IEEE 802.11ad standard, e.g., a

carrier frequency of 60 GHz and a sampling rate of 1.76 GHz [121].

By considering the above settings, the environment is highly uncertain, dynamic,

and unknown to the ICAS-AV in advance. The detailed settings of environment are

as follows. First, as the wireless channel is dynamic and uncertain, the successful

data transmission probability varies over time according to the channel condition.

Thus, the packet error ratio PER can represent the Channel Quality Indicator. We

consider that the ICAS system operates at Modulation and Coding Scheme 3 (MCS-

3) of IEEE 802.11ad SC-PHY mode [121]. Note that the IEEE 802.11ad standard

requires the PER of MCS-3 to be less than or equal to 1% and the SNR ≈ 1.5 dB

so that the system can normally perform [121]. In practice, the PER depends on

many factors, such as wireless channel quality, modulation technique, and trans-

mit power [127]. Therefore, for demonstration purposes, we consider three chan-

nel levels with different values of PER and SNR: (i) level-1 with PER = 10% and

SNR = −1.5 dB, (ii) level-2 with PER = 1% and SNR = 1.5 dB, and (iii) level-3

with PER = 0.3% and SNR = 4.5 dB. Based on these quality levels, we assume that

4.4 Performance Evaluation 103

the wireless channel can fall into one of the three types. The first one is the poor

channel condition, in which the probability of channel quality at level-1, level-2, or

level-3 at a time slot corresponds to a probability vector ppc = [0.6, 0.2, 0.2]. Specifi-

cally, for the poor channel condition, the probability of the channel quality at level

1 at a time slot is 60% and so on. Besides poor channel, other types correspond

to a normal and strong channel whose probability vectors are pnc = [0.2, 0.6, 0.2],

and pgc = [0.2, 0.2, 0.6], respectively. Second, the packet arrival is also dynamic

so that it is assumed to follow the Poisson distribution with the mean λ packets

per time slot. Our proposed framework will be evaluated under these channel con-

ditions (i.e., poor, normal, and strong channel) with different values of the mean

data arrival rate λ. Moreover, we further evaluate our approach with two sets of

weights for the immediate reward function, i.e., {w1 = 0.05, w2 = 0.4, w3 = 0.5} and

{w1 = 0.025, w2 = 0.8, w3 = 0.5}. Note that these above settings are just for simu-

lation purposes. Our proposed learning algorithm (i.e., i-ICS) does not require these

parameters in advance and can adapt to them through real-time interactions with

the surrounding environment.

The parameters for the proposed learning algorithms are set as follows. Specifi-

cally, ϵ-greedy is leveraged to control the environment exploration in our proposed

algorithms. Specifically, the agent takes a random action with probability ϵ and an

action based on its current policy with probability 1− ϵ. Unlike rule-based scenarios

where agents have predefined policies, the RL agent does not have prior knowledge

about its surrounding environment. As such, it needs to explore the environment

by taking action randomly at the beginning. Then it adjusts its policy based on the

selected action’s feedback, i.e., the reward for performing this action. Therefore, the

agent can gradually adjust the probability of selecting random action to obtain an

optimal policy that maximizes the system performance [129]. However, due to the

dynamic and uncertainty of the surrounding environment, the probability of taking

4.4 Performance Evaluation 104

random action should not be zero since the RL needs to update its policy according

to changes in the environment. Given the above, in this work, ϵ is set to 1 at the

beginning and then linearly decreases to 0.1 after 8×105 iterations, which is similar

to those in [33,34].

Other parameters for the Q-learning-based and the i-ICS algorithms are set as

typical values, as in [31,33,34]. Specifically, the discount factor η is 0.9 for both the

Q-learning-based algorithm and the i-ICS. For the Q-learning based approach, the

learning rate is 0.1. For the proposed i-ICS, the Adam optimizer is used to train

the Q-network with a learning rate of 10−4 and the target Q-network’s parameters

are updated at every 104 time steps.

In this work, the simulation framework is programmed in Python and consists

of two main entities, i.e., the ICAS-AV agent and the environment. At the begin-

ning of time slot t, the agent observes the current state, i.e., st = (qt, ct), where

qt is the current number of packets in the data queue and ct is the channel qual-

ity. As described in Algorithm 2, the ICAS-AV agent maintains two DNNS (i.e.,

the Q-network and the target Q-network) built based on the Pytorch framework.

Upon receiving the state, the agent feeds the current state to the Q-network to

obtain an action at (i.e., the number of frames in the CPI) at this time slot. After

the agent performs the selected action, the environment calculates an immediate

reward rt given by Eq. (4.13). Based on these information, the environment ob-

tains (i) the number of arrival packets by drawing from the Poison distribution with

the mean λ and (ii) the channel quality that is randomly generated based on the

probability vector, e.g., ppc = [0.6, 0.2, 0.2] for the poor channel condition. Then,

the environment updates the number of packets in the data queue and constructs

a next state st+1 = (qt+1, ct+1). After that, the environment sends the next state

and the reward to the agent. Once receiving them, the agent stores the experience,

i.e.,(st, at, rt, st+1) to buffer E. Then, it trains the Q-network as presented in Algo-

4.4 Performance Evaluation 105

rithm 2. The target Q-network is updated at every 104 time steps by cloning from

the Q-network’s parameters. The process is repeated until the agent converges to

an optimal policy. Recall that the ICAS-AV does not have any prior information

about its surrounding environment’s uncertainties and dynamics, e.g., the packet

drop probabilities and packet arrival rate. Therefore, the proposed solutions are

compared with two baseline policies: 1) a greedy policy where the ICAS-AV selects

an action to maximize the reward function without caring about the uncertainties

and dynamics of the environment and 2) a deterministic policy in which the ICAS-

AV always sends ndp frames in the CPI time. Here, we set ndp to be a half of N

(i.e., 5) to demonstrate the ICAS’s average performance when the number of frames

in the CPI is fixed. Note that we do not consider conventional optimization-based

methods (e.g., [38,119]) as baselines since they require complete information about

the surrounding environment in advance to optimize the system parameters.

4.4.2 Simulation Results

To evaluate the ICAS system performance, we first examine the convergence

rates of our proposed approaches, i.e., Q-learning based algorithm and i-ICS. We

then study the influences of several key factors (e.g., the packet arrival rate, wireless

channel quality, and weights in the immediate reward function) on the performance

of the ICAS system.

4.4.2.1 Convergence Rate

Figure 4.3 illustrates the convergence rates of our proposed algorithms for the

ICAS system, i.e., the Q-learning and the i-ICS. Here, we compare their performance

in the normal channel, and the mean number of arrived packets λ is set to 14. It

can be observed that the i-ICS achieves a superior result in terms of average reward

compared with that of the Q-learning. Specifically, at the beginning of the learning

process, the Q-learning and i-ICS obtain similar results. However, after 2×104

4.4 Performance Evaluation 106

0 20 40 60 80 100

Iteration (2x103)

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

−1.75

−1.50

A
v
e
ra

g
e
 r

e
w

a
rd

Figure 4.3 : Convergence rate of proposed algorithms.

iterations, the i-ICS’s average reward is 20% greater than that of the Q-learning.

Then, the i-ICS eventually converges to the optimal policy after 4.5×104 while Q-

learning still struggles with a mediocre policy. Under the optimal policy obtained

by i-ICS, the ICAS-AV’s average reward is stable at around −1.75, approximately

40% higher than that of the policy learned by the Q-learning.

4.4.2.2 Performance Analysis

We then evaluate the robustness of our proposed approach, i.e., i-ICS, by varying

the mean number of packets arrived at a time slot λ from 2 to 20. The learned policies

of Q-learning and i-ICS are obtained after 2×105 training iterations. To evaluate

the performance of the considered ICAS system, we consider four metrics, including

(i) the average cost, which is the negation of the average reward, (ii) the average

queue length, (iii) the average velocity estimation accuracy, i.e., sensing accuracy,

and (iv) the average packet drop. The reason for introducing the average cost is

to make the demonstration consistent across system performance metrics (i.e., the

smaller the cost is, the better the system performance is). Note that the average

reward indicates the joint performance of communication and sensing functions.

We first set the wireless channel to normal quality. The weights of the immediate

reward function are presented by a weights vectors W1 = [0.05, 0.4, 0.5], i.e., w1 =

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

4.4 Performance Evaluation 107

2 4 6 8 10 12 14 16 18 20

Lamdba

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 c

o
s
t

35.1%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.2

0.4

0.6

0.8

1.0

 (
m

/s
) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.4 : Varying the data arrival rate λ under normal channel condition, i.e.,
pnc = [0.2, 0.6, 0.2], with the weight vector W1 = [0.05, 0.4, 0.5].

0.05, w2 = 0.4, w3 = 0.5, as shown in Figure 4.4. Clearly, the average costs of

all policies increase as the packet arrival rate increases, i.e., λ increases from 2 to

20, as shown in Figure 4.4 (a). It stems from the fact that given a data queue

with fixed capacity and the ICAS system operates under the same environment’s

characteristics, the higher the value of λ, the higher the number of dropped packets

due to the full packet queue. Indeed, Figures 4.4 (b) and (d) clearly show that when

the packet arrival rate increases, the average queue length and average packet drop

increase for all policies. It can be observed that our proposed algorithm (i.e., i-ICS)

achieves the lowest average cost, up to 64.9% (equivalent to an decrease of 35.1%)

compared with those of other policies. Similarly, i-ICS has the lowest average packet

drop regardless of the packet arrival rate, and it consistently maintains the average

number of packets in the queue as one of the lowest values.

Regarding the sensing metric, i-ICS and Q-learning achieve the highest sensing

4.4 Performance Evaluation 108

2 4 6 8 10 12 14 16 18 20

Lamdba

1

2

3

4

5

6

7

A
v
e
ra

g
e
 c

o
s
t

25%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 (
m

/s
) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

10

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.5 : Varying the data arrival rate λ under normal channel condition, i.e.,
pnc = [0.2, 0.6, 0.2], with the weight vector W2 = [0.025, 0.8, 0.5].

accuracy (i.e., the lowest value of average velocity estimation accuracy) when λ is

less than 12. Whereas their average sensing accuracy results are not good compared

to other policies if λ is larger than 12. The reasons are as follows. When the packet

arrival rate is low (i.e., λ < 12), the average numbers of packets in the queue of all

policies never pass 30% of the data queue capacity, as shown in Figure 4.4 (b). Thus,

the ICAS-AV can increase the number of frames in the CPI, meaning a decrease in

the packet sent in the CPI, to achieve a higher sensing performance without worrying

about packet loss due to a full queue. Figure 4.4 (c) clearly shows that the Q-learning

and i-ICS can learn this strategy to obtain the best performance in terms of average

sensing accuracy when λ < 12.

As λ increases from 12 to 20, the average queue lengths of the greedy and deter-

ministic policies quickly reach the maximum number of packets that can be stored

in the data queue, i.e., 50, as shown in Figure 4.4 (b). This can lead to a high

4.4 Performance Evaluation 109

2 4 6 8 10 12 14 16 18 20

Lamdba

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 c

o
s
t

3 .8%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 (
m

/s
) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

10

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.6 : Varying the data arrival rate λ under poor channel condition, i.e.,
ppc = [0.6, 0.2, 0.2], with the weight vector W1 = [0.05, 0.4, 0.5].

possibility of packet drop due to the full data queue. Interestingly, sensing perfor-

mance of Q-learning and i-ICS policies decreases to the worst at λ = 16 and λ = 18,

respectively. Then, they manage to increase the sensing accuracy when the packet

queue is mostly always full at λ = 20. The reason is that the data transmission

efficiency is unable to be improved because of a very high packet arrival rate that

the system cannot handle. Thus, it might be better to improve the sensing ac-

curacy instead of communication efficiency. On the other hand, since the greedy

and deterministic policies do not consider the uncertainty of the environment (e.g.,

the packet drop possibility), they can maintain better sensing accuracy when the

packet arrival rate is high. However, their transmission efficiency is very low. As

can be seen in Figure 4.4 (d), the average numbers of packet drops of the greedy

and deterministic policies are up to 50% higher than that of our proposed learning

algorithm, i.e., i-ICS. Thus, the proposed algorithm can help the ICAS-AV to ob-

4.4 Performance Evaluation 110

2 4 6 8 10 12 14 16 18 20

Lamdba

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 c

o
s
t

 6.26%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 (
m

/s
) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

10

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.7 : Varying the data arrival rate λ under poor channel condition, i.e.,
ppc = [0.6, 0.2, 0.2], with the weight vector W2 = [0.025, 0.8, 0.5].

tain an optimal policy that strikes a balance between sensing and data transmission

metrics, thereby achieving the best overall system’s performance compared with

those of other policies. Although i-ICS and Q-learning experience a similar trend

when λ increases from 2 to 20, i-ICS consistently outperforms Q-learning. This

stems from the fact that i-ICS can effectively address the high dimensional state in

a complicated problem.

Interestingly, although i-ICS always achieves the lowest cost when λ increases

from 2 to 20, as shown in Figure 4.4 (a), its sensing performance is not good as

those of greedy and deterministic policies when λ > 12, as shown in Figure 4.4 (c).

The reason is that the proposed reward function defined in Eq. (4.13) is a weighted

sum of communication and sensing metrics. Specifically, the higher the reward

obtained by the ICAS system is, the better performance the ICAS system achieves.

Since the cost is the negation of the reward, the ICAS system performs better if its

4.4 Performance Evaluation 111

2 4 6 8 10 12 14 16 18 20

Lamdba

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 c

o
s
t

 2.6%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(m
/s

) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.8 : Varying the data arrival rate λ under strong channel condition, i.e.,
pgc = [0.2, 0.2, 0.6], with the weight vector W1 = [0.05, 0.4, 0.5].

cost is lower. However, the cost only captures the joint/overall performance of the

communication and sensing function. Therefore, one of these functions may perform

worse than those of others whose costs are higher.

Next, we investigate how the immediate reward function’s weights can influence

the system performance by changing the weight vector to W2=[0.025, 0.8, 0.5] and

varying the packet arrival rate. In Figure 4.5, it can be observed that the results

of deterministic policy are mostly unchanged, except the average cost result, when

changing these weights because the ICAS-AV’s environment is still the same as the

previous experiment, and this policy does not rely on the immediate function. As

the weight of sensing metric (i.e., w2) is doubled, i-ICS, Q-learning, and greedy

policies achieve sensing accuracy results that are much better than those in the

previous experiment. In addition, except for the Q-learning, they also consistently

outperform the deterministic policy in terms of sensing metric. In contrast, these

4.4 Performance Evaluation 112

2 4 6 8 10 12 14 16 18 20

Lamdba

1

2

3

4

5

6

7

A
v
e
ra

g
e
 c

o
s
t

33%

Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

10

20

30

40

50

A
v
e
ra

g
e
 q

u
e
u

e
 l

e
n

g
th

 (
p

a
c
k
e
ts

)

Q_learning

Greedy

Deterministic policy

(a) Average cost (b) Average queue length

2 4 6 8 10 12 14 16 18 20

Lamdba

0.100

0.125

0.150

0.175

0.200

0.225

0.250

 (
m

/s
) Q_learning

Greedy

Deterministic policy

2 4 6 8 10 12 14 16 18 20

Lamdba

0

2

4

6

8

10

A
v
e
ra

g
e
 p

a
c
k
e
t

d
ro

p
 (

p
a
c
k
e
ts

) Q_learning

Greedy

Deterministic policy

(c) Average sensing accuracy (d) Average packet drop

Figure 4.9 : Varying the data arrival rate λ under strong channel condition, i.e.,
pgc = [0.2, 0.2, 0.6], with the weight vector W2 = [0.025, 0.8, 0.5].

policies’ data transmission metrics (i.e., the average packet drop and average queue

length) become worse than those in the first experiment, as shown in Figures 4.5

(b) and (d). The reason is that when the ratios w1/w2 and w3/w2 become smaller,

the ICAS system pays more attention to the sensing accuracy. Thus, Figure 4.5

clearly shows that in practice, these weights can be adjusted so that our proposed

learning algorithm can obtain a policy that fulfils different requirements of a ICAS

system at different times. Thanks to the ability to learn without requiring complete

information of the surrounding environment, i-ICS still achieves the best overall

performance when increasing the sensing metric’s weight.

We now examine the robustness of our proposed solution i-ICS by considering

different channel qualities, i.e., (i) poor quality with the PER probability vector ppc=

[0.6, 0.2, 0.2] and (ii) good quality with the PER probability vector pgc=[0.2, 0.2, 0.6].

To do so, we vary the packet arrival rate λ. For each of these channel qualities, two

4.4 Performance Evaluation 113

sets of results are collected according to W1 and W2, as shown in Figures 4.6 to 4.9.

Overall, all policies’ results experience similar trends as those in normal channel

quality. It can be observed that the channel quality significantly affects the joint

communication and sensing performance, indicated by the average cost. Specifically,

when the channel quality changes from poor to normal and then to good, the overall

system performance increases regardless of the weight vector. The reason is that as

the channel quality becomes better, the packet drop probability decreases, leading

to a better communication performance of the ICAS system. Hence, the overall

performance improves.

In terms of sensing performance, as observed in the sub-figures (c) of Figures 4.4

to 4.9, when the mean packet arrival rate is small, i.e., λ ≤ 12, the performance of

i-ICS increases as the channel changes from poor to good quality for both W1 and

W2. Interestingly, when λ is larger than 12, the sensing performance of i-ICS expe-

riences differently with the weight vectors W1 and W2. Specifically, with W1, the

i-ICS’s sensing performance generally becomes deteriorating as the channel changes

from poor to good quality. Whereas, with W2, the i-ICS achieves the highest and

lowest sensing performance under the normal channel and strong channel. Thus,

sensing performance depends on not only the channel quality but also the immedi-

ate reward function’s weights and the mean packet arrival rate λ. As such, better

channel quality does not guarantee better sensing performance. Note that the pro-

posed approach in this study aims to maximize the joint communication and sensing

performance (i.e., overall performance). Therefore, as discussed above, even though

the performance of one function (e.g., sensing) is a bit lower, our proposed i-ICS

still achieves the best overall performance.

In summary, i-ICS achieves the highest overall performance boost among the

considered policies when channel quality changes from poor to good. For instance,

with W1, i-ICS’s average cost decreases up to 51.7% while those of the greedy and

4.5 Conclusion 114

deterministic policies reduce up to 41.17%. This is because our proposed approach

can effectively adapt its behaviour according to the changes in its surrounding en-

vironment to improve the system performance significantly.

4.5 Conclusion

In this work, we have developed a novel MDP-based framework that allows an

ICAS-AV to automatically and adaptively decide its optimal waveform structure

based on the observations to maximize the overall performance of the ICAS system.

Then, we have proposed an advanced learning algorithm, i.e., i-ICS, that can help

the ICAS-AV gradually learn an optimal policy through interactions with the sur-

rounding environment without requiring complete knowledge about the environment

in advance. As such, our proposed approach can effectively handle the environment’s

dynamic and uncertainty as well as the high dimensional state space problem of the

underlying MDP framework. The extensive simulation results have clearly shown

that the proposed solution can strike a balance between communication efficiency

and sensing accuracy, thereby consistently outperforming the benchmark methods

in different scenarios.

115

Chapter 5

MetaSlicing: A Novel Resource Allocation

Framework for Metaverse

This chapter presents MetaSlicing, our proposed resource allocation framework for

Metaverse, an emerging service supported by 6G. Creating and maintaining the

Metaverse require enormous resources that have never been seen before, especially

computing resources for intensive data processing to support the Extended Real-

ity, enormous storage resources, and massive networking resources for maintaining

ultra high-speed and low-latency connections. Therefore, this work aims to pro-

pose a novel framework, namely MetaSlicing, that can provide a highly effective

and comprehensive solution for managing and allocating different types of resources

for Metaverse applications. In particular, by observing that Metaverse applications

may have common functions, we first propose grouping applications into clusters,

called MetaInstances. In a MetaInstance, common functions can be shared among

applications. As such, the same resources can be used by multiple applications si-

multaneously, thereby enhancing resource utilization dramatically. To address the

real-time characteristic and resource demand’s dynamic and uncertainty in the Meta-

verse, we develop an effective framework based on the semi-Markov decision process

and propose an intelligent admission control algorithm that can maximize resource

utilization and enhance the Quality-of-Service for end-users. Extensive simulation

results show that our proposed solution outperforms the Greedy-based policies by up

to 80% and 47% in terms of long-term revenue for Metaverse providers and request

acceptance probability, respectively.

This chapter is structured as follows. Sections 5.1 introduces the system model

…

… …

2

3

4

5

1

5.1 System Model 116

End
Users

𝑴𝑻𝟏

𝑴𝑻𝟐

𝑴𝑻𝑴

Metaverse
Tenants

Admission
Management

Admission
Controller

Resource
Allocation

Resource
Avaibility

Tier-1

Tier-2

Tier-N

Resource
Management

Accepted
Requests

Resource
Update

Multi-tier Resource Archituecture

Requests

Metaverse Infrastructure
Service Provider

MetaSlice
Analyzer

Naviga�on MetaSlice

Travel MetaSlice

Educa�on MetaSlice

Metaverse

Extended reality (XR)MetaSlice 3’s
Func�ons

MetaSlices 2’s
Func�ons

MetaSlice 1’s
Func�ons

Shared
Func�ons

MetaInstance

MetaSlice
Decomposition

Func�ons

MetaSlicing Framework

Similarity
Analysis

Decomposed MetaSlices

Grouping

Figure 5.1 : The system model of the proposed MetaSlicing framework. In this
framework, different resource types in different tiers can be used and shared to
create Metaverse applications (i.e., MetaSlices).

based on multi-tier resource allocation architecture to facilitate the deployment and

operation of Metaverse applications. Then, the Metaverse application admission

control formulation is presented in Section 5.2 After that, the Metaverse application

analysis and the proposed deep reinforcement learning-based algorithm are discussed

in Section 5.3. In Section 5.4, simulation results are analyzed. Finally, Section 5.5

provides the conclusion of this chapter.

5.1 System Model

In this work, we consider a system model including three main parties, i.e., (i)

End-users, (ii) Metaverse tenants, and (iii) the Metaverse Infrastructure Service

Provider (MISP), as illustrated in Figure 5.1. First, an end-user subscribes to a

Metaverse tenant to request a Metaverse application, namely MetaSlice. Then, the

Metaverse tenant will request the MetaSlice from the MISP according to its sub-

scribed users’ demands. If a request is accepted, the MISP will allocate its resources

to initiate this MetaSlice. In the following, we explain the main components together

with their interactions in our proposed framework in more details.

5.1 System Model 117

5.1.1 MetaSlicing: Dynamic Resource Allocation Framework for Meta-

verse

5.1.1.1 Multi-tier Resource Allocation Architecture-based Metaverse

As discussed in the previous section, although the centralized cloud can be used

for deploying Metaverse’s applications, it poses critical challenges, e.g., a point-of-

congestion in the network and a point of failure. In the literature, most existing

works related to the Metaverse resource management consider single-tier edge com-

puting architecture [54, 56, 57]. However, the single-tier edge architecture may not

be appropriate and effective since the edge capacity is often limited while Metaverse

applications often demand intensive resources and strict requirements. Moreover, in

single-tier edge computing, Metaverse applications are likely created near the user’s

location so that the user’s QoE requirements may not be satisfied if the user moves

far away.

To address these challenges, a multi-tier resource allocation architecture can

be leveraged to effectively and dynamically allocate resources for Metaverse applica-

tions. First, this architecture alleviates the extensive resource demands of Metaverse

applications for both the Metaverse tenants and end-users. Second, this architec-

ture enables the distribution of different types of resources, e.g., computing, storage,

networking, and communication capabilities, along the path from end-users to the

cloud. By doing so, Metaverse applications can leverage the resources placed near

end-users, resulting in a low delay and high QoS for users. Third, when a user moves

to a new location, these applications can be migrated to a site near the user’s new

location to maintain the QoE. Thus, distributing resources increases the resilience of

the system compared to the traditional centralized cloud-based resource allocation

architecture.

Although the multi-tier resource architecture offers a promising approach to de-

5.1 System Model 118

ploy Metaverse applications, it still faces several challenges. First, recall that Meta-

verse applications are heavily integrated with XR technologies requiring stringent

latency. As a result, they are supposed to be created at the edge servers that are

placed near users, i.e., tier-1, thereby possibly causing overload at low tiers. Note

that the resource capacity at low tiers is often much lower than those at high tiers,

e.g., cloud. As such, it may result in high latency in both computing and trans-

mission or even interrupting services, thus reducing users’ QoE since latency is one

of the most important factors to guarantee QoE in Metaverse. Second, a user can

physically move while using MetaSlices, and the latency requirement may not be

guaranteed if they move too far from the place where ongoing applications are cre-

ated. This issue can be mitigated by migrating these MetaSlices to a new place near

the user’s new location. However, the migration may introduce long delay due to

the transmission of user’s data and the application re-initialization. In the following

subsection, we will discuss our proposed technique (i.e., MetaSlice decomposition)

to alleviate these problems.

5.1.1.2 MetaSlice Decomposition

Recall that the Metaverse can be realized as a seamless integration of multiple

virtual worlds, and each virtual world can be regarded as an application for a spe-

cific purpose, e.g., entertainment, healthcare, or education [13–15]. We observe that

an application may have several functions that can operate independently. For ex-

ample, a tourism application may have a recommendation, digital map, and driving

assistant functions. Based on the user’s location, the recommendation function can

suggest nearby attractive places, and then the user can use the digital map function

to get more information about these places. After that, the user can use the driving

assistant function to get to the chosen place. Since these functions can be used

or unused depending on different users, they can run separately without interfer-

5.1 System Model 119

ing with other functions. As such, Metaverse applications should be developed in

a modular way by which their functions can be initialized and operated indepen-

dently. By doing so, these independent functions can be connected to each other

via application programming interfaces (API), similar to how existing applications

connect to current online services, e.g., Google Maps API. Given the above, this

work considers that a MetaSlice, i.e., application, can be decomposed into multiple

dependent functions.

Note that this work does not focus on optimal application decomposition, and we

assume that applications can be decomposed by using existing methods, e.g., [130,

131]. We consider that each function is allocated dedicated resources due to the

strict QoS requirements of Metaverse applications. In particular, a function with

the dedicated resource allocation scheme likely executes faster than this function

under the dynamic scheme. This is because, under the dynamic resource alloca-

tion scheme, a resource allocation procedure is performed whenever a request for

processing arrives at a function, leading to an unavoidable additional delay that

may degrade the QoS of Metaverse users. In addition, because resources are not

reserved for each function in a dynamic allocation scheme, a function may not have

sufficient resources to support an application’s request that arrives when a server is

overloading with other functions, leading to a high delay or even service disruption.

This problem can be alleviated by migrating the function to another server with

adequate resources; however, it introduces another additional delay to the function

execution. In this context, dedicated resource allocation can avoid this issue by

reserving resources for each function. Moreover, the study in [132] points out that

under a typical load of business applications, the dedicated resource allocation can

achieve a better energy efficiency than that of dynamic resource allocation.

In practice, the MetaSlice decomposition can offer numerous benefits for deploy-

ing and managing MetaSlices in Metaverse. First, as functions are independent

5.1 System Model 120

entities and are connected via API, they can be developed and upgraded indepen-

dently and simultaneously, thereby speeding up MetaSlice’s deployment and evo-

lution. Second, this technique also helps Metaverse developers to concentrate on

building their distinctive functions (e.g., a recommendation function in tourism)

rather than putting their resources on other functions (e.g., driving assistant or

digital map) that can be effectively developed by specialized third parties. Third,

the MetaSlice decomposition can help to manage MetaSlices more convenient. For

instance, when a function in a MetaSlice fails, users can be quickly redirected to a

compatible function to alleviate service disruption. Fourth, the MetaSlice decom-

position with a multi-tier resource architecture provides flexibility for Metaverse

implementation. In particular, functions can be initiated at different tiers since

they are independent entities. For example, a MetaSlice for travel may consist of

several major functions, such as a digital map, real-time traffic, real-time weather,

and a driving assistant. In this case, these functions can be placed dynamically in

the multi-tier resource allocation architecture depending on the functions’ require-

ments. Specifically, real-time traffic and driving assistant functions can be placed at

tier-1 near end-users since they require low delay, while a digital map (that does not

need frequent updates) can be located at a high tier, e.g., at the cloud. Finally, this

technique can also alleviate the application migration problem in a multi-tier re-

source architecture. Particularly, by leveraging application decomposition, instead

of migrating a MetaSlice, only functions with stringent delay requirements (e.g.,

less than 20 ms [133]) will be migrated, thereby significantly decreasing migration

delay. Thus, the application decomposition technique offers a flexible and effective

implementation of multi-tier-based MetaSlices.

To support the decomposition technique, we consider that a MetaSlice is created

based on the MetaBlueprint, i.e., a template describing the workflow, configuration,

and structure for initializing and managing this MetaSlice during its life cycle. From

5.1 System Model 121

Table 5.1 : Comparison between MetaSlicing, network slicing, and virtualized net-
work function allocation.

Approach Aim Novel Features

Virtualized
network
function (VNF)
allocation

Distributing VNFs
under limited
resources.

Utilizing the virtualization
technologies to virtualize network
devices’ functions (such as routing,
switching, and load balancing) that
are used to create and deliver
communication services [134].

Network slicing

Creating of multiple
virtual networks (i.e.,
network slices) that
can coexist on a single
physical network
infrastructure [135].

Leveraging VNFs to create various
specialized and dedicated network
services for different applications,
such as autonomous vehicles,
manufacturing, or virtual reality
applications [135,136].

Our proposed
MetaSlicing

Creating of multiple
virtual worlds or
“Metaverses” that
can be accessed and
interacted with by
users through a
variety of devices and
platforms.

- The application decomposition
(with the underlying multi-tier
resource allocation architecture)
help enhance manageability and
accelerate the deployment and
evolution of Metaverse applications
(i.e., MetaSlice).
- The MetaInstance can exploit the
functional similarities between
MetaSlices to maximize resource
utilization.

a technical standpoint, a MetaSlice (i.e., an application in the Metaverse) can be

analogous to the network slice paradigm in the fifth generation of the cellular network

(5G) that consists of multiple network functions [135]. It is worth mentioning that

slicing is the general term in describing virtualization methods that can partition and

organize resources (e.g., computing and networking) of the physical infrastructure

to flexibly support diverse requirements [137]. As such, the proposed MetaSlicing

mechanism seems similar to the network slicing mechanism in 5G networks [135]

due to their names, but they are essentially different, as shown in Table 5.1.

Specifically, MetaSlicing refers to the creation of multiple virtual worlds or

“Metaverses” that can be accessed and interacted with by users through a variety

5.1 System Model 122

of devices and platforms. Each Metaverse application (i.e., MetaSlice) is a self-

contained virtual environment that can be customized to suit the needs of its users.

As such, MetaSlicing is intended to enable the creation of personalized and immer-

sive virtual experiences for users. On the other hand, network slicing refers to the

creation of multiple virtual networks (i.e., network slices) that can coexist on a single

physical network infrastructure. Each network slice is a self-contained network that

can be customized to meet the needs of its users, with its own set of network func-

tions and performance characteristics. Thus, network slicing is intended to enable

the creation of specialized and dedicated network services for different applications,

such as autonomous vehicles, manufacturing, or virtual reality applications.

It is worth noting that MetaSlicing also is a framework to manage resources for

Metaverse applications effectively. To do so, it first decomposes an application into

independent functions and then optimally distributes them at different tiers. Then,

MetaSlicing arranges MetaSlice into multiple groups, i.e., MetaInstances, where a

number of functions can be shared among MetaSlices, thus improving resource uti-

lization.

5.1.1.3 MetaInstance

To further take advantage of MetaSlice decomposition, we introduce the MetaIn-

stance that can improve system resource utilization. Suppose that Metaverse may

consist of different MetaSlice types, e.g., tourism, education, industry, and navi-

gation. In addition, MetaSlices can also be grouped into I classes based on their

characteristics, such as occupied resources, technical configurations, and QoS. For

example, navigation MetaSlice may have driving assistant functions requiring ultra-

low latency and highly-reliable connections, while security and resilience are among

the top concerns of e-commerce and industry MetaSlices. Moreover, different types

of MetaSlice may share the same functions. For instance, tourism and naviga-

5.1 System Model 123

tion MetaSlices can use the same underlying digital map and the real-time traffic

and weather functions whose data are collected by the same perception network,

e.g., IoT. Furthermore, we can observe that different Metaverse tenants can cre-

ate/manage multiple variants from the same type of MetaSlice (e.g., education, in-

dustry, or navigation). Therefore, ongoing MetaSlices may share the same functions.

In this case, a lot of resources can be shared, leading to greater resource utilization

and higher revenue for the Metaverse Infrastructure Service Provider (MISP).

Based on this fact, Metaverse applications can be classified into groups, namely

MetaInstances. A MetaInstance can be defined by two function types, i.e., (i) shared

function and (ii) dedicated function belonging to specific MetaSlices, as illustrated in

Figure 5.1. In this case, a MetaInstance can maintain a function configuration con-

sisting of a list of functions and a description of interactions among them. Because

the capability of a function is limited, sharing a function for too many MetaSlices

may lead to a decrease in user experience (e.g., processing delay) or even service

disruption. Therefore, in practice, a function can be only shared by a maximum

number of NL MetaSlices. From the technical perspective, the implementation of

a MetaInstance can be similar to that of the Network Slice Instance (NSI), where

network slices can share some Network Functions (NFs) [135].

It is worth mentioning that even though the MetaSlicing may be similar to the

network slicing [135], they are actually not the same. In particular, network slic-

ing aims to address the diversity (or even conflict) in communication requirements

among various businesses by running multiple logical networks (i.e., Network Slices)

over a physical network. For example, one (e.g., automotive customers) may re-

quire ultra-low latency connections while others (e.g., manufacturing customers)

require ultra-reliable connections. Thus, the network slicing focuses on providing

diverse types of communications. In contrast, MetaSlicing is a framework to effec-

tively manage resources in a multi-tier computing architecture by decomposing an

5.1 System Model 124

application into functions and then optimally distributing them at different tiers.

In addition, as explained in the previous paragraphs, due to different features of

Metaverse applications, resource allocation scheme for MetaSlicing is also designed

different from that of the network slicing, where dynamic resource allocation ap-

proaches are preferred [138].

Based on the aforementioned analysis, we can observe that, on the one hand,

our proposed MetaSlicing framework can offer a great solution to the MISP by

maximizing the resource utilization and at the same time minimizing the deployment

cost and initialization time for Metaverse’s applications. On the other hand, this

framework can also benefit end-users by achieving greater user experience, e.g., lower

delay and more reliable services. To achieve these results, the Admission Controller

in MetaSlicing plays a critical role. For example, accepting requests of MetaSlices

that share some functions with the ongoing MetaSlices may help the system to save

more resources than accepting those with less or without sharing functions with the

MetaSlices running in the system. In addition, Resource Management is another

important factor determining the Metaverse system performance. In the following

subsection, we explain these components in our proposed MetaSlicing framework.

5.1.2 Admission Control and Resource Management

Recall that according to the demands of subscribed end-users, a Metaverse ten-

ant sends a MetaSlice request associated with MetaBlueprint to the MISP. Then,

the Admission Management and Resource Management are executed as follows. As

shown in Figure 5.1, the Admission Management block of the MISP consists of a

MetaSlice Analyzer and an Admission Controller. Once receiving a MetaSlice re-

quest, the MetaSlice Analyzer will analyze the request’s MetaBlueprint to determine

similarities between the functions and configuration of the requested MetaSlice and

those of the ongoing MetaInstances. In this study, we consider that a MetaBlueprint

5.1 System Model 125

consists of at least (i) the function configuration record, including the list of required

functions and the description of interactions among them, and (ii) the MetaSlice con-

figuration (e.g., class ID and required resources). Based on the similarity analysis

(to be presented in Section IV) obtained from the MetaSlice Analyzer and the cur-

rently available resources of the system, the Admission Controller decides whether

to accept the request or not according to its admission policy.

Suppose that a MetaSlice request is accepted, the Resource Management allo-

cates the accepted MetaSlice to a MetaInstance with the highest similarity index and

updates this MetaInstance accordingly. Specifically, if the accepted MetaSlice has

dedicated functions, system resources are allocated to initiate these new functions.

If the current MetaInstances do not share any function with the new MetaSlice,

a new MetaInstance is created for the accepted MetaSlice. When a MetaSlice de-

parts/completes, its resources will be released, and the MetaInstance will be updated

accordingly.

In this work, we consider D resource types owned by the MISP, e.g., comput-

ing, networking, and storage. Then, the required resources for a MetaSlice m can

be represented by a resource vector, i.e., nm = [n1
m, . . . , n

d
m, . . . , n

D
m], where n

d
m is

the amount of type d resources. In this case, the total occupied resources by all

MetaSlices cannot exceed the maximum resources of MISP, i.e.,

∑
m∈M

ndm ≤ Nd, ∀d ∈ {1, . . . , D}, (5.1)

where Nd is the total amount of type d resources of the MISP, andM is the set of all

running MetaSlices in the system. In our proposed solution, the system’s available

resources and the required resources for the request are two crucial factors for the

admission control in MetaSlicing. However, in practice, the future requests’ arrival

process and its required resources are likely unknown in advance. In addition, the

5.2 MetaSlicing Admission Control Formulation 126

departure process of MetaSlices (i.e., how long a MetaSlice remains in the system) is

also highly dynamic and uncertain. Therefore, in the next section, we will introduce

a framework based on the semi-Markov decision process to address these challenges.

5.2 MetaSlicing Admission Control Formulation

In this work, we propose a highly-effective semi-Markov Decision Process (sMDP)

framework to address the MetaSlice admission control problem due to the follow-

ing reasons. First, the sMDP can enable the MetaSlicing’s Admission Controller

to adaptively make the best decisions (i.e., whether to accept or reject a MetaSlice

request) based on the currently available system resources (i.e., computing, net-

working, and storage) and the MetaSlice request’s blueprint (i.e., resource, class and

similarity) without requiring complete information about the surrounding environ-

ment (e.g., arrival and departure processes of MetaSlices) to maximize the MISP’s

long-term revenue. Second, in practice, MetaSlice requests can arrive at any time,

so the admission decision needs to be made as soon as possible. As such, the de-

cision epoch in the considered problem changes rapidly. However, the conventional

Markov Decision Process (MDP) only takes an action at each time slot with an equal

time period, making it unable to capture real-time events, e.g., request arrival [98].

In contrast, the sMDP makes a decision whenever an event occurs so that it can

perfectly capture the real time of MetaSlicing. Finally, the MetaSlice’s lifetime is

highly uncertain. Upon a MetaSlice departs from the system, its occupied resources

are released, and the system state transits to a new state immediately. Again, the

conventional MDP is unable to capture this transition as it works in a discrete-time

fashion.

To that end, the sMDP will be used in our framework to enable the MISP to make

real-time decisions and maximize its long-term revenues. Technically, an sMDP can

be defined by a set of five components, including (i) the decision epoch ti, (ii) the

5.2 MetaSlicing Admission Control Formulation 127

Table 5.2 : Table of Notations

Notation Description
Q Maximum number of packets in the data queue (Packets)
nm Required Resource Vector of MetaSlice m
nd
m The amount of type d resources required by MetaSlice m

nu the available resources
nd
u The number of available resources type d

Nd The total amount of type d resources of the MISP
A The action space
S The state space
T The transition probability
r The immediate reward function
i The class ID
j The similarity index
e The event vector
as The action at state s
x The number of ongoing MetaSlices
xi The number of MetaSlices in class i that are running
λi The mean of Poisson distribution

1/µi The mean of the exponential distribution
wd The weight corresponding to resource type d
nd
o Number of type d resources occupied by this requested MetaSlice

π(sg) The action derived by policy π at decision epoch g
τg The interval time between two consecutive decision epochs
T π The limiting matrix corresponding to policy π
Fm The function configuration of a MetaSlice m

state space S, (iii) the action space A, (iv) the transition probability T , and (v)

the immediate reward function r. In the following sections, we will explain how

this framework can capture all events in the MetaSlice system and make optimal

decisions for the MISP.

5.2.1 Decision Epoch

The decision epochs are defined as points of time at which decisions are made [98].

In our real-time MetaSlicing system, the Admission Controller must make a decision

once a MetaSlice request arrives. Therefore, we can define the decision epoch as an

interval between the occurrence of two consecutive requests.

5.2 MetaSlicing Admission Control Formulation 128

5.2.2 State Space

Aiming to maximize revenue for the MISP with limited resources, several im-

portant factors need to be considered in the system state space. First, the current

system’s available resources and the resources required by the current MetaSlice

request are the two most important factors for the Admission Controller to decide

whether it accepts this current request or not. Second, since the income for leasing

each MetaSlice class is different, the class ID i of a requested MetaSlice is another

crucial information. Third, the similarity index j of a requested MetaSlice reflects

the similarity between a requested MetaSlice and the ongoing MetaInstances. Re-

call that the higher the value of j is, the higher similarity between the requested

MetaSlice and the running MetaInstances is, leading to lower occupied resources

when deploying this new request. Hence, the similarity index is also an important

factor for the MetaSlice admission decision.

We denote the available resources of the system by a vector nu=[n1
u, . . . , n

d
u, . . . , n

D
u]

where D is the total number of resource types, and ndu denotes the number of avail-

able resources of type d. Similarly, the request’s required resources are denoted by

nm = [n1
m, . . . , n

d
m, . . . , n

D
m]), where n

d
m is the number of requested resources of type

d. Given the above, the system state space can be defined as follows:

S ≜
{(
n1
u, . . . , n

d
u, . . . , n

D
u , n

1
m, . . . , n

d
m, . . . , n

D
m, i, j

)
:

ndu and ndm ∈ {0, . . . , Nd}∀d ∈ {1, . . . , D};

i ∈ {1, . . . , I}; j ∈ [0, . . . , J]
}
,

(5.2)

where Nd is the maximum resources of type d, I is the total number of classes

in the system, and J is the maximum similarity index of a MetaSlice derived by

the MetaSlice Analyzer. By this design, the system state is presented by a tuple,

i.e., s ≜ (nu,nm, i, j), and the system can work continuously without ending at a

5.2 MetaSlicing Admission Control Formulation 129

terminal state, at which the system stops working [99].

Recall that in the sMDP framework, the system only transits from state s to state

s′ if and only if an event occurs (e.g., a new MetaSlice request arrival). We define the

event as a vector e ≜ [e1, . . . , ei, . . . , eI], where ei ∈ {−1, 0, 1}. Specifically, ei=−1 if

a MetaSlice class i departs from the system, ei=1 if a new MetaSlice request class-i

arises, and ei=0 otherwise (i.e., no MetaSlice request class-i arrival or departure).

Thus, the set of all possible events is given as follows:

E ≜
{
e : ei ∈ {−1, 0, 1};

I∑
i=1

|ei| ≤ 1
}
. (5.3)

Note that there is a trivial event e∗ ≜ (0, . . . , 0) meaning that no MetaSlice request

of any class arrives or departs.

5.2.3 Action Space

If a MetaSlice request arrives at state s, the Admission Controller can decide

whether to accept or reject this request to maximize the long-term revenue for the

MISP. Thus, the action space at state s can be defined by:

As ≜ {0, 1}. (5.4)

In particular, if the requested MetaSlice is accepted, the action at state s is equal

to one, i.e., as = 1. Otherwise, as = 0.

Recall that a user needs to subscribe to a Metaverse tenant to access a MetaSlice,

i.e., a Metaverse application. As such, we assume that users’ requests are queued

at the corresponding Metaverse tenant before being forwarded to the MISP. If the

MISP rejects a user’s request, it will return to the queue at the Metaverse tenant

subscribed by this user until it is served or the user decides to stop the request. Since

5.2 MetaSlicing Admission Control Formulation 130

the lifetime of a MetaSlice is limited, and resources are released whenever a MetaSlice

departs, a rejected request is likely served eventually. It is important to note that

this work does not focus on managing the queue, and we assume that the queue

management is independently controlled by each Metaverse tenant. In addition,

a Metaverse tenant can rent resources from several MISPs to provide alternative

access for their subscribed users if the current MISP runs out of resources. Again,

this problem is also out of the scope of this work. Thus, this is a potential direction

for future works.

5.2.4 State Transition Probabilities

This sub-section analyzes the sMDP’s dynamic by characterizing the underlying

Markov chain’s state transition probabilities. Since the sMDP is based on the semi-

Markov Process (sMP) that consists of a renewal process and a Continuous-time

Markov Chain (CTMC) {X(t)}, the uniformization method can be used to derive

the state transition probabilities T [98, 139, 140]. Specifically, the uniformization

transforms the CTMC into a corresponding stochastic process {X̄(t)} whose tran-

sition epochs are derived from a Poisson process at an uniform rate, whereas state

transitions follow a discrete-time Markov chain {Xn}. These two processes, i.e.,

{X̄(t)} and {X(t)}, are proven to be probabilistically equivalent [98].

In practice, similar to many communication systems, e.g., mobile phone systems,

we do not know when a user request comes and leaves the system. Thus, we can con-

sider that the arrival process of class-i requests follows the Poisson distribution with

mean λi while the departure of class-i MetaSlice follows an exponential distribution

with mean 1/µi, as those in [139]. In this way, the parameters of the uniformization

5.2 MetaSlicing Admission Control Formulation 131

method are defined as:

z = max
x∈X

I∑
i=1

(λi + xiµi), (5.5)

zx =
I∑
i=1

(λi + xiµi), (5.6)

where each element of vector x ≜ [x1, . . . , xi, . . . , xI] represents the number of on-

going MetaSlices in the corresponding class (i.e., xi is the number of MetaSlices in

class i that are running simultaneously in the system), and X is the set containing

all possible values of x. Since the total resources of on-going MetaSlices cannot

exceed the total number of system resources, we have

I∑
i=1

xi∑
m=1

ndm ≤ Nd ∀d ∈ {1, . . . , D}. (5.7)

Now, the events’ probabilities are determined based on z and zx as follows:

• The probability of a class i request occurring in the next event e is λi/z.

• The probability of a class i MetaSlice departing in the next event e is xiµi/z.

• The probability of trivial event (i.e., no MetaSlice request of any class arrives

or departs) arising in the next event e is 1− zx/z.

Then, we can obtain the state transition probabilities T = {Pss′(as)} with s, s′ ∈ S

and as ∈ As, i.e., the probability that the system moves between states by taking

actions.

5.2.5 Immediate Reward Function

To maximize the MISP’s long-term revenue, the income from leasing resources to

Metaverse tenants should be captured by the immediate reward function. Here, we

5.2 MetaSlicing Admission Control Formulation 132

consider that the revenues for leasing resources for different classes are different since

different classes may have different requirements such as reliability and delay. Recall

that in our proposed Metaverse system, MetaSlices can share some functions with

others, leading to differences in resource occupation even between MetaSlices from

the same class. As such, even if two MetaSlices give the same revenue, accepting a

MetaSlice that requires fewer resources will benefit the provider in the long term.

Therefore, the number of resources required by a MetaSlice is another key factor.

To this end, the immediate reward function can be defined as follows:

r(s, a) =

 ri −
∑D

d=1wdn
d
o, if ei = 1 and a = 1,

0, otherwise,
(5.8)

where ri is the revenue from leasing resources for a MetaSlice class i, and ndo is the

number of type d resources occupied by this requested MetaSlice. The trade-offs

between these factors are reflected by weights, i.e., {wi}Dd=1. Equation (5.8) implies

that if slices have the same income (i.e., they are in the same class), accepting

requests with fewer resource demands can help the provider to maximize the long-

term revenue.

Note that a weight wd reflects the price for renting one unit of resources type

d (e.g., 1 TB storage) from the Metaverse Infrastructure Service Provider (MISP).

In the literature, resource pricing is a well-investigated problem, which can be ad-

dressed by various methods such as optimization theory [141] or game theory [142].

Generally, resource prices can be determined by the amount of remaining resources,

i.e., the higher amount of remaining resources type d is, the lower its weight is. In

practice, the resources are priced based on MISPs’ business strategies, e.g., [143,144].

Note that optimizing weights for resource types is out of scope in this work. In ad-

dition, the simulations in Section 5 are performed to study the impact of immediate

5.2 MetaSlicing Admission Control Formulation 133

reward on the system performance.

5.2.6 Optimization Formulation

Since the statistical characteristics (e.g., arrival rate and departure rate of a

MetaSlice) of the proposed system are stationary (i.e., time-invariant), the policy

π for the meta-controller can be described as the time-invariant mapping from the

state space to the action space, i.e., π : S → As. This study aims to find an optimal

policy for the MetaSlicing’s Admission Controller that maximizes a long-term aver-

age reward function Rπ(s), which is defined as an average expected reward obtained

by starting from state s and following policy π as follows:

Rπ(s) = lim
G→∞

E
[∑G

g=0 r(sg, π(sg))|s0 = s
]

E
[∑G

g=0 τg|s0 = s
] , ∀s ∈ S, (5.9)

where G is the total number of decision epochs, π(sg) is the action derived by π

at decision epoch g, and τg is the interval time between two consecutive decision

epochs. The existence of the limit inRπ(s) is proven in Theorem 5.1. Thus, given the

currently available resources and the MetaSlice request’s information, the optimal

policy π∗ can give optimal actions to maximize Rπ(s), thereby maximizing the long-

term revenue for the infrastructure provider.

Theorem 5.1. Given that the state space S and the number of decision epochs in

a certain period of time are finite, we have:

Rπ(s) = lim
G→∞

E
[∑G

g=0 r(sg, π(sg))|s0 = s
]

E
[∑G

g=0 τg|s0 = s
] (5.10)

=
T πr(s, π(s))
T πy(s, π(s))

, ∀s ∈ S, (5.11)

where r(s, π(s)) is the expected immediate reward and y(s, π(s)) is the expected in-

terval between two successive decision epochs when performing action π(s) at state

5.2 MetaSlicing Admission Control Formulation 134

s, and T π is the limiting matrix of the embedded Markov chain corresponding to

policy π, which is given based on the transition probability matrix of this chain, i.e.,

Tπ, as follows:

T π = lim
G→∞

1

G

G−1∑
g=0

T gπ . (5.12)

Proof. The proof of Theorem 5.1 is presented in Appendix A.1.

Note that the underlying Markov chain of our sMDP model is irreducible (i.e.,

the long-term average reward is independent of the starting state), which is proven

in Theorem 5.2.

Theorem 5.2. The long-term average reward Rπ(s) for any policy π is well-defined

and independent of the starting state, i.e., Rπ(s) = Rπ, ∀s ∈ S.

Proof. The proof of Theorem 5.2 is presented in Appendix A.2.

Since the limiting matrix T π exists and the sum of probabilities that the system

moves from one state to others is one, we have
∑

s′∈S T π(s′|s) = 1. Given the above,

the MetaSlice admission control problem can be formulated as follows:

max
π

Rπ =
T πr(s, π(s))
T πy(s, π(s))

,

subject to:
∑
s′∈S

T π(s′|s) = 1, ∀s ∈ S.
(5.13)

Note that while the problem studied in this work involves resource management

for Metaverse, it may seem at first glance that our problem formulation is similar

to conventional resource allocation problems, such as virtualized network function

(VNF) resource allocation or network slicing [145–147]. However, they are funda-

mentally different. In particular, our proposed resource management framework,

MetaSlicing, leverages the similarities in functions between Metaverse applications

5.2 MetaSlicing Admission Control Formulation 135

to improve system resource utilization significantly. In contrast, conventional re-

source allocation approaches do not consider function similarities between applica-

tions when allocating resources [54, 56, 57]. Therefore, it makes our mathematical

optimization problems clearly different from conventional resource allocation. We

first propose the MetaSlice decomposition to divide a Metaverse application into

different functions that can operate and be initialized independently. Then, we in-

troduce the MetaInstance technique to group Metaverse applications into different

groups according to their function similarities in which some functions can be shared

by multiple Metaverse applications. For that, we propose a method to identify the

similarities in functions between MetaSlices. Finally, an admission control problem

can be adopted to allocate resources for requests of MetaSlices based on system’s

available resources and similarity between the MetaSlice request and the ongoing

MetaSlices in the system. Clearly, in addition to to optimizing different types of

resources as in conventional VNF resource optimization, we need to consider other

important factors related to the deployment of Metaverse applications in practice,

i.e., decomposition of Metaverse applications (i.e., MetaSlices) and identifying simi-

larities between MetaSlices. Thus, the considered problem requires a fundamentally

different approach than conventional VNF resource allocation approaches.

It is worth mentioning that due to the discrete action space, (5.9) and (5.13)

are not convex, making them challenging to solve by conventional methods. In the

following section, we will discuss our proposed solution that can help the Admission

Controller to obtain the optimal admission policy π∗ to maximize the long-term

average reward function, i.e., π∗ = argmax
π

Rπ.

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice Admission
Management 136

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice

Admission Management

This section presents our proposed approach for the MetaSlice admission man-

agement. We first discuss the main steps in the MetaSlice analysis to determine

the similarity between a requested MetaSlice and ongoing MetaSlices. Then, we

propose a Deep Reinforcement Learning (DRL)-based algorithm for the Admission

Controller to address the real-time decision making requirement and the high un-

certainty and dynamics of the request’s arrival and MetaSlice departure processes,

which are, in practice, often unknown in advance. Thanks to the self-learning abil-

ity of DRL, the Admission Controller can gradually obtain an optimal admission

policy via interactions with its surrounding environment without requiring complete

knowledge of the arrival and departure processes of MetaSlices in advance.

5.3.1 MetaSlice Analysis

Recall that the major role of the MetaSlice Analyzer is to analyze the request’s

MetaBlueprint to determine the similarity between the requested MetaSlice and the

ongoing MetaInstances. Then, the similarity report is used to assist the Admis-

sion Controller in deciding whether to accept or reject a request. This work uses

the function configuration to decide the similarity index since it clearly shows the

relationship between the requested MetaSlice and the ongoing MetaInstance.

We consider that the proposed framework supports F types of functions. Then,

we can denote the function configuration of a MetaSlice m by a set Fm as follows:

Fm =
{
fm1 , . . . , f

m
f , . . . , f

m
F

}
, (5.14)

where the configuration of function f is represented by a vector with size K, i.e.,

ff ∈ {0, 1}K . We define a trivial function configuration vector f∗ ≜ (0, . . . , 0) mean-

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice Admission
Management 137

ing that a function is not required by the MetaSlice. Note that a MetaInstance

also maintains a function configuration set and updates it whenever the MetaSlice

is initialized or released.

Given two function configuration sets F1 and F2, the similarity index can be

given as follows:

j(F1,F2) =
1

F

F∑
f=1

b(f1f , f
2
f), (5.15)

where b can be any similarity function used for vectors such as Jaccard and Cosine

similarity functions [148]. Here, we use Jaccard similarity that is defined as follows:

bJaccard(f
1
f , f

2
f) =

f1f · f2f
||f1f ||2 + ||f2f ||2 − f1f · f2f

, (5.16)

where the numerator is the dot product of two vectors and || · || is the Euclidean

norm of the vector, which is calculated as the square root of the sum of the squared

vector’s elements.

Recall that the similarity index j is one of the four elements of the state, and in

reinforcement learning, an agent determines its action based on the observation of

the state. Thus, the similarity index plays two important roles in the MetaSlicing

framework. First, it supports the Admission Controller based on a reinforcement

learning algorithm with precious information for making decisions. Second, based

on the accepted request’s similarity index, MetaSlicing’s resource management de-

termines to put the accepted MetaSlice request in an existing MetaInstance or create

a new MetaInstance.

5.3.2 Deep Dueling Double Q-learning based-Admission Controller

In RL, Q-learning is widely adopted due to its simplicity in implementation and

convergence guarantee after the learning phase [149]. Nevertheless, using a table to

estimate the optimal values of all state-action pairs Q∗(s, a), i.e., Q-values, hinders

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice Admission
Management 138

the Q-learning from being applied in a high-dimensional state space as the problem

considered in this work with hundred thousand states [101]. In addition, the usage of

the Q-table is only feasible when values of states are discrete, but the similarity score

in the considered state can be a real number. These challenges are addressed by deep

Q-network (DQN) algorithm, in which a Deep Neural Network (DNN), instead of

a Q-table, is used to approximate Q∗(s, a) for all state-action pairs [150]. However,

both Q-learning and DQN have the same problem of overestimation when estimating

Q-values [31]. This issue makes the learning process unstable or even results in a

sub-optimal policy if overestimations are not evenly distributed across states [102].

To that end, this thesis proposes to leverage D3QL, discussed in Section 2.2.4,

for the MetaSlicing Admission Controller’s algorithm, namely iMSAC, that can

address these above issues effectively by leveraging three innovative techniques: (i)

the memory replay mechanism, (ii) the Dueling neural network architecture, and (iii)

the double deep Q-network (DDQN) algorithm. The iMSAC model is illustrated in

Figure 5.2.

Note that most recently proposed DRL algorithms are on-policy methods, e.g.,

Asynchronous Advantage Actor-Critic (A3C) and Proximal Policy Optimization

(PPO), and aim to overcome the limitation of DQN in problems with continu-

ous action space [151, 152]. As such, they may not perform well in problems with

discrete action space, such as the considered problem in this work. For instance,

the study in [153] shows that the Dueling DDQN outperforms the A3C in most of

57 Atari games with discrete action spaces. Similarly, results in [154] show that the

performance of PPO and Dueling DDQN are similar in a discrete action problem,

and the run time of PPO is almost two times greater than that of Dueling DDQN.

Moreover, the authors in [155] demonstrate that PPO’s performance is heavily in-

fluenced by its code-level implementation. Hence, the PPO may require significant

effort to optimize hyper-parameters, which is not the focus of our work. In contrast,

5.3 AI-based Solution with MetaSlice Analysis for MetaSlice Admission
Management 139

Buffer B

Mini-batch

Q-network

Q-target

Loss
function

Learning loop

Epsilon
greedy

Environment

Action

Estimated
Q-values

Interaction loop

State

Update parameters

Observation

Update

Figure 5.2 : The proposed iMSAC-based Admission Controller for the MetaSlicing
framework.

Dueling DDQN can achieve good performance with typical hyper-parameters, as

those in [34, 150]. More importantly, since A3C and PPO are on-policy methods,

they must use up-to-date experiences collected by their current policies to learn

an optimal policy [99]. As such, old experiences are dropped after each learning

iteration, making the sample efficiencies of these methods low. Here, the sample

efficiency presents how much an RL algorithm can get the most use of every expe-

rience. In contrast, the Dueling DDQN (the fundamental component of D3QL) is

an off-policy method that can leverage experiences collected from any other poli-

cies [99]. Given the above observations, the Dueling DDQN is the most appropriate

learning approach for the considered problem as it can perform well with typical

hyper-parameters and has high sample efficiency.

The computational complexity of the proposed iMSAC is mainly determined by

the training process of a deep neural network, i.e., Q-network that represents the

admission policy. As iMSAC is based on D3QL, its discussion of the optimality and

computational complexity was discussed in Section 2.2.5. Since the Q-network only

5.4 Performance Evaluation 140

consists of conventional components, e.g., fully connected layers and tanh activation,

the decision latency is very marginal since decisions can be made mostly instantly

by feeding the state to the Q-network. In this work, simulations are performed

on a typical laptop with the AMD Ryzen 3550H (4 cores at 2.1 GHz) and 16GB

RAM. We record that the average decision latency is 6.2 µs. In practice, several low

latency-constrained applications have adopted DNN, such as Tesla Autopilot [106]

and ALVINN [107], and thus they clearly demonstrate the applicability of iMSAC

for real-time systems.

5.4 Performance Evaluation

5.4.1 Simulation Parameters

The parameters for our simulation are set as follows, unless otherwise stated. We

consider that the system supports up to nine types of functions, i.e., F =9. Each

MetaSlice consists of three different functions and belongs to one of three classes,

i.e., class-1, class-2, and class-3. In the configuration set F , we set K=1. Here, we

set λ1, λ2, and λ3 to 60, 40, and 25 requests/hour, respectively, and its vector is

denoted by λ = [60, 40, 25]. The average MetaSlice session time is 30 minutes, i.e,

µi = 2, ∀i ∈ {1, 2, 3}. The revenues ri for accepting a MetaSlice request from class

i are set as r1 = 1, r2 = 2, r3 = 4. Note that our proposed algorithm, i.e., iMSAC,

does not require the above information in advance. It can adjust the admission

policy according to the practical requirements and demands (e.g., rental fees, arrival

rate, and total resources of the system) to maximize a long-term average reward.

Therefore, without loss of generality, the system has three types of resources, i.e.,

computing, storage, and radio bandwidth. Each Metaverse function is assumed to

require a similar amount of resources as those of the Network Slice in 5G Network

Slicing [156], e.g., 40 GB for storage, a bandwidth of 40 MHz, and 40 GFLOPS/s

for computing.

5.4 Performance Evaluation 141

In our proposed algorithm, i.e., iMSAC, the settings are as follows. For the ϵ-

greedy policy, the value of ϵ is gradually decreased from 1 to 0.01. The discount

factor γ is set to 0.9. We use Pytorch to build the Q-network and the target Q-

network. They have the same architecture as shown in Figure 2.4. During the

learning process, typical hyperparameters of DNN are selected as those in [150]

and [31], e.g., the learning rate of the Q-network is set at 10−3 and the target-Q

network’s parameters are copied from the parameters of Q-network at every 104

steps.

Recall that our proposed solution consists of two important elements, i.e., the

intelligent algorithm iMSAC and MetaSlice analysis with the MetaInstance tech-

nique (MiT). With MetaInstance, functions can be reused, leading to a significant

improvement in resource utilization. Meanwhile, the iMSAC can help the Admission

Controller to obtain an optimal policy without requiring the complete information

about the arrival and departure of MetaSlice in advance. Therefore, we compare

our proposed solution, i.e., iMSAC+MiT, with three counterpart approaches: (i) iM-

SAC, (ii) Greedy policy [99] where the MetaSlicing’s Admission Controller accepts

a request if the system has enough resources for the request, and (iii) Greedy policy

with the MetaInstance technique, i.e., Greedy+MiT. Recall that since the iMSAC

approach does not leverage MetaInstance and is a RL-based resource management,

it can be straightforwardly adopted to various scenarios, such as network slicing.

Thus, performance of iMSAC can provide us insights on how existing admission

control approaches perform in Metaverse.

5.4.2 Simulation Results

Simulations are conducted to gain insights into our proposed solution, i.e., iM-

SAC+MiT. First, we will investigate the convergence rate of our proposed algorithm

iMSAC. Then, we evaluate the proposed solution in different scenarios to study

5.4 Performance Evaluation 142

1 10 20 30 40 50

Iteration (7.5x103)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
w

a
rd iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

Figure 5.3 : Convergence rate of iMSAC.

impacts of important system parameters, e.g., the available system resources, im-

mediate rewards reflecting the revenue of the MISP, and the maximum number of

MetaSlices sharing one function that is one of the most important parameters of the

MISP.

5.4.2.1 Convergence Rate

Figure 5.3 shows the convergence rates of our proposed iMSAC algorithm in two

scenarios with and without the MetaInstance technique. In this experiment, we set

storage, radio bandwidth, and computing resources to 1200 GB, 1200 MHz, and

1200 GFLOPS/s, respectively. In other words, the system can support up to 30

functions in total. The average rewards obtained by Greedy+MiT and Greedy are

also presented for comparisons. Specifically, the learning curves of iMSAC+MiT and

iMSAC have a very similar trend. As shown in Figure 5.3, both of them gradually

converge to the optimal policy after 6×104 iterations. However, the iMSAC+MiT’s

average reward is stable at 0.9, which is 2.25 times greater than that of the iMSAC.

Similarly, the Greedy+MiT’s average reward is much greater (i.e., 3.5 times) than

that of the Greedy. Thus, these results clearly show the benefits of the iMSAC and

5.4 Performance Evaluation 143

the MetaInstance technique. In particular, while the MetaInstance can help to max-

imize the resource utilization for the system, the iMSAC can make the Admission

Controller learn the optimal policy to maximize the long-term average reward.

5.4.2.2 Performance Analysis

We now investigate the robustness of our proposed solution, i.e., iMSAC+MiT,

in different scenarios. First, we vary the storage, radio, and computing resources

from 400 GB, 400 MHz, and 400 GFLOPS/s to 2200 GB, 2200 MHz, and 2200

GFLOPS/s, respectively. In other words, the total number of functions supported

by the system is varied from 10 to 55. The policies of iMSAC+MiT and iMSAC

are obtained after 3.75×105 learning iterations. In this scenario, two metrics for

evaluating the Admission Controller’s performance are average reward and accep-

tance probability since they clearly show the effectiveness of the admission policy

in terms of the income for MISP (i.e., average reward) and the service availabil-

ity for end-users. Figure 5.4(a) clearly shows that as the total amount of system

resources increases, the average rewards of all approaches increase. This is due to

the fact that the higher the total resource is, the higher number of MetaSlice the

system can host, and thus the greater revenue the system can achieve. It is observed

that the proposed algorithm iMSAC+MiT always obtains the highest average re-

ward, up to 80% greater than that of the second-best policy in this scenario, i.e.,

Greedy+MiT. Similarly, Figure 5.4(b) shows that iMSAC+MiT achieves the highest

acceptance probability for an arriving MetaSlice request, up to 47% greater than

that of the Greedy+MiT, i.e., the second-best policy. In addition, Figures 5.4(a)

and (b) demonstrate the benefit of MetaInstance. In particular, it helps the system

to increase the average rewards and acceptance rates of both iMSAC and Greedy

by up to 396% and 222%, respectively.

To gain more insights, we look further at the acceptance probability for each class

5.4 Performance Evaluation 144

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
v
e
ra

g
e
 R

e
w

a
rd

iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

(a) Average rewards (b) Acceptance probability (c) iMSAC+MiT

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

10 15 20 25 30 35 40 45 50 55

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

(d) iMSAC (e) Greedy+MiT (f) Greedy

Figure 5.4 : Vary the total number of system resources.

of MetaSlice. As shown in Figures 5.4(c) and (d), for the iMSAC+MiT and iMSAC,

the acceptance probabilities of class-3 are always higher than those of other classes

when the number of resources increases. Meanwhile, Greedy+MiT and Greedy

accept requests from all the classes at almost the same probability, as depicted in

Figures 5.4(e), and (f). Recall that the arrival rate of class-3 is the lowest value (i.e.,

λ3 =25), while the immediate reward for accepting requests class-3 is the greatest

value, i.e., r3 = 4. Thus, the proposed algorithm iMSAC can learn and adjust its

policy to achieve the best result. More interestingly, for the iMSAC+MiT results,

the acceptance probability of class-3 has significant gaps (up to 50% greater than

those of other classes) when the total resources are little (i.e., less than 20), as shown

in Figure 5.4. This stems from the fact that if the available resources are low, the

Admission Controller should reserve resources for future requests from class-3 with

5.4 Performance Evaluation 145

1 3 5 7 9 11 13 15

NL

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 R

e
w

a
rd

s

iMSAC+MiT

Greedy+MiT

1 3 5 7 9 11 13 15

NL

0.0

0.1

0.2

0.3

0.4

0.5

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

iMSAC+MiT

Greedy+MiT

1 3 5 7 9 11 13 15

NL

10

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

M
e
ta

In
s
ta

n
c
e
s

iMSAC+MiT

Greedy+MiT

(a) Average rewards (b) Acceptance probability (c) Average No. of MetaInstances

Figure 5.5 : Varying NL

the highest reward. In contrast, if the system has more available resources, the

Admission Controller should accept requests from all classes more frequently. This

observation is also shown in Figure 5.4(d), where the MetaInstance is not employed.

Next, we investigate one of the most important factors in the MetaSlicing frame-

work, which is the maximum number of MetaSlices that share the same function,

denoted by NL. In this experiment, we set the resources the same as those in Fig-

ure 5.3, and other settings are set the same as those in Section 5.4.1. Figure 5.5(a)

shows that as the value of NL increases from 1 to 15, the average rewards obtained

by our proposed solution iMSAC+MiT and Greedy+MiT first increase and then

stabilize at around 0.88. Remarkably, when the value of NL is small (i.e., less than

8), the iMSAC+MiT’s average reward is always greater than that of Greedy+MiT,

up to 122%. The reason is that as NL increases, meaning that more MetaSlices can

share the same function, the number of MetaSlices that can be deployed in the sys-

tem increases. In other words, the MetaSlicing system capacity increases according

to the increase of NL. As such, the Admission Controller can accept more requests

to obtain greater rewards when NL increases. In addition, the thresholds in average

rewards for both approaches originate from the fact that the arrival and departure

processes of class i follow the Poison and exponential distributions with a fixed mean

λi and 1/µi.

5.4 Performance Evaluation 146

1 2 3 4 5 6 7 8 9 10

r3

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 R

e
w

a
rd

iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

1 2 3 4 5 6 7 8 9 10

r3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

1 2 3 4 5 6 7 8 9 10

r3

0

1

2

3

4

5

6

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
u

n
n

in
g

 M
e
ta

S
li

c
e
s

iMSAC+MiT

iMSAC

Greedy+MiT

Greedy

(a) Average rewards (b) Acceptance probability (c) Average No. of running MetaSlices

Figure 5.6 : Vary the immediate reward of class-3.

In terms of the acceptance probability for a MetaSlice request, similar observa-

tions can be made in Figure 5.5(b). Specifically, our proposed solution maintains

higher request acceptance probabilities (up to 34%) than that of the Greedy+MiT

when NL is less than 8. As NL increases, the acceptance probabilities of both ap-

proaches increase, then they are stable at around 0.46 when NL > 4 for iMSAC+MiT

and NL > 7 for Greedy+MiT. The reasons are similar as those in Figure 5.5(a). In

particular, the higher the system capacity is, the higher the request acceptance

probability is. Unlike the above metrics, the average numbers of MetaInstances

decrease for both approaches as the value of NL increases from 1 to 15, as shown

in Figure 5.5(c). The reason is that an increase of NL can result in increasing the

number of MetaSlices in a MetaInstance, thereby decreasing the number of MetaIn-

stances in a system with a fixed capacity. The above observations in Figure 5.4 and

Figure 5.5 show the superiority of our proposed approach compared with others,

especially when the system resources are very limited.

We continue evaluating our proposed solution in the case where the immediate

reward of class-3, i.e., r3, is varied from 1 to 10. In this experiment, we set the

storage, radio, and computing resources to 400 GB, 400 MHz, and 400 GFLOPS/s,

respectively. The arrival rate vector of MetaSlice is set to λ=[60, 50, 40] to explore

the robustness of our proposed solution. In Figure 5.6(a), as r3 increases, the average

5.4 Performance Evaluation 147

1 2 3 4 5 6 7 8 9 10

r3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

1 2 3 4 5 6 7 8 9 10

r3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

(a) iMSAC+MiT (b) iMSAC

1 2 3 4 5 6 7 8 9 10

r3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

1 2 3 4 5 6 7 8 9 10

r3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

(c) Greedy+MiT (d) Greedy

Figure 5.7 : The acceptance probability per class when varying the immediate reward
of class-3.

rewards obtained by all approaches increase. In particular, the results demonstrate

that our proposed solution, i.e., iMSAC+MiT, consistently achieves the highest

average reward, up to 111% greater than that of the second-best, i.e., Greedy+MiT

when r3=1. Interestingly, when r3 is small (i.e., less than 4), the iMSAC’s average

rewards are lower than those of the Greedy+MiT. However, when r3 becomes larger

than or equal to 4, the average rewards obtained by iMSAC are higher than those

of the Greedy+MiT.

Similarly, Figures 5.6(b) and (c) show that our proposed solution always obtains

the highest values compared to those of other approaches in terms of the acceptance

5.4 Performance Evaluation 148

probability and average number of running MetaSlices when r3 increases from 1 to

10. Interestingly, even with a decrease in the acceptance probability and average

number of running MetaSlices, the average rewards obtained by the iMSAC+MiT

increase as r3 is varied from 1 to 10, as shown in Figure 5.6. The reason is that

when the immediate reward of class-3 is very high (e.g., r3=10) compared to those

of class-1 and class-2 (i.e., 1 and 2, respectively), the iMSAC+MiT reserves more

resources for the future requests of class-3.

We now further investigate the above observations when varying the immedi-

ate reward of requests class-3 by looking deeper at the acceptance probability per

class for each approach. Figures 5.7(a)-(d) illustrate the acceptance rate per class

according to the policies obtained by the proposed and counterpart approaches. In

Figure 5.7(c), the Greedy+MiT’s acceptance probabilities for all classes are almost

the same, at around 0.06, when the immediate reward of class-3 increases from 1 to

10. A similar trend is observed for the Greedy but at a lower value, i.e., 0.04, in

Figure 5.7(d). In contrast to Greedy and Greedy+MiT, iMSAC+MiT’s acceptance

probability for class-3 increases while those of other classes decrease as r3 increases

from one to 10, as shown in Figure 5.7(a). More interestingly, when the immediate

reward of class-3 requests is small (i.e., r3 < 2), class-3 requests have the lowest

acceptance probability compared to those of other classes. However, when the im-

mediate reward of class-3 requests is larger than or equal to 2, class-3 requests will

achieve the highest acceptance probability compared with those of other classes.

Moreover, when r3 > 4, the acceptance probability for class-3 requests obtained by

the iMSAC+MiT is stable at around 0.16.

Similar to the iMSAC+MiT, the iMSAC’s acceptance probability for class-3

requests also increases until reaching a threshold with a lower value, i.e., around 0.14,

compared to that of the iMSAC+MiT. Furthermore, the acceptance probability of

class-3 requests obtained by the iMSAC-base solutions is up to four-time greater

5.5 Conclusion 149

than those of the Greedy-based solutions. Thus, the iMSAC+MiT and iMSAC

can obtain a good policy in which the acceptance probability of a class increases

if its reward increases compared with the rewards of other classes, and vice versa.

Note that our proposed solution does not need complete information about the

MetaSlice’s arrival and departure processes in advance. However, as observed, the

proposed solution can always achieve the best results in all scenarios when we vary

important parameters of the system.

The above findings underscore the efficacy of the proposed MetaSlicing frame-

work in managing multi-tier resource architecture to meet requirements of Metaverse

applications. The system must balance between accepting more requests (increasing

acceptance probability) and optimizing the allocation of these resources to maximize

rewards. The integration of MiT with the intelligent iMSAC algorithm enables a

dynamic and efficient allocation of resources, significantly outperforming conven-

tional approaches and demonstrating the potential for real-time, high-performance

Metaverse application management.

5.5 Conclusion

In this chapter, we have proposed two innovative techniques, i.e., the appli-

cation decomposition and the MetaInstance, to maximize resource utilization for

the Metaverse built on a multi-tier computing architecture. Based on these tech-

niques, we have developed a novel framework for the Metaverse, i.e., MetaSlicing,

that can smartly allocate resources for MetaSlices, i.e., Metaverse applications, to

maximize the system performance. Moreover, we have proposed a highly effective

framework based on sMDP together with an intelligent algorithm, i.e., iMSAC, to

find the optimal admission policy for the Admission Controller under the high dy-

namics and uncertainty of resource demands. The extensive simulation results have

clearly demonstrated the robustness and superiority of our proposed solution com-

5.5 Conclusion 150

pared with the counterpart methods as well as revealed key factors determining the

system performance. As Metaverse continues to evolve and expand, there will be

enormous potential research topics that we can explore. For example, elastic re-

source allocation approaches can be developed to further enhance the efficiency of

using MetaSlices. In particular, allocated resources of a MetaSlice can be scaled dy-

namically according to the resource demand of this MetaSlice during operation, thus

further improving resource utilization. Another topic that we can further consider

is methods for ensuring interoperability between different MetaSlices in the Meta-

verse. This could include developing standards and protocols for communication

between different MetaSlices and mechanisms for managing conflicts and ensuring

consistency between Metaslices.

151

Chapter 6

Countering Eavesdroppers with

Meta-learning-based Cooperative Ambient

Backscatter Communications

The previous chapter has addressed the resource management challenges in 6G net-

works to facilitate emerging Metaverse applications. This chapter introduces a novel

lightweight framework using ambient backscattering communications, an emerging

technology enabling 6G networks [1], to counter eavesdroppers. In particular, our

framework divides an original message into two parts. The first part, i.e., the active-

transmit message, is transmitted by the transmitter using conventional RF signals.

Simultaneously, the second part, i.e., the backscatter message, is transmitted by an

ambient backscatter tag that backscatters upon the active signals emitted by the

transmitter. Notably, the backscatter tag does not generate its own signal, making

it difficult for an eavesdropper to detect the backscattered signals unless they have

prior knowledge of the system. Here, we assume that without decoding/knowing

the backscatter message, the eavesdropper is unable to decode the original message.

Even in scenarios where the eavesdropper can capture both messages, reconstruct-

ing the original message is a complex task without understanding the intricacies of

the message-splitting mechanism. A challenge in our proposed framework is to ef-

fectively decode the backscattered signals at the receiver, often accomplished using

the maximum likelihood (MLK) approach. However, such a method may require a

complex mathematical model together with perfect channel state information (CSI).

To address this issue, we develop a novel deep meta-learning-based signal detector

that can not only effectively decode the weak backscattered signals without requir-

Easvesdropper

Direct signals
dmn

b

Backscatter signalsDirect

nal
sig

s
mn

6.1 System Model 152

Transmitter Receiver

The wired connection for forwarding
the AmB message to the tag

Tag

Figure 6.1 : Anti-eavesdropping attack system model.

ing perfect CSI but also quickly adapt to a new wireless environment with very little

knowledge. Simulation results show that our proposed learning approach, without

requiring perfect CSI and complex mathematical model, can achieve a bit error ratio

close to that of the MLK-based approach. They also clearly show the efficiency of

the proposed approach in dealing with eavesdropping attacks and the lack of training

data for deep learning models in practical scenarios.

This chapter is organized as follows. Our proposed anti-eavesdropping system

and the channel model are discussed in Sections 6.1 and 6.2. Then, Sections 6.3

and 6.4 present the MLK-based detector and our proposed DL-based detector for

the AmB signal, respectively. Our proposed deep meta-learning-based approach is

presented in Section 6.5, and Section 6.6 discusses our simulation results. Finally,

Section 6.7 wraps up this chapter with a conclusion.

6.1 System Model

This work considers a wireless network with the presence of an eavesdropper, as

shown in Figure 6.1. Here, the transmitter has a single antenna, while the receiver

is equipped with M antennas. The eavesdropper aims to wiretap the transmitted

signals to gather the information in this channel. To cope with the eavesdropper, this

work deploys a low-cost and low-complexity tag equipped with the AmB technology,

allowing it to send data by backscattering ambient RF signals without producing

active signals as in conventional active transmissions. Specifically, the AmB tag

6.1 System Model 153

has two operation states, including (i) the absorbing state, where the tag does not

reflect incoming signals, and (ii) the reflecting state, where the tag reflects incoming

signals. In this way, the AmB tag can transmit data without using any active RF

components. Before sending a message to the receiver, the transmitter first encodes

it into two messages: (i) an active message for the transmitter and (ii) an AmB

message forwarded to the AmB tag via the wired channel. Note that the use of a

single-antenna transmitter stems from our study’s aim to develop a lightweight anti-

eavesdropping framework, similar to [82, 83]. If beamforming were to be performed

at a multiple-antenna transmitter, it would necessitate feedback from the AmB tag,

leading to increased system complexity.

The active message is then directly transmitted by the transmitter to the re-

ceiver using the conventional RF transmission method. At the same time, when the

transmitter transmits the active message, the AmB tag will leverage its RF signals

to backscatter the AmB message [69, 157]. Thus, the receiver will receive two data

streams simultaneously, one over the conventional channel dmn and another over the

backscatter channel bmn, as depicted in Figure 6.1. Note that instead of producing

active signals, the AmB tag only backscatters/reflects signals. Therefore, wiretap-

ping AmB signals is intractable unless the eavesdropper has prior knowledge about

the system configuration, i.e., the usage of AmB and the exact backscatter rate.

As a result, our system can provide a new deception strategy for data transmis-

sions. Specifically, the eavesdropper is attracted by the active signals generated by

the transmitter, so it pays less attention to (or is even unaware of) the presence of

AmB communications. Here, we assume that without obtaining information from

the AmB message, the eavesdropper cannot decode the information from the origi-

nal message. Moreover, even in the worse case in which the eavesdropper knows the

presence of AmB communication in the system, they cannot obtain the original mes-

sage straightforwardly without the knowledge about the system’s message-splitting

...y1(3) y2(3) y5(3)y3(3) y4(3) y6(3) yN(3)

...f 1 f 2 f 3 f 4 f 5

6.1 System Model 154

The	Original	Message

K	bits Split	the	original	message

Backscatter	message Active	transmit	message

Backscatter		one	bit
over	N	RF	resource	symbols

Recieved	backscattered	signals	at	the	receiver

o(1) o(4) o(7)o(2) o(3) o(5) o(6) ... o(O)

o(1) o(4) o(7) ... o(o) ... o(2) o(3) o(5) o(6) ... o(O)

Divide	the	backscatter	message	into
multiple	I-bit	Backscatter	frames

One	Backscatter	frame	(I	bit)
contains	F	pilot	bits

	and	(I-F)	information	bits
x(2) ... x(F) ... x(i)x(1) ... x(I)

Pilot	bits

Figure 6.2 : Message-splitting mechanism.

mechanism. As a result, our proposed approach can deal with eavesdropping attacks

in wireless systems.

The detail of our proposed encoding mechanism is depicted in Figure 6.2. Specif-

ically, at the beginning, an encoding mechanism is used to split the original message

into two parts, i.e., backscatter message and active transmit message. Note that our

framework here and following analysis can adopt any encoding mechanism, and the

design of encoding mechanism is out of the scope of this work. Since the AmB rate

is usually lower than the active transmission rate, the AmB message’s size can be

designed to be smaller than the active message’s size. As such, the AmB message is

constructed by taking bits at every K bits of the original message. By doing so, the

system security under the presence of the eavesdropper can be significantly improved

because the eavesdropper is unable to derive the message splitting mechanism and

the backscatter message. Note that to improve the detection performance, we in-

corporate F pilot bits into the AmB frame, as depicted in Figure 6.2. The specific

utilization and significance of these pilot bits will be extensively discussed in detail

6.2 Channel Model 155

Table 6.1 : Table of Notations

Notation Description

M The number of antennas
I The number of bits in each backscatter frame

dmn The conventional channel
bmn The backscatter channel
F The number of pilot bits
ymn The signal received at the m-th antenna at the n-th time
y The receiver’s total received signals

σmn The noise following CSCG
Pt The transmitter’s transmit power
Ptr The average power received by the receiver
λ The wave length

Lr, Lb The transmitter-receiver and transmitter-tag distances
Gt,Gr The antenna gains of the transmitter and the receiver
stn The signal transmitted by the transmitter at time instant n

fdm, fbm The fading of the transmitter-receiver and transmitter-tag-receiver links
Pb The average power received by the AmB tag
Gb The antenna gain of the AmB tag
gr The Rayleigh fading of the transmitter-tag link
ln The active signals from the transmitter at the AmB tag
e The state of the AmB tag
sbn The backscattered signals
γ The reflection coefficient
αdt The average SNRs of transmitter-to-receiver channel
αbt The average SNRs of transmitter-tag-receiver channel
fd The channel response vectors of transmitter-to-receiver channel
fb The channel response vectors of transmitter-tag-receiver channel

Z(·) The binary entropy function
θ0 and θ1 The probability of backscattering bit 0 and bit 1, respectively
V A realization of y

p(V|e) The conditional probability density function
Y(i) The sequence of received signal corresponding to the period of the i-th AmB symbol

in Section 6.4.1.

6.2 Channel Model

This section presents the channel model of our considered system in detail. In

particular, the AmB rate should be significantly lower than the sampling rate of the

transmitter’s signals so that the receiver can decode the backscattered signals with

low BERs [69, 70, 88]. Formally, the transmit signals’ sampling rate is assumed to

6.2 Channel Model 156

be N times higher than the AmB rate. In other words, each bit of the backscatter

message is backscattered over N transmitter symbols. In the considered system,

the receiver has M antennas (M ≥ 1). Let ymn denote the signal that the m-th

antenna of the receiver receives at the n-th time. As illustrated in Figure 6.1,

ymn comprises (i) the active signal transmitted on the direct link, (ii) the signals

backscattered by the AmB tag on the backscatter link, and (iii) noise from the

surrounding environment. As such, ymn can be expressed as follows:

ymn = dmn︸︷︷︸
direct link

+ bmn︸︷︷︸
backscatter link

+ σmn, (6.1)

where σmn is the noise following the unit-variance and zero-mean circularly symmet-

ric complex Gaussian (CSCG), denoted by σmn ∼ CN (0, 1). In the following, the

signals on the direct and backscatter links are formally formulated.

6.2.1 Direct Channel

On the direct channel, i.e., the transmitter-receiver link, the average power re-

ceived by the receiver is formulated by

Ptr =
κPtGtGr

Lr
υ , (6.2)

where Pt is the transmitter’s transmit power, and κ = (λ
4π
)
2
in which λ is the wave-

length, υ denotes the path loss exponent. Lr is the transmitter-receiver distance.

The antenna gains of the transmitter and the receiver are denoted by Gt and Gr,

respectively. At time instant n, we denote the signal transmitted by the transmitter

as stn. Then, at the receiver’s m-th antenna, the direct link signal is given by

dmn = fdm
√
Ptrstn, (6.3)

6.2 Channel Model 157

where fdm represents the Rayleigh fading such that E[|fdm|2] = 1 [88]. Note that

the proposed AmB tag uses the AmB communication technology to backscatter stn

without using any dedicated energy sources. Since the AmB tag does not know the

active message, stn appears as random signals [82,88,158]. Therefore, we can assume

that stn ∼ CN (0, 1).

6.2.2 Ambient Backscatter Channel

As mentioned, the AmB tag backscatters the transmitter’s active signals to trans-

mit AmB messages. In the following, we present the formal formulation of the AmB

signals at the receiver. Firstly, the average power received by the AmB tag can be

defined by

Pb =
κPtGtGb

Lb
υ , (6.4)

where Gb denotes the antenna gain of the AmB tag, and Lb denotes the transmitter-

tag distance. Let gr denote the Rayleigh fading of the link from the transmitter to

the AmB tag, then the active signals from the transmitter at the AmB tag is given

by

ln =
√
Pbgrstn. (6.5)

As discussed above, the key idea of the AmB communication is to absorb or reflect

surrounding ambient RF signals to convey information without generating any active

signals. As such, we denote e as the state of the AmB tag. Specifically, e = 1 when

the tag reflects the transmitter’s signals, i.e., transmitting bits 1, and e = 0 when

the tag absorbs the transmitter’s signals, i.e., transmitting bits 0. Because each

backscattered bit is backscattered over N transmitter’s symbols, state e of the AmB

tag remains unchanged during this period. The backscattered signals then can be

given by

sbn = γlne, (6.6)

6.2 Channel Model 158

where γ is the reflection coefficient. It is worth noting that γ captures all properties

of the AmB tag such as load impedance and antenna impedance [158]. Let fbm

represent the Rayleigh fading of the AmB channel, and Le denotes the AmB tag-to-

receiver distance. Here, we can assume that E[|fbm|2] = 1 and E[|gr|2] = 1 without

loss of generality [88]. Then, the signals in the AmB link received by the m-th

antenna is given by

bmn = fbm

√
GbGrκ

Le
υ sbn

= fbm

√
GbGrκ

Le
υ γe

(
gr
√
Pbstn

)
= fbme

(
gr

√
κ|γ|2GbGrPb

Le
υ stn

)
= fbme

(
gr

√
κ|γ|2GbGrκPtGtGb

Le
υLb

υ stn

)
= fbme

(
gr

√
κ|γ|2PtrGb

2Lr
υ

Lb
υLe

υ stn

)
.

(6.7)

By denoting α̃r =
κ|γ|2Gb

2Lr
υ

Lb
υLe

υ , (6.7) can be rewritten as

bmn = fbme
(
gr
√
α̃rPtrstn

)
. (6.8)

6.2.3 Received Signals

Now, we can obtain the received signals at the receiver’s m-th antenna by sub-

stituting (6.3) and (6.8) to (6.1) as follows:

ymn = dmn︸︷︷︸
direct link

+ bmn︸︷︷︸
backscatter link

+σmn,

= fdm
√
Ptrstn + fbme

(
gr
√
α̃rPtrstn

)
+ σmn.

(6.9)

6.2 Channel Model 159

Let αdt ≜ Ptr and αbt ≜ α̃rPtr denote the average signal-to-noise ratios (SNRs) of the

transmitter-to-receiver link and the transmitter-tag-receiver channel (i.e., backscat-

ter link), respectively. Hence, (6.9) is rewritten as follows:

ymn = fdm
√
αdtstn︸ ︷︷ ︸

direct link

+ fbme
(
gr
√
αbtstn

)
︸ ︷︷ ︸

backscatter link

+σmn. (6.10)

Since the receiver has M antennas, the channel response vectors corresponding

to the backscatter and the direct channels and are respectively given by

fb = [fb1, . . . , fbm, . . . , fbM]T,

fd = [fd1, . . . , fdm, . . . , fdM]T.

(6.11)

Then, the receiver’s total received signals is expressed as

yn = fd
√
αdtstn︸ ︷︷ ︸

direct link

+ fbe
(
gr
√
αbtstn

)
︸ ︷︷ ︸

backscatter link

+σn, (6.12)

where σn = [σ1n, . . . , σmn, . . . , σMn]
T.

This work considers that there are I bits in each backscatter frame, i.e.,

x = [x(1), . . . , x(i), . . . , x(I)]. (6.13)

To enhance the receiver’s decoding process, F pilot bits are placed in each backscat-

ter frame, so there are I−F information bits in each backscatter frame. We consider

that the AmB tag and the receiver know these bits in advance and use them to es-

timate the AmB tag-receiver channel coefficients. More details about the use of

pilots will be discussed in Section 6.4. We assume that during one AmB frame, the

AmB tag-receiver channel is invariant [82]. Since each backscatter bit is backscat-

tered over N symbols transmitted by the transmitter, we can express the receiver’s

6.2 Channel Model 160

received signals during the i-th AmB symbol duration by:

y(i)
n = fd

√
αdts

(i)
tn + fbe

(i)
(
gr
√
αbts

(i)
tn

)
+ σ(i)

n , (6.14)

where the backscatter state e(i) equals backscatter bit x(i), i.e., e(i) = x(i), ∀i =

1, 2, . . . , I, and n = 1, 2, . . . , N .

Note that for the AmB tag, the transmitter’s signals appear as random sig-

nals and are unknown in advance. Therefore, the AmB rate’s closed-form (denoted

RAmB) cannot be obtained [82,157]. For that, in Theorem 6.1, we provide an alter-

native method to derive the AmB system’s idealized throughput model when N = 1.

Let θ0 and θ1 denote the probability of backscattering bit 0 and bit 1, respectively.

V denotes a realization of y, and p(V|e) denotes the conditional probability density

function. Theorem 1 is as follows.

Theorem 6.1. The maximum achievable rate of the AmB tag is given as

R∗
AmB = Z(θ0)−

∫
V

(
θ1p(V|e = 1) + θ0p(V|e = 0)

)
Z(µ0)dV , (6.15)

where µ0 = p(V|e = 0), and Z(·) represents the binary entropy function.

Proof. The proof of Theorem 6.1 is provided in Appendix B.1.

It can be observed from (6.15) that the maximum achievable rate R∗
AmB de-

pends on the probability of backscattering bit 0 θ0. We will explore this dependency

through our simulations in Section 6.6. Let Y(i) = [y
(i)
1 , . . . ,y

(i)
N]T denote the se-

quence of received signal corresponding to the period of the i-th AmB symbol. We

describe our proposed AmB detectors that use MLK and DL to recover the original

bits x(i) from these sequences of received signals in the following sections.

6.3 AmB Signal Detector based on Maximum Likelihood 161

6.3 AmB Signal Detector based on Maximum Likelihood

Recall that signals backscattered by the AmB tag can be regarded as the active

signals’ background noise, making them very challenging to be detected [63, 80].

This section presents the AmB signal decoding based on MLK. Note the MLK-

based detector can be considered as an optimal signal detector, so it can provide

the system’s upper-bound performance for comparison purpose.

6.3.1 Received Signals’ Likelihood Functions

The aim of MLK-based detector is to derive the received signals’ likelihood func-

tions. In particular, if the AmB tag transmits bits “0” (corresponding to e(i) = 0),

the receiver only receives signals solely from the transmitter-to-receiver channel.

Whereas, if the AmB tag transmits bits “1” (corresponding to e(i) = 1), the receiver

will receive signals from both direct and AmB channels. Consequently, the channel

statistical covariance matrices for these scenarios are expressed as [82], [158]

R1 = (k1 + k2)(k1 + k2)
H + IM , if e

(i) = 1,

R0 = k1k
H
1 + IM , if e

(i) = 0,

(6.16)

where k1 = fd
√
αdt, k2 = grfb

√
αbt, (·)H is the conjugate transpose operator, and

IM is the identity matrix with size M ×M . It is important to note that the es-

timation of CSI can be performed by various techniques which are well studied in

the literature [159, 160]. Similar to [82], the noise and the transmitter’s RF signals

are assumed to follow the CSCG distribution∗. As a result, y
(i)
n also follows the

CSCG [83], i.e.,

y(i)
n ∼

 CN (0,R0) , if e(i) = 0,

CN (0,R1) , if e(i) = 1.
(6.17)

∗Note that this information is not required by our proposed DL-based AmB signal detector.

6.3 AmB Signal Detector based on Maximum Likelihood 162

Now, the conditional probability density function (PDFs) of the received signals y
(i)
n

given the backscatter state e(i) is computed by

p(y(i)
n |e(i) = 0) =

1

πM |R0|
e−y

(i)
n

H
R−1

0 y
(i)
n ,

p(y(i)
n |e(i) = 1) =

1

πM |R1|
e−y

(i)
n

H
R−1

1 y
(i)
n ,

(6.18)

where | · | and (·)−1 represent the determinant and inverse of a matrix, respectively.

From (6.18), we now can express the likelihood functions H(·) for the sequence of

received signals as follows [82,88]:

H(Y(i)|e(i) = 1) =
N∏
n=1

1

πM |R1|
e−y

(i)
n

H
R−1

1 y
(i)
n ,

H(Y(i)|e(i) = 0) =
N∏
n=1

1

πM |R0|
e−y

(i)
n

H
R−1

0 y
(i)
n .

(6.19)

6.3.2 Maximum Likelihood Detector

Let ẽ(i) be the estimation of e(i). From (6.19), the MLK hypothesis in (6.20) can

be used to obtain the backscattered state e(i) [82], [158].

ẽ(i) =

 1, H(Y(i)|e(i) = 0) < H(Y(i)|e(i) = 1),

0, H(Y(i)|e(i) = 0) > H(Y(i)|e(i) = 1).
(6.20)

Based on (6.19) and (6.20), the MLK hypothesis can be given by

ẽ(i)=

1,
∏N

n=1
1

πM |R0|e
−y

(i)
n

H
R−1

0 y
(i)
n <

∏N
n=1

1
πM |R1|e

−y
(i)
n

H
R−1

1 y
(i)
n ,

0,
∏N

n=1
1

πM |R0|e
−y

(i)
n

H
R−1

0 y
(i)
n >

∏N
n=1

1
πM |R1|e

−y
(i)
n

H
R−1

1 y
(i)
n .

(6.21)

6.4 Deep Learning-Based Signal Detector 163

By applying logarithmic operations to (6.21), we can derive the following expression

ẽ(i) =

 1,
∑N

n=1 y
(i)
n

H
(R−1

0 −R−1
1)y

(i)
n > N ln |R1|

|R0| ,

0,
∑N

n=1 y
(i)
n

H
(R−1

0 −R−1
1)y

(i)
n < N ln |R1|

|R0| .
(6.22)

Then, the backscattered bit x(i) can be derived based on ẽ(i). However, for that,

MLK requires perfect CSI for both conventional and AmB transmissions, making its

less efficient in practice, especially for AmB communications where backscattered

signals are very weak [82].

6.4 Deep Learning-Based Signal Detector

As discussed in Section 6.3, the traditional approaches for backscattered signal

detection (i.e., MLK-based detectors) require accurate channel statistical covariance

matrices. However, the uncertainty of the wireless environment makes it difficult

for the system to estimate these matrices accurately. To that end, we develop a

DL-based signal detector that can overcome this challenge. We first discuss the

data preprocessing procedure, aiming to construct a dataset for the training phase

of the DL detector, and then our proposed DNN architecture is presented in detail.

6.4.1 Data Preprocessing

In practice, the raw data (e.g., received signals) may not be qualified to be used

directly to train a DL model as it can lead to a poor or even useless trained model.

Therefore, data preprocessing is an essential step before training. In this work,

the data preprocessing steps are as follows. Recall that y
(i)
n denotes the received

AmB signals, and Y(i) is the sequence of y
(i)
n corresponding to the i-th AmB symbol

period. Instead of directly using Y(i) for model training, the sample covariance

matrix S(i) of the received signals, defined by (6.23), can be used as the training

6.4 Deep Learning-Based Signal Detector 164

Input layer

Th
re

e
fu

lly
 c

on
ne

ct
ed

 la
ye

rs

d

d0

d1

Output
layer

Bits
...1010011

Figure 6.3 : Our proposed AmB signal detector based on DL.

data for DL models.

S(i) =
1

N

N∑
n=1

y(i)
n y(i)

n

H
. (6.23)

The main reason is that the sample covariance matrix can capture the relationship

between received signals corresponding to an AmB symbol period, thus providing

more insights on received signals than the signals themselves. In addition, the

performance of a signal detector is proportional to the number of RF symbols cor-

responding to an AmB symbol, i.e., N . In other words, the higher value N is, the

better performance the detector can achieve. Typically, N is often set to a higher

value than the number of antennas [82, 83, 88], and thus the size of S(i) is smaller

than that of Y(i). Therefore, training the DNN model with the sample covariance

matrix S(i) can not only preserve all crucial information of the received signals but

also reduce the training data size without affecting the learning efficiency [82, 88].

Note that conventional MLK-based detectors explicitly require accurate estimation

of channel coefficients (i.e., k1 and k2), resulting in high computational complexity,

especially for a system with multiple antennas [161]. To alleviate this challenge, pilot

6.4 Deep Learning-Based Signal Detector 165

bits are leveraged to indirectly capture the channel coefficients, thus improving the

accuracy of the covariance matrix estimation. Specifically, we use a sequence of F

pilot bits where the first F/2 bits are “0”, and the rest are “1”. The detector knows

these bits in advance so that the channel coefficients can be implicitly obtained by

inspecting the received signals corresponding to them. In this work, the averages

of S(i) of received signals corresponding to pilot bits “1” and “0” are leveraged to

indirectly capture the channel coefficients, which are given as follows:

R̄1 =
2

FN

F/2∑
i=1

N∑
n=1

y(i)
n y(i)

n

H
, when e(i) = 1,

R̄0 =
2

FN

F/2∑
i=1

N∑
n=1

y(i)
n y(i)

n

H
, when e(i) = 0.

(6.24)

In this way, the detector can use R̄0 and R̄1 to effectively detect AmB sig-

nals without requiring channel coefficients explicitly. In particular, if the AmB tag

backscatters bit “0”, the sample covariance matrix S(i) would be similar to R̄0 but

different from R̄1. In contrast, if bit “1” is backscattered, the sample covariance

matrix S(i) would be similar to R̄1 but different from R̄0. It is worth noting that

these similarities and differences between S(i) and the averaged covariance matrices

(i.e., R̄0 and R̄1) can be better represented by multiplying S(i) with the inverse of

these matrices. As such, the data for training our DL model is given as follows:

D
(i)
1 = S(i)R̄−1

1 ,

D
(i)
0 = S(i)R̄−1

0 .

(6.25)

By doing so, the proposed AmB signal detector based on DL can obtain adequate

information about the channel coefficients via S(i), R̄0, and R̄1 to learn and detect

backscattered bits.

To create input data for the DL model, the matrices R̄0 and R̄1 are processed

6.4 Deep Learning-Based Signal Detector 166

as follows. Recall that the receiver has M antennas, D
(i)
0 and D

(i)
1 are M ×M

matrices. Let d0ij and d1ij be the elements of D
(i)
0 and D

(i)
1 , respectively, with

i, j ∈ {1, 2, . . . ,M}. First, the matrices R̄0 and R̄1 are flattened into two vectors,

i.e., d0 and d1, each has M×M elements, as shown in Figure 6.3. Then, d1 is con-

catenated at the end of d0 to form vector d with 2M 2 elements. Finally, the input

data for the DL model is constructed by taking (i) the real part, (ii) the imaging

part, and (iii) the absolute of each element of the combined vector d, as illustrated

in Figure 6.3. Thus, the input data can allow the DL model to effectively leverage all

important information of the received signals, thereby improving learning quality.

6.4.2 Deep Neural Network Architecture

This work designs a DNN at the signal detector to decide whether the signals

received by the receiver correspond to bit “1” or bit “0” of an AmB frame. Aiming to

develop a lightweight anti-eavesdropping solution, we only consider a small footprint

DNN with a simple and typical architecture. In particular, our DNN consists of an

input layer, a small number (e.g., three) of fully connected (FC) hidden layers, and

an output layer, as illustrated in Figure 6.3. Since the input vector data’s size is

M×M×2× 3, the input layer consists of M×M×2× 3 neurons. After the input

layer receives the input data, it will be sequentially forwarded to FC layers, and

each consists of multiple neurons. In FC layers, each neuron connects to all neurons

in the previous layer. For example, each neuron in the first FC layer connects to

all neurons in the input layer. The output of the last FC layer is applied to the

soft-max function at the output layer to obtain the category probabilities p of which

the received signals corresponds to bit “0” and bit “1”. Finally, the output layer

uses these probabilities to determine the input’s class, i.e., “0” or “1”. In DNNs,

a neuron applies a mathematical function, such as a sigmoid, tanh, or rectified

linear unit (ReLU), to the sum of its input and bias to get its output. Here, the

6.4 Deep Learning-Based Signal Detector 167

connections between neurons are represented by weight values. The input to a

neuron is calculated as the weighted sum of the outputs of neurons in the previous

layer that are connected to it. The training process aims to optimize the DNN

parameters θ (i.e., weights and bias) to minimize the loss L(f(d; θ), ψ), which is the

error between the DNN output f(d; θ) and the ground truth ψ, as follows:

min
θ

E
[
L(f(d; θ), ψ)

]
, (6.26)

where the cross-entropy loss is used at the output layer. To minimize the loss

L(f(d; θ), ψ), this thesis proposes to use SGD (discussed in Section 2.1) to optimize

the DNN’s parameters. Thanks to this design, the proposed DL based-receiver can

accurately predict transmitted bits in a backscatter frame even for weak AmB signals

Although DL allows receivers to effectively detect AmB signals without requiring

accurate CSI, it faces several shortcomings. First, the training process of DL often

requires a huge amount of received signals for the training process to achieve good

performance [89]. Thus, this makes DL less efficient in practice, especially when data

is expensive and contains noise due to the environment’s dynamic and uncertainty,

as in the considered wireless environment. Second, conventional DL may face the

over-fitting problem, i.e., performing excellently on training datasets but very poorly

on test datasets, if the training dataset does not contain enough samples to represent

all possible scenarios. Due to the dynamic nature of the wireless environment, the

channel conditions may vary significantly over time. For example, a moving bus

may change channel conditions from LoS to NLoS and vice versa. Consequently,

real-time data may greatly differ from training data, making these above problems

more severe. Third, wireless channel conditions can also be very different at different

areas due to their landscapes, so the DL model trained at one area may not perform

well at other areas. As such, different sites may need training different models

6.5 AmB Signal Detector based on Meta-Learning 168

from scratch, which is time-consuming and costly [90]. For that, the next section

will discuss our approach based on meta-learning that can effectively alleviate these

challenges.

6.5 AmB Signal Detector based on Meta-Learning

Recently, meta-learning is emerging as a promising approach to address the

shortcomings of DL discussed in the previous section. The reason is that meta-

learning has an ability of learning to learn, i.e., self-improving the learning algo-

rithm [89–91, 162]. The main idea of meta-learning is to train the model on a

collection of tasks, enabling it to acquire generalization capabilities. As a result,

the trained model can quickly perform well in a new task only after a few update

iterations, even when provided with a small dataset specific to the new task [91].

The meta-learning algorithms can be classified into two groups [89]. The first group

aims to encode knowledge in special and complex DNN architectures, such as Con-

volutional Siamese Neural Network [163], Matching Networks [164], Prototypical

networks [165], and Memory-Augmented Neural Networks [162]. As such, this group

requires more overhead for operations [91], and thus it may not be suitable for our

lightweight framework. In the second group, learning algorithms aim to learn the

model’s initialization. Thus, this approach does not require any additional elements

or a particular architecture, making it well fit in our framework. Therefore, the

model initialization is proposed to use in our framework.

A classical approach of the second group (i.e., learning the model’s initialization)

is that the model is first trained with a large dataset from existing tasks and then

fine-tuned with the new task’s data. However, this pre-training method could not

guarantee that the learned initialization is good for fine-tuning, and many other

techniques need to be leveraged to achieve good performance [89]. Recently, the work

in [91] proposes Model-Agnostic Meta-Learning (MAML) that directly optimizes

6.5 AmB Signal Detector based on Meta-Learning 169

Algorithm 6.1 The Meta-learning based AmB Signal Detection

1: Initialize model f with parameters θ.
2: for episode = 1, 2, . . . do
3: Sample task τ uniformly, and obtain the corresponding training dataset Dτ
4: for step = 1 to p do
5: Based on dataset Dτ , perform a step of stochastic optimization (SGD or

Adam), starting with parameters θ, resulting with parameters θ̄ = Up
τ (θ).

6: end for
7: Update θ ← θ + ηo(θ̄ − θ)
8: end for

model’s parameters during the learning process with a collection of similar tasks,

thus guaranteeing a good initialization of the model. However, MAML needs to

perform second-order derivatives through the optimization process, hence requires

high complexity. To overcome this problem, the Reptile algorithm is proposed in [89].

This algorithm only uses a conventional DL algorithm, such as stochastic gradient

descent (SGD) and Adam, making it less computationally demanding while still

maintaining a similar performance level of MAML [89]. For that reason, this work

adopts the Reptile algorithm. The detail of the meta-learning-based AmB signal

detection is provided in Algorithm 6.1. In particular, a model f (initiated with

parameters θ) is trained with a set T of similar tasks [89, 91]. As an example, let

us consider a set of image classification tasks. The first task involves classifying

images into different animal categories, specifically the tiger, dog, and cat classes.

On the other hand, the second task focuses on classifying images into another set

of animal categories, namely the elephant, bear, and lion classes. Similarly, this

work considers a set of AmB signal detection tasks, each under a particular channel

model, e.g., Rayleigh, WINNER II, and Rician.

Generally, meta-learning comprises two nested loops. In the inner loop, a base-

learning algorithm (e.g., SGD or Adam) solves task τ , e.g., detecting the AmB

signal under the Rician channel. The objective of the inner loop’s learning is to

6.5 AmB Signal Detector based on Meta-Learning 170

minimize the loss Lτ . Note that a base-learning algorithm can be a typical DL

algorithm, such as stochastic gradient descent (SGD). Thus, the inner loop is similar

to the training process of the proposed DL-based AmB signal detector discussed in

Section 6.4.2. After p steps of learning, the resulting parameters is denoted by

θ̄ = Up
τ (θ), where U

p
τ (·) denotes the update operator. Then, at the outer loop, a

meta-learning algorithm (e.g., Reptile) updates the model parameters as follows:

θ ← θ + ηo(θ̄ − θ), (6.27)

where ηo is the outer step size controlling how much the model parameters are

updated. By doing so, the generalization in learning is improved. Note that if p = 1,

i.e., performing a single step of gradient descent in the inner loop, Algorithm 6.1

becomes a joint training on the mixture of all tasks, which may not learn a good

initialization for meta-learning [89].

Our proposed meta-learning algorithm comprises two nested loops. The inner

loop is similar to stochastic gradient descent (SGD), a traditional deep learning

algorithm, and thus, shares the same computational complexity. Therefore, assum-

ing that the outer loop consists of K iterations, the computational complexity of

our meta-learning approach would be K times that of SGD. However, our simula-

tion results demonstrate that meta-learning requires a significantly smaller dataset

(1/200 the size) to achieve a comparable performance level to that of a traditional

deep-learning algorithm in a new environment. In the next section, our proposed

framework will be evaluated in various scenarios to get insights into its performance.

6.6 Simulation Results 171

6.6 Simulation Results

6.6.1 Simulation Settings

To evaluate our proposed solution, we conduct simulations in various scenarios

under the following settings unless otherwise stated. For the transmission aspect, the

AmB rate is 50 times lower than the transmitter-to-receiver link rate, i.e., N = 50,

and the AmB message consists of I = 100 bits. Since the transmitter-receiver link

SNR αdt significantly depends on many factors, such as transmit power, antenna

gain, and path loss, we vary it from 1 dB to 9 dB in the simulations to examine our

proposed solution in different scenarios. The tag-receiver link SNR αbt is often quite

weak, and thus it is set to −10 dB [158].

In this work, the system is simulated using Python, and the DL model is built

using the Pytorch library. Specifically, the Rayleigh fading follows the zero-mean and

unit-variance CSCG distribution, as suggested in [158]. Note that in our system,

the AmB tag does not know the transmitter’s signals (i.e., RF resource signals)

sending from the transmitter to the receiver. In addition, this work focuses on signal

detection for the AmB link. As such, the RF resource signals can be assumed to

follow the zero-mean and unit-variance CSCG distribution, similar to those in [82,83,

158]. For evaluating different aspects of our proposed solution, we use three metrics,

i.e., maximum achievable AmB rate and BER for the transmission performance and

guessing entropy for the security analysis.

6.6.2 Maximum Achievable Backscatter Rate

To get insights on the maximum achievable AmB rate R∗
AmB of the proposed

system, we perform simulations in three settings, where the receiver has 1, 3 and 10

antennas, as shown in Figure 6.4. First, in Figure 6.4(a), the prior probability of

backscattering bit “0”, i.e., θ0, is varied to observe the maximum achievable AmB

6.6 Simulation Results 172

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

* Am
B
(b

its
/re

so
ur

ce
 s

ym
bo

l)

1 antenna
3 antennas
10 antennas

1 2 3 4 5 6 7 8 9 10
αdt(dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
* Am
B
(b

its
/re

so
ur

ce
 s

ym
bo

l)

1 antennas
3 antennas
10 antennas

(a) (b)
Figure 6.4 : The maximum achievable AmB rate when varying (a) θ0 and (b) the
transmitter-to-receiver link SNR, i.e., αdt.

rate, i.e., the idealized throughput R∗
AmB which is given by Theorem 6.1. The results

are obtained by 106 Monte Carlo runs. Figure 6.4(a) shows that the maximum

achievable AmB rate R∗
AmB increases when the receiver has more antennas. This is

because the receiver can achieve a higher gain with more antennas. As such, the

received backscatter signals are enhanced, thereby reducing the impacts from fading

and interference originating from the direct link and the surrounding environment.

Importantly, R∗
AmB is maximized at θ0 = 0.5. Therefore, we set θ0 = 0.5 in the rest

of simulations. Next, we vary the transmitter-to-receiver link SNR, i.e., αdt, from

1 dB to 9 dB, as shown in Figure 6.4(b). It can be observed that as the active link

SNR αdt increases, the maximum achievable backscatter rate R∗
AmB increases. The

reason is that when the transmitter increases its transmit power, the signal arriving

at the AmB tag is stronger, making the backscattered signals stronger.

6.6.3 Anti-eavesdropper and Security Analysis

It is worth noting that our proposed framework can counter eavesdropping at-

tacks in two folds. Firstly, a part of the original message is hidden in the AmB

channel, appearing as background noise for conventional signal detectors. Secondly,

the proposed message encoding mechanism makes reconstructing the original mes-

6.6 Simulation Results 173

sage non-trivial unless the eavesdropper knows this and at the same time it can

decode information from both active and AmB channels.

In particular, without knowledge about the system in advance (i.e., the settings of

AmB transmission), the eavesdropper is not even aware of the existence of the AmB

message, thus guaranteeing the confidentiality of the original message. It is worth

emphasizing that even if the eavesdropper is aware of the AmB message, it is still

challenging to capture the AmB message. Suppose that the eavesdropper leverages

the AmB signal detector circuit proposed in [70], which requires different values of

resistors and capacitors in the circuit for different backscatter rates. As such, if the

eavesdropper deploys the AmB circuit but does not know the exact backscatter rate,

it still cannot decode the backscatter signals [70]. Iteratively testing every possible

rate is impractical. It can be considered that the eavesdropper can use MLK- or

DL-based detectors for detecting AmB signals. However, MLK-based approaches

require complete information on signal distribution and perfect CSI, while DL-based

methods need a large amount of data and time to detect AmB signals properly.

Given the above, the probability that the eavesdropper can successfully capture the

AmB message is marginal in practice.

To further evaluate the security of our proposed system, we consider the worst-

case in which the eavesdropper knows the exact backscatter rate in advance, and thus

they can capture the AmB message as well as the active message. However, since the

message encoding technique is unknown, the eavesdropper still does not know how

to construct the original message based on the active and AmB messages. They only

know that combining these two messages can decode the original message. As such,

they must determine the position of all I bits of the AmB message in the original

message. To quantify the security of our proposed anti-eavesdropping solution in

this case, this study considers the guessing entropy metric [81].

6.6 Simulation Results 174

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1050

10100

10150

10200

10250

10300

[G
(X

)]

Guessing Entropy

Figure 6.5 : The upper bound of the expected number of guesses, i.e., E[G(X)], vs.
the message splitting ratio β.

Suppose that the original message has P bits, the probability that the eaves-

dropper successfully finds the positions of I bits in the original message by guessing

is given by

pI =
1

CP
I

=
I!(P − I)!

P !
. (6.28)

To correctly identify the position of I bits, the eavesdropper needs to ask a number

of questions of the kind “does this correct?”. Suppose that the eavesdropper follows

an optimal guessing sequence, the average number of these questions defines the

guessing entropy [81]. We can consider that the position of I bits is analogous to the

key kI for reconstructing the original message. Let X denote the random variable

corresponding to the selection of key kI in the key set K, and X is determined

by probability distribution Pk. Note that in this work, the key set consists of all

possible keys, and thus the size of K is CP
I . One of the optimal brute-force attacks

is the scheme where the eavesdropper knows Pk, and it sorts the key set K in the

descending order of key selection probability pk to form a guessing sequence K̄ [81].

Then, it iteratively tries a key in the sorted key set K̄. For that, the guessing entropy

is defined as follows:

G(X) =
∑

1≤i≤|K̄|

ip(xi), (6.29)

6.6 Simulation Results 175

where i in the index in K̄, and p(xi) corresponds to the selection probability of a key

at index i. In [81], the upper bound of the expected number of guesses, i.e., E[G],

for the eavesdropper with the optimal guessing sequence is given as follows:

E[G(X)] ≤ 1

2

 |K̄|∑
i=1

√
p(xi)

2

+
1

2
. (6.30)

In Figure 6.5, we vary the message splitting ratio β = P/I to observe the guessing

entropy of our framework. Here, β = 0.1 means that 10% of original message bits

are transmitted by the AmB tag, and the remaining bits are transmitted by the

transmitter. Since the AmB rate is significantly lower than the transmitter rate [82,

158], the message splitting ratio β is less than 0.5 in practice. As shown in Figure 6.5,

when the ratio β increases from 0.01 to 0.5, the guessing entropy also increases. It is

stemmed from the fact that as the size of the AmB message increases, the probability

of guessing successfully in one trial decreases, as implied by (6.28) when β < 0.5. It

is worth mentioning that guessing entropy is the average number of questions asked

by the eavesdropper to successfully construct the original message. As such, the

greater the value of E[G(X)], the higher the security level is.

6.6.4 The Learning Process of DL-based AmB Signal Detector

The settings for the DL-based approaches are as follows. Note that since the

architecture of DNN can significantly affect the performance of the DL-based AmB

signal detector, it must be designed thoughtfully. For example, a DNN with more

layers may perform better but demands more resources and takes longer time for

training. Thus, this work designs a simple and lightweight DNN while still achieving

good performance of detecting AmB signal. Particularly, our DNN has an input

layer, four FC layers, and an out layer. The number of neurons in the input layer

depends on the dimension of the input data d, which is M×M×2× 3 where M is

6.6 Simulation Results 176

1 10 20 30 40 50 60 70 80 90 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DL-based Detector
MLK-based Detector

Figure 6.6 : The convergence of DL-based AmB signal detector when αdt = 1 dB
and the receiver has 10 antennas.

the number of the receiver’s antennas. The first, second, and third FC layers have

600, 1000, and 600 neurons, respectively. The training dataset is obtained from 104

Monte Carlo runs.

Figure 6.6 shows the convergence rate of our proposed DL-based AmB signal

detector when the direct link SNR αdt = 1 dB and the receiver has 10 antennas. To

train the DNN, we use the SGD with the learning rate of 0.001 [95]. The batch

size is set to 1, 000 data points, and thus each training epoch consists of 10 learning

iterations. In Figure 6.6, the accuracy of the MLK-based detector is also presented

as a baseline. It can be observed that after 30 learning epochs, our proposed DL-

based detector converges into a reliable model that can achieve an accuracy close

to that of the MLK-base detector. Note that MLK-based detectors are considered

the optimal signal detection scheme, but it is impractical due to high computing

complexity and the requirement of perfect CSI [166].

6.6.5 BER Performance

Now, we investigate the system’s BER performance when varying the direct link

(i.e., transmitter-to-receiver) SNR αdt from 1 dB to 9 dB. The training process of

our proposed DL-based detector is conducted in the same way described in 6.6.4

6.6 Simulation Results 177

with two settings, i.e., providing (i) the estimated CSI based on pilot bits, namely

DL-eCSI, and (ii) the perfect CSI, namely DL-pCSI. We perform simulations with

three antenna configurations for the receiver, i.e., 1, 3, and 10 antennas. To obtain

reliable results, both the MLK-based and the DL-based detectors are evaluated by

performing Monte Carlo fashion with 106 runs. Note that this work only focuses

on the AmB link (i.e., the tag-receiver link), and thus we only obtain the BER of

the AmB link since the BER of the direct (transmitter-receiver) link can be close to

zero with advanced modulation and channel coding techniques.

Figure 6.7(a) shows that when the direct link SNR, i.e., αdt, increases from 1 dB

to 9 dB, the BERs of all approaches decrease. The rationale behind is that the

stronger the transmitter’s active signals are, the stronger the signals backscattered

by the AmB tag (i.e., AmB signals) are, so the lower the system BER is. It is also

observed that the system performance improves (i.e., a decrease in BER) as the

number of receiving antennas increases. This is because the received signals at the

receiver are enhanced by antenna gain, which is typically proportional to the number

of antennas. Similar to the observation in Section 6.6.4, the BERs of our DL-based

detector are close to those of the MLK-detector, an optimal signal detector, in all

cases with 1, 3, and 10 antennas. Thus, these clearly show the effectiveness of our

proposed DL-based approach.

Next, we vary the tag-receiver SNR, i.e., αbt, from −25 dB to −5 dB, while

the transmitter-receiver SNR αdt is 7 dB, as shown in Figure 6.7(b). Similar to

observations in Figure 6.7(a), when αbt and the number of antennas increase, the

BERs of all approaches reduce. The rationale behind this is that when the received

signal is stronger and the antenna gain is higher, the detector can attain a lower

BER, indicating better performance. Again, the gap observed in BERs between

our proposed DL-based detector and the MLK method is marginal. Interestingly,

the DL-eCSI can achieve comparable BER results compared with that of DL-pCSI,

6.6 Simulation Results 178

1 2 3 4 5 6 7 8 9
αbt (dB)

(a)

10−4

10−3

10−2

10−1

100

B
E

R

−25 −20 −15 −10 −5
αbt (dB)

(b)

10−4

10−3

10−2

10−1

100

B
E

R

1 antenna-MLK
1 antennas-DL-Estimated CSI

3 antennas-MLK
3 antennas-DL-Estimated CSI

10 antennas-MLK
10 antennas-DL-Estimated CSI

10 antennas-DL-Perfect CSI

Figure 6.7 : Varying (a) the transmitter-receiver SNR αdt and (b) the tag-receiver
SNR αbt.

as shown in Figures 6.7(a) and (b). Thus, these results show that our proposed

DL-based detector can perform well in practice with only estimated CSI.

6.6.6 Meta-Learning for AmB Signal Detection

Now, we evaluate the proposed meta-learning approach for the AmB-signal de-

tector with the following setups. We consider that the target task is detecting

AmB signals under Rayleigh fading to better demonstrate the comparison between

meta-learning-, DL-, and MLK- based approaches. The set of tasks for the learning

process, i.e., training tasks, consists of (i) detecting AmB signals under Rician fad-

ing and (ii) detecting AmB signals under WINNER II fading [167]. Algorithm 6.1

is used to train the DNN model, i.e., meta-model, with the training tasks’ datasets.

Here, each training task’s dataset contains 500 data points, and the outer step size η

is set to 0.1, similar to [89]. Then, the trained meta-model is trained with the dataset

collected from the target task (i.e., detecting AmB signals under Rayleigh fading)

by using SGD. For these simulations, we select two types of baselines: (i) DL- and

(ii) MLK-based approaches. Three DL models are trained with different numbers

of data points, including 50, 103, and 104, in a similar procedure in Section 6.6.4.

In all approaches, there are 10 antennas in the receiver.

6.6 Simulation Results 179

1 2 3 4 5 6 7 8 9
αdt (dB)

10−4

10−3

10−2

10−1

100

B
E

R

10-antennas-MKL
DL-50

DL-103

DL-104
Meta-learning-50

Figure 6.8 : The BER performance of different learning approaches.

First, we compare the BER performance between our proposed meta-learning-

based approach and other baselines when varying the transmitter-receiver SNR αdt,

as shown in Figure 6.8. Similar to the observations in Figures 6.7(a) and (b), as the

signal’s strength increases (i.e., an increase of SNR), all approaches achieve a lower

BER, indicating better performance. It is observed that a DL model trained with

more data points results in a better performance. In particular, among DL-based

approaches, DL with 104 data points achieves the lowest BER, and DL with 50

data points gets the highest BER. The reason is that more data points can gain

more knowledge to the DL model. Thus, it can reduce the over-fitting issue, i.e.,

performing well on a training dataset but poor on a test dataset, thereby improv-

ing the system performance [95]. Interestingly, when the transmitter-receiver SNR

αdt ≥ 3 dB, meta-learning with only 50 data points can achieve the lowest BER

compared with DL-based approaches that require up to 104 data points. Whereas,

when αdt is low (less than 3 dB), meta-learning’s BER is slightly higher than that

of the DL with 104 data points but still lower than those of DL with 103 and 50

data points. These observations are stemmed from the fact that meta-learning has

a generalization ability that can help a DNN model to learn a new task quickly with

few data points [89].

To further investigate the reliability of these learning approaches, we run each

6.6 Simulation Results 180

1 2 3 4 5 6 7 8 9
αdt (dB)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

St
an

da
rd

 D
ev

ia
tio

n

10-antennas MLK
DL with dataset size = 50
DL with dataset size = 103

DL with dataset size = 104

Meta-learning with dataset size = 50

Figure 6.9 : Reliability of learning process with different training datasets’ sizes.

learning approach 20 times to obtain the standard deviation of its BER results, as

shown in Figure 6.9. The simulation settings are set as those in Figure 6.8. Gener-

ally, the standard deviations of all approaches decrease as the transmitter-receiver

SNR αdt increases from 1 dB to 10 dB. This is because the received signals contain

more noise at a lower SNR, making the learning more challenging and leading to

high deviation of results, i.e., more unstable results. In particular, at αdt = 1, the

standard deviation of DL with 50 training data points is about 10 times higher com-

pared with that of the best learning-based approach i.e., DL with 104 data points.

Again, when αdt ≥ 3 dB, the proposed meta-learning-based approach achieves com-

parable results as those of DL with 104 data points. Notably, when αdt ≥ 8 dB, the

results of meta-learning and DL with 104 data points close to the results of MLK.

When the αdt decreases to less than 3 dB, the meta-learning still obtains very good

results, one of the best approaches in terms of reliable performance.

Finally, to get insight into how the amount of training data can impact meta-

learning, we set the size of each dataset collected from a training task to Dt and

then vary Dt from 100 to 500 data points. Here, the transmitter-receiver SNR αdt

is set to 5 dB. Figure 6.10 shows the BER performance of models trained by meta-

learning with 50, 100, 200, 400, and 103 data points from the target task, namely

6.7 Conclusion 181

100 500 1000 2000 5000
Dt (data point)

0.016

0.017

0.018

0.019

0.020

0.021

0.022

0.023

B
E

R

Meta-50
Meta-100
Meta-200
Meta-400
Meta-103

DL-104

Figure 6.10 : Varying the size of training tasks’ datasets.

Meta-50, Meta-100, Meta-400, and Meta-103. For comparing with the DL-based

approach, this figure also presents the result of the model trained from scratch by

SGD (as in Section 6.6.4) at αdt = 5 with 104 data points of the target task, namely

DL-104. Similar to observations in Figure 6.8, all approaches achieve lower BERs

as the training data size increases, as shown in Figure 6.10. Interestingly, when the

meta-learning training data points are adequate (e.g., Dt ≤ 500), even with only

50 target task’s data points, meta-learning approaches outperform the DL approach

training with 104 target task’s data points. Given the above, it clearly shows the

superiority of meta-learning to DL approaches in terms of data efficiency, making it

more applicable in practical systems.

6.7 Conclusion

This chapter has introduced a novel anti-eavesdropping framework that can en-

able secure wireless communications leveraging the low-cost and low-complexity

AmB technology. In particular, an original message was divided into two messages,

and they are transmitted over two channels, i.e., direct transmission channel and

AmB communication channel. Since the AmB tag only backscatters the RF signals

to transmits data, instead of generating active signals, the eavesdropper is unlikely

aware of the existence of AmB transmissions. Even if eavesdroppers can capture

6.7 Conclusion 182

AmB signals, our proposed splitting message introduces much more difficulties for

the eavesdroppers to derive the original message. To effectively decode AmB signals

at the receiver, we have developed a signal detector based on DL. Unlike MLK-based

solutions, our detector did not rely on a complex mathematical model nor require

perfect CSI. To make the DL-based detector to quickly achieve good performance

in new environments, we have developed the meta-learning technique for the train-

ing process. The simulation results have shown that our proposed approach can not

only ensure the security of the data communications in the presence of eavesdroppers

but also can achieve the BER performance that is comparable to the MLK-based

detector, which relies on perfect CSI.

183

Chapter 7

Conclusions and Potential Research Directions

7.1 Conclusion

In this thesis, we have presented our works in developing advanced machine

learning-based solution for various aspects of 6G networks, including NTNs, ICAS,

resource management for the Metaverse, and security, with the goal of achieving

effective and secure solutions.

In the first study, we have tackle the problem in UAV-based systems, which

is an important component of NTNs in 6G. Specifically, we have developed a novel

Deep Dueling Double Q-learning with Transfer Learning algorithm (D3QL-TL) that

jointly optimizes the flying speed and energy replenishment activities for the UAV

to maximize the data collection performance of a UAV-assisted IoT system. The

proposed algorithm effectively addresses not only the dynamic and uncertainty of

the system but also the high dimensional state and action spaces of the underly-

ing MDP problem with hundreds of thousands of states. In addition, the proposed

TL techniques (i.e., experience transfer, policy transfer, and hybrid transfer) allow

UAVs to “share” and “transfer” their learned knowledge, resulting in a decrease

of learning time and an improvement of learning quality. The simulation results

have showed that our proposed solution can significantly improve the system perfor-

mance (i.e., data collection and energy usage efficiency) and has a remarkably lower

computational complexity compared with other conventional approaches.

In the second study, we have addressed the challenge in the Integrated Commu-

nications and Sensing (ICAS) technology that plays a critical role in AVs, a use case

7.1 Conclusion 184

of 6G. In particular, we have developed a novel MDP-based framework that allows

an ICS-AV to automatically and adaptively decide its optimal waveform structure

based on the observations to maximize the overall performance of the ICS system.

Then, we have proposed an advanced learning algorithm, i.e., i-ICS, that can help the

ICS-AV gradually learn an optimal policy through interactions with the surround-

ing environment without requiring complete knowledge about the environment in

advance. As such, our proposed approach can effectively handle the environment’s

dynamic and uncertainty as well as the high dimensional state space problem of the

underlying MDP framework. The extensive simulation results have clearly shown

that the proposed solution can strike a balance between communication efficiency

and sensing accuracy, thereby consistently outperforming the benchmark methods

in different scenarios.

In the third study, we have addressed the resource management for Metaverse,

a new service supported by 6G. We have proposed two innovative techniques, i.e.,

the application decomposition and the MetaInstance, to maximize resource utiliza-

tion for the Metaverse built on a multi-tier computing architecture. Based on these

techniques, we have developed a novel framework for the Metaverse, i.e., MetaSlic-

ing, that can smartly allocate resources for MetaSlices, i.e., Metaverse applications,

to maximize the system performance. Moreover, we have proposed a highly effec-

tive framework based on sMDP together with an intelligent algorithm, i.e., iMSAC,

to find the optimal admission policy for the Admission Controller under the high

dynamics and uncertainty of resource demands. The extensive simulation results

have clearly demonstrated the robustness and superiority of our proposed solution

compared with the counterpart methods as well as revealed key factors determining

the system performance. As Metaverse continues to evolve and expand, there will

be enormous potential research topics that we can explore. For example, elastic

resource allocation approaches can be developed to further enhance the efficiency of

7.1 Conclusion 185

using MetaSlices. In particular, allocated resources of a MetaSlice can be scaled dy-

namically according to the resource demand of this MetaSlice during operation, thus

further improving resource utilization. Another topic that we can further consider

is methods for ensuring interoperability between different MetaSlices in the Meta-

verse. This could include developing standards and protocols for communication

between different MetaSlices and mechanisms for managing conflicts and ensuring

consistency between Metaslices.

Our fourth study has introduced a novel anti-eavesdropping framework that can

enable secure wireless communications leveraging the low-cost and low-complexity

AmB technology, which is an emerging technology in 6G. In particular, an original

message was divided into two messages, and they are transmitted over two chan-

nels, i.e., direct transmission channel and AmB communication channel. Since the

AmB tag only backscatters the RF signals to transmits data, instead of generating

active signals, the eavesdropper is unlikely aware of the existence of AmB trans-

missions. Even if eavesdroppers can capture AmB signals, our proposed splitting

message introduces much more difficulties for the eavesdroppers to derive the origi-

nal message. To effectively decode AmB signals at the receiver, we have developed

a signal detector based on DL. Unlike MLK-based solutions, our detector did not

rely on a complex mathematical model nor require perfect CSI. To make the DL-

based detector to quickly achieve good performance in new environments, we have

developed the meta-learning technique for the training process. The simulation re-

sults have shown that our proposed approach can not only ensure the security of

the data communications in the presence of eavesdroppers but also can achieve the

BER performance that is comparable to the MLK-based detector, which relies on

perfect CSI.

Together, these above studies illustrate a holistic approach to overcoming the

challenges posed by the next generation of wireless networks. They demonstrate

7.2 Future Works 186

how different components of 6G technology, ranging from aerial data collection and

integrated communication-sensing to resource management in virtual environments

and secure data transmission, can be optimized using advanced machine learning

techniques. Each study, while distinct in its focus, contributes to the overarching

goal of creating a robust, efficient, and secure 6G network. They complement and

supplement each other by showcasing the versatility of machine learning applica-

tions across various 6G network challenges, collectively moving towards fulfilling

the broader aim of revolutionizing wireless communication systems with 6G tech-

nology.

It is worth noting that our proposed solutions are based on deep neural networks,

and thus they cannot guarantee optimality. Additionally, since the thesis explores

emerging topics in 6G networks, which are in their infancy, datasets and testbeds are

not publicly available. Also, due to our limited resources, our proposed approaches

were evaluated in simulated environments, which may not completely reflect real-

world conditions. However, the obtained results have still provided insights into the

effectiveness of our proposed solutions and the promise of machine learning in 6G

networks.

7.2 Future Works

Our results show great potential for leveraging advanced machine learning to

enhance various aspects of 6G networks, such as performance, energy efficiency,

security, and adaptability. Recent advances in machine learning, such as genera-

tive AI and Contrastive Representation Learning, present further opportunities for

enhancing many aspects of 6G networks.

• Interference management: With the emergence of new services and technolo-

gies, heterogeneous infrastructures are expected to be deployed in 6G net-

7.2 Future Works 187

works, making interferences among wireless systems become more critical.

Consequently, conventional solutions based on optimization theory (which of-

ten requires complete information about the system) may not be effective in

dealing with this over-complexed problem, especially in a dense network like

6G. Thus, there is an urgent need for an effective solution to facilitate the

deployment of 6G. Recently, emerging advanced AI methods, e.g., generative

AI and meta-learning, are promising approaches to mitigate the interference

problem in 6G networks to improve signal quality and overall network perfor-

mance. For instance, generative AI can be used to simulate various network

conditions, including interference scenarios, which can help in training other

AI models to automatically adjust network parameters for optimal perfor-

mance. This could improve signal quality and overall network performance

by enabling more adaptive and responsive network management strategies.

Therefore, they need to be further explored.

• Intrusion detection systems: In future wireless systems, billions of wireless

devices will connect simultaneously. Identifying malicious devices presents a

significant challenge, as they can disguise their true nature. In this context,

predictive AI, which involves forecasting future states based on historical data,

can be crucial for identifying potential network failures, performance bottle-

necks, or security threats before they occur. In 6G networks, predictive AI can

analyze patterns in network traffic, device behavior, and resource utilization to

predict and prevent disruptions. However, as more traffic becomes encrypted,

device identification becomes more difficult. Thus, an innovative approach is

required to effectively address this challenge

• Security of data and AI models: Aiming to support the Internet of Everything

(IoE) [1, 2], 6G networks indeed consist of a massive number of devices, most

7.2 Future Works 188

of which have limited resource capabilities in terms of computing, storage,

and networking. Thus, it is challenging to use advanced cryptography on such

devices to secure data in transit. A weak mechanism makes exchanged data

susceptible to being tampered with. If an attacker can intentionally modify the

input data of AI models, they can severely poison AI models. Thus, there needs

an innovative solution for this issue. A promising solution is to leverage models

that can directly operate with encrypted data. By doing so, the need for

data decryption and key distribution is eliminated, thus reducing the required

computing resources while maintaining security of data transmission. In the

literature, this approach is still underexplored, and thus it needs to be further

investigated.

189

Appendix A

Proofs in Chapter 5

A.1 The Proof of Theorem 1

First, we need to prove the existence of the limiting matrix T π given in (5.12).

In [168], it is proven that for an aperiodic irreducible chain (as that of our proposed

sMDP), the limiting matrix (which is the Cesaro limit of order zero named C-lim)

of the transition matrix, i.e.,T gπ , exists as follows:

T π = C-lim = lim
G→∞

1

G

G−1∑
g=0

T gπ . (A.1)

Next, because the total probabilities that a given state moves to others is one,

i.e.,
∑

s′∈S Tπ(s|s′) = 1, we have:

T πr(s, π(s)) = lim
G→∞

1

G+ 1
E

[
G∑
g=0

r(sg, π(sg))

]
, ∀s ∈ S, (A.2)

T πy(s, π(s)) = lim
G→∞

1

G+ 1
E

[
G∑
g=0

τg

]
∀s ∈ S. (A.3)

It is observed that the long-term average reward Rπ(s) in (5.9) is the ratio between

T πr(s, π(s)) and T πy(s, π(s)). Note that by the quotient law for limits, the limit of

a division of two functions is equivalent to the division of the limit of each function

if the limit of a function at the denominator is not equal to zero. Since τg, i.e., the

interval time between two consecutive decision epochs, is always larger than zero,

T πy(s, π(s)) is always larger than zero. Therefore, the long-term average reward

Rπ(s) exists.

A.2 The Proof of Theorem 2 190

A.2 The Proof of Theorem 2

This proof is based on the irreducible property of the underlying Markov chain,

which is proven as follows. As mentioned in Section 5.2.2, the considered state

space S consists of the currently available resources in the system, the required re-

sources, the class ID, and the similarity of the MetaSlice request. Recall that the

request arrival and MetaSlice departure follow the Poisson and exponential distri-

butions, respectively. In addition, the requested MetaSlice can have any function

supported by the MetaSlicing system, and thus its required resources are arbitrary.

Given the above, suppose that the Admission Controller observes state s at time t,

then the system state can move to any other state s′ ∈ S after a finite time step.

Therefore, the proposed sMDP is irreducible, and thus the long-term average reward

function Rπ(s) is well-defined regardless of the initial state and under any policy.

191

Appendix B

Proofs in Chapter 6

B.1 The proof of Theorem 6.1

In this appendix, we prove Theorem 6.1 in a similar way as in [82]. Since the

mutual information between the AmB tag’s state e, i.e., M(e;y) and the received

signals y defines the achievable AmB rate, we can obtain the maximum achievable

AmB rate by [82]

R∗
AmB = E[M(e,y)], (B.1)

where

M(e,y) = Z(θ0)− EV [C(e|V)]. (B.2)

In (B.2), Z(θ0) is the binary entropy function defined by (B.3), and C(e|V) is the

conditional entropy of e given V .

Z(θ0) ≜ −θ1 log2 θ1 − θ0 log2 θ0. (B.3)

Note that since Z(θ0) does not depend on the channel coefficients, the maximum

achievable AmB rate R∗
AmB is given by

R∗
AmB = E[M(e,y)] = Z(θ0)− EV [C(e|V)]. (B.4)

In addition, given ỹ, the posterior probability of e is calculated by

p(e = j|V) = θjp(y|e = j)

θ1p(V|e = 1) + θ0p(V|e = 0)
, (B.5)

B.1 The proof of Theorem 6.1 192

with j ∈ {0, 1}. By letting µj = p(e = j|V), the conditional entropy C(e|V) is

expressed by

C(e|V) = −
1∑
j=0

µj log2 µj = Z(µ0). (B.6)

Consequently, we have [82]

R∗
AmB = Z(θ0)− Eỹ[Z(µ)]

= Z(θ0)−
∫
V

(
θ1p(V|e = 1) + θ0p(V|e = 0)

)
Z(µ0)dV .

(B.7)

193

Bibliography

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Ap-

plications, trends, technologies, and open research problems,” IEEE Network,

vol. 34, no. 3, pp. 134–142, Oct. 2020.

[2] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless

communications systems,” IEEE Access, vol. 8, pp. 133 995–134 030, Jul. 2020.

[3] L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, “6G wireless sys-

tems: A vision, architectural elements, and future directions,” IEEE Access,

vol. 8, pp. 147 029–147 044, Aug. 2020.

[4] “Loon: Expanding internet connectivity with stratospheric balloons.”

[Online]. Available: https://loon.com/

[5] “Connecting the world from the sky,” Mar. 2014. [Online]. Available:

https://about.fb.com/news/2014/03/connecting-the-world-from-the-sky/

[6] P. Papadimitratos, A. L. Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza,

“Vehicular communication systems: Enabling technologies, applications, and

future outlook on intelligent transportation,” IEEE Communication Magazine,

vol. 47, no. 11, pp. 84–95, Nov. 2009.

[7] J. A. Z. al., “An overview of signal processing techniques for joint communica-

tion and radar sensing,” IEEE Journal of Selected Topics in Signal Processing,

vol. 15, no. 6, pp. 1295–1315, Nov. 2021.

https://loon.com/
https://about.fb.com/news/2014/03/connecting-the-world-from-the-sky/

BIBLIOGRAPHY 194

[8] “Introducing Meta: A social technology company,” https://about.fb.com/

news/2021/10/facebook-company-is-now-meta/, (accessed: May 01, 2022).

[9] “Mesh for Microsoft Teams aims to make collaboration in the ‘Meta-

verse’ personal and fun,” https://news.microsoft.com/innovation-stories/

mesh-for-microsoft-teams/, (accessed: May 01, 2022).

[10] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang,

X. S. Shen, and C. Miao, “A full dive into realizing the edge-enabled

Metaverse: Visions, enabling technologies, and challenges,” arXiv preprint

arXiv:2203.05471, 2022.

[11] Meta Quest. Horizon Worlds. (Dec. 10, 2021). Accessed: May 01, 2022.

[Online]. Available: https://www.youtube.com/watch?v=02kCEurWkqU&

t=64s

[12] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE

Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, May 2021.

[13] X. Yu, D. Owens, and D. Khazanchi, “Building socioemotional environments

in Metaverses for virtual teams in healthcare: A conceptual exploration,” in

Proceedings of International Conference on Health Information Science, 2012,

pp. 4–12.

[14] C. Kwon, “Smart city-based Metaverse a study on the solution of urban prob-

lems,” Journal of the Chosun Natural Science, vol. 14, no. 1, pp. 21–26, Mar.

2021.

[15] H. Jeong, Y. Yi, and D. Kim, “An innovative e-commerce platform incor-

porating metaverse to live commerce,” International Journal of Innovative

Computing, Information and Control, vol. 18, no. 1, pp. 221–229, Feb. 2022.

https://about.fb.com/news/2021/10/facebook-company-is-now-meta/
https://about.fb.com/news/2021/10/facebook-company-is-now-meta/
https://news.microsoft.com/innovation-stories/mesh-for-microsoft-teams/
https://news.microsoft.com/innovation-stories/mesh-for-microsoft-teams/
https://www.youtube.com/watch?v=02kCEurWkqU&t=64s
https://www.youtube.com/watch?v=02kCEurWkqU&t=64s

BIBLIOGRAPHY 195

[16] J. Hu, S. Yan, X. Zhou, F. Shu, J. Li, and J. Wang, “Covert communica-

tion achieved by a greedy relay in wireless networks,” IEEE Transactions on

Wireless Communications, vol. 17, no. 7, pp. 4766–4779, Jul. 2018.

[17] “When can quantum annealing win?” Google Research. https://ai.googleblog.

com/2015/12/when-can-quantum-annealing-win.html, (accessed: May 08,

2023).

[18] B. A. Bash, D. Goeckel, D. Towsley, and S. Guha, “Hiding information in noise:

Fundamental limits of covert wireless communication,” IEEE Communications

Magazine, vol. 53, no. 12, pp. 26–31, Dec. 2015.

[19] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Princi-

ples of physical layer security in multiuser wireless networks: A survey,” IEEE

Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1550–1573, Feb. 2014.

[20] P. J. Freire, S. Srivallapanondh, A. Napoli, J. E. Prilepsky, and S. K. Turitsyn,

“Computational complexity evaluation of neural network applications in signal

processing,” arXiv preprint arXiv:2206.12191, 2022.

[21] X. Zeng, F. Ma, T. Chen, X. Chen, and X. Wang, “Age-optimal UAV tra-

jectory planning for information gathering with energy constraints,” in Pro-

ceedings of 2020 IEEE/CIC International Conference on Communications in

China (ICCC), 2020, pp. 881–886.

[22] O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud, “A UAV-assisted data

collection for wireless sensor networks: Autonomous navigation and schedul-

ing,” IEEE Access, vol. 8, pp. 10 446–11 046, Jun. 2020.

[23] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han, “Hierarchical deep

reinforcement learning for backscattering data collection with multiple UAVs,”

IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3786–3800, Mar. 2021.

https://ai.googleblog.com/2015/12/when-can-quantum-annealing-win.html
https://ai.googleblog.com/2015/12/when-can-quantum-annealing-win.html

BIBLIOGRAPHY 196

[24] S. F. al., “Energy-efficient UAV-enabled data collection via wireless charging:

A reinforcement learning approach,” IEEE Internet of Things Journal, vol. 8,

no. 12, pp. 10 209–10 219, Jun. 2021.

[25] X. Xu, H. Zhao, H. Yao, and S. Wang, “A blockchain-enabled energy-efficient

data collection system for UAV-assisted IoT,” IEEE Internet of Things Jour-

nal, vol. 8, no. 4, pp. 2431–2443, Feb. 2021.

[26] F. Shan, J. Luo, R. Xiong, W. Wu, and J. Li, “Looking before crossing:

An optimal algorithm to minimize UAV energy by speed scheduling with a

practical flight energy model,” in Proceedings of the 2020 IEEE Conference

on Computer Communications (INFOCOM), 2020, pp. 1758–1767.

[27] J. Gong, T. Chang, C. Shen, and X. Chen, “Flight time minimization of UAV

for data collection over wireless sensor networks,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 9, pp. 1942–1954, Sep. 2018.

[28] Q. Pan, X. Wen, Z. Lu, L. Li, and W. Jing, “Dynamic speed control of un-

manned aerial vehicles for data collection under internet of things,” Sensors,

vol. 18, pp. 1–18, Nov. 2018.

[29] X. Lin, G. Su, B. Chen, H. Wang, and M. Dai, “Striking a balance between

system throughput and energy efficiency for UAV-IoT systems,” IEEE Internet

of Things Journal, vol. 6, no. 6, pp. 10 519–10 533, Dec. 2019.

[30] K. Li, W. Ni, E. Tovar, and A. Jamalipour, “On-board deep Q-network for

UAV-assisted online power transfer and data collection,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 12, pp. 12 215–12 226, Dec. 2019.

[31] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double Q-learning,” in Proceedings of the AAAI Conference on Artificial In-

telligence, vol. 30, no. 1, 2016, pp. 2094–2100.

BIBLIOGRAPHY 197

[32] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning do-

mains: A survey,” Journal of Machine Learning Research, vol. 7, pp. 1633–

1685, Sep. 2009.

[33] V. M. al., “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[34] Z. W. al., “Dueling network architectures for deep reinforcement learning,” in

Proceedings of The 33rd International Conference on Machine Learning, 2016,

pp. 1995–2003.

[35] G. Naik, B. Choudhury, and J. Park, “IEEE 802.11bd & 5G NR V2X: Evo-

lution of radio access technologies for V2X communications,” IEEE Access,

vol. 7, pp. 70 169–70 184, May 2019.

[36] J. B. Kenney, “Dedicated short-range communications (DSRC) standards in

the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182,

Jul. 2011.

[37] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and W. Heath,

“Millimeter-wave vehicular communication to support massive automotive

sensing,” IEEE Communication Magazine, vol. 54, no. 12, pp. 160–167, Dec.

2016.

[38] P. Kumari, S. A. Vorobyov, and R. W. Heath, “Adaptive virtual waveform

design for millimeter-wave joint communication-radar,” IEEE Transactions

on Signal Processing, vol. 68, pp. 715–730, Nov. 2019.

[39] X. Cheng, D. Duan, S. Gao, and L. Yang, “Integrated sensing and communi-

cations (ISAC) for vehicular communication networks (VCN),” IEEE Internet

of Things Journal, pp. 1–12, Jul. 2022.

BIBLIOGRAPHY 198

[40] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and M.-w. C. Wald-

schmidt, “Technology for automotive radar sensors in the 77 GHz frequency

band,” IEEE Transactions on Microwave Theory and Techniques, vol. 60,

no. 3, pp. 845–860, Mar. 2012.

[41] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wide-

band millimeter-wave propagation measurements and channel models for fu-

ture wireless communication system design,” IEEE Transactions on Commu-

nications, vol. 63, no. 9, pp. 3029–3056, Sep. 2015.

[42] P. Kumari, N. Gonzalez-Prelcic, and R. W. H. Jr, “Investigating the IEEE

802.11ad standard for millimeter wave automotive radar,” in Proceedings of

Vehicular Technology Conference, pp. 3587–3591, Sep. 2015.

[43] E. Grossi, M. Lops, L. Venturino, and A. Zappone, “Opportunistic radar in

IEEE 802.11ad networks,” IEEE Transactions on Signal Processing, vol. 66,

no. 9, pp. 2441–2454, May 2018.

[44] P. Kumari, J. Choi, N. Gonzalez-Prelcic, and R. W. Heath, “IEEE 802.11ad-

based radar: An approach to joint vehicular communication-radar system,”

IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3012–3027,

Nov. 2017.

[45] G. R. Muns, K. V. Mishra, C. B. Guerra, Y. C. Eldar, and K. R. Chowdhury,

“Beam alignment and tracking for autonomous vehicular communication using

IEEE 802.11ad-based radar,” in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications Workshops, 2019, pp. 535–540.

[46] S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, and B. Ottersten, “A

mmwave automotive joint radar-communications system,” IEEE Transactions

on Aerospace and Electronic Systems, pp. 1241–1260, Feb. 2019.

BIBLIOGRAPHY 199

[47] M. Wang, P. Chen, Z. Cao, and Y. Chen, “Reinforcement learning-based UAVs

resource allocation for integrated sensing and communication (ISAC) system,”

Electronics, Feb. 2022.

[48] T. Xu, T. Zhou, J. Tian, J. Sang, and H. Hu, “Intelligent spectrum sensing:

When reinforcement learning meets automatic repeat sensing in 5G commu-

nications,” IEEE Wireless Communications, pp. 46–53, Feb. 2020.

[49] Q. Zhou, Y. Li, and Y. Niu, “Intelligent anti-jamming communication for

wireless sensor networks: A multi-agent reinforcement learning approach,”

IEEE Open Journal of the Communications Society, vol. 2, pp. 775–784, Feb.

2021.

[50] J. Clement, “Most played games on steam 2021, by peak

player count,” https://www.statista.com/statistics/656278/

steam-most-played-games-peak-concurrent-player/, (accessed: May 01,

2022).

[51] “Metaverse: A guide to the next-gen internet,” https://www.credit-suisse.

com/media/assets/corporate/docs/about-us/media/media-release/2022/03/

metaverse-14032022.pdf, (accessed: May 01, 2022).

[52] X. Wang et al., “Characterizing the gaming traffic of World of Warcraft: From

game scenarios to network access technologies,” IEEE Network, vol. 26, no. 1,

pp. 27–34, Jan. 2012.

[53] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings, “Estimating the motion-

to-photon latency in head mounted displays,” in Proceedings of the 2017 IEEE

Virtual Reality (VR), 2017, pp. 313–314.

[54] Y. Jiang, J. Kang, D. Niyato, X. Ge, Z. Xiong, and C. Miao, “Reliable coded

https://www.statista.com/statistics/656278/steam-most-played-games-peak-concurrent-player/
https://www.statista.com/statistics/656278/steam-most-played-games-peak-concurrent-player/
https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf
https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf
https://www.credit-suisse.com/media/assets/corporate/docs/about-us/media/media-release/2022/03/metaverse-14032022.pdf

BIBLIOGRAPHY 200

distributed computing for Metaverse services: Coalition formation and incen-

tive mechanism design,” arXiv preprint arXiv:2111.10548, 2021.

[55] M. Xu, D. Niyato, J. Kang, Z. Xiong, C. Miao, and D. I. Kim, “Wireless

edge-empowered Metaverse: A learning-based incentive mechanism for virtual

reality,” arXiv preprint arXiv:2111.03776, 2021.

[56] W. C. Ng, W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, and C. Miao, “Unified

resource allocation framework for the edge intelligence-enabled Metaverse,”

arXiv preprint arXiv:2110.14325, 2021.

[57] Y. Han, D. Niyato, C. Leung, C. Miao, and D. I. Kim, “A dynamic resource

allocation framework for synchronizing Metaverse with IoT service and data,”

arXiv preprint arXiv:2111.00431, 2021.

[58] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing

research,” IEEE Access, vol. 8, pp. 85 714–85 728, May. 2020.

[59] “Google Maps platform documentation,” https://developers.google.com/

maps/documentation, (accessed: May 01, 2022).

[60] I. Singh, “Your next favorite AR game will be

built on Google Maps,” https://geoawesomeness.com/

google-maps-will-now-power-location-aware-augmented-reality-games/,

(accessed: May 01, 2022).

[61] S. Hayden, “‘Wooorld’ is a multiplayer version of ‘Google Earth

VR’ for Quest, releasing soon,” https://www.roadtovr.com/

wooorld-google-earth-vr-quest-2/, (accessed: May 01, 2022).

[62] N. Francis, “Collection of the coolest uses of the

Google Maps API,” https://www.jotform.com/blog/

https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://geoawesomeness.com/google-maps-will-now-power-location-aware-augmented-reality-games/
https://geoawesomeness.com/google-maps-will-now-power-location-aware-augmented-reality-games/
https://www.roadtovr.com/wooorld-google-earth-vr-quest-2/
https://www.roadtovr.com/wooorld-google-earth-vr-quest-2/
https://www.jotform.com/blog/collection-of-the-coolest-uses-of-the-google-maps-api/
https://www.jotform.com/blog/collection-of-the-coolest-uses-of-the-google-maps-api/

BIBLIOGRAPHY 201

collection-of-the-coolest-uses-of-the-google-maps-api/, (accessed: May

01, 2022).

[63] Y. Zhang, Y. Shen, H. Wang, J. Yong, and X. Jiang, “On secure wireless

communications for IoT under eavesdropper collusion,” IEEE Transactions

on Automation Science and Engineering, vol. 13, no. 3, pp. 1281–1293, Jul.

2016.

[64] X. Lu, E. Hossain, T. Shafique, S. Feng, H. Jiang, and D. Niyato, “Intelligent

reflecting surface enabled covert communications in wireless networks,” IEEE

Network, vol. 34, no. 5, pp. 148–155, Oct. 2020.

[65] R. Soltani, D. Goeckel, D. Towsley, B. A. Bash, and S. Guha, “Covert wire-

less communication with artificial noise generation,” IEEE Transactions on

Wireless Communications, vol. 17, no. 11, pp. 7252–7267, Nov. 2018.

[66] P. Siyari, M. Krunz, and D. N. Nguyen, “Friendly jamming in a mimo wiretap

interference network: A nonconvex game approach,” IEEE Journal on Selected

Areas in Communications, vol. 35, no. 3, pp. 601–614, Mar. 2017.

[67] Z. Mobini, M. Mohammadi, and C. Tellambura, “Wireless-powered full-duplex

relay and friendly jamming for secure cooperative communications,” IEEE

Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 621–

634, Mar. 2019.

[68] L. Yang, J. Chen, H. Jiang, S. A. Vorobyov, and H. Zhang, “Optimal relay

selection for secure cooperative communications with an adaptive eavesdrop-

per,” IEEE Transactions on Wireless Communications, vol. 16, no. 1, pp.

26–42, Jan. 2017.

[69] D. T. Hoang, D. Niyato, D. I. Kim, N. Van Huynh, and S. Gong, Ambient

backscatter communication networks. Cambridge University Press, 2020.

https://www.jotform.com/blog/collection-of-the-coolest-uses-of-the-google-maps-api/
https://www.jotform.com/blog/collection-of-the-coolest-uses-of-the-google-maps-api/

BIBLIOGRAPHY 202

[70] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Am-

bient backscatter: Wireless communication out of thin air,” ACM SIGCOMM

Computer Communication Review, vol. 43, no. 4, pp. 39–50, Aug. 2013.

[71] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “Backfi: High through-

put wifi backscatter,” ACM SIGCOMM Computer Communication Review,

vol. 45, no. 4, pp. 283–296, Aug. 2015.

[72] A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith, “Turbocharging ambi-

ent backscatter communication,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 4, pp. 619–630, Aug. 2014.

[73] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “Passive Wi-Fi: Bringing

low power to Wi-Fi transmissions,” in Proceedings of the 13th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 16), 2016,

pp. 151–164.

[74] A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota, “FM backscat-

ter: Enabling connected cities and smart fabrics,” in Proceedings of the

14th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 17), 2017, pp. 243–258.

[75] P. V. Nikitin, S. Ramamurthy, R. Martinez, and K. S. Rao, “Passive tag-to-tag

communication,” in Proceedings of the 2012 IEEE International Conference

on RFID (RFID), 2012, pp. 177–184.

[76] D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “The tradeoff

analysis in rf-powered backscatter cognitive radio networks,” in Proceedings of

the 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp.

1–6.

BIBLIOGRAPHY 203

[77] X. Li, M. Zhao, Y. Liu, L. Li, Z. Ding, and A. Nallanathan, “Secrecy analysis

of ambient backscatter NOMA systems under I/Q imbalance,” IEEE Trans-

actions on Vehicular Technology, vol. 69, no. 10, pp. 12 286–12 290, Oct. 2020.

[78] X. Li, M. Zhao, M. Zeng, S. Mumtaz, V. G. Menon, Z. Ding, and O. A.

Dobre, “Hardware impaired ambient backscatter NOMA systems: Reliability

and security,” IEEE Transactions on Communications, vol. 69, no. 4, pp.

2723–2736, Apr. 2021.

[79] X. Li, Y. Zheng, W. U. Khan, M. Zeng, D. Li, G. Ragesh, and L. Li, “Phys-

ical layer security of cognitive ambient backscatter communications for green

Internet-of-Things,” IEEE Transactions on Green Communications and Net-

working, vol. 5, no. 3, pp. 1066–1076, Sep. 2021.

[80] N. Van Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and

P. Wang, “Reinforcement learning approach for rf-powered cognitive radio

network with ambient backscatter,” in Proceedings of the 2018 IEEE Global

Communications Conference (GLOBECOM), 2018, pp. 1–6.

[81] S. Boztas, “Comments on ”An inequality on guessing and its application to

sequential decoding”,” IEEE Transactions on Information Theory, vol. 43,

no. 6, pp. 2062–2063, 1997.

[82] H. Guo, Q. Zhang, D. Li, and Y.-C. Liang, “Noncoherent multiantenna re-

ceivers for cognitive backscatter system with multiple RF sources,” arXiv

preprint arXiv:1808.04316, 2018.

[83] H. Guo, Q. Zhang, S. Xiao, and Y.-C. Liang, “Exploiting multiple antennas

for cognitive ambient backscatter communication,” IEEE Internet of Things

Journal, vol. 6, no. 1, pp. 765–775, Feb. 2019.

BIBLIOGRAPHY 204

[84] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estima-

tion and signal detection in OFDM systems,” IEEE Wireless Communications

Letters, vol. 7, no. 1, pp. 114–117, Feb. 2018.

[85] C. Fan, X. Yuan, and Y.-J. Zhang, “CNN-based signal detection for banded

linear systems,” IEEE Transactions on Wireless Communications, vol. 18,

no. 9, pp. 4394–4407, Sep. 2019.

[86] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep

learning models for wireless signal classification with distributed low-cost spec-

trum sensors,” IEEE Transactions on Cognitive Communications and Net-

working, vol. 4, no. 3, pp. 433–445, Sep. 2018.

[87] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based

radio signal classification,” IEEE Journal of Selected Topics in Signal Process-

ing, vol. 12, no. 1, pp. 168–179, Feb. 2018.

[88] N. Van Huynh, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, and

S. Chatzinotas, “Defeating super-reactive jammers with deception strategy:

Modeling, signal detection, and performance analysis,” IEEE Transactions on

Wireless Communications, vol. 21, no. 9, pp. 7374–7390, Sep. 2022.

[89] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algo-

rithms,” arXiv preprint arXiv:1803.02999, 2018.

[90] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in

neural networks: A survey,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 44, no. 9, pp. 5149–5169, Sep. 2022.

[91] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast

adaptation of deep networks,” in Proceedings of the International Conference

on Machine Learning, 2017, pp. 1126–1135.

BIBLIOGRAPHY 205

[92] “Introducing deep learning with MATLAB,” Matlab. https://www.

mathworks.com/campaigns/offers/next/deep-learning-ebook.html, (accessed:

May 08, 2023).

[93] S. Peng, S. Sun, and Y.-D. Yao, “A survey of modulation classification using

deep learning: Signal representation and data preprocessing,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 7020–7038,

Dec. 2022.

[94] S. Ruping, “Incremental learning with support vector machines,” in Proceed-

ings of the 2001 IEEE International Conference on Data Mining, 2001, pp.

641–642.

[95] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[96] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global min-

ima of deep neural networks,” in Proceeding of the International Conference

on Machine Learning, 2019, pp. 1675–1685.

[97] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals

of Mathematical Statistics, pp. 400–407, Sep. 1951.

[98] H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003.

[99] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[100] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,

no. 3-4, pp. 279–292, 1992.

[101] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and

D. I. Kim, “Applications of deep reinforcement learning in communications

https://www.mathworks.com/campaigns/offers/next/deep-learning-ebook.html
https://www.mathworks.com/campaigns/offers/next/deep-learning-ebook.html

BIBLIOGRAPHY 206

and networking: A survey,” IEEE Communications Surveys Tutorials, vol. 21,

no. 4, pp. 3133–3174, May 2019.

[102] S. Thrun and A. Schwartz, “Issues in using function approximation for rein-

forcement learning,” in Proceedings of the 1993 Connectionist Models Summer

School Hillsdale, NJ. Lawrence Erlbaum, vol. 6, 1993, pp. 1–9.

[103] S. Halkjær and O. Winther, “The effect of correlated input data on the dynam-

ics of learning,” in Proceedings of the 9th International Conference on Neural

Information Processing Systems, vol. 9, 1996, pp. 169–175.

[104] V. A. Papavassiliou and S. Russell, “Convergence of reinforcement learning

with general function approximators,” in Proceedings of IJCAI, 1999, pp. 748–

755.

[105] T. Xu and I. Darwazeh, “Design and prototyping of neural network compres-

sion for non-orthogonal iot signals,” in 2019 IEEE Wireless Communications

and Networking Conference (WCNC), 2019, pp. 1–6.

[106] [Online]. Available: https://www.tesla.com/en AU/AI

[107] D. A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural network,”

in Advances in Neural Information Processing Systems 1, 1989, p. 305–313.

[108] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[109] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement learning:

A survey,” arXiv preprint arXiv:2009.07888, 2020.

[110] C. T. Nguyen et al., “Transfer learning for wireless networks: A comprehensive

survey,” Proceedings of the IEEE, vol. 110, pp. 1073 – 1115, Jun. 2022.

https://www.tesla.com/en_AU/AI

BIBLIOGRAPHY 207

[111] H. Khodr, N. Kouzayha, M. Abdallah, J. Costantine, and Z. Dawy, “Energy

efficient IoT sensor with RF wake-up and addressing capability,” IEEE Sen-

sors Letters, vol. 1, no. 6, pp. 1–4, Dec. 2017.

[112] Q. Wu and R. Zhang, “Common throughput maximization in UAV-enabled

OFDMA systems with delay consideration,” IEEE Transactions on Commu-

nications, vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[113] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient multi-

UAV navigation for long-term communication coverage by deep reinforcement

learning,” IEEE Transactions on Mobile Computing, vol. 19, no. 6, pp. 1274–

1285, Jun. 2020.

[114] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, “Deep re-

inforcement learning for minimizing age-of-information in UAV-assisted net-

works,” in Proceedings of the 2019 IEEE Global Communications Conference

(GLOBECOM), 2019, pp. 1–6.

[115] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control

for effective and fair communication coverage: A deep reinforcement learning

approach,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,

pp. 2059–2070, Sep. 2018.

[116] N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Deepfake:

Deep dueling-based deception strategy to defeat reactive jammers,” IEEE

Transactions on Wireless Communications, vol. 20, no. 10, pp. 6898–6914,

Oct. 2021.

[117] A. G. Andrade and V. Parra, “Evaluation of uwb interference at wimax sys-

tems based on a generalized pulse waveform,” in 2009 International Conference

on Electrical, Communications, and Computers, 2009, pp. 214–219.

BIBLIOGRAPHY 208

[118] Tech. Rep. [Online]. Available: https://scdn.rohde-schwarz.

com/ur/pws/dl downloads/dl application/application notes/1ma220/

1MA220 3e WLAN 11ad WP.pdf

[119] P. Kumari, W. Heath, and S. A. Vorobyov, “Virtual pulse design for IEEE

802.11ad-based joint communication radar,” in Proceedings of the 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing, 2018,

pp. 3315–3319.

[120] M. A. Richard, Fundamentals of Radar Signal Processing. Education:

McGraw-Hill, 2014.

[121] “Wireless LAN medium access control (MAC) and physical layer (PHY) spec-

ifications. Amendment 3: Enhancements for very high throughput in the 60

GHz band,” Tech. Rep., 2012.

[122] R. W. H. Jr and A. Lozano, Foundations of MIMO Communication. Cam-

bridge University Press, 2019.

[123] V. Va, T. Shimizu, G. Bansal, and R. W. H. Jr, Millimeter wave vehicular

communications: A survey. Now: Foundations and Trends in Networking,

2016.

[124] A. Bazzi, C. Karnfelt, A. Peden, T. Chonavel, P. Galaup, and F. Bodereau,

“Estimation techniques and simulation platforms for 77 GHz FMCW ACC

radars,” The European Physical Journal - Applied Physics, vol. 57, Nov. 2011.

[125] H. Rohling and M.-M. Meinecke, “Waveform design principles for automotive

radar systems,” in Proceedings of the 2001 CIE International Conference on

Radar, 2001, pp. 1–4.

[126] G. R. Curry, Radar System Performance Modeling, 2nd ed. Artech House,

2004.

https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf

BIBLIOGRAPHY 209

[127] R. Khalili and K. Salamatian, “A new analytic approach to evaluation of

packet error rate in wireless networks,” in Proceedings of the 3rd Annual Com-

munication Networks and Services Research Conference (CNSR’05), 2005, pp.

333–338.

[128] K. Nguyen, M. G. Kibria, K. Ishizu, and F. Kojima, “Performance evaluation

of IEEE 802.11ad in evolving Wi-Fi networks,” Wireless Communications and

Mobile Computing, vol. 2019, Feb. 2019.

[129] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. Cam-

bridge: MIT press, 1998, vol. 135.

[130] S. Sahhaf et al., “Network service chaining with optimized network function

embedding supporting service decompositions,” Computer Networks, vol. 93,

pp. 492–505, Dec. 2015.

[131] B. Alturki, S. Reiff-Marganiec, C. Perera, and S. De, “Exploring the effective-

ness of service decomposition in fog computing architecture for the internet

of things,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp.

299–312, Mar. 2019.

[132] A. Wolke, M. Bichler, and T. Setzer, “Planning vs. dynamic control: Re-

source allocation in corporate clouds,” IEEE Transactions on Cloud Comput-

ing, vol. 4, no. 3, pp. 322–335, Sep. 2014.

[133] S. Abbasloo, Y. Xu, and H. J. Chao, “C2TCP: A flexible cellular TCP to meet

stringent delay requirements,” IEEE Journal on Selected Areas in Communi-

cations, vol. 37, no. 4, pp. 918–932, Feb. 2019.

[134] “Network Functions Virtualisation: An Introduction, Benefits, Enablers,

Challenges & Call for Action,” ESTI. Accessed: Apr. 24, 2022. [Online].

BIBLIOGRAPHY 210

Available: https://docbox.etsi.org/isg/nfv/open/Publications pdf/White%

20Papers/NFV White Paper1 2012.pdf

[135] “Description of network slicing concept,” NGMN Alliance. Accessed: Apr.

24, 2022. [Online]. Available: https://www.ngmn.org/wp-content/uploads/

Publications/2016/161010 NGMN Network Slicing framework v1.0.8.pdf

[136] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slic-

ing and softwarization: A survey on principles, enabling technologies, and

solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp.

2429–2453, Mar. 2018.

[137] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources

and virtual network functions,” IEEE Communications Surveys & Tutorials,

vol. 21, no. 2, pp. 1409–1434, Dec. 2018.

[138] H. Zhang et al., “Network slicing based 5G and future mobile networks: Mobil-

ity, resource management, and challenges,” IEEE Communications Magazine,

vol. 55, no. 8, pp. 138–145, Aug. 2017.

[139] R. G. Gallager, Discrete Stochastic Processes. U.K.: Kluwer, 1995.

[140] L. Kallenberg, Markov Decision Processes. University of Leiden, 2016.

Accessed: May 01, 2022. [Online]. Available: http://www.math.leidenuniv.

nl/%7Ekallenberg/Lecture-notes-MDP.pdf

[141] G. Wang, G. Feng, W. Tan, S. Qin, R. Wen, and S. Sun, “Resource allocation

for network slices in 5G with network resource pricing,” in Proceedings of the

2017 IEEE Global Communications Conference, 2017, pp. 1–6.

[142] H. Roh, C. Jung, W. Lee, and D.-Z. Du, “Resource pricing game in geo-

distributed clouds,” in Proceedings of the IEEE INFOCOM, 2013, pp. 1519–

1527.

https://docbox.etsi.org/isg/nfv/open/Publications_pdf/White%20Papers/NFV_White_Paper1_2012.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/White%20Papers/NFV_White_Paper1_2012.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2016/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2016/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
http://www.math.leidenuniv.nl/%7Ekallenberg/Lecture-notes-MDP.pdf
http://www.math.leidenuniv.nl/%7Ekallenberg/Lecture-notes-MDP.pdf

BIBLIOGRAPHY 211

[143] “Pricing-cloud services j Microsoft Azure,” https://azure.microsoft.com/

en-us/pricing/details/cloud-services/, (accessed: Apr 20, 2023).

[144] “Google compute engine pricing,” https://cloud.google.com/compute/pricing,

(accessed: Apr 20, 2023).

[145] W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, and X. Li, “Dynamic

RAN slicing for service-oriented vehicular networks via constrained learning,”

IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2076–

2089, Jul. 2021.

[146] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao,

“AI-assisted network-slicing based next-generation wireless networks,” IEEE

Open Journal of Vehicular Technology, vol. 1, pp. 45–66, Jan. 2020.

[147] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and

W. Zhuang, “AI-native network slicing for 6G networks,” IEEE Wireless Com-

munications, vol. 29, no. 1, pp. 96–103, Feb. 2022.

[148] P. Jaccard, “The distribution of the flora in the alpine zone,” The New Phy-

tologist, vol. 11, no. 2, pp. 37–50, Feb. 1912.

[149] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,

pp. 279–292, May 1992.

[150] V. Mnih et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[151] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-

ver, and D. Wierstra, “Continuous control with deep reinforcement learning,”

arXiv preprint arXiv:1509.02971, 2015.

https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://cloud.google.com/compute/pricing

BIBLIOGRAPHY 212

[152] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[153] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improve-

ments in deep reinforcement learning,” in Proceedings of the AAAI Conference

on Artificial Intelligence, 2018.

[154] X. Wang, L. Zhang, Y. Liu, C. Zhao, and K. Wang, “Solving task scheduling

problems in cloud manufacturing via attention mechanism and deep reinforce-

ment learning,” Journal of Manufacturing Systems, vol. 65, pp. 452–468, Oct.

2022.

[155] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and

A. Madry, “Implementation matters in deep policy gradients: A case study

on ppo and trpo,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2020, pp. 1–14.

[156] G. Dandachi, A. De Domenico, D. T. Hoang, and D. Niyato, “An artificial in-

telligence framework for slice deployment and orchestration in 5G networks,”

IEEE Transactions on Cognitive Communications and Networking, vol. 6,

no. 2, pp. 858–871, Nov. 2020.

[157] N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim,

“Ambient backscatter communications: A contemporary survey,” IEEE Com-

munications surveys & tutorials, vol. 20, no. 4, pp. 2889–2922, May. 2018.

[158] Q. Zhang, H. Guo, Y.-C. Liang, and X. Yuan, “Constellation learning-based

signal detection for ambient backscatter communication systems,” IEEE Jour-

nal on Selected Areas in Communications, vol. 37, no. 2, pp. 452–463, Feb.

2019.

BIBLIOGRAPHY 213

[159] S. Ma, G. Wang, R. Fan, and C. Tellambura, “Blind channel estimation for

ambient backscatter communication systems,” IEEE Communications letters,

vol. 22, no. 6, pp. 1296–1299, Jun. 2018.

[160] W. Zhao, G. Wang, S. Atapattu, R. He, and Y.-C. Liang, “Channel estima-

tion for ambient backscatter communication systems with massive-antenna

reader,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8254–

8258, Aug. 2019.

[161] Y. Shen and E. Martinez, “Channel estimation in OFDM systems,” Freescale

Semiconductor Application Note, pp. 1–15, 2006.

[162] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-

learning with memory-augmented neural networks,” in Proceedings of the In-

ternational Conference on Machine Learning, 2016, pp. 1842–1850.

[163] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks for

one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2, no. 1,

2015.

[164] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks

for one shot learning,” Advances in Neural Information Processing Systems,

vol. 29, 2016.

[165] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learn-

ing,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[166] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “Near-maximum-

likelihood detection of MIMO systems using MMSE-based lattice-reduction,”

in Proceedings of the 2004 IEEE International Conference on Communica-

tions, vol. 2, 2004, pp. 798–802.

BIBLIOGRAPHY 214

[167] P. Kyosti, “WINNER II channel models,” IST, Tech. Rep. IST-4-027756 WIN-

NER II D1. 1.2 V1. 2, 2007.

[168] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

	Certificate of Original Authorship
	Abstract
	Acknowledgments
	Table of Contents
	List of Publications
	List of Figures
	Abbreviation
	Introduction and Literature Review
	Motivations
	Literature Review and Contributions
	UAV-based data collection systems
	Literature Review
	Contributions

	Intergrated Communication and Sensing Systems based on mmWave
	Literature Review
	Contributions

	Resource Managent for Metaverse
	Literature Review
	Contributions

	Counter Eaveasdopping Attacks based on Ambient Backscatter Communications
	Literature Review
	Contributions

	Thesis Organization

	Background
	Deep Learning
	Reinforcement Learning
	Markov Decision Process
	Q-learning
	Deep Reinforcement Learning
	Deep Dueling Double Q-learning
	Optimality and Computational Complexity Analysis

	Transfer Learning and Meta Learning
	Transfer Learning
	Meta-Learning

	Joint Speed Control and Energy Replenishment Optimization for UAV-assisted IoT Data Collection with Deep Reinforcement Transfer Learning
	System Model
	Optimal Operation Control Formulation
	State Space
	Action Space
	Reward Function
	Speed Selection Reward Function
	Battery Replacement Reward Function

	Optimization Formulation

	Optimal Operation Policy for UAVs with Deep Reinforcement Transfer Learning
	Transfer Learning in Reinforcement Learning
	Deep Dueling Double Q-learning with Transfer Learning

	Performance Evaluation
	Parameter Setting
	Simulation Results
	Convergence and Policy
	blackPerformance Analysis
	Transfer Learning Strategies

	Conclusions

	AI-enabled mm-Waveform Configuration for Autonomous Vehicles with Integrated Communication and Sensing
	System Model
	Signal Models
	Transmitted Signal Model
	Received Signal Models

	Sensing Signal Processing
	ICAS Performance Metrics

	Problem Formulation
	State Space
	Action Space
	Reward Function
	Optimization Formulation

	Reinforcement Learning-based Solutions for ICAS-AV Operation Policy
	Performance Evaluation
	Simulation Parameters
	Simulation Results
	Convergence Rate
	blackPerformance Analysis

	Conclusion

	MetaSlicing: A Novel Resource Allocation Framework for Metaverse
	System Model
	MetaSlicing: Dynamic Resource Allocation Framework for Metaverse
	Multi-tier Resource Allocation Architecture-based Metaverse
	MetaSlice Decomposition
	MetaInstance

	Admission Control and Resource Management

	MetaSlicing Admission Control Formulation
	Decision Epoch
	State Space
	Action Space
	State Transition Probabilities
	Immediate Reward Function
	Optimization Formulation

	AI-based Solution with MetaSlice Analysis for MetaSlice Admission Management
	MetaSlice Analysis
	Deep Dueling Double Q-learning based-Admission Controller

	Performance Evaluation
	Simulation Parameters
	Simulation Results
	Convergence Rate
	blackPerformance Analysis

	Conclusion

	Countering Eavesdroppers with Meta-learning-based Cooperative Ambient Backscatter Communications
	System Model
	Channel Model
	Direct Channel
	Ambient Backscatter Channel
	Received Signals

	AmB Signal Detector based on Maximum Likelihood
	Received Signals' Likelihood Functions
	Maximum Likelihood Detector

	Deep Learning-Based Signal Detector
	Data Preprocessing
	Deep Neural Network Architecture

	AmB Signal Detector based on Meta-Learning
	Simulation Results
	Simulation Settings
	Maximum Achievable Backscatter Rate
	Anti-eavesdropper and Security Analysis
	The Learning Process of DL-based AmB Signal Detector
	BER Performance
	Meta-Learning for AmB Signal Detection

	Conclusion

	Conclusions and Potential Research Directions
	Conclusion
	Future Works

	Proofs in Chapter 5
	The Proof of Theorem 1
	The Proof of Theorem 2

	Proofs in Chapter 6
	The proof of Theorem 6.1

	Bibliography

