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Abstract 
 

Factor return models are widely used throughout finance in both academic 

research and industry practice. They are one of the primary tools for evaluating the 

performance (risk and risk-adjusted returns) of an asset or investment strategy. This thesis 

examines econometric inconsistencies between the parameter estimates obtained via 

common applications of factor models and their interpretation by academics and 

practitioners. We demonstrate that common estimation techniques are plagued by 

material estimation biases that severely diminish the usefulness of parameters estimated. 

As consequence, practitioners are making misguided investment evaluations whilst 

academics may also be drawing invalid inferences in their research. 

Chapter 2 of this thesis focuses on one of the most widely studied models in 

finance history; the Capital Asset Pricing Model (CAPM). The CAPM provides a 

framework to measure systematic risk, or “Beta”, which has become profoundly 

important to finance academics and practitioners alike. Beta is widely used to evaluate 

investment performance, analyse market efficiency, and manage portfolio risk. 

Unfortunately, a growing body of literature demonstrates that common approaches to 

Beta estimation may produce a metric that is largely stochastic. In this chapter we explore 

inconsistencies between CAPM theory and OLS estimates of Beta to understand why. 

We conclude that OLS regression can only produce non-spurious estimates of Beta when 

employed on data that perfectly reflects CAPM theory, an extreme improbability in real 

world observations. 

Chapter 3 of this thesis focuses on a common form of model misspecification in 

factor models. “Alpha” is one of the most important metrics for performance evaluation 

used by both academics and practitioners. A bias in Alpha estimates has the potential to 

undermine the validity of any investment strategy. Our analysis shows that Alphas 

estimated using time-series regressions of factor models are systematically biased due to 

model misspecification of cross-sectional risk premia. We demonstrate that cross-

sectional regressions are more appropriate for estimating Alpha because performance is 

penalised based on observed, rather than assumed, risk-return relations in data. Our 

results suggest that time-series estimates of Alphas are largely spurious as opposed to a 

true representation of risk-adjusted performance. 

Chapter 4 examines a specific form of endogeneity associated with factor models. 

Empirical finance is greatly concerned with endogeneity and its potential to invalidate 
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analysis. However, the most pervasive form of endogeneity in finance is rarely 

considered in asset pricing literature. The “market portfolio”, which commonly serves as 

an explanatory variable in statistical tests, is clearly an endogenous reference; securities 

are regressed on a portfolio of which they are a constituent. In addition to constituent 

weight, there are several stock characteristics that influence the direction and severity of 

endogenous reference bias. We examine the conditions in which stocks are likely to have 

the most significantly biased beta estimates and explore the impact on performance 

evaluation. We demonstrate that a simple hedging portfolio against endogenous reference 

bias is able to generate an alpha economically larger than the small cap and value 

premiums during our sample period. 

Overall, this thesis critically examines several common applications of linear 

factor return models in empirical asset pricing. We demonstrate that Beta estimates 

obtained from single-factor models deployed on historical data differ greatly from the 

values anticipated by empiricists. We show that model misspecification is likely to cause 

spurious Alpha estimates in commonly used time-series regressions of single and 

multiple-factor models. Finally, we demonstrate that endogeneity will always be present 

in factor models since they involve regression of dependent variables upon factors of 

which they are a constituent. In culmination, this thesis cautions empiricists to scrutinise 

whether their current applications of factor models are appropriate and calls into question 

the validity of historical findings substantiated by factor models. 
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Chapter 1: Introduction 
 

Introduction 
 

1.1 Background and motivation 

1.1.1 The “common” application of factor models in finance 

This thesis provides a critique of common applications of factor models. In order 

to identify why common applications of factor models are flawed, it is helpful to express 

what “common applications” entails. Firstly, throughout this thesis, the phrase “factor 

models” refers to linear econometric return models used by empiricists to evaluate the 

return of an asset or investment strategy after accounting for systematic risks. Most 

famously, a single-factor regression based on the theory of the Capital Asset Pricing 

Model (CAPM) gained widespread usage in the second half of the 20th century and 

remains popular today.1  

To understand the “common” use of factor models by industry we can sample 

some teachings from the most influential practitioner bodies in finance on how to 

interpret a single-factor model based on the CAPM: 

 

“A company with a β that’s greater than 1 is more volatile than the 

market. For example, a high-risk technology company with a β of 1.75 

would have returned 175% of what the market returned in a given 

period.”  

(Corporate Finance Institute, 2023) 

 

“The higher the beta of an asset, the higher its expected return will be. 

Assets with a beta greater than 1 have an expected return that is higher 

than the market return.”  

(CFA Institute, 2023) 

 

 
 

1 Graham & Harvey (2001) found that 73.5% of US CFOs always, or almost always, used the CAPM when estimating the cost of 

capital for prospective investments. 
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Similar interpretations are echoed by popular general audience websites: 

 

“If an asset has a beta above (below) 1, it indicates that its return moves 

more (less) than 1-to-1 with the return of the market-portfolio, on 

average.”  

(Wikipedia, 2023) 

 

Practitioners are taught to take ordinary least squares (OLS) regression estimates 

of a single-factor model as informative of expectations of the future returns of an asset; 

if I estimate a historical stock Beta of 2, I should anticipate it will deliver returns twice 

that of the market factor next year. Unfortunately, if an estimation framework suffers 

from material bias, then the Beta estimates upon which practitioners rely could become 

partially or completely spurious. In essence, that is the contribution of this thesis; to 

identify several material forms of bias to OLS estimates of factor model parameters that 

are not currently recognised by practitioners nor adjusted for in historical academic 

literature. 

Whilst it is not uncommon in contemporary academic research to use alternate 

estimation procedures, this thesis contextualises the econometric issues identified within 

an OLS estimation framework for two primary reasons. Firstly, practitioners are primarily 

taught the estimation of factor model parameters via OLS. As a result, it makes sense to 

critique the framework commonly employed to inform real world asset allocation. 

Secondly, whilst the variety of estimation procedures used in finance literature has 

increased over time, many of the seminal works involving performance evaluation and 

the identification of return anomalies were based on the employ of OLS. For example, 

the papers credited with early identification of the “size effect” anomaly (Banz, 1981), 

the “value effect” anomaly (Fama & French, 1992), and the “momentum” anomaly 

(Jegadeesh & Titman, 1993) relied on OLS estimation. Consequently, material bias to 

OLS parameter estimates of factor models serves to question not only the validity of 

contemporary industry practice but also influential historical findings.  

 

1.1.2 The growth in documented return “anomalies”  

The CAPM specifies that if all investors hold well-diversified (mean-variance 

efficient) portfolios, then asset returns are a linear function of their exposure to market 
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risk; a single factor is sufficient to explain the cross-section of asset returns. Historically, 

the CAPM has fallen well short of this standard in published literature. Eugene Fama and 

Kenneth French claim that the empirical record of the CAPM is “poor enough to 

invalidate the way it is used in applications” (2004, p. 25). 

Perceived empirical deficiencies of the CAPM have resulted in expansion of the 

single-factor model to include other potential return factors that plausibly capture 

systematic risks and by doing so facilitate a more complete explanation of the cross-

section of asset returns. Fama and French initially advocated use of an alternate three-

factor model (1993), which included additional presumed risk factors emerging in finance 

literature, as an improvement over the CAPM. Their model gained widespread adoption 

in academia. However, the expansion of a CAPM-based single-factor model to 

incorporate additional presumed risk premia has been controversial.2 Markowitz’s (1993) 

mean-variance mathematics, which underpins the CAPM, specifies that the expected 

returns on all assets are spanned by two frontier portfolios: any efficient portfolio and its 

zero-covariance counterpart. The important corollary is that there is no need for 

additional factors. This result is a mathematical tautology which holds for any data set. 

Smith and Walsh (2013, p. 75) leverage this tautology to criticise the Fama French 

expansion of the CAPM; “What does this mean for the Fama and French factors? The 

implication is clear: if researchers are allowed to look ex post there will be an infinite 

number of portfolios that they can find .... By concentrating on the size anomaly and the 

market to book anomaly, Fama and French have found a workable method of 

constructing ex post efficient portfolios.”.  

Despite controversy, the pace of proliferation of new factor model “anomalies” 

has only accelerated in the 21st century. Return anomalies against the Fama French’s 

advocated three-factor model have become increasingly prevalent in empirical finance 

papers. Fama and French (2015) have since extended their multifactor model to 

incorporate five presumed risk factors. By 2020, there were over 450 published return 

anomalies in accounting and finance journals (Hou et al., 2020).  

The rapid expansion of identified return anomalies is one of the great puzzles of 

modern finance. Anomalies should be rare by definition. Is there some unidentified 

 
 

2 E.g., see Roll and Ross (1994, p. 101): “the true cross-sectional expected return-beta relation is exact when the index is efficient, 

so no variable other than beta can explain any part of the true cross-section of expected returns.” 
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deficiency in the theory underpinning commonly used factor models? Is the increasing 

prevalence of anomalies simply the result of data mining? Or is there an entirely different 

cause? This thesis presents three novel forms of bias that heavily influence the estimates 

obtained from factor models. In doing so, we help solve the puzzle as to why anomalies 

have become commonplace. 

 

 

1.2 Contribution 

Motivated by the proliferation of anomalies, this thesis set out to identify 

undocumented econometric inconsistencies that could plausibly be the cause. Three 

distinct issues affecting parameter estimation in common applications of factor models 

have been identified. Each issue is covered in a separate chapter of this thesis. 

Chapter 2 identifies an estimation bias introduced to single-factor models when 

using a non-tangency market proxy. We develop a novel measure for quantifying the 

severity of estimation error that arises. Our novel measure allows us to examine the 

conditions in which the mismatch between theory and estimation creates the most 

significant bias to OLS beta estimates. We examine the historical magnitude of estimation 

error arising from the mismatch between theory and OLS estimation for individual US 

equities. We also explore the severity of mismatch error for portfolios rather than 

individual securities and demonstrate that both the size and value premium are at least 

partially attributable to mismatch error. Chapter 2 concludes by arguing that the 

magnitude of parameter estimation bias identified is substantial enough to invalidate the 

empirical use of single-factor models based on the CAPM. 

Chapter 3 highlights the issue of model misspecification when employing time-

series regressions of factor models for performance evaluations. The chapter is inspired 

by a novel starting point; we generate random data and examine whether documented 

anomalies are present in random data. If they are, it suggests they are generated by an 

econometric issue rather than being a meaningful characteristic of real-world data. We 

observe that the famous “low beta anomaly” (e.g., Frazzini and Pedersen, 2014) of 

finance is evident in random data. Specifically, we identify that the use of time-series 

rather than cross-sectional regression to estimate factor model parameters induces bias 

via model misspecification. This occurs because time-series regressions impose an 

arbitrary market risk premium assumption that is not informed by the underlying data; 
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alpha estimates become a linear function of beta estimates. We are also the first to 

quantify the magnitude of model misspecification bias for historical US data. In addition, 

we demonstrate the ease with which long-short portfolios can be constructed to exploit 

model misspecification bias and generate practically infinite spurious return anomalies. 

Chapter 4 builds on an existing but understudied area of research. We highlight 

that both single and multiple-factor models are subject to a specific form of endogeneity. 

This endogeneity arises from the practice of regressing dependent variables against 

“independent” variables of which they are a constituent (“endogenous reference bias”). 

We present the first research to consider the impact of three competing influences on the 

direction of magnitude of endogenous reference bias; facilitating richer insights into 

when endogenous reference bias will be a significant problem. By contrast, the closest 

paper to this chapter, by Malloch et al. (2016), only identifies two drivers which leads 

them to make claims which we dispute in this chapter. None of the existing literature 

examines the impact of endogenous reference bias upon the empirical data of a major 

developed market. We study the US stock market and find that beta estimation bias is 

unlikely to be severe for most individual securities. However, we identify that portfolios 

formed on Beta can be severely impacted by endogenous reference bias; providing 

intuition as to a source of estimation bias that led to the remarkable robustness of Frazzini 

and Pedersen’s (2014) ‘Betting Against Beta’ anomaly. We are also the first paper to 

develop a simple hedging portfolio against endogenous reference bias. This hedging 

portfolio generates an alpha economically larger than the small cap and value premiums 

during our 30-year sample period. 

 
 

1.3 Structure of this thesis 

This thesis is structured around three distinct econometric biases affecting 

common empirical applications of single and/or multiple-factor models: 

i) Chapter 2: Estimation bias introduced to single-factor models when using 

a non-tangency market proxy (e.g. market-cap weighted). 

ii) Chapter 3: Model misspecification bias when using time-series regression 

to estimate factor model parameters. 

iii) Chapter 4: Endogeneity arising from regressand inclusion in regressors. 
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Each thesis chapter has a section dedicated to related literature which further 

distinguishes the novel contributions of this thesis. Chapter 5 presents a summary 

conclusion and identifies avenues for future research.  
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2 Chapter 2: Is beta busted? 
 

Is beta busted? 
 

2.1 Introduction 

The Capital Asset Pricing Model (CAPM) is a central building block in modern 

finance theory. Since its development in the 1960s (Sharpe, 1964; Treynor, 1962; Lintner, 

1965; Mossin, 1966), the CAPM has offered researchers and practitioners a standardised 

approach to price risky securities by establishing a linear relation between expected return 

and systematic risk (Beta).3 The impact of the CAPM upon finance theory and practice 

has been extraordinary, in part due to the model’s simplicity and overwhelming 

popularity in real-world corporate finance and investments.4 However, reliance on the 

CAPM in financial decision making is likely problematic. 

CAPM theory requires that investors have similar expectations of the risk and 

return of a given asset and that only systematic risk is important to investors who will 

each hold large, well-diversified portfolios. Therefore, for measures of Beta to be useful, 

security Betas should be primarily deterministic. If a security’s Beta cannot be 

approximated by investors ex ante then it may not be expected to meaningfully influence 

investment practice as anticipated by the CAPM. Unfortunately, an extensive body of 

literature appears to demonstrate that Betas are at least partially stochastic. Fabozzi and 

Francis (1978) observed that the Betas of “many stocks” on the New York Stock 

Exchange (NYSE) were not stable as presumed under OLS but rather they moved 

randomly through time. Similarly, Sunder (1980), Bos and Newbold (1984), and Collins 

et al. (1987) subsequently confirmed that the betas of individual stocks are non-stationary 

or appear stochastic over time. However, what remains unresolved is why OLS estimates 

of stock Betas appear to be partially stochastic over time. 

 
 

3 (𝐸[𝑟𝑖] − 𝑟𝑓) = 𝛽𝑖(𝐸[𝑟𝑀] − 𝑟𝑓) is the Sharpe (1964) – Lintner (1965) CAPM, where 𝐸[𝑟𝑖] is the expected return of asset 𝑖, 𝑟𝑓 is a 

time-invariant risk-free rate of return, 𝐸[𝑟𝑚] is the expected return of the market portfolio comprising all assets, and 𝛽𝑖 is a measure 
of the systematic risk of asset 𝑖. In the CAPM, the expected excess return of a given asset is a linear function of its systematic risk 
multiplied by the market risk premium. 
4 Graham & Harvey (2001) found that 73.5% of US CFOs always, or almost always, used the CAPM when estimating the cost of 

capital for prospective investments. 
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This chapter provides a novel contribution to extant literature by highlighting and 

exploring a fundamental inconsistency between CAPM theory and OLS estimates of 

Beta. Under CAPM theory, stock Betas algebraically represent a return multiple 

(𝛽𝑖 =
𝐸[𝑅𝑖]

𝐸[𝑅𝑀]
).5 This interpretation of Beta is also widely taught to practitioners by the 

world’s leading finance institutions.6 By contrast, OLS estimates of Beta identify a 

distinctly different value (𝛽̂𝑖 = 𝐶𝑜𝑣(𝑅𝑖,𝑅𝑀)

𝑉𝑎𝑟(𝑅𝑀)
). These two values of Beta need not have a close 

relation; a single return multiple over a defined time period could have been produced by 

infinite different price paths and hence could produce infinite different OLS Beta 

estimates. Likewise, a single Beta could have been produced by infinite different return 

multiples. If the CAPM perfectly explained the average relation between systematic risk 

and return in our examined data then, on average, Betas estimated under OLS regression 

would be equivalent to the return multiple of CAPM theory. However, as soon as 

empirical data even weakly deviates from the CAPM, the relation between these two 

measures breaks down.7 

The first task of this chapter is to demonstrate analytically that OLS estimates of 

stock Betas are distinctly different to CAPM return multiples. We also provide simulation 

evidence that these two measures are only approximately the same when examined data 

precisely follows the CAPM.8 By contrast, when examined data is uninfluenced by the 

CAPM, then OLS Betas become stochastic variables distributed around 1. The 

implication is that unbiased estimation of Betas via OLS requires that our data perfectly 

conforms to CAPM theory, or else our obtained estimates become spurious. In real world 

settings it is practically impossible that our underlying data would perfectly reflect the 

CAPM. Indeed, since as early as Black et al. (1972) finance literature has consistently 

observed an empirical security market line that is “too flat” relative to the expectation of 

the CAPM. 

 
 

5 (𝐸[𝑟𝑖] − 𝑟𝑓) = 𝛽𝑖(𝐸[𝑟𝑀] − 𝑟𝑓) can be restated as 𝛽𝑖 =
(𝐸[𝑟𝑖]−𝑟𝑓)

(𝐸[𝑟𝑀]−𝑟𝑓)
. For conciseness, we can also restate returns as “excess returns” 

(returns in excess of the risk-free rate) which we denote via use of capitalisation: 𝛽𝑖 =
𝐸[𝑅𝑖]

𝐸[𝑅𝑀]
. 

6 CFA Institute: “The higher the beta of an asset, the higher its expected return will be. Assets with a Beta greater than 1 have an 

expected return that is higher than the market return”. Corporate Finance Institute: “A company with a β that’s greater than 1 is 
more volatile than the market. For example, a high-risk technology company with a β of 1.75 would have returned 175% of what 
the market returned in a given period”. 
7 E.g., see Roll and Ross (1994) where a market proxy with a return just 22 basis points less than the efficient frontier could induce 

zero cross-sectional relation between asset expected returns and Beta estimates. 
8 precisely follows the CAPM: not only is a mean-variance efficient market proxy selected but it is also the unique tangency 

portfolio.   



9 
 

Having identified the potential for disconnect between the betas of CAPM theory 

and those estimated via OLS, the next section of this chapter examines whether, and to 

what extent, OLS estimated Betas have historically differed from their theoretical values. 

We demonstrate for historical US data that these two measures typically greatly deviate 

from each other when estimating the Betas of individual stocks. To the extent that OLS 

estimates of Beta are inconsistent with CAPM theory, they undermine subsequent 

analysis that relies on expectations founded on the CAPM. For example, in tests of market 

efficiency, OLS Betas will produce a security market line flatter than anticipated in 

CAPM theory because they do not represent the Betas of CAPM theory and hence there 

is no expectation we would observe an empirical security market line (SML) with slope 

𝑅̅𝑀.  

The final task of this chapter is to investigate whether the disconnect between 

CAPM Betas and their empirical measurement via OLS has prompted the false 

identification of prominent finance anomalies. Specifically, we focus on the two famous 

anomalies of the Fama-French 3-Factor (FF3F) Model; the value and size premiums. We 

find that OLS estimated Alphas of both of these ‘anomalies’ are driven by a combination 

of a) abnormally low market correlations of the long portfolio in the long-short factor 

portfolio construction, and b) improper selection of a market proxy. The abnormally low 

correlation results in OLS estimates of the Beta for this portfolio being understated which 

in turn produces inflated Alpha estimates. The implications of this section can be 

generalised to the growing ‘factor zoo’ of empirical finance; practically infinite false 

finance anomalies can be generated through strategic construction of long-short 

portfolios. An empiricist need only to take a long position in a portfolio with low 

correlation with the market index.  

The remainder of this chapter is arranged as follows. Section 2.2 of this chapter 

discusses related literature and further distinguishes our contribution. Section 2.3 of this 

chapter demonstrates the potential for mismatch between the Beta of CAPM theory and 

its empirical estimation via OLS. Several metrics to measure the impact of this mismatch 

are also developed. Section 2.4 quantifies the historical size of Beta Mismatch Error for 

US stock data. Section 2.5 evaluates the impact of Beta Mismatch Error upon prominent 

anomalies with focus upon the size and value premiums. Section 2.6 summarises our 

main findings, discusses limitations and opportunities for further research, and then 

concludes. 
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2.2 Related literature and contribution 

 

The use of market Betas in empirical analysis remains contentious. Almost as 

soon as the concept of market Betas was developed a disconnect was discovered between 

expectations of the CAPM and observations of empirical data. Black et al. (1972), and 

many subsequent papers, found that relations between expected returns and Beta were far 

flatter than anticipated by the CAPM. Roll (1978) went further in his condemnation and 

emphasised that it is mathematically impossible for investment performance to be 

evaluated using the SML criterion of the CAPM.9 Despite the controversy, use of market 

Betas has gained widespread adoption in industry.10 As a result, there have been several 

attempts to explain the apparent disconnect between CAPM theory and empirical 

evidence. 

The most popular explanation for the disconnect is the errors-in-variables 

problem (EIV). The EIV problem stipulates that when independent variables are 

measured imprecisely OLS estimates of Beta become biased irrespective of sample size. 

If the measurement error has mean zero and is independent of the affected variable, the 

OLS estimator of the respective coefficient is biased towards zero. The “market portfolio” 

conceived by Markowitz (1952), which would become the basis for the development of 

the CAPM, represented all investible assets in the world. To date, it is not feasibly 

possible to track the values of such a hypothetical portfolio so empiricists have relied on 

the use of market proxies by necessity. Use of a market proxy means that our independent 

variable, market excess returns, is measured imprecisely. Consequently, OLS estimates 

of Beta are expected to be biased. The severity of this bias is further compounded when 

empiricists attempt to estimate the slope of the security market line using cross-sectional 

OLS regressions since time-series OLS estimates of Beta are now used as an 

“independent” variable. Within this context it is unsurprising that we historically observe 

a SML which is “too flat” relative to theoretical expectations of the CAPM. Several 

attempts to adjust for EIV bias have been developed over time (e.g. see Vasicek, 1973; 

 
 

9 Roll (1978, p.1060): “Individual differences in portfolio selection ability cannot be measured by the securities market line 

criterion. If the index is ex ante mean-variance efficient, the criterion will be unable to discriminate between winners and losers. If 
the index is not ex ante efficient, the criterion will be designate winners and losers; but another index could cause the criterion to 
designate different winners and losers and there is no objective way to ascertain which index is correct.” 
10 Graham & Harvey (2001) found that 73.5% of US CFOs always, or almost always, used the CAPM when estimating the cost of 

capital for prospective investments. 
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Kim, 1995; Jegadeesh et al., 2019). However, without additional information about the 

measurement error of the Beta variable used in the cross-sectional regression, a complete 

correction of the EIV bias is not feasible. 

Alternatively, Roll and Ross (1994) reconcile the disconnect between theory and 

observation by demonstrating that use of a market proxy that exhibits even a minor 

deviation from mean-variance efficiency can result in zero cross-sectional correlation 

between market betas and expected returns.11 Counterintuitively, they also demonstrate 

that it is possible for a market proxy to be substantially inefficient and still produce a 

strong cross-sectional regression between expected returns and betas. Given that the 

market proxies commonly used in asset pricing tests are typically not mean-variance 

efficient, it is unsurprising we observe weak cross-sectional correlation between market 

betas and expected returns. 

More recently, López de Prado (2023, p. 2) highlights the logical inconsistency at 

the heart of the factor investing literature: “On one hand, researchers attempt to compute 

unbiased 𝛽̂ and p-values in a way that is consistent with a causal interpretation of the 

factors. On the other hand, researchers almost never state a causal graph or falsifiable 

causal mechanism under which the specification is correct, and the estimates are 

unbiased. The result of this causal confusion is an academic literature where factors are 

not really factors (in the causal sense) and where unfalsifiable spurious claims 

proliferate.” In summary, misinterpretation of association as causation has established a 

low hurdle in the identification of risk premia throughout literature.  

Perhaps the simplest explanation yet to be rigorously considered in finance 

literature is that the disconnect may be driven by inconsistencies between the theoretical 

value of Beta under the CAPM and its estimated value under empirical measurement. 

Tofallis (2008) appears to be the first author to consider this disconnect and their paper 

is the most closely related paper to the content of this chapter. They focus on the 

theoretical role, and common industry interpretation, of Beta as a measure of relative 

volatility. They advocate that Beta estimates should instead be obtained via taking the 

geometric mean of the slopes from two least squares regressions; producing an estimate 

 
 

11 On page 105, the authors demonstrate that a market proxy with a return only 22 basis points lower than the efficient frontier is 

sufficient to generate zero cross-sectional correlation between stock returns and the market proxy. It is commonplace for both 
researchers and practitioners to use a cap-weighted index as market proxy. Hence, factor model parameter estimates will be 
heavily biased. 
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of beta which is equivalent to 𝛽𝑖
∗ = (𝑠𝑖𝑔𝑛 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) ∗ 

𝜎𝑖
𝜎𝑀

. We broadly agree with 

the arguments put forth by the author; that the common interpretation and use of Beta in 

industry is inconsistent with theory in the absence of perfect correlation, and that 

empirically measuring Beta as a function of relative volatility would bridge this 

disconnect. However, whilst their proposed resolution realigns estimation with the 

common theoretical interpretation of Beta, it begs the question of whether Beta is busted 

as a useful financial metric. Under their revised estimation approach virtually all Betas 

in the market will be identified as having a Beta of greater than one since almost all 

individual securities will exhibit a higher standard deviation than a highly diversified 

market portfolio. In a demonstration of the revised Beta estimation approach for Dow 

Jones Industrial Average (DJIA) constituents, the author presents revised Beta estimates 

of an average across securities of 1.98. Intuitively, this breaks the use of Beta in 

performance evaluation models since in the demonstrated case we would expect the 

securities to, on average, exhibit statistically negative alphas equivalent in magnitude to 

the market risk premium. If we adopt the resolution of Tofallis we have realigned 

estimation with theory but invalidated the use of Beta in many of its common financial 

applications. Borrowing an old medical adage; “the operation was a success, but the 

patient died”.  

This chapter contributes to existing literature in three important ways. Firstly, we 

explore the mismatch between the theory underpinning market Betas and their practical 

estimation. Our contribution is to develop a novel measure for quantifying the severity of 

estimation error that arises. Our novel measure allows us to examine the conditions in 

which the mismatch between theory and estimation creates the most significant bias to 

OLS Beta estimates. This allows us to predict that the Alpha associated with common 

finance anomalies, such as the small cap premium, may be partially attributable to the 

mismatch between theory and estimation. 

Our second task is to examine the historical magnitude of estimation error arising 

from the mismatch between theory and OLS estimation for US equities. We decompose 

OLS beta estimates into correlation and relative volatility. This decomposition allows us 

to examine whether the mismatch between CAPM Betas and their empirical measurement 

is primarily driven by weak correlation between stock and index returns and observe the 

severity of mismatch bias over time. Our main contribution is to identify an economically 

large deviation between theoretical Betas and their OLS estimates which is persistent 
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across time periods. When we regress theoretical Betas against OLS estimated Betas we 

observe a median R2 across regressions of 0.05; indicating minimal relation between the 

two measures. As consequence, we identify OLS estimates of Beta as being inconsistent 

with their theoretical interpretation as a return multiple. 

Our final task is to examine the severity of mismatch error for portfolios rather 

than individual securities. Our contribution is to show that portfolios are less vulnerable 

to Beta estimation error arising from the mismatch between theory and OLS estimation. 

However, the bias arising from mismatch error can still be severe. We demonstrate that 

both the size and value premium are at least partially attributable to mismatch error. In 

the next section we demonstrate the mismatch between the theoretical value of Beta and 

its OLS estimation. 
 

2.3 Mismatch between theory and measurement 

 

The Sharpe-Lintner CAPM (Sharpe, 1964; Lintner, 1965) can be represented as: 

𝐸[𝑅𝑖,𝑡] = 𝛽𝑖𝐸[𝑅𝑀,𝑡],            (2.1) 

where 𝑖 denotes an asset; 𝑡 denotes a time increment; 𝑅𝑖,𝑡 and 𝑅𝑀,𝑡 are returns on asset 𝑖 

and the market portfolio (commonly a proxy) in excess of the risk-free rate, and nestled 

within expectation operators; and 𝛽𝑖 is the exposure of asset 𝑖 to market risk. The equation 

can be easily rearranged to isolate 𝛽𝑖: 

𝛽𝑖 =
𝐸[𝑅𝑖,𝑡]

𝐸[𝑅𝑀,𝑡]
.            (2.2) 

Unsurprisingly, this algebraic rearrangement has led to widespread interpretation 

of 𝛽𝑖 in industry as a return multiple. For example, the Corporate Finance Institute, which 

claims to be the largest and most recognized finance training, certification, and skill 

development platform in the world, adopts this common interpretation in their 

explanation of Beta: “A company with a 𝛽 that’s greater than 1 is more volatile than the 

market. For example, a high-risk technology company with a 𝛽 of 1.75 would have 

returned 175% of what the market returned in a given period”.12 Historically, the most 

 
 

12 Source: https://corporatefinanceinstitute.com/resources/knowledge/valuation/what-is-beta-guide/  

https://corporatefinanceinstitute.com/resources/knowledge/valuation/what-is-beta-guide/
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common method to estimate the market Beta for a security has been via use of an ordinary 

least squares (OLS) regression of a single index model: 

𝑅𝑖,𝑡 = 𝛼̂𝑖 + 𝛽̂𝑖𝑅𝑀,𝑡 + 𝜀𝑖̂,𝑡,           (2.3) 

where variables are the same as Equation 2.1 but now a regression constant, 𝛼̂𝑖 

(commonly referred to as “Jensen’s Alpha”), and residuals, 𝜀𝑖̂,𝑡, are included. The value 

for 𝛽̂𝑖, estimated by an OLS regression, is: 

𝛽̂𝑖 =
𝐶𝑜𝑣(𝑅𝑖,𝑡,𝑅𝑀,𝑡)

𝑉𝑎𝑟(𝑅𝑀,𝑡)
 .          (2.4) 

Since it has historically been common empirical practice to use either a market 

index or equal-weighted portfolio as a market proxy, the common usage of OLS to 

estimate CAPM 𝛽𝑖 implies that the much of the past 70 years of finance research has 

rested on the assumption that the following equality holds: 

𝛽𝑖 = 𝛽̂𝑖 ,    or    𝐸[𝑅𝑖,𝑡]

𝐸[𝑅𝑀,𝑡]
=

𝐶𝑜𝑣(𝑅𝑖,𝑡,𝑅𝑀,𝑡)

𝑉𝑎𝑟(𝑅𝑀,𝑡)
.          (2.5) 

In practice, it is extremely unlikely that this equality would ever hold in empirical 

data since the requisite assumption is that either:  

a) all security returns exhibit either perfect correlation with the market portfolio, 

or  

b) the market proxy chosen by the empiricist happened to be the unique mean-

variance optimisation tangency portfolio for the selected data period.13  

Perhaps this disconnect can be best demonstrated through the visualisation of Figure 2.1 

below. The figure demonstrates 1,001 different price paths over 250 time periods. Each 

price path starts at the same origin and finishes at the same price level; that is to say that 

every single price path generates the same return multiple. However, every path is quite 

different so when regressed against a common market proxy will generate different OLS 

estimates of Beta. Figure 2.1 demonstrates that the same return multiple can be associated 

 
 

13 Note: use of a random mean-variance efficient portfolio is insufficient. Whilst use of a mean-variance efficient market proxy 

would ensure that all security returns lie on a common security market line, only the unique tangency portfolio ensures that the 
slope of the security market line is equivalent to the market risk premium (𝐸[𝑅𝑀,𝑡]). Hence, only use of a tangency portfolio creates 

equivalence between 𝛽𝑖 and 𝛽̂𝑖. 
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with practically infinite different OLS estimated Betas. The converse is true, the same 

OLS estimated Beta can be associated with practically infinite different return multiples.  

 

Figure 2.1: Many different price paths produce the same return multiple 
Figure 2.1 shows 1,001 different price paths which all start at a common price and all end at a common price. When 
regressed against a common market portfolio, each of these price paths would produce the same market return multiple 
yet different OLS beta estimates. The equality of Equation 2.5 clearly does not hold in this simulation. 
 

2.3.1 Imperfect market correlation as a source of disconnect 

Figure 2.1 serves to assert that the Beta of the CAPM can have little to no relation 

to the Beta estimated via OLS. The consequence of this revelation is severe. It raises the 

possibility that academic finance has invested over 70 years examining why the CAPM 

fails via use of a tool that produces a metric which may have little to no association to the 

model being investigated. As a result, it is of great importance to understand how severe 

this mismatch between asset return multiples (theoretical interpretation) and their OLS 

estimated Betas (empirical measurement) has been in historical data to identify the 

consequences for academic finance and industry. To facilitate analysis, we start with a 

further decomposition of OLS Beta: 

𝛽̂𝑖 =
𝐶𝑜𝑣(𝑅𝑖,𝑡,𝑅𝑀,𝑡)

𝑉𝑎𝑟(𝑅𝑀,𝑡)
= 𝜌𝑖 ∗ 𝜏𝑖 ,          (2.6) 
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where 𝜌𝑖 indicates the correlation of security 𝑖 with the market portfolio; and 𝜏𝑖 represents 

the relative volatility ( 𝜎𝑖
𝜎𝑀

) of security 𝑖 against the market portfolio. We note this 

decomposition is also used by Tofallis (2008). Our concern is how severe is the mismatch 

between 𝛽𝑖 and 𝛽̂𝑖 for a given data set. Unless our choice of market proxy was the unique 

mean-variance optimised (MVO) tangency portfolio, then the equality of Equation 2.5 

will hold only when |𝜌𝑖| = 1. Under this condition, Betas estimated via OLS are 

equivalent in magnitude to the Betas of CAPM theory; (𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖 is an empirical 

measurement equivalent to 𝛽𝑖. This empirical measurement, (𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖, is also 

consistent with the common interpretation of 𝛽𝑖; a security with a 𝜏𝑖 = 2 is expected to 

have returns twice the magnitude of the market. However, as |𝜌𝑖| → 0, 𝜏𝑖 must increase 

exponentially to maintain the equality. Hence (𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖 no longer equals 𝛽𝑖, 

rather there is an exponentially increasing mismatch between 𝛽𝑖 and (𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖. 

We formally denote this difference (𝛿𝑖) as “Beta Mismatch Error”, or “BME”: 

           𝐵𝑀𝐸𝑖 = (𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖 − 𝛽̂𝑖.         (2.7) 

In practice, most securities in a market tend to exhibit a positive correlation with 

a market index. We can interpolate how severe BME is for varying combinations of 𝛽𝑖 

and 𝜏𝑖 as we move from low correlations towards 𝜌𝑖 = 1. Intuitively, BME should be 

equivalent to zero when 𝜌𝑖 = 1 and increase as 𝜌𝑖 decreases. Figure 2.2 depicts this 

relation. 

 

Figure 2.2: Severity of Beta Mismatch Error for increasing correlation 
Figure 2.2 shows an exponentially increasing disconnect between the Beta of CAPM theory and the Beta estimated via 
OLS. As the correlation between the asset examined and the market index decreases, OLS estimates will progressively 
understate the relative volatility of this asset. Hence, an exponentially increasing disconnect between OLS estimates 
and their CAPM interpretation arises. BME approaches infinity as correlation approaches zero. 
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Alternatively, we can re-present BME as a ratio, denoted “Beta Mismatch Ratio”: 

𝐵𝑀𝑅𝑖 =
(𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖) ∗ 𝜏𝑖

𝛽̂𝑖

 

=
(𝑠𝑖𝑔𝑛 𝑜𝑓 𝜌𝑖)

𝜌𝑖
.          (2.8) 

This allows us to more easily interpret the impact of the disconnect between 𝛽𝑖 

and 𝛽̂𝑖. For example, a stock with a 𝛽𝑖 of 2 and correlation of 0.5 with the market portfolio 

would have a BMR of 2. Whilst our OLS measure of Beta would lead us to interpret that 

the stock typically exhibits periodic returns 2x as large as the market, it typically exhibits 

return movements 4x as large as the market. A BMR of 2 indicates that a measurement 

equivalent to our CAPM theory interpretation would be 2x the value of what we estimated 

under OLS. Figure 2.3 re-presents Figure 2.2 in a ratio format. Since BMR is standardised 

against 𝛽𝑖, only correlation impacts BMR. 

 

Figure 2.3: Beta Mismatch Ratio for increasing correlation 
Figure 2.3 shows Beta Mismatch Ratio (BMR) across a range of positive correlations. As the correlation of an asset 
with the market index decreases, BMR exponentially increases. By a correlation of 0.5, BMR has already reached 2, 
indicating that OLS estimates of Beta understate relative volatility, the theoretical CAPM interpretation of Beta, by 
50%. Consequently, the OLS estimate of alpha for this asset would be overstated by an amount equivalent to half of 
the market risk premium. BMR approaches infinity as correlation approaches zero. 

There are some interesting insights arising from Figure 2.3. We can observe that 

BMR is close to 1 for stocks highly correlated with the market; use of OLS to estimate 

𝛽𝑖 doesn’t cause a severe disconnect between the Beta of CAPM theory and our 

measurement of it. However, BMR quickly becomes elevated as correlation declines. By 
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a correlation of 0.5, our OLS estimates of 𝛽𝑖 understate the true relative return movements 

of stocks by a factor of 2. Since large stocks like Apple comprise a large portion of their 

market benchmark, they are likely to have reasonably high correlations with the market 

and be less severely impacted by BME. By contrast, smaller stocks may exhibit much 

lower correlations with the market benchmark which would render their OLS estimated 

Betas as seriously misleading under the common interpretation of CAPM Betas. 

 

2.3.2 Choice of market proxy as a source of disconnect 

It is necessary to emphasize that even an empirical model which produces a 

perfectly fit security market line can be built upon OLS betas that have little to no relation 

to their theoretical CAPM counterparts. Roll (1978) demonstrates that if the market proxy 

used in a single-factor model is mean-variance efficient then it is mathematically certain 

that all test assets/portfolios will lie on a common security market line. A cross-sectional 

regression will produce a perfect fit! Even in this scenario where it appears the CAPM 

perfectly explains the cross-sectional asset returns, it is possible that theoretical CAPM 

betas and their OLS estimates will have little relation. In our Figure 2.4 below (left panel) 

we reproduce this “perfect fit” scenario as presented in Figure 2 of Roll’s (1978) paper 

whereby the market proxy is a mean-variance efficient portfolio.14 In the same figure we 

also plot the OLS estimates of betas vs their theoretical equivalents (middle panel) and 

the Pearson’s correlation of each portfolio (right panel). The middle panel serves to 

indicate the large disconnect between the theoretical value of CAPM betas versus their 

OLS estimates. As shown in the right panel, this disconnect emerges because the test 

portfolios are not perfectly correlated with the market portfolio which is the required 

assumption for equivalency between CAPM Betas and their OLS estimates if the chosen 

market proxy is not the unique MVO tangency portfolio. 
 

 
 

14 We reproduce Roll’s (1978) third column of Figure 2 using exactly the same data as presented in his Table 1 and Table 2. 
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Figure 2.4: Beta mismatch still present in perfectly fit regressions 
Figure 2.4 illustrates that even when an OLS regression can explain 100% of the variation in empirical data, a large 
difference between theoretical CAPM Betas and their OLS estimates can remain. Panel A reproduces the third plot of 
Figure 2 of Roll (1978); a figure which demonstrates that every asset will inevitably lie on a common security market 
line if a mean-variance efficient portfolio is chosen as a market proxy. Panel B plots theoretical CAPM return multiples 
(y-axis) against their OLS estimates (x-axis) for the data of Panel A. A dotted 45-degree line is also overlayed on the 
chart. If all data points fell on the 45-degree line it would indicate equivalence between theoretical CAPM Betas and 
their OLS estimates. However, it is evident that there is a difference between theoretical Betas and their estimated 
values under OLS for this data despite the use of a MVO market proxy. Panel C identifies the underlying driver of this 
disconnect; the portfolios included in Roll’s simulation are not perfectly correlated with the market proxy. As a result, 
theoretical CAPM Betas and their OLS estimates are not equivalent. 

In Roll’s (1978) example, we can visually observe that his market proxy, whilst 

mean-variance efficient, was not a tangency portfolio. The plotted security market line 

produced a regression intercept of 4.93%. By contrast, it is a mathematical certainty for 

any data that if a mean-variance efficient tangency portfolio was chosen not only would 

all assets fall along a common SML but that SML would intercept the y-axis at precisely 

zero. As a result of this knowledge, it is possible to backsolve the unique mean-variance 

tangency portfolio for any data sample. An empiricist needs simply to generate an 

efficient frontier and then select the unique portfolio on that frontier that forces the y-

intercept of a SML through zero. Alternatively, this optimisation is achieved by finding 

portfolio weights which produce the highest Sharpe ratio. In Figure 2.5 we reproduce the 

panels of the preceding figure using the same data but instead using the unique mean-

variance tangency portfolio as our market proxy. 

 
 

      Panel A            Panel B         Panel C 
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Figure 2.5: No Beta mismatch when using tangency portfolio 
Figure 2.5 illustrates that when the chosen market proxy is a mean-variance efficient tangency portfolio, there is no 
difference between theoretical CAPM Betas and their OLS estimates. Panel A reproduces the third plot of Figure 2 of 
Roll (1978) but uses a tangency portfolio as the market proxy. Panel B plots theoretical CAPM return multiples (y-
axis) against their OLS estimates (x-axis) for the data of Panel A. A dotted 45-degree line is also overlayed on the 
chart. It is evident that there is no difference between theoretical Betas and their estimated values under OLS when a 
tangency portfolio is used as a market proxy. Panel C shows the equivalence remains despite imperfect correlation. 

 

In Panel A, all portfolios fall on a common SML, and this line intercepts the y-

axis at zero. As a result of our use of the tangency portfolio as our market proxy, In Panel 

B, our theoretical values of Beta and their OLS estimates perfectly match. As shown in 

Panel C, this occurs despite the test portfolios still exhibiting imperfect correlation with 

the tangency portfolio. 

We have uncovered that there are two major reasons for disconnect between OLS 

estimates of Beta, and their theorised values under the CAPM. It is commonplace in 

academia and industry to utilise a market-capitalisation-weighted index as a market 

proxy. It is extremely unlikely that by chance this proxy would happen to be the unique 

mean-variance efficient tangency portfolio required in CAPM theory. As a result, OLS 

estimates of Beta are likely to be disconnected from their theoretical values and this 

mismatch will exponentially increase as the correlation of stocks with the chosen market 

proxy declines. Therefore, there is a clear motivation to study the historical correlation 

between stocks and market proxies in empirical data such that we can ascertain how 

severe the mismatch error has been historically. Furthermore, systematic differences in 

correlation between stocks based on characteristics such as size could plausibly generate 

a number of perceived CAPM anomalies. In Section 2.4, we find support for the idea that 

BME is a contributor to the famed small cap and value premiums. However, we first 

examine the historical magnitude of Beta Mismatch Error for US stocks in the following 

section of this chapter. 
 

 

      Panel A            Panel B         Panel C 
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2.4 Historical Beta Mismatch Error in US stocks 

 

Given the potential for the OLS estimates of market Betas to greatly differ from 

their theoretical values, it is important to study how substantial this mismatch has been 

historically. To this end, we examine 30 years of daily stock data for US equities spanning 

the time period from 1 January 1990 to 31 December 2020. This equities data is obtained 

from the Center for Research in Security Prices (CRSP). Only ordinary common shares 

listed on the NYSE, NASDAQ, and AMEX are included in our analysis.15  We omit all 

microcaps, defined as stocks smaller than the 20th percentile of the market equity of 

NYSE stocks at the beginning of the first trading day of a calendar year, from our sample. 

In the calculation of holding period returns we assume all dividends received are 

reinvested in the underlying stock on the date that the dividends are paid out. Unless 

otherwise stated, the “market factor” used in factor models is constructed as the excess 

holding-period return of a market-capitalisation-weighted index comprised of the 500 

largest stocks by market capitalisation, formed on the first trading day of January, and 

held one year. The daily risk-free rate used is the monthly rate obtained from Kenneth 

French’s website and converted into a daily format.  

 

2.4.1 Historical Beta Mismatch Ratio 

We know from Equation 2.8 that BMR is a function of an asset’s correlation with 

the chosen market proxy. If a market proxy other than the tangency portfolio is selected, 

then OLS estimates of Beta become exponentially more biased as correlation decreases 

further below 1. Figure 2.6 below plots the time-varying correlation of US equities with 

a market-cap-weighted index for our 30-year sample period. The average of the median 

stock correlation across the sample period is 0.49, with correlation generally trending 

upwards over time.   
 

 
 

15 CRSP code filters applied: “EXCHCD” = [1,2,3], “SHRCD” = [10,11], “RET”≠ [-66, -77, -88, -99, C]. 
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Figure 2.6: Historical stock correlation with cap-weighted index 
Figure 2.6 plots the annual, non-overlapping correlation (y-axis) of stocks with a market-cap-weighted index of the top 
500 largest stocks for each year of our sample period. Beta Mismatch Error becomes exponentially more severe as the 
correlation of stocks with the chosen market proxy declines from 1. The figure shows a median stock correlation of 
around 0.5 with the chosen market proxy; well below the 1.00 required for equivalence between CAPM Betas and their 
OLS estimates. This correlation is generally trending upwards over the sample period. 

We can perceive from Figure 2.6 that OLS estimates of Beta will be biased since 

correlation is consistently well below 1. The severity of this bias across time is presented 

in Figure 2.7 which plots the BMR for different stock percentiles across the 30-year 

sample period. 

 
Figure 2.7: Historical BMR with cap-weighted index as market proxy 
Figure 2.7 plots the annual, non-overlapping Beta Mismatch Ratio (BMR) of stocks (y-axis) for each year of our sample 
period when using a market-cap-weighted index of the top 500 largest stocks as a market proxy. BMR becomes 
exponentially more severe as the correlation of stocks with the chosen market proxy declines from 1. The figure shows 
a median stock BMR of around 2 suggesting that OLS estimates of Beta equivalent to CAPM theory would be 
approximately twice the magnitude of the current OLS estimates obtained; there is a significant disconnect between 
measures. 
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The average of the median BMR across the sample period is 2.07, with a 

downwards trend over time as market correlation increases. To interpret this number, for 

a median stock, a Beta estimate consistent with CAPM theory would be approximately 

2.07x the size estimated under OLS; an economically severe magnitude of bias. 

We can regress CAPM theoretical Betas against their OLS estimates to quantify 

the magnitude of disconnect between the measures. This regression is show in Equation 

2.9 below: 

𝛽𝑖
𝑇ℎ𝑒𝑜𝑟𝑦

= 𝜆̂0 + 𝜆̂1𝛽̂𝑖 + 𝜀𝑖̂,          (2.9) 

where 𝛽𝑖
𝑇ℎ𝑒𝑜𝑟𝑦

=
𝐸[𝑅𝑖]

𝐸[𝑅𝑀]
, 𝜆̂0 is an estimated regression constant, 𝜆̂1 is an estimated slope 

coefficient, 𝛽̂𝑖 are OLS estimates of Beta, and 𝜀𝑖̂ are estimated regression residuals. 

Intuitively, if both measures were equivalent, a regression of one upon the other would 

produce a perfectly fit regression line with 𝜆̂0 = 0, 𝜆̂1 = 1, and a regression 𝑅2 = 1.  

The year-by-year full sample results of this mismatch between CAPM theoretical 

Betas and their OLS estimates are detailed in Table A.1 in the appendix. The relation 

between CAPM theoretical Betas and their OLS estimates is very weak for our market-

cap proxy across our 30-year sample. The median model R2 across years is 0.05; 

suggesting an extremely noisy relation between the two measures which are supposed to 

be identical. The median value of 𝜆̂0 is 0.30, and statistically significant in 22 of the 30 

sample years at a 95% confidence level. The median value of 𝜆̂1 is 0.80, and statistically 

significant in 23 of the 30 sample years at a 95% confidence level. Taken together, these 

parameter estimates suggest that OLS estimates of Beta are consistently underestimated 

relative to the Beta of CAPM theory with the distortion between measures substantial 

enough to render OLS Betas close to meaningless. Figure 2.8 below presents a 

visualisation of this disconnect for the first and final years of our sample period. 
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Figure 2.8: CAPM Theoretical Betas vs. OLS estimates for cap-weighted proxy 
Figure 2.8 plots theoretical CAPM return multiples (y-axis) against their OLS estimates (x-axis) for the first (Panel A) 
and last (Panel B) years of our sample. A dotted 45-degree line is also overlayed on the chart. It is evident that there is 
minimal relation between theoretical Betas and their estimated values under OLS when a cap-weighted portfolio is 
used as a market proxy. 

 

2.4.2 Historical tangency portfolio 

In practice, the mismatch between the theoretical values of Beta and their OLS 

estimates can only be averted if an empiricist selects, as a market proxy, the unique 

tangency portfolio theorised by Markowitz (1952). Despite empiricists commonly using 

a market-capitalisation-weighted index as their market proxy, Markowitz theorised that 

all investors would hold a combination of the tangency portfolio and the risk-free asset. 

However, cap-weighted indexes have historically been used as a market proxy due to 

convenience, creating the potential for a significant disconnect to emerge between CAPM 

theory and empirical estimation when examining historical data. A single factor model 

using the unique tangency portfolio is presented in Equation 2.10 below: 

𝑅𝑖,𝑡 = 𝛼̂𝑖 + 𝛽̂𝑖𝑅𝑀,𝑡
∗ + 𝜀𝑖,𝑡,           (2.10) 

where parameters are the same as Equation 2.3 but 𝑅𝑀,𝑡
∗  is now a tangency portfolio rather 

than some alternate market proxy. This tangency portfolio can always be ex-post 

identified for any data set and used in historical performance evaluation.  

Roll (1978) demonstrated that any mean-variance efficient portfolio chosen as a 

market proxy will generate a SML that produces a perfectly fit regression line (𝑅2 = 1). 

However, of these mean-variance efficient portfolios, the unique tangency portfolio is the 

one which produces the highest Sharpe ratio. This opens a clear path to ex-post 

         Panel A: 1991                    Panel B: 2020 
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identification of tangency portfolios for any returns data. We can simply form a portfolio 

which historically maximised the Sharpe ratio. 

We use this Sharpe maximisation process each year for our 30-year sample period 

to identify the ex-post tangency portfolios. We can again deploy the regression presented 

in Equation 2.9 to compare CAPM theoretical Betas against their OLS estimates. The key 

difference is that this time our market proxy is the unique tangency portfolio in each year 

as opposed to a cap-weighted index. The year-by-year full sample results of this mismatch 

between CAPM theoretical Betas and their OLS estimates are detailed in Table A.2 in 

the appendix. Unsurprisingly, the relation between CAPM theoretical Betas and their 

OLS estimates is perfect in each year of our sample when using a tangency portfolio as 

our market-cap proxy.16 In each year the model R2 is 1.00, 𝜆̂0 is 0, and 𝜆̂1 is 1. The results 

demonstrate that use of a market proxy consistent with the tangency portfolio that 

Markowitz (1952) theorised investors would hold restores the equivalence between 

theoretical Betas and their estimated values under OLS. By contrast, use of a generic ex 

post mean-variance-efficient market proxy does not restore equivalence (e.g. see Sinclair, 

1987, Table 1). Unfortunately, this restoration has come at a great practical cost. The 

tangency portfolio requires no constraints to short selling nor to the size of weighting per 

constituent other than the condition that all weights must sum to 1.  

In practice, there are often real-world constraints to an investor’s ability to short 

sell some assets within a market. However, an attempt to apply realistic constraints, whilst 

logical, would again sever the connection between the theoretical value of CAPM Betas 

and their OLS measurement. If the market proxy selected is not the tangency portfolio 

then the empiricist would alternatively require perfect return correlation between the 

market proxy and test assets in order for equivalence between OLS and theory Betas. As 

shown in Figure 2.6 of the preceding section, historical stock return correlations with the 

most commonly used market proxy (cap-weighted) have been far from perfect. Suppose 

we did, by miracle, find historical data in which asset returns were perfectly correlated 

with our cap-weighted proxy. In such a case, theoretical and OLS Betas would be 

equivalent. However, even in this scenario, the OLS Betas obtained might not be useful. 

 
 

16 Since at least Roll (1977) it has been known that if the market proxy used is ex post mean-variance-
efficient then an OLS regression of security returns against the market proxy is certain to produce an 
R2=1. However, this doesn’t induce equivalence between theoretical Betas and their OLS estimates (e.g. 
see Figure 2.4, Panel B).  
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This is because the return of every asset would now lie on a common security market line 

and we would have no means to rank the risk-adjusted return superiority of any asset; it’s 

a dead heat. As a result, there seems to be no practical way to obtain a meaningful Beta 

estimate that could be used in a single-factor model to evaluate risk-adjusted 

performance, nor is there a clear path forward. OLS Betas appear busted as a practical 

measure of systematic risk. 

 
 

2.5 Beta Mismatch Error and prominent finance anomalies 

 

The prior section examined the historical disconnect between the theoretical and 

OLS-estimated values of Beta for individual US equities. It is also common in finance to 

evaluate the performance of portfolios rather than individual stocks. Therefore, it is 

important to understand whether this disconnect between theory and estimation also 

affects performance evaluation of portfolios and to what extent.  

2.5.1 Portfolio formation reduces Beta Mismatch Error 

It seems likely that BME would likely be less severe for randomly formed 

portfolios due to the expectation of higher correlation with common market proxies such 

as cap-weighted or equal-weighted market portfolios. To verify this intuition, we perform 

a simulation that shows the impact of adding incrementally more securities to a portfolio. 

First, we generate 252 days of stock returns for 500 securities based on a model 

of the CAPM with noise as shown in Equation 2.11: 

𝑅𝑖,𝑡 = 𝛽𝑖𝑅𝑀,𝑡 + 𝜀𝑖,𝑡,           (2.11) 

where 𝑅𝑖,𝑡 is the excess return of security i at time t; 𝑅𝑀,𝑡 is the excess return of the 

unobservable market portfolio at time t with 𝑅𝑀,𝑡~𝑁 (
0.10

252
,

0.15

√252
); 𝛽𝑖~𝑁(1,0.2); and 

𝜖𝑗,𝑡~𝑁 (0, 0.23

√252
) is noise. Next, we randomly form an observable equal-weighted portfolio 

of N constituents, without replacement, where N ranges from 1 to 100. We then calculate 

BMR and Pearson’s correlation for each portfolio. We repeat this simulation 1,000 times 

for each value of N to smooth out results. Figure 2.9 displays the median results of the 

simulation at each constituent level. 
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Figure 2.9: Portfolio formation reduces Beta Mismatch Error 
Figure 2.9 demonstrates the effect of random portfolio formation upon Beta Mismatch Error. Panel B shows that 
forming progressively larger portfolios of randomly selected constituents has the effect of increasing portfolio 
correlation with the market proxy (an equal-weighted portfolio of all securities in the market). Panel A shows that this 
increasing correlation rapidly decreases Beta Mismatch Error with BMR declining towards 1. 

Panel A shows that the BMR rapidly declines as more constituents are added to a 

portfolio. Panel B indicates that this is caused by an increasing correlation of the 

progressively larger portfolio with the market proxy. Since the market proxy is an equal-

weighted portfolio, if a simulated portfolio included every available constituent, then 

correlation would equal precisely 1 as the constituent portfolio becomes identical to the 

market proxy. In Figure 2.9, BMR remains noticeably above 1 even when it is a large-

diversified portfolio of 100 constituents. However, it’s evident that the severity of BME 

is heavily moderated for large, randomly formed portfolios when compared to individual 

securities. 
 

2.5.2 Impact of Beta Mismatch Error upon Fama French factors 

Beta Mismatch Error may be substantially reduced for randomly formed 

portfolios but could it remain problematic for portfolios intentionally constructed based 

on defined stock characteristics? The FF3F Model (Fama and French, 1993) extends upon 

the CAPM by introducing two additional factor portfolios which are presumed to proxy 

for additional systematic risks not captured by the market portfolio. The inclusion of these 

additional factors was initially inspired by the ability of each factor portfolio to produce 

         Panel A: Beta Mismatch Ratio                  Panel B: Correlation with market proxy 
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a statistically significant Alpha when regressed against a single-factor model; a finding 

which was robust across extensive time periods and a variety of markets. At present, the 

FF3F model is perhaps the most widely used performance evaluation model within 

finance academia. 

The size and value premium portfolios included in the FF3F model are formed 

non randomly; rather they are formed on defined stock characteristics. It is therefore 

possible that either or both of these portfolios could be afflicted by abnormalities in 

correlation that somehow explain their apparent outperformance within a CAPM 

framework. To investigate, we examine daily factor portfolio data, obtained from 

Kenneth French’s data library, covering the period from 1st January 1991 to 31st 

December, 2020.17 For both the Small-Minus-Big (SMB) and High-Minus-Low (HML) 

factors we regress the returns of the constituents portfolios against the market proxy (a 

capitalisation-weighted index provided by Kenneth French) to estimate OLS alphas and 

Betas from a single-factor model. We also estimate an adjusted, CAPM-consistent Beta 

and alpha using the methodology of Tofallis (2008).18 Finally, we again estimate OLS 

Betas and Alphas when instead using a tangency portfolio as the market proxy in a single-

factor model. 

Table 2.1 presents the estimation results for the SMB factor. The small cap 

portfolio exhibits a noticeably larger OLS Alpha estimate than the mid and large-cap 

portfolios under a single-factor model regression that used a cap-weighted market proxy. 

It also has a substantially lower correlation than the other portfolios. The lower 

correlation biases OLS estimates of Beta downwards which has the effect of 

insufficiently penalising risk-adjusted returns, inflating Alpha estimates. Tofallis (2008) 

introduced an alternate approach to estimating OLS Betas given the disconnect between 

theory and OLS that arises in the presence of imperfect correlation. Beta estimates for his 

approach are also presented in Table 2.1. These adjusted market Betas result in a 

substantial decrease in the Alphas of the small cap portfolio since its returns are now 

appropriately penalised for systematic risk. The small cap portfolio becomes the worst 

performer. Alternatively, if a tangency portfolio was used as the market proxy in a single-

factor model then each test portfolio produces an OLS estimated Alpha of exactly zero; 

 
 

17 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
18 𝛽𝑖

𝑇𝑜𝑓𝑎𝑙𝑙𝑖𝑠
= (𝑠𝑖𝑔𝑛 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) ∗ 

𝜎𝑖
𝜎𝑀
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reverberating Roll’s (1978) critique that the SML can not be used to rank risk-adjusted 

performance. 

 
 Small Cap Mid Cap Large Cap 

𝜌𝑖 (Cap-Weighted Proxy) 0.86 0.94 1.00 

𝑅̅𝑖  7.38% 7.42% 6.46% 

𝛽̂𝑖 (OLS, Cap-Weighted) 0.98 1.04 0.99 

𝑎̂𝑖 (OLS, Cap-Weighted) 1.15% 0.68% 0.15% 

𝛽̂𝑖 (Tofallis) 1.14 1.11 0.99 

𝑎̂𝑖 (Tofallis) -0.26% 0.08% 0.11% 

𝜌𝑖 (Tangency Proxy) 0.92 0.95 0.98 

𝛽̂𝑖 (OLS, Tangency) 1.06 1.06 0.98 

𝑎̂𝑖 (OLS, Tangency) 0.00% 0.00% 0.00% 

Table 2.1: SMB portfolio parameters under alternate estimation approaches 
Table 2.1 examines the constituents of a SMB portfolio and estimates of their single-factor model Alphas and Betas 
using varying estimation approaches. The small cap premium appears to be driven by an abnormally low correlation 
with the market proxy which results in downwards biased estimates of Beta under OLS. Adjusting for this bias removes 
the Alpha associated with the small cap premium. 

Table 2.2 presents the same results for the HML factor. The value portfolio 

exhibits the highest OLS estimate of Alpha over the sample period. Similarly to the small-

cap portfolio, this Alpha is inflated by an abnormally low correlation with the market 

proxy. After adjusting for the induced bias using Tofallis’ estimation method, the value 

portfolio becomes the worst performer on a risk-adjusted basis. As expected, if a tangency 

portfolio was used as the market proxy, no portfolio would be capable of producing a 

non-zero alpha. 
 

 Growth Medium Value 

𝜌𝑖 (Cap-Weighted Proxy) 0.98 0.96 0.89 

𝑅̅𝑖  7.16% 6.29% 7.91% 

𝛽̂𝑖 (OLS, Cap-Weighted) 0.99 0.95 1.06 

𝑎̂𝑖 (OLS, Cap-Weighted) 0.85% 0.29% 0.98% 

𝛽̂𝑖 (Tofallis) 1.01 1.00 1.20 

𝑎̂𝑖 (Tofallis) 0.69% -0.09% -0.24% 

𝜌𝑖 (Tangency Proxy) 0.99 0.93 0.88 

𝛽̂𝑖 (OLS, Tangency) 0.97 0.90 1.03 

𝑎̂𝑖 (OLS, Tangency) 0.00% 0.00% 0.00% 

Table 2.2: HML portfolio parameters under alternate estimation approaches 
Table 2.2 examines the constituents of a HML portfolio and estimates of their single-factor model Alphas and Betas 
using varying estimation approaches. The value premium appears to be driven by an abnormally low correlation with 
the market proxy which results in downwards biased estimates of Beta under OLS. Adjusting for this bias removes the 
Alpha associated with the small cap premium. 

It is evident that the historical OLS estimated Alphas associated with both the 

small cap premium and value premium are a product of market Beta estimation bias 

induced by abnormally low correlations with the chosen market proxy. Given the 
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widespread prevalence of apparent finance anomalies, which by definition should be 

scarce, it is possible a common cause such as abnormally low market proxy correlation 

could be causing widespread false identification of countless anomalies by producing 

understated Beta estimates. 

 

2.6 Conclusion 

 

This chapter identifies the disconnect between the values, and common industry 

interpretation, of market Betas under CAPM theory versus the values they inherit under 

OLS estimation. This disconnect can be averted if an empiricist uses a tangency portfolio 

as a market proxy in performance evaluation models as intended by Markowitz (1952). 

However, the use of an unconstrained tangency portfolio as a market proxy is seldom 

feasible. As a result, historical implementations of single-factor models in both academia 

and industry have heavily relied on use of cap-weighted market indexes as a market 

proxy.  

The common adoption of a cap-weighted portfolio as market proxy has produced 

a large disconnect between the values of Beta estimated via OLS versus their CAPM 

interpretation. For the past 30 years of US equities data, OLS estimates of Beta have been 

understated by, on average, around 50%. This accidental mismatch between theory and 

measurement has produced the identification of a number of apparent anomalies. Perhaps 

most famously, “small-cap” and “value” portfolios have historically produced 

statistically significant alphas across a variety of equities markets. Billions of dollars have 

been deployed into investment strategies which aim to take advantage of these perceived 

anomalies. As demonstrated in the preceding section, the Alpha of these apparent 

anomalies are driven by abnormally low correlations with the common market proxy 

which results in understated OLS estimates of Beta for these portfolios. Each of these 

portfolios benefit from estimation bias in a performance evaluation framework since the 

risk-penalty to the Alpha of each portfolio is excessively low. When using an appropriate 

market proxy, the tangency portfolio, the Alpha of these anomalies reverts to zero. 

Unfortunately, use of a tangency portfolio in empirical analysis doesn’t improve 

the usefulness of OLS estimates of Beta. If a tangency portfolio is used in a performance 

evaluation context, we restore the link between the values of Beta under CAPM theory 

and their OLS estimates. However, we introduce a more severe practical issue. As 
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demonstrated by Roll (1978), every asset in the market will produce an identical Alpha 

of zero; there can be no empirical distinction of superior risk-adjusted performance when 

using a CAPM framework. Whilst an inspiring theoretical model, it appears that 

empirical estimation of the market Betas of the CAPM is flawed beyond restitution. Beta, 

as a practical measure of systematic risk for securities, is busted. In conclusion, whilst 

the CAPM may be one of the most widely studied and implemented financial models in 

history, its empirical use as a means to evaluate risk-adjusted outperformance is likely 

invalid.  
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3 Chapter 3: Rethinking Performance Evaluation: Is Alpha Reliable in Practice? 
 

Rethinking Performance Evaluation:  

Is Alpha Reliable in Practice? 
 

3.1 Introduction 

For almost 60 years the Capital Asset Pricing Model (CAPM) (Sharpe, 1964; 

Treynor, 1962; Lintner, 1965; Mossin, 1966) has offered researchers and practitioners a 

standardised approach to price risky securities. The model’s simplicity, establishing a 

linear relation between expected return and systematic risk (Beta)19, resulted in 

widespread adoption of the CAPM in real-world corporate finance and investments.20 

Maximisation of “Alpha”21 quickly became a focal point of active investment 

practitioners globally. However, reliance on the CAPM in financial decision making is 

likely problematic. 

Eugene Fama and Kenneth French claim that the empirical record of the CAPM 

is “poor enough to invalidate the way it is used in applications” (2004, p. 25). Fama and 

French initially advocated use of an alternate three-factor model (1993), which included 

additional presumed risk factors emerging in finance literature, as an improvement over 

the CAPM. Their model gained widespread adoption in academia. In the decades that 

followed, return anomalies against the advocated three-factor model have become 

increasingly prevalent in empirical finance papers. Fama and French (2015) have since 

(controversially) extended their multifactor model to incorporate five presumed risk 

factors.22 By 2020, there were over 450 published return anomalies in accounting and 

finance journals (Hou et al., 2020).  

 
 

19 (𝐸[𝑟𝑖] − 𝑟𝑓) = 𝛽𝑖(𝐸[𝑟𝑀] − 𝑟𝑓) is the Sharpe (1964) – Lintner (1965) CAPM, where 𝐸[𝑟𝑖] is the expected return of asset 𝑖, 𝑟𝑓 is a 

time-invariant risk-free rate of return, 𝐸[𝑟𝑚] is the expected return of the market portfolio comprising all assets, and 𝛽𝑖 is a measure 
of the systematic risk of asset 𝑖. In the CAPM, the expected excess return of a given asset is a linear function of its systematic risk 
multiplied by the market risk premium. 
20 Graham & Harvey (2001) found that 73.5% of US CFOs always, or almost always, used the CAPM when estimating the cost of 

capital for prospective investments. 
21 Alpha is broadly defined throughout this chapter as the key risk-adjusted excess return of a linear return factor model. For 

example, in a single-factor model based on the CAPM, “Alpha” would refer to “Jensen’s Alpha” (see Jensen, 1968). 
22 The five-factor model has met significant academic opposition from both competing multifactor models that demonstrate 

superior empirical performance (e.g. Hou et al., 2015) and from an inability of the extended model to rationalise the chosen risk 
factors (e.g. see Blitz et al., 2018 for a list of crticisms). 
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The rapid expansion of identified return anomalies is one of the great puzzles of 

modern finance. Anomalies should be rare by definition. Is there some unidentified 

deficiency in the theory underpinning commonly used factor models? Is the increasing 

prevalence of anomalies simply the result of data mining? Or is there an entirely different 

cause? To resolve an outstanding puzzle, a novel approach is required. This chapter is 

inspired by one simple idea not yet explored by our field; for an anomaly to be a finance 

anomaly it should not exist in random data. Any anomaly which exists in random data is 

likely a function of some form of systematic bias in an applied model, rather than a 

meaningful reflection of real-world investment practice.  

The first major contribution of this chapter is therefore to demonstrate that many 

return anomalies in finance are likely the result of model misspecification. In this chapter 

we simulate random stock return data and obtain the Alpha estimates from a time-series 

regression of a single-factor model.23 We observe that the famous “low beta anomaly” 

(e.g., Frazzini and Pedersen, 2014) of finance is evident in random data. This occurs 

because time-series regressions impose an arbitrary market risk premium assumption that 

is not informed by the underlying data; the model is misspecified.24 This model 

misspecification induces a systematic bias whereby estimates of Alpha become a linear 

function of Beta estimates. Unfortunately, the time-series regression approach to Alpha 

estimation remains popular in academia and remains the method taught to practitioners 

by the leading industry bodies such as the Chartered Financial Analysts (CFA) Institute.25 

However, the remedy is straightforward. Cross-sectional regression can be used to obtain 

unbiased Alpha estimates. Through derivation, we demonstrate that the residuals of cross-

sectional regressions are equivalent to Alpha estimates of time-series regressions that 

have been adjusted for model misspecification. 

The second contribution of this chapter is to quantify the magnitude of model 

misspecification bias for a 30-year sample of historical US data. When real-world 

investment patterns differ from finance theory, model misspecification is likely to be a 

particularly severe issue. Since at least the 1970s, academics and practitioners alike have 

 
 

23 Used to represent a regression of the CAPM. 𝑅𝑖𝑡 = 𝛼̂𝑖 + 𝛽̂𝑖𝑅𝑀𝑡 + 𝜀𝑖̂𝑡, where 𝑅𝑖𝑡 is the excess return of security 𝑖 in period 𝑡;  𝛽̂𝑖 

represents the exposure of security 𝑖 to non-diversifiable risk; and 𝛼̂𝑖 represents the risk-adjusted return of security 𝑖 in excess of 
expectations. 
24 Time-series regressions impose an assumption that for every unit of 𝛽̂𝑖, 𝑅𝑖𝑡 will increase by 𝑅𝑀𝑡. This assumption does not 

change even if the underlying data exhibits the cross-sectional properties that 𝑐𝑜𝑟(𝛽̂𝑖 , 𝑅̅𝑀) = 0.  
25 CFA Level 1 Certification. Corporate Finance and Portfolio Management, page 376. 
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commonly observed that the security market line is “flatter than expected” (Black, Jensen 

and Scholes, 1972) by CAPM theory. We develop a generalised approach to quantify the 

model misspecification of each risk premia in a multi-factor model. We compare the 

Alpha estimates obtained via time-series regression of factor models against the 

equivalent metric obtained from cross-sectional regressions. We find that alpha estimates 

via time-series regression of a single-factor model would have been biased by a market 

risk premium that was overstated by 7.16% during our sample period. Alpha estimates 

from a Fama-French 3-Factor (FF3F) model (Fama and French, 1993) would have been 

biased by a market risk premium that was 2.04% too high, a size factor premium that was 

4.61% too high, and a value factor premium that was 5.82% too high. We find that Alpha 

estimation bias is most severe for assets with Betas that differ greatly from the sample 

average. For the FF3F model, the time-series Alpha estimate for a zero-beta security 

would be inflated by 6.67% on average during our 30-year sample. 

The third contribution of this chapter is to demonstrate the ease with which new 

spurious return anomalies can be generated in the presence of model misspecification. 

For example, when the security market line is “flatter than expected”, one needs simply 

to find two well-diversified portfolios with different Betas and form a long-short 

portfolio. The “betting against beta” (BAB) factor identified by Frazzini and Pedersen 

(2014) is perhaps the clearest academic example of a spurious return anomaly identified 

due to model misspecification. However, the problem extends beyond spurious finance 

anomalies. Genuine return anomalies can likewise have the magnitude of their estimated 

Alphas falsely enhanced by using a long-short portfolio formation.   

The insights from this chapter have several significant implications for academic 

finance and industry. Firstly, we highlight that a common approach to Alpha estimation 

is heavily biased due to model misspecification. When models are misspecified, the 

Alpha estimates obtained are largely spurious rather than an accurate reflection of “risk-

adjusted” returns. The implication is that a large portion of published results in asset 

pricing literature may be exaggerated, if not invalid. We advocate an alternate Alpha 

estimation approach that is robust to model misspecification. Secondly, we demonstrate 

that historical stock returns in the US greatly differ from the assumptions of the CAPM 

and FF3F model. Consequently, use of time-series regression to estimate Alphas results 

in an economically large bias. To the extent that Alpha influences investment decisions, 

real world investment allocation can be heavily distorted. For example, the bias induced 

would lead investors to develop an excessive preference for low-beta, high-leverage 
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investment strategies such as that of Warren Buffet.26 We could also see an undue 

popularity for various ‘smart beta’ strategies. Finally, we explain why it is so common to 

identify return anomalies in finance when using time-series regression and provide a 

rationale as to why long-short portfolio formations are frequently used. If researchers 

adopt implementations of factor models that are robust to model misspecification then 

the identification of anomalies should become scarce, instead of commonplace, moving 

forward. 

The remainder of this chapter is arranged as follows. Section 3.2 contextualises 

the historical development of alpha and explains why time-series alpha estimates are 

typically biased. Section 3.3 derives an adjustment for the model misspecification of 

time-series regressions and demonstrates an equivalent measure can be obtained directly 

via cross-sectional regression. In addition, we demonstrate via simulation how model 

misspecification directly biases alpha estimates and tests of statistical significance. 

Section 3.4 quantifies the historical magnitude of model misspecification for US stocks 

for a single-factor model and FF3F model. Section 3.5 prescribes a method to generate a 

practically infinite quantity of ‘anomalies’ by exploiting the alpha estimation bias of 

time-series regressions. Section 3.6 summarises our main findings, discusses limitations 

and opportunities for further research, and then concludes. 

 

3.2 Related literature & the problem of model misspecification 

 

One of the fundamental ideas of finance is the trade-off between risk and expected 

return. Markowitz (1952) formalised the idea that investors require higher expected 

returns to be enticed to undertake investments that carry greater risk. More specifically, 

since idiosyncratic investment risks can be mitigated via diversification, investors only 

require higher compensation for increased systematic risk. Markowitz’s ideas inspired 

the development of the CAPM. The first iteration of the CAPM (Sharpe, 1964; Lintner, 

1965; Mossin, 1966) held that in equilibrium only market risk should be priced by 

investors in an efficient market such that expected security excess returns (𝐸[𝑅𝑖]) are a 

linear function of their systematic risk exposure (𝛽𝑖) and a market risk premium (𝐸[𝑅𝑀]): 

 
 

26 Refer to Frazzini et al. (2018). Warren Buffet’s investment strategy is based on investing in low-beta assets and applying high 

levels of leverage. This strategy directly exploits the measurement bias of factor models and produces artificially inflated Alpha 
estimates.  
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𝐸[𝑅𝑖] = 𝛽𝑖𝐸[𝑅𝑀]. 

 

Jensen (1968) was the first to note that the Sharpe-Lintner CAPM relation 

between expected return and market Beta also implies a time-series regression test; 

prompting one of the earliest performance evaluation metrics to become widely used in 

empirical finance (Jensen’s Alpha). Jensen’s Alpha represents the risk-adjusted return of 

a security in excess of the expectations established by the CAPM. The Alpha estimate in 

a single factor model is obtained via time-series regression as follows: 

 

(Time-series regression):        𝑅𝑖𝑡 = 𝛼̂𝑖 + 𝛽̂𝑖𝑅𝑀𝑡 + 𝜀𝑖̂𝑡,     (3.1) 

 

where 𝑅𝑖𝑡 and 𝑅𝑀𝑡 represent the excess return of security 𝑖 and the market proxy 𝑀, 

respectively, at time 𝑡; 𝛽̂𝑖 represents the exposure of security 𝑖 to non-diversifiable risk; 

and 𝛼̂𝑖 represents the risk-adjusted return of security 𝑖 in excess of expectations (Jensen’s 

Alpha). 

Securities which can achieve a greater return without a proportional increase in 

exposure to systematic risk will produce positive risk-adjusted returns (𝛼̂𝑖), signalling 

their virtue as a superior risk-adjusted performer relative to other securities in the market. 

However, if markets are informationally efficient, then we should not observe individual 

securities or portfolios that are capable of consistently producing statistically significant 

positive Alphas (Fama, 1969). 

Unfortunately, parsimonious modelling attempts often fail when applied to 

empirical data. Almost immediately, it was observed that the security market line is 

empirically “flatter than expected” (Black, Jensen and Scholes, 1972) by CAPM theory. 

In the decades that followed, academic research identified several portfolio 

characteristics that could produce statistically significant positive Alphas under time-

series regressions of the CAPM. Most notably, these include the “size effect” anomaly 

(Banz, 1981), the propensity for smaller equities to generate positive Alphas, and the 

“value effect” anomaly (Fama & French, 1992), indicating positive Alphas from equities 

with high book-to-market ratios. This prompted an expansion of the CAPM to include 

these additional factors. At the turn of the century, the CAPM remained widely used in 
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industry (Graham & Harvey, 2001). However, the FF3F model quickly became the staple 

of academic research.  

Anomalies should be rare. However, in the past couple of decades the number of 

identified financial market anomalies has grown immensely with new anomalies being 

identified in the academic literature each year. Hou et al. (2020) identify 452 published 

return anomalies in the accounting and finance literature. This phenomenon has given 

rise to the colloquial term of a “factor zoo” (Cochrane, 2011). The FF3F Model has now 

been extended to a 5-factor model to incorporate some of the most prominent anomalies 

(Fama & French, 2015), whilst inclusion of a “momentum” factor in a model (Carhart, 

1997) retains its popularity to date. Even with the use of these expanded factor models 

we continue to find new portfolio formations capable of generating positive Alpha 

(anomalies). The inability of existing models to fully account for investment strategies 

that can generate Alpha motivates the ongoing addition of new risk premia to factor 

models. It is within this context of expanding factor models, and concern with how 

commonplace anomaly identification has become, that we turn to a crucial issue with 

reliance on the Alphas estimated via time-series regression of factor models.  

Conceptually, there are two common ways of estimating alphas: time-series 

regression (see Equation 3.1) and cross-sectional regression (see Equation 3.5). For 

theory and practice, the time-series approach has been more commonly used. Much of 

the existing anomaly literature in finance has arisen from papers which rely on use time-

series regression to estimate Alpha. Prominent examples of anomalies identified through 

use of time-series regression include the momentum factor (Carhart, 1997), low price-to-

earnings outperformance (Basu, 1977), and Fama-French 3-Factor model (Fama & 

French, 1993). Unfortunately, it is time-series regression with which this chapter finds 

fault.  

The model parameters in a time-series regression of a factor model are assumed 

to be correctly specified in the cross-section. Using the CAPM as an example, it is 

assumed that our underlying data exhibits the cross-sectional characteristic that for each 

additional unit of 𝛽̂𝑖, stock returns tend to increase by 𝑅𝑀𝑡. A time-series regression 

makes no attempt to verify that such cross-sectional assumptions are reflected by the 

underlying data; they are taken at face value. For example, under time-series regression, 

Jensen’s alpha for each security is estimated as: 
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𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖 ∗ 𝑅̅𝑀      (3.2) 

where, 

𝑅̅𝑖 =
1

𝑇
∑ 𝑅𝑖𝑡

𝑇

𝑡=1

 

𝑅̅𝑀 =
1

𝑇
∑ 𝑅𝑀𝑡

𝑇

𝑡=1

 

We note that as of 2022, this is the same approach to alpha estimation that CFA 

Institute teaches practitioners in their Level I certification, and a great importance is 

placed upon the measure “Jensen’s alpha is the maximum amount that you should be 

willing to pay the manager to manage your money”.27 Due to model specification, for 

every one-unit increase in the 𝛽̂𝑖 of a security, it’s 𝛼̂𝑖 will be penalised by precisely 𝑅̅𝑀 ∗

𝛽̂𝑖; i.e. the assumed cross-sectional risk-return relation in the market has a slope of 𝑅̅𝑀. 

This cross-sectional assumption imposed by the time-series regression is not based on 

underlying data but is, instead, arbitrary.28 The true relation between risk and return is 

almost certain to differ from this imposed cross-sectional assumption in practice. As data 

exhibits a risk-return relation which more greatly differs from the imposed cross-sectional 

assumption, Jensen’s alpha will become progressively spurious. For example, if the 

security market line observed in empirical data is indeed flatter than expected (Black, 

Jensen and Scholes, 1972) the penalty imposed in estimation of Jensen’s alpha would be 

excessively harsh on securities with 𝛽̂𝑖 > 1, and excessively lenient on securities with 

𝛽̂𝑖 < 1 during bull markets. For illustrative purposes, we define two extreme scenarios: 

 

Scenario 1: The CAPM fully describes underlying data 

Scenario 2: No risk-return relation in underlying data 

 

Figure 3.1 illustrates the two extreme scenarios.  

 
 

27 CFA Level 1 Certification. Corporate Finance and Portfolio Management, page 376.  
28 The chosen market proxy will differ significantly from the true unobservable market portfolio envisaged under CAPM theory 

which consists of all investable assets. The severity of the disconnect and how easily it can have a large impact on parameter 
estimation is highlighted by Roll and Ross (1994, p. 105) who demonstrate that a market proxy with a return only 22 basis points 
lower than the efficient frontier is sufficient to generate zero cross-sectional correlation between stock returns and the market 
proxy. Hence, the observed 𝑅̅𝑀 in a time-series regression will induce a very different risk-return penalty than the true market 
portfolio in the CAPM would. This penalty is also arbitrary since it is defined by the average return of the chosen market proxy and 
does not adjust as the cross-sectional relation between observed asset returns and their measured Betas change. 
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Figure 3.1: No risk premium misspecification vs. extreme risk premium 
misspecification 
Figure 3.1 presents an illustrative contrast of Scenario 1 (left panel) in which the CAPM accurately describes an 
underlying data set against Scenario 2 (right panel) in which there is no relation between security returns and systematic 
risk. Each blue dot represents an observation. The black dotted line on each chart represents the fitted regression line 
from a cross-sectional regression (𝑅̅𝑖 = 𝑐̂ + 𝜆̂𝑀𝛽̂𝑀,𝑖). The dotted red line represents the penalty imposed on Jensen’s 
alpha (𝛽̂𝑖 ∗ 𝑅̅𝑀) as per Equation 3.2. When the CAPM accurately reflects the underlying data (Scenario 1), the cross-
sectional risk-return relation is equivalent to the penalty imposed by the CAPM and estimates of Jensen’s alpha are 
unbiased. By contrast, when there is no relation between security returns and market risk (Scenario 2), the imposed 
CAPM penalty is spurious. As a result, Jensen’s alpha is progressively biased upwards (downwards) for lower (higher) 
beta securities or portfolios when 𝑅̅𝑀 is positive, and the opposite is true when 𝑅̅𝑀 is negative.  
 

Under the extremity of Scenario 1, 𝐸[𝛼𝑖] = 0 ∀𝑖, resulting in: 

 

𝑅𝑖𝑡 = 𝛽𝑖𝑅𝑀𝑡 + 𝜀𝑖𝑡 .     (3.3) 

 

Under these conditions, it follows that the single-factor model (Equation 3.1) is 

correctly specified, and parameter estimates will be unbiased. Estimation of Jensen’s 

Alpha would be valid since the risk-return penalty applied in Alpha estimation matches 

the true cross-sectional risk-return relation in the underlying data. Furthermore, there is 

no cross-sectional dependence between 𝛼̂𝑖 and 𝛽̂𝑖 since 𝐸[𝛼𝑖] = 0 ∀𝑖. Conversely, if the 

CAPM had no bearing on the underlying data (Scenario 2), then 𝐸[𝛽𝑖] = 0 ∀𝑖 resulting 

in: 

 

𝑅𝑖𝑡 = 𝛼𝑖 + 𝑧𝑖𝑡 .     (3.4) 

 

Under this second scenario, the single-factor model (Equation 3.1) would be 

misspecified since it miss-represents the underlying data. The estimation of Jensen’s 

Alpha based on Equation 3.2 applies a performance penalty (𝑅̅𝑀 ∗ 𝛽̂𝑖) that is spurious 

since there is no cross-sectional relation between risk and return. So long as 𝑅̅𝑀 ≠ 0, we 
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would observe correlation between 𝛼̂𝑖 and 𝛽̂𝑖 when using time-series regression since 

𝛼̂𝑖 = 𝑅̅𝑖 − 𝑅̅𝑀 ∗ 𝛽̂𝑖. This would give rise to a “low beta anomaly” in rising markets, since 

securities that exhibit 𝛽̂𝑖 noticeably below 1 will tend to exhibit positively inflated 𝛼̂𝑖, 

and a “high beta anomaly” in declining markets; where (−𝑅̅𝑀) becomes positive and the 

effect reverses.  

Under Scenario 2, the values of 𝛼̂𝑖 from time-series regressions are impacted by 

an endogenous relation to 𝛽̂𝑖 and thus imposition of an entirely spurious penalty (𝑅̅𝑀 ∗

𝛽̂𝑖). However, when analysing financial data, we are most likely to encounter an 

intermediate situation in between the illustrative extremes of Scenario 1 and Scenario 2. 

In empirical financial market data, we are likely to observe some relation between market 

risk and security return but not a fit that perfectly conforms to the CAPM. Consequently, 

one part of 𝛼̂𝑖 from time-series regression will be spurious and driven by structural 

endogeneity from misspecification of cross-sectional risk premia rather than by genuinely 

superior risk-adjusted performance. Another, exogenous, part of time-series 𝛼̂𝑖 will be 

driven by genuine risk-adjusted outperformance. Figure 3.2 presents a visualisation of a 

moderate and more realistic scenario. 

 

Figure 3.2: Partial risk premium misspecification 
Figure 3.2 presents a visual representation of a situation in which the CAPM does not accurately reflect the underlying 
data but there is still some (weaker) relation between security returns and market risk. Each blue dot represents an 
observation. The black dotted line on each chart represents the fitted regression line from a cross-sectional regression 
(𝑅̅𝑖 = 𝑐̂ + 𝜆̂𝑀𝛽̂𝑀,𝑖). The dotted red line represents the penalty imposed upon Jensen’s Alpha (𝛽̂𝑖 ∗ 𝑅̅𝑀) as per Equation 3.2. 
Since the relation between security returns and market risk in the underlying data is weaker than the relation assumed 
by a single factor model, the imposed CAPM penalty is partially spurious and partially valid. Due to the spurious 
component of the penalty, Jensen’s Alpha will be progressively biased upwards (downwards) for lower (higher) Beta 
securities or portfolios when 𝑅̅𝑀 is positive, and the opposite would be true when 𝑅̅𝑀 is negative.  
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Whilst the cause was not identified, the consequences from use of misspecified 

time-series models has long been apparent in finance literature. From as early as 1970 

(see Friend and Blume, 1970) there has been an awareness that Jensen’s Alpha, as 

estimated via time-series regression, tends to be negatively correlated with Beta in 

empirical data. More recently, Frazzini and Pedersen (2014) use time-series regression 

and observe that the estimated Alphas for portfolios that overweight low-beta securities 

produce economically and statistically significant Alphas. Their remarkably strong 

results are robust across international markets and assets classes. Perhaps unknowingly, 

they have constructed a portfolio that directly exploits the measurement error of Alpha in 

time-series regressions due to model misspecification of risk premia.  

Fortunately, it is straightforward to estimate Alpha in a manner that accounts for 

the cross-sectional risk-return relation of assets within a market. Under a cross-sectional 

regression approach, alpha estimates are the residuals from a regression of average excess 

returns against factor portfolio loadings.29 Equation 3.5 below is an example of a cross-

sectional regression for a single-factor model: 

 

(Cross-sectional regression):        𝑅̅𝑖 = 𝜆̂0 + 𝜆̂1𝛽̂𝑖 + 𝛼̂𝑖,                  (3.5) 

 

where 𝑅̅𝑖 represents the average return of asset 𝑖; 𝜆̂1 indicates the expected increase in 𝑅̅𝑖 

for each additional unit of market risk exposure (𝛽̂𝑖); 𝜆̂0 represents the expected average 

return for a zero-beta asset; and 𝛼̂𝑖 represents the risk-adjusted 

outperformance/underperformance of asset 𝑖. If a model, such as the CAPM, accurately 

explained average security returns then we would observe 𝜆̂0 = 0, 𝜆̂1 = 𝑅̅𝑀. Under these 

conditions, the Alpha estimates of a time-series regression (Equation 1) and cross-

sectional regression (Equation 3) would be identical.  

Tests on intercepts of cross-sectional regressions are routinely performed to 

observe whether the cross-section of stock returns can be, on average, explained by a 

model’s regressors (e.g. Blume & Friend, 1973; Fama & French, 1992). Since cross-

sectional regressions adjust to the actual cross-sectional risk-return relation in data being 

 
 

29 Alternatively, a Fama-MacBeth approach involves cross-sectional regressions at each time period. Alpha estimates are then the 

equal-weighted average residual of a security or portfolio across each cross-sectional regression. Under linear regression, the 
average slope coefficient is equivalent to the slope coefficient of averages. The alpha estimates produced by a cross-sectional 
regression and Fama-MacBeth regression are the same. 
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analysed, anomaly identification should become scarcer under the cross-sectional 

regression setting. Motivated by a belief of widespread “p-hacking”30 within finance, Hou 

et al. (2020) have recently provided an extensive replication of 452 published return 

anomalies using a Fama MacBeth (1973) cross-sectional approach. They find that after 

controlling for microcap stocks, 65% of their replicated anomalies are statistically 

insignificant at the 5% significance level.  

Factor models, such as those popularised by Eugene Fama and Kenneth French, 

are likely to have misspecified risk premia in an empirical setting, inducing structural 

endogeneity. This occurs because, to date, neither the CAPM, nor subsequent factor 

models, can fully account for all determinants of empirical stock return data. As a result, 

𝛼̂𝑖, typically the important metric for evaluating performance, becomes partially 

dependent upon the estimated slope coefficients of each factor whenever a model is 

misspecified. For academics and practitioners alike, it is important to isolate the 

proportion of 𝛼̂𝑖 that is exogenous from 𝛽̂𝑖, and a genuine representation of superior risk-

adjusted performance, from the proportion of 𝛼̂𝑖 that is spurious and due to dependence 

on 𝛽̂𝑖 from model misspecification. We demonstrate how to achieve this in the following 

section and extend our approach to multi-factor models. 
 

3.3 The decomposition of time-series Alpha 

 

We define the proportion of Alpha estimates from time-series regression 

(henceforth denoted as time-series Alpha; 𝛼̂𝑖
𝑇𝑆) that is due to model misspecification as 

Endogenous Alpha (𝛼̂𝑖
𝐸𝑛𝑑). The remaining proportion of time-series Alpha estimates, 

which exceed the expected level of time-series Alpha due to model misspecification, we 

denote as Excess Alpha (𝛼̂𝑖
𝐸𝑥𝑐). By construction, Excess Alphas are exogenous to Beta 

estimates. For simplicity, we initially focus on decomposition of the single-factor model. 

However, we subsequently detail how the decomposition approach can be extended to 

multi-factor models. Equation 3.1 becomes: 

 

 
 

30 The misuse of data analysis to find patterns in data that can be presented as statistically significant when in fact there is no real 

underlying effect. 
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𝑅𝑖𝑡 = 𝛼̂𝑖
𝐸𝑥𝑐 + 𝛼̂𝑖

𝐸𝑛𝑑 + 𝛽̂𝑖𝑅𝑀𝑡 + 𝜀𝑖̂𝑡,    (3.6) 

 

where 𝛼̂𝑖
𝑇𝑆 = 𝛼̂𝑖

𝐸𝑥𝑐 + 𝛼̂𝑖
𝐸𝑛𝑑. In Equation 3.6, we split the time-series Alpha, into the 

component which is endogenous, and the component which is exogenous and due to 

genuine risk-adjusted outperformance. If the CAPM held true in the underlying data, then 

the model would be correctly specified so 𝛼̂𝑖
𝐸𝑛𝑑 would equal zero and, therefore, 𝛼̂𝑖

𝑇𝑆 and 

𝛼̂𝑖
𝐸𝑥𝑐 would be identical. Endogenous Alpha estimates are obtained by performing a 

cross-sectional regression of time-series alpha estimates against 𝛽̂𝑖:  

 

𝛼̂𝑖
𝑇𝑆 = 𝜙̂0 + 𝜙̂1𝛽̂𝑖 + 𝑢̂𝑖,     (3.7) 

  

where 𝛼̂𝑖
𝐸𝑛𝑑 = 𝜙̂0 + 𝜙̂1𝛽̂𝑖 (i.e. the fitted values of the regression), and 𝛼̂𝑖

𝐸𝑥𝑐 = 𝑢̂𝑖 (i.e. the 

proportion of traditional time-series Alpha estimates that are exogenous to exposure to 

market risk). This cross-sectional regression of time-series Alpha estimates on slope 

coefficients allows us to discern their cross-sectional dependence on 𝛽̂𝑖. Endogenous 

Alpha estimates are the predicted values of this cross-sectional regression. Since 𝛼̂𝑖
𝐸𝑛𝑑 

capture any dependence of time-series Alpha estimates upon 𝛽̂𝑖, subtraction of 𝛼̂𝑖
𝐸𝑛𝑑 from 

time-series Alphas effectively isolates the component of 𝛼̂𝑖
𝑇𝑆 that is in excess of cross-

sectional, risk-adjusted expectations (i.e. we identify Excess Alpha). As a result, 𝛼̂𝑖
𝐸𝑥𝑐 

has some highly desirable properties as a performance evaluation metric. Excess Alpha 

estimates are orthogonal to 𝛽̂𝑖; portfolios can’t simply outperform by loading up on low 

Beta assets. In addition, average 𝛼̂𝑖
𝐸𝑥𝑐 is guaranteed to be zero for any data set; it is 

impossible for the whole market to outperform or underperform – there must be an 

offsetting amount of over and under-achievers in each evaluation period. This property 

occurs due to 𝛼̂𝑖
𝐸𝑛𝑑 being dependent on 𝜙̂0; such that 𝛼̂𝑖

𝐸𝑥𝑐 is effectively de-meaned. We 

can restate Equation 3.6 with 𝛼̂𝑖
𝐸𝑛𝑑  decomposed: 

 

𝑅𝑖𝑡 = 𝛼̂𝑖
𝐸𝑥𝑐 + 𝜙̂0 + 𝜙̂1𝛽̂𝑖 + 𝛽̂𝑖𝑅𝑀𝑡 + 𝜀𝑖̂𝑡.    (3.8) 

 

Each 𝜙̂ captures an element of factor model misspecification due to the failure of 

time-series regressions to adjust for the actual cross-sectional relation between returns 

and risk premia in the data being analysed. For example, 𝜙̂0 captures the average level of 
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security excess returns that are independent of risk factors whilst 𝜙̂1 quantifies the bias 

in the estimate of the market risk premium. Consider Scenario 1 from the preceding 

section. When the CAPM accurately describes the data we are analysing, the single-factor 

model is not cross-sectionally misspecified so 𝐸[𝛼̂𝑖
𝑇𝑆] = 0 and 𝐸[𝛼̂𝑖

𝑇𝑆|𝛽̂𝑖] = 0. As a 

result, 𝜙̂0 = 0 and 𝜙̂1 = 0. In other words, Excess Alpha converges to traditional time-

series Alpha in the absence of model misspecification. In empirical settings, before we 

analyse the data before us, we do not know whether the data will conform to the model 

specified or whether it will differ. Excess Alpha only deviates from 𝛼̂𝑖
𝑇𝑆 in the presence 

of model misspecification. Therefore, we can be comfortable using Excess Alpha for 

performance evaluation in place of 𝛼̂𝑖
𝑇𝑆 across all financial datasets. We can further 

compare the properties of 𝛼̂𝑖
𝑇𝑆 versus 𝛼̂𝑖

𝐸𝑥𝑐 via simulations of Scenario 1 and Scenario 2. 

Starting with the simulation of Scenario 1, where the CAPM accurately describes 

the average risk-return relation in the underlying data and absent model misspecification. 

We rely on the same approach as in Jegadeesh et al. (2019, p. 277) but use different 

simulation values. We centre our distribution of 𝛽𝑖 on 1 instead of 0.95 since we are 

simulating a scenario reflective of the CAPM.31 We use an average market excess return 

(𝜇𝑀) of 19.2%. This value was obtained from the data library of Kenneth French and is 

representative of the average annual excess return of a capitalisation-weighted portfolio 

of US equities based exclusively on positive return markets over an extensive data period 

(1927 to 2020).32 The simulated distributions of security residuals and the standard 

deviation of market excess returns are otherwise based on the values observed in our 

1991-2020 data sample discussed in Section 3.4 of this chapter. For our simulation, we 

generate 2,000 sets of Beta values and residuals return variances as follows: 

 

Δ𝑇 = 1

𝑇
= 1

252
, 𝛽𝑖~𝑁(1, 0.422), 𝜎𝜀,𝑖

2 ~𝑁(0.5873, 0.23812). 

 
 

31 Under CAPM theory, the average security Beta in a market is 1. Our first simulation aims to closely reflect a scenario in which 

the CAPM is capable of explaining security returns. In addition, having Betas not centred on 1 will introduce an expectation of 
non-zero average Alphas into a time-series regression.  
32 Jegadeesh et al. (2019) base their simulation on a value of average market excess return across all years. Alpha estimation bias 

is of opposing directions in positive return markets (“low beta anomaly”) versus negative return markets (“high beta anomaly”). 
Therefore, taking a simple average across all market conditions would significantly understate the typical Alpha estimation bias by 
netting out opposing errors. For 𝜇𝑀, we need to look exclusively at average market excess returns during rising markets or 
declining markets. Since this chapter seeks to provide an accurate indication of time-series Alpha estimation bias over long time 
periods we obtain data on the excess return of a market portfolio from 1927 to 2020 from the data library of Kenneth French 
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). The excess return of the market portfolio is 
calculated as described in Fama and French (1993). 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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The parameter values are kept constant across simulations. We generate daily 

market excess returns using a random walk with drift: 

 

𝑅𝑀𝑡 = 𝜇𝑀 + 𝜀𝑀𝑡, 

 

where 𝜇𝑀 = 0.192Δ𝑇 and 𝜀𝑀𝑡~𝑁(0, 0.15332). We use the generated Betas and 

idiosyncratic volatilities to construct 2,000 daily excess return series based on the CAPM 

(i.e. a simulated duplicate of Equation 3.3): 

 

𝑅𝑖𝑡 = 𝛽𝑖𝑅𝑀𝑡 + 𝜀𝑖𝑡, 

 

where 𝜀𝑖𝑡~𝑁(0, Δ𝑇 ∗ 𝜎𝜀,𝑖
2 ). As a result, the CAPM holds for the underlying data by 

design. Figure 3.3 below plots the average annual return of each security against their 

estimated market Beta as well as a blue regression line which shows the linear relation 

between risk and return. A red, dashed line is overlayed on the chart indicating the risk-

return relation assumed by the single-factor model. Since the CAPM is true in this 

simulation, the two lines are one in the same and the model is specified correctly in the 

cross-section. As a result, we expect 𝛼̂𝑖
𝑇𝑆 and 𝛼̂𝑖

𝐸𝑥𝑐 to be the same since no adjustment for 

model misspecification is required. 

 
Figure 3.3: Factor model is correctly specified 
Figure 3.3 plots the average annual return of each security against their estimated market Beta. A blue linear regression 
line is plotted indicating the risk-return relation in the simulated data. A dashed red line is overlayed indicating the 
risk-return relation imposed by the single-factor model. In our simulation, the two lines are almost identical, providing 
a visual indication that the model is correctly specified and traditional Alpha estimates will not be biased by structural 
endogeneity. 
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Figure 3.4 below compares Alpha estimates from a time-series regression with 

𝛼̂𝑖
𝐸𝑥𝑐. Since the cross-sectional risk-return relation in the simulated data matched the 

imposed risk-return assumptions of the single-factor model, Alphas estimated via time-

series regression and 𝛼̂𝑖
𝐸𝑥𝑐 are equivalent. 

 
Figure 3.4: Equivalence of 𝜶̂𝒊

𝑻𝑺 and 𝜶̂𝒊
𝑬𝒙𝒄 in Scenario 1 

Figure 3.4 plots the time-series (left panel) and Excess Alpha (right panel) estimates of each security against their 
estimated market Betas. A blue linear regression line is plotted indicating the relation between the respective alpha 
estimates and Betas in the simulated data. Both Alpha estimation approaches were equivalent for the simulated data 
and were independent of 𝛽̂𝑖. 
 

The annualised 𝜙̂ values from our regression of alpha estimates against slope 

coefficients (Equation 3.8) are close to zero (𝜙̂0 = 0.11%, 𝜙̂1 = 0.07%) and statistically 

insignificant (𝜙̂0,𝑝−𝑣𝑎𝑙𝑢𝑒 = 0.92, 𝜙̂1,𝑝−𝑣𝑎𝑙𝑢𝑒 = 0.95, F-test p-value = 0.95).33 The 

statistical insignificance of 𝜙̂ values provides a quantitative verification that the single-

factor model was appropriately specified under our simulation of Scenario 1, as expected. 

Having demonstrated that 𝛼̂𝑖
𝑇𝑆and 𝛼̂𝑖

𝐸𝑥𝑐 are equivalent in the absence of model 

misspecification, we move onto simulation of the opposing extremity. 

In Scenario 2, security returns are random and there is no modelled relation 

between risk and return. For this second simulation we generate 2,000 security returns 

using a random walk with drift: 

𝑅𝑖𝑡 = 𝜇 + 𝜀𝑖𝑡 

 
 

33 The values of each 𝜙̂ are not exactly zero due to each simulated security return being subject to noise (𝜀𝑖𝑡) rather than precisely 

following the CAPM. 
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where 𝜇 = 0.192Δ𝑇 and 𝜀𝑖𝑡 are identical to (copied from) Simulation 1. We then form 

an equal weighted portfolio (𝑅𝑀,𝑡 =
1

𝑁
∑ 𝑅𝑖,𝑡

𝑁
𝑖=1 ) which serves as the market portfolio in 

our simulation and estimate time-series Alphas and Excess Alphas for a single-factor 

model. Figure 3.5 plots the average daily return of each security against their estimated 

market Beta and shows the risk-return relation present in the data (blue regression line) 

vs the risk-return relation imposed by the single-factor model (red dashed line). Since the 

risk-return relation for our simulated data differs greatly from the model assumptions, the 

single-factor model is misspecified.  

 
Figure 3.5: Factor model is misspecified 
Figure 3.5 plots the average daily return of each security against their estimated market Beta. A blue linear regression 
line is plotted indicating the risk-return relation in the simulated data. A dashed red line is overlayed indicating the 
risk-return relation imposed by the single-factor model. In our simulation, the two lines differ greatly, providing a 
visual indication that the model is misspecified and traditional alpha estimates will be biased by structural endogeneity. 
 

Figure 3.6 compares 𝛼̂𝑖
𝑇𝑆 and 𝛼̂𝑖

𝐸𝑥𝑐. As a result of model misspecification, we 

observe very different values for 𝛼̂𝑖
𝑇𝑆 and 𝛼̂𝑖

𝐸𝑥𝑐. Excess Alphas are penalised based on the 

risk-return relation observed in the data whilst traditional time-series Alphas are 

penalised based on a presumed risk-return relation stipulated by the CAPM.  
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Figure 3.6: Divergence of 𝜶̂𝒊

𝑻𝑺 and 𝜶̂𝒊
𝑬𝒙𝒄 in Scenario 2 

Figure 3.6 plots the time-series (left panel) and Excess Alpha (right panel) estimates of each security against their 
estimated market Beta. A blue linear regression line is plotted indicating the relation between the respective alpha 
estimates (annualised %) and Betas in the simulated data. Since the factor model was misspecified, Alphas estimated 
via time-series regression are significantly biased and differ greatly from 𝛼̂𝑖

𝐸𝑥𝑐. 
 

The annualised 𝜙̂ values from our alpha-beta regression (Equation 3.8) are 

economically large (𝜙̂0 = 19.48%, 𝜙̂1 = −19.41%) and extremely statistically 

significant (𝜙̂0,𝑝−𝑣𝑎𝑙𝑢𝑒 = 0.00, 𝜙̂1,𝑝−𝑣𝑎𝑙𝑢𝑒 = 0.00, F-test p-value = 0.00). Since we had 

not simulated any cross-sectional relation between market risk and security returns, we 

expect no market risk premium in our Scenario 2 results. The single-factor model had 

imposed an annual market risk premium of greater than 19% whilst the actual risk-return 

relation in the simulated data exhibited a statistically insignificant market risk premium 

(-0.07%). In this extreme scenario, where we simulated no relation between risk and 

return, the estimated time-series alpha of a zero-beta security would, on average, be 

overstated by approximately 19.5% (𝜙̂0). 

Traditional Alpha estimates systematically vary with 𝛽̂𝑖 causing the 𝛼̂𝑖
𝑇𝑆  of low 

(high) 𝛽̂𝑖 securities to be overstated (understated). The impact upon hypothesis testing 

can be observed in Figure 3.7. Since statistical tests of significance tend to benchmark 

against a constant expectation that 𝐸[𝛼̂𝑖
𝑇𝑆 |𝛽̂𝑖] = 0 ∀𝑖, securities with more extreme 𝛽̂𝑖 

will be identified as statistically significant risk-adjusted performers simply because they 

are more substantially impacted by the spurious 𝛼̂𝑖
𝑇𝑆  penalty of model misspecification. 

The left-hand chart in Figure 3.7 demonstrates this effect for 𝛼̂𝑖
𝑇𝑆. By contrast, on the 

right-hand chart we observe that, since 𝛼̂𝑖
𝐸𝑥𝑐 is orthogonal to 𝛽̂𝑖 by design, there is no 

inflation of false positives.  
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Figure 3.7: Distribution of p-values for 𝜶̂𝒊 and 𝜶̂𝒊

𝑬𝒙𝒄 across Beta deciles 
Figure 3.7 plots the distribution of p-values for time-series (LHS) and Excess Alpha (RHS) estimates of each security 
against their estimated market Betas. Due to model misspecification, securities with more extreme 𝛽̂𝑖 will be falsely 
allocated statistical significance under a traditional Alpha measurement approach. By contrast, Excess Alpha estimates 
are orthogonal to 𝛽̂𝑖 and do not suffer from the same false positive issue. The blue dotted lines in each chart indicate a 
5% significance level. 
 

A scatter plot of Alpha estimates vs terminal wealth for Scenario 2 is shown in 

Figure 3.8 below.  

 
Figure 3.8: Correlation of terminal wealth with 𝜶̂𝒊 and 𝜶̂𝒊

𝑬𝒙𝒄  
Figure 3.8 is a scatter plot of terminal wealth (horizontal axis) vs estimated daily Alpha (blue dots) or Excess Alpha 
(orange dots) (vertical axis) for the securities modelled in Scenario 2. The correlations between terminal wealth and 
the respective Alpha estimation type are displayed in the top right corner. Traditional Alpha estimates exhibit 
noticeably lower correlation with terminal wealth. 

 

Traditional Beta estimates are heavily impacted by noise, making traditional 

Alpha estimates partially spurious. This reduces the correlation between traditional Alpha 
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estimates and terminal wealth for individual securities. By contrast, Excess Alpha 

estimates are nearly perfectly correlated with terminal wealth. This is because they are 

estimated based on the actual cross-sectional risk premia present in examined data, 

rendering them highly resistant to noise. 

The preceding simulations considered the extent of estimation bias for a single-

factor model under time-series regression. However, the bias in Alpha estimates can be 

similarly decomposed for multi-factor models. For example, in a FF3F Model we would 

have:  

 

𝑅𝑖𝑡 = 𝛼̂𝑖
𝐸𝑥𝑐 + 𝜙̂0 + (𝜙̂1 + 𝑅𝑀,𝑡)𝛽̂𝑀,𝑖 + (𝜙̂2 + 𝑅𝑆𝑀𝐵,𝑡)𝛽̂𝑆𝑀𝐵,𝑖 + (𝜙̂3 + 𝑅𝐻𝑀𝐿,𝑡)𝛽̂𝐻𝑀𝐿,𝑖 +

𝜀𝑖̂𝑡,   (3.9) 

 

where 𝜙̂ are obtained from an expanded version of the alpha-beta regression from 

Equation 3.8. Each 𝜙̂ measures the distortion of a different factor model parameter under 

time-series regression due to imposition of an arbitrary cross-sectional assumption that 

does not reflect the underlying data. The 𝜙̂  represent the adjustment required to 

respective parameters in order to introduce the cross-sectional risk-return relation of the 

underlying data. Since Equation 3.9 has embedded the cross-sectional assumptions of the 

underlying data, it is directly comparable to a cross-sectional model: 

 

𝑅̅𝑖 = 𝑐̂ + 𝜆̂𝑀𝛽̂𝑀,𝑖 + 𝜆̂𝑆𝑀𝐵𝛽̂𝑆𝑀𝐵,𝑖 + 𝜆̂𝐻𝑀𝐿𝛽̂𝐻𝑀𝐿,𝑖 + 𝛼̂𝑖
𝐸𝑥𝑐,      (3.10) 

 

where 𝑐 = 𝜙̂0, 𝜆̂𝑀 ≅ (𝜙̂1 + 𝑅̅𝑀,𝑡), 𝜆̂𝑆𝑀𝐵 ≅ (𝜙̂2 + 𝑅̅𝑆𝑀𝐵,𝑡), and 𝜆̂𝐻𝑀𝐿 ≅ (𝜙̂3 + 𝑅̅𝐻𝑀𝐿,𝑡). 

Which means to quickly obtain 𝛼̂𝑖
𝐸𝑥𝑐 we could simply run a cross-sectional regression 

and save the residuals. In the following section we analyse the difference between 𝛼̂𝑖 and 

𝛼̂𝑖
𝐸𝑥𝑐 for the past 30 years of US equities data when using single-factor and FF3F models. 

We also examine the 𝜙̂ of each factor to gauge the historical magnitude of risk-premium 

misspecification. 
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3.4 Quantifying historical factor model bias 

 

We have identified that time-series Alpha estimates of factor models are likely to 

be biased in an empirical setting. The magnitude of bias, however, may be economically 

or statistically insignificant. If the bias is trivial, we could continue to use time-series 

regression for performance evaluation. By contrast, a persistent and large bias would 

represent a flaw with a common implementation of factor models and a pathway through 

which abundant anomalies could have been misidentified. In this section we inspect the 

historical bias of Alpha estimates produced by time-series regression of the CAPM and 

FF3F models and find evidence of an economically and statistically significant bias. 

 

3.4.1 Data and method 

Our analysis relies on daily US equities holding period return data. The data is 

obtained from the Center for Research in Security Prices (CRSP) and covers the sample 

period from January 1, 1991 to December 31, 2020. Only ordinary common shares listed 

on the NYSE, NASDAQ, and AMEX are included. Following Fama and French (1992), 

we exclude financial firms since they are expected to have structurally high levels of 

leverage which could distort construction of value portfolios. In the calculation of holding 

period returns we assume all dividends received are reinvested in the underlying stock on 

the date that the dividends are paid out. Book value data are obtained from COMPUSTAT 

and merged with the CRSP data using PERMNOs in constructing a value factor. Book 

values are filled forward in-between reporting periods such that on each portfolio 

formation date the most recently available data is used.  

To gauge the extent of risk-premium misspecification under time-series 

regression we estimate the 𝜙̂ for the CAPM (Equation 3.8) and FF3F model (Equation 

3.9). In each model, the “market factor” is the excess holding-period return of a market-

capitalisation-weighted index formed on the first trading day of January and held one 

year. The daily risk-free rate used is the monthly rate obtained from Kenneth French’s 

website and converted into a daily format. We follow Fama and French (1993) in 

constructing SMB and HML portfolios. Each of these factor portfolios are formed on the 

first trading day of January and held for one year. Hou et al. (2020) provide a strong 

motivation to omit microcap equities from inclusion in factor portfolios. Since Fama and 

French (1993) do not omit microcaps we have not the adopted this procedure in the 



52 
 

section below. This allows our results to be more comparable to historical research 

papers. 

 

3.4.2 Results 

Table 3.1 shows the annual market portfolio excess return and the estimated 

misspecification of each factor across our 30-year sample.  

   CAPM  FF3F 
Yea

r 
𝑹̅𝑴  𝜙̂0 𝜙̂1 𝐹𝑝−𝑣𝑎𝑙  𝜙̂0 𝜙̂1 𝜙̂2 𝜙̂3 𝐹𝑝−𝑣𝑎𝑙 

1991 26.81  10.95*** -0.35 0.8516  12.86*** -8.34*** -4.05** -4.47*** 0.0000 
1992 5.54  11.08*** -5.48*** 0.0000  7.33*** -2.47 -4.28*** -9.20*** 0.0000 
1993 9.17  9.82*** -3.35** 0.0130  2.98* -1.07 1.49 -11.11*** 0.0000 
1994 -0.07  -7.09*** 4.63*** 0.0017  -2.95 2.92* 1.16 -7.33*** 0.0000 
1995 27.61  14.28*** -18.53*** 0.0000  21.33*** -24.85*** 3.85** -4.47*** 0.0000 
1996 16.93  11.7*** -13.82*** 0.0000  11.17*** -8.22*** -4.60*** -3.31*** 0.0000 
1997 24.06  15.96*** -19.92*** 0.0000  10.56*** -5.88** -7.34*** -7.50*** 0.0000 
1998 25.61  -13.26*** -5.62** 0.0234  18.01*** -16.84*** 2.34 -8.19*** 0.0000 
1999 23.37  -24.47*** 44.95*** 0.0000  -32.84*** 38.08*** -10.66*** -11.71*** 0.0000 
2000 -15.14  15.59*** -11.98*** 0.0000  -19.57*** 24.31*** -16.46*** -9.36*** 0.0000 
2001 -12.58  20.09*** 3.03** 0.0292  12.98*** 8.79*** -19.78*** -20.84*** 0.0000 
2002 -24.40  18.39*** -12.59*** 0.0000  10*** 8.68*** -11.5*** -8.30*** 0.0000 
2003 27.61  10.77*** 2.67* 0.0969  12.53*** -9.14*** 2.96** -3.88*** 0.0000 
2004 10.69  27.41*** -18.76*** 0.0000  14.15*** -9.03*** -4.76*** -0.65 0.0000 
2005 4.73  -3.67 3.91** 0.0267  -1.90 4.12* -0.09 6.66*** 0.0000 
2006 12.83  7.71*** -8.42*** 0.0000  6.51*** -6.66*** 1.07 -9.40*** 0.0000 
2007 10.56  3.00 -10.57*** 0.0004  -7.11** 14.57*** -15.36*** 3.83*** 0.0000 
2008 -34.06  4.39 -3.59 0.2542  8.18** -2.27 -2.43 -4.97*** 0.0000 
2009 29.43  -0.44 5.61*** 0.0014  14.08*** -8.61*** -3.65** -2.86** 0.0010 
2010 17.95  3.79 0.50 0.7823  2.22 0.34 -2.92** -0.44 0.1643 
2011 6.93  30.81*** -28.78*** 0.0000  30.06*** -25.35*** -6.11*** -5.85*** 0.0000 
2012 14.59  13.5*** -12.12*** 0.0000  8.72*** -6.08*** -4.41*** -9.29*** 0.0000 
2013 29.30  5.75** -4.76** 0.0402  4.13 -3.80 0.06 -9.96*** 0.0000 
2014 11.87  17.61*** -20.65*** 0.0000  11.91*** -5.96*** -8.19*** -9.48*** 0.0000 
2015 1.79  20.3*** -26.05*** 0.0000  -1.90 6.89** -6.51*** -5.55*** 0.0000 
2016 11.93  11.39*** -6.62*** 0.0001  15.97*** -8.87*** -10.69*** -2.91*** 0.0000 
2017 20.24  5.57** -11.03*** 0.0000  10.98*** -9.04*** -2.34* -1.13 0.0000 
2018 -2.94  -9.42*** 3.50 0.1929  4.10 -1.46 -4.04** -8.28*** 0.0000 
2019 27.13  24.89*** -27.65*** 0.0000  16.85*** -12.85*** -3.76*** -10.47*** 0.0000 
2020 29.76  17.46*** -12.83*** 0.0001  -1.33 6.80* 2.66** 5.74*** 0.0000 
Average Values           

 11.24  9.13 -7.16   6.67 -2.04 -4.61 -5.82  
Proportion of years significant at 

10% level  83.33% 86.67% 86.67%  76.67% 80.00% 76.67% 90.00% 96.67% 
5% level  83.33% 83.33% 83.33%  73.33% 70.00% 73.33% 90.00% 96.67% 
1% level  76.67% 66.67% 66.67%   66.67% 63.33% 50.00% 86.67% 96.67% 

Table 3.1: Risk premium misspecification under time-series regression (1991-2020) 
Table 3.1 shows estimated cross-sectional misspecification (𝜙̂𝑖) in each risk premia when estimating Alpha under 
CAPM (𝑅𝑖𝑡 = 𝛼̂𝑖

𝐸𝑥𝑐 + 𝜙̂0 + (𝜙̂1 + 𝑅𝑀,𝑡)𝛽̂𝑀,𝑖 + 𝜀𝑖̂𝑡) and FF3F model (𝑅𝑖𝑡 = 𝛼̂𝑖
𝐸𝑥𝑐 + 𝜙̂0 + (𝜙̂1 + 𝑅𝑀,𝑡)𝛽̂𝑀,𝑖 + (𝜙̂2 +

𝑅𝑆𝑀𝐵,𝑡)𝛽̂𝑆𝑀𝐵,𝑖 + (𝜙̂3 + 𝑅𝐻𝑀𝐿,𝑡)𝛽̂𝐻𝑀𝐿,𝑖 + 𝜀𝑖̂𝑡) time-series regressions. Each 𝜙̂𝑖 is expressed in terms of an annual absolute % 
difference between the cross-sectional risk premiums assumed by the respective model risk premia and the cross-
sectional risk premiums estimated based on the underlying data. A positive 𝜙̂𝑖 value indicates that the risk premia was 
understated in the original factor model specification, whilst a negative phi value indicates that a risk premia was 
overstated. *, **, *** represent statistical significance at 90%, 95%, 99% confidence levels, respectively. Risk premia 
were statistically significantly misspecified in the majority of years for every risk premia. These misspecifications were 
of a substantial economic magnitude. 
 

In both models each of the risk premia are observed to be individually and jointly 

statistically significantly misspecified in most years. These misspecifications are 
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economically large with the potential to materially bias the Alpha estimates of individual 

securities and portfolios. For example, in the single-factor model, the average value of 

𝜙̂0 was approximately 9.1% per annum. This indicates that a zero-beta security would, 

on average, earn a rate of return well above (+9.1%) the risk-free rate over the 30-year 

sample period. In the FF3F model, the average value of 𝜙̂0 was also economically large 

at 6.7% per annum. By contrast, each of the remaining 𝜙̂ were negative on average. This 

indicates that the slopes of each risk-premium are flatter in our data than each factor 

model originally specified; there is a weaker relation between security returns and these 

presumed risk proxies. Taken together, the findings indicate that the true risk-return 

relation in our data sample is likely closer to the relation envisioned by Black et al. 

(1972); a zero-Beta asset earns a return in excess of the risk-free rate, rather than Sharpe 

(1964) and Lintner (1965); a zero-beta security earns the risk-free rate. The net result is 

that if we use the Alpha estimates from time-series regression to evaluate performance, 

we will produce excessively inflated Alphas for securities with low Betas and excessively 

understated Alphas for securities with high Betas. We would observe a strong “low-beta 

anomaly” in positive return markets purely due to model misspecification. We further 

compare the Alpha estimates from time-series regression and cross-section regression for 

our sample period in Figure 3.9 below. 

 
Figure 3.9: Deviation of average annual Alpha estimates from time-series vs. cross-
sectional regression  
Figure 3.9 plots the equal-weighted average Alpha estimates of a single-index model from time-series regression vs. 
cross-sectional regression for each sample year (1991-2020). The time-series regression Alphas of each security are 
calculated as: 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖 ∗ 𝑅̅𝑀. By contrast, the cross-sectional regression Alphas are the residuals of a cross-sectional 
regression of average security returns against betas: 𝑅̅𝑖 = 𝜆̂0 + 𝜆̂0𝛽̂𝑖 + 𝛼̂𝑖. Average Alpha estimates under time-series 
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regression are susceptible to extreme fluctuation from year-to-year. As a result, empirical results produced under time-
series regression are more likely to be a product of sample period. By contrast, cross-sectional regression establishes a 
consistent benchmark across time periods making empirical results less prone to sample period selection. 

 

Figure 3.9 plots the average Alpha across individual securities estimated via time-

series vs. cross-sectional regressions for each year of our data sample. The Alpha 

estimates from time-series regressions tend to deviate greatly from year to year. The 

average of time-series regression Alpha estimates in any given year is 1

𝑁
∑ 𝛼̂𝑖

𝑁
𝑖=1 =

1

𝑁
∑ 𝑅̅𝑖

𝑁
𝑖=1 − 𝑅̅𝑀 ∗ 1

𝑁
∑ 𝛽̂𝑖

𝑁
𝑖=1 . Therefore, these average Alpha estimates are a function of 

the difference between the return of an equal-weighted portfolio and equal-weighted 

average security Beta times our reference portfolio (market proxy). In years where either 

small cap securities outperform, or the average security Beta is less than 1, we would 

expect the average Aalpha of securities to be biased upwards. As a result, anomaly 

identification under time-series regression should be highly sensitive to sample period 

selection since in certain periods a randomly selected group of securities would be 

expected to produce positive Alphas whilst in other periods Alphas would be 

substantially deflated. By contrast, cross-sectional Alpha estimates are consistently 

centred on zero since the intercept of cross-sectional regressions captures the difference 

in performance between the return on equal-weighted vs cap-weighted portfolios and 

deviations of average security Betas from 1. Consequently, anomalies identified under 

cross-sectional regression should be more robust across varying time periods. 

Figure 3.9 showed that each regression approach produces Alpha estimates that 

are on average different from eachother in each data period. Figure 3.10 below shows 

that time-series regression also produces Alpha estimates that are systematically biased. 

The chart splits alpha estimates across years into a sample of securities with Betas less 

than 1 (Low Beta) versus greater than 1 (High Beta).  
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Figure 3.10: Distribution of time-series alpha estimates conditional on beta 
Figure 3.10 plots the distribution of Alpha estimates from time-series regression of a single-index model. The figure 
depicts three samples; “All Betas” which places no restrictions, “Low Beta” which only includes securities with 𝛽̂𝑖 <

1, and “High Beta” which only includes securities where 𝛽̂𝑖 > 1. The time-series regression Alphas of each security are 
calculated as: 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖 ∗ 𝑅̅𝑀. Since we have 30 sample years each distribution is comprised of 30 data points where 
each data point is the average alpha across each securities subject to the applicable Beta filter. The red dotted line 
through the chart represents zero alpha. In Figure 3.10 we observe that Alpha estimates from the time-series regression 
are distributed above 1 for low Beta securities and below 1 for high Beta securities; Alpha estimates systematically 
vary depending on security Beta. 
 

We can visually observe that low Beta securities tend to produce higher time-

series Alphas whilst high Beta securities produce lower Alphas; there is a systematic 

dependence between Alpha and Beta. The dependence between alpha and beta estimates 

occurs because time-series regressions assume the data examined conforms precisely to 

the relation hypothesised by the model. In periods where the actual cross-sectional 

relation between risk and return differs substantially from the form assumed by the time-

series model then risk-adjustment penalty (𝑅̅𝑀 ∗ 𝛽̂𝑖) becomes spurious. The empirical 

relation between risk and return tends to be weaker than theorised (Black, Jensen and 

Scholes, 1972) so high Beta securities have historically received excessive penalties 

whilst low Beta securities have not been penalised enough. By contrast, Alphas estimated 

via cross-sectional regressions apply a risk-adjustment penalty based on the actual risk-

return relation observed in the data period; there is no model misspecification. 

Knowledge of the systematic measurement bias of time-series regression can be exploited 

to create a practically infinite quantity of false anomalies. We examine this issue in the 

next section. 
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3.5 Populating a “factor zoo” 

 

In the preceding sections of the chapter, we outlined how the use of time-series 

regression can result in significantly biased estimates of security or portfolio Alphas. In 

bull markets we will tend to observe a “low beta anomaly” due to Alpha estimation bias; 

low Beta securities appear to outperform. In bear markets, we observe the opposite effect, 

a “high beta anomaly”. In this section, we prescribe a general approach to construct 

countless false anomalies by intentionally leveraging the model misspecification of time-

series regressions. We also discuss how the “betting against beta” (BAB) factor published 

by Frazzini and Pedersen (2014) directly exploits this Alpha estimation bias. 

A simple procedure to consistently generate a false return anomaly is to create a 

large, diversified portfolio with a beta substantially below 1. Such a portfolio will tend to 

benefit from inflated estimates of its alpha under a time-series regression since in rising 

markets Alpha estimates for portfolios further below 1 become progressively more 

inflated. The formation of long-short portfolios is an intuitive technique to achieve a 

portfolio Beta well below one. Unsurprisingly, construction of long-short portfolios is a 

common practice in finance anomaly literature. 

By way of example, suppose we decide to form two well-diversified equity 

portfolios; a low Beta (LB) portfolio comprised of all securities with a Beta <1, and a 

high Beta (HB) portfolio comprised of all securities with a Beta >1.34 Jensen’s Alpha as 

measured via time-series regression of a single factor model is simply 𝛼̂𝑖 = 𝑅𝑖̅ − 𝛽̂𝑖𝑅𝑀
̅̅ ̅̅ . 

So, for our LB and HB portfolios, the estimated Alphas are: 

 

𝛼̂𝐿𝐵 = 𝑅𝐿𝐵
̅̅ ̅̅ ̅ − 𝛽̂𝐿𝐵𝑅𝑀

̅̅ ̅̅ ,  

𝛼̂𝐻𝐵 = 𝑅𝐻𝐵
̅̅ ̅̅ ̅ − 𝛽̂𝐻𝐵𝑅𝑀

̅̅ ̅̅ .  

 

If we take a long position in the LB portfolio and an equal short position in the 

HB portfolio then the time-series Alpha estimate for the resulting low-minus-high (LMH) 

portfolio is as follows:  

 
 

34 We note that a breakpoint of 1 is not required, only a meaningful difference in the Betas of each portfolio is required. 
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𝛼̂𝐿𝑀𝐻 = 𝛼̂𝐿𝐵 − 𝛼̂𝐻𝐵   

𝛼̂𝐿𝑀𝐻 = 𝑅𝐿𝐵
̅̅ ̅̅ ̅ − 𝛽̂𝐿𝐵𝑅𝑀

̅̅ ̅̅ − (𝑅𝐻𝐵
̅̅ ̅̅ ̅ − 𝛽̂𝐻𝐵𝑅𝑀

̅̅ ̅̅  )  

 𝛼̂𝐿𝑀𝐻 = (𝑅𝐿𝐵
̅̅ ̅̅ ̅ − 𝑅𝐻𝐵

̅̅ ̅̅ ̅) + 𝑅𝑀
̅̅ ̅̅ (𝛽̂𝐻𝐵 − 𝛽̂𝐿𝐵)            (3.11) 

 

If the empirical relation between risk and return is flatter than expected relation 

under the CAPM (e.g., Black, Jensen and Scholes, 1972), then by consequence whenever  

𝑅𝑀
̅̅ ̅̅ > 0, the following inequality holds: 

  

𝑅𝑀
̅̅ ̅̅ (𝛽̂𝐻𝐵 − 𝛽̂𝐿𝐵) > (𝑅𝐿𝐵

̅̅ ̅̅ ̅ − 𝑅𝐻𝐵
̅̅ ̅̅ ̅)             (3.12) 

 

As a result, LMH portfolios will be biased to produce positive Alpha estimates under 

time-series regression and this bias will increase as (𝛽̂𝐻𝐵 − 𝛽̂𝐿𝐵) increases. The intuition 

of the worked example is valid for any breakpoint (not just 𝛽=1) so long as there are 

sufficient securities either side of the breakpoint to construct a large, diversified portfolio. 

Several other papers highlight that many LMH portfolios are capable of producing 

positive Alphas; “Have we found, yet again, a better factor, a mighty inhabitant of the 

zoo? According to our theory—No. While the LMH portfolio does capture risk, its 

economic interpretation remains elusive” (Andrei et al., 2019). What distinguishes us 

from the extant literature is that we are the first to provide an algebraic rationale as to 

why the phenomenon occurs. We attribute the perceived outperformance of many LMH 

portfolios to a systematic measurement bias that occurs when estimating Alphas via time-

series regression.  

The BAB factor identified by Frazzini and Pedersen (2014) is perhaps the most 

famous return anomaly of the last decade. The BAB factor is able to consistently generate 

economically and statistically significant time-series Alphas across various asset classes 

and countries; it is remarkably robust. Formation of the BAB factor portfolio involves 

taking a long position in a low Beta portfolio and short position in a high Beta portfolio. 

The process is similar to the generalised approach to anomaly generation prescribed 

above but with a couple of differences. The low Beta portfolio comprises securities with 

below median Betas and places progressively higher investments weights on securities 

with lower Betas; by design the portfolio will have a Beta particularly far below 1. 
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Conversely, the high Beta portfolio is comprised by securities with above median Betas 

with higher weights for higher Beta securities, producing a portfolio with a Beta 

significantly above 1. This alternate weighting scheme, in place of equal weighting, 

ensures the Betas are comparatively further away from 1 and increases the severity of the 

Alpha estimation bias of time-series regressions. We would expect the low Beta portfolio 

to have artificially inflated (positive) Alphas in rising markets whilst the high Beta 

portfolio would have artificially deflated (negative) Alphas. Naturally, a LMH Beta 

portfolio construction would reap the benefits of time-series estimation bias on each 

constituent portfolio and produce particularly large Alphas, delivering the appearance of 

a remarkably robust anomaly across numerous data sets.  

An unlevered BAB factor would consistently produce large Alphas under time-

series regression. However, Frazzini & Pedersen (2014) also leverage or deleverage the 

low Beta and high Beta portfolios that comprise the BAB factor to ensure each constituent 

portfolio has a Beta of 1. Under time-series regression, the Alpha of the risk-free rate is 

zero. Leveraging the low Beta portfolio up to a Beta of 1 by borrowing (shorting) the 

risk-free rate further inflates the time-series Alpha of the low Beta portfolio. 

Deleveraging the high Beta portfolio to a Beta of 1 by investing at the risk-free rate 

reduces the negative time-series Alpha of the high beta portfolio. The leveraging process 

has conflicting impacts upon Alpha estimation bias for each portfolio. However, if the 

BAB factor is a net borrower of risk-free securities, then the levered BAB factor will 

benefit more than the unlevered BAB factor from the Alpha estimation bias of time-series 

regressions and will report comparatively higher Alphas. This appears to be the case in 

Frazzini and Pedersen (2014, p. 9) where they note that the BAB factor for US equities 

is a net borrower of risk-free securities with a short position in risk-free securities which 

is on average double the long position. 

 

 

3.6 Conclusion  

 

This chapter highlighted that Alphas estimated via time-series regression suffer 

from economically and statistically significant bias in empirical applications. The cause 

is a misspecification of cross-sectional risk premia in time-series regression. Cross-

sectional regression approaches are preferred for Alpha estimation since they penalise 



59 
 

returns based on the actual risk-return relation observed in empirical data rather than a 

theoretical relation that can deviate greatly in practice.  

In our empirical analysis of US stock data, we have demonstrated that the 

magnitude of Alpha bias has been economically and statistically significant over the past 

30 years. There is a strong motivation for the use of cross-sectional regression in place of 

time-series approaches to achieve reliable performance evaluation. Widespread use of 

time-series regression in both academia and industry has resulted in the false 

identification of many return anomalies. These anomalies tend to exploit model 

misspecification induced bias via long-short portfolio formations. A preference for The 

BAB factor of Frazzini and Pedersen (2014) is a prominent recent example of a factor 

perceived as an anomaly due to an unintentional exploitation of time-series regression 

Alpha bias. The model misspecification bias that fuelled the rise of the “factor zoo” can 

be remedied via use of cross-sectional regression. More importantly, this data-driven 

estimation approach can be adopted for performance evaluation within industry to 

promote more efficient investment allocation.  

There are several avenues in which our research could be extended. It is possible 

that many of the existing anomalies in the finance and accounting literature are simply a 

product of biased estimation of Alpha in time-series regressions. Therefore, it would be 

empirically interesting to revisit the results of papers of anomalies which are dependent 

upon use of time-series regressions. Do these anomalies tend to lose their statistical 

significance when examined via cross-sectional regression? How many of the smart beta 

strategies in industry are simply the product of Alpha estimation bias? 

Since a disconnect between theory and empirical observation is the underlying 

cause of biased Alpha estimates in time-series regression, it is interesting to study why 

this may be the case. It seems intuitive that investors should want compensation for 

bearing additional systematic risk exposure, yet the security market line is surprisingly 

flat empirically. Betas are assumed to capture the exposure of portfolios to systematic 

risk. Perhaps Betas are a particularly poor proxy for systematic risk exposure. Why might 

this be the case? How can Betas be improved? 

If the security market line is empirically flatter than expected, then, under cross-

sectional regression, the risk-free rate will typically be a negative Alpha asset in positive 

return markets. Investors can generate Alpha by shorting the risk-free asset and taking a 

long position in other assets. All else equal, the lower the risk-free rate, the more negative 

the magnitude of the Alpha of the risk-free asset becomes. As a result, more overvalued 



60 
 

assets can be invested in whilst still yielding a positive portfolio Alpha due to borrowing 

at the risk-free rate. Therefore, we have a mechanism for the rational investment in 

securities trading above their fundamental value. With interest rates having spent much 

of the past decade at historic lows globally, a study on the impact of lower interest rates 

on asset price overvaluation would be of great interest to academics and practitioners 

alike. 
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4 Chapter 4: Endogenous Reference Bias: When is it a problem? 
 

Endogenous Reference Bias:  

When is it a Problem? 
 

4.1 Introduction 

The market portfolio is the most important reference point in performance 

evaluation throughout empirical finance. The theoretical market portfolio, as 

contemplated in mean-variance optimisation (Markowitz, 1952), represents all investible 

securities. Since it is impossible to measure all investible securities (Roll, 1977), more 

practical proxies for the market portfolio have been adopted for performance evaluation. 

The two most used proxies for the market portfolio are a market-capitalisation-weighted 

(cap-weighted) portfolio and an equal-weighted portfolio. However, both portfolios 

suffer from an “endogenous reference bias” since dependent variables are regressed 

against a portfolio of which they are a constituent. Modern finance literature places great 

concern on mitigating endogeneity to arrive at unbiased parameter estimates. However, 

endogenous reference bias is commonly ignored in asset pricing literature.35 Therefore, 

the primary motivation for this chapter is to examine the severity of endogenous reference 

bias, provide practical guidance on when the bias is likely to undermine traditional 

empirical analysis, and present a robust alternative estimation procedure that adjusts for 

bias. 

To achieve our objective, we complete three primary tasks. Firstly, we provide a 

mathematical derivation of the bias induced by use of an endogenous regressor. Our 

results indicate that there are, mainly, three competing forces influencing the magnitude 

of endogenous reference bias: (1) an asset’s weight in the reference portfolio, (2) the size 

of the asset’s return variance relative to the variance of the market (variance multiple), 

and (3) the asset’s exogenous Beta.36 Whilst it is intuitive that large-cap securities 

 
 

35 In contrast, in the market microstructure literature it is common to adjust for endogenous reference bias (e.g., see Chordia et 

al., 2000; p.10). 
36 An asset’s exogenous Beta is defined as the beta obtained from regressing an asset against a market proxy, or index, which 

excludes itself. For example, the exogenous Beta of Apple might be obtained by regressing the stock returns of Apple against a 
cap-weighted index of all stocks in the S&P 500 excluding Apple. The logic is to avoid the regression of a dependent variable 
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experience the most severe bias via increased weighting in reference portfolios, our 

findings show that this endogenous reference bias is not monotonically increasing in an 

asset’s weight in the market portfolio. Instead, both the direction of bias and magnitude 

can be significantly impacted by the other two factors and becomes more pronounced at 

higher weight levels. 

Secondly, we evaluate the historical magnitude of endogenous reference bias. We 

examine US stock data from 1991-2020. A focus on US data enhances the relevance of 

our research to the extant studies and facilitates comparison. More importantly, since the 

US market is one of the least concentrated markets in the world, it establishes a 

conservative lower bound on the level of bias expected.37 We look at two distinct sample 

groups: one where we consider a market portfolio constructed of the 500 largest stocks 

in the sample year, analogous to the S&P 500, and another where we consider a market 

portfolio constructed of the 30 largest stocks, in parallel to the Dow Jones Industrial 

Average (DJIA). We find that the effects of endogenous reference bias are economically 

negligible for most stocks when using the more diversified S&P 500 proxy as a regressor. 

By contrast, the effect of bias becomes much more pronounced for the DJIA proxy with 

a cap-weighted average absolute bias in market Beta estimates of 0.08 across sample 

years; producing a 170 basis points distortion in Alpha estimates. We also find that whilst 

the weight of a security in the market portfolio is a statistically and economically 

significant source of bias, it only accounts for a minor portion (~10.7%) of the variation 

in endogenous reference bias. By comparison, inclusion of variables that account for an 

asset’s variance multiple and exogenous Beta can significantly enhance explanatory 

power. Certain stock characteristics are more exposed to severe endogenous reference 

bias (low Beta, high variance) even when using more diversified reference portfolios. 

The implication is that research which relies on use of a concentrated market portfolio is 

likely to be significantly biased and that constituent weight is only one of multiple 

determinants of bias direction and magnitude.  

Finally, we examine the influence of endogenous reference bias in a portfolio 

setting. Thus, in evaluating endogenous reference bias we analyse portfolio Betas rather 

 
 

against an “independent” variable of which it is a constituent since it will produce biased estimates of market Betas due to 
endogeneity.  
37 However, even for one of the most diversified indexes in the world, index concentration can still be significant. In the US, the 

top 3 stocks in the S&P 500 comprised 15.3% of the index as of 28th February 2023: AAPL (6.6%), MSFT (5.6%), and GOOG (3.1%).  



63 
 

than single security Betas. Our simulation results show that if the CAPM accurately 

described security returns, then even for a large, diversified portfolio, which comprises a 

substantial portion of the market portfolio, endogenous reference bias is unlikely to be 

economically meaningful. This occurs because the variance multiple is close to one for 

diversified portfolios moderating the impact of endogenous reference bias. Moreover, at 

a variance multiple of one, and a weighted average constituent exogenous Beta of one, a 

diversified portfolio’s Betas is expected to be equal approximately one irrespective of 

how large or small a constituent it is of the market portfolio. In stark contrast, when 

diversified portfolios intentionally comprise low Beta or high Beta securities, then the 

bias can become severe with traditional Beta estimates for low and high-Beta portfolios 

being biased towards unity. We form an endogenous reference bias hedging portfolio for 

use as a dependent variable in single-factor and Fama-French 3-Factor (FF3F) model 

regressions. This test portfolio, hedged against endogenous reference bias, delivers a 

single-factor / (FF3F) model Alpha of 4.30% / (4.28%) across our 30-year sample period. 

The Alpha generated by this hedging portfolio is economically larger than the single-

factor model Alphas associated with the small cap (2.04%) and value premiums (1.58%) 

during the same period. 

Our results shed light on some of the most persistent asset pricing anomalies. The 

finance literature consistently observes an empirical security market line that is “too flat” 

(Black et al., 1972). Our findings demonstrate that the perceived flatness of the empirical 

security market line is partially attributable to endogenous reference bias. It is common 

to use Beta-grouped portfolios in tests of the security market line in order to address 

concerns about errors-in-variables bias (e.g., Fama & French, 2004). Since an errors-in-

variables problem with Beta estimation is upheld as a suspected cause of the excessive 

flatness of the SML, a common resolution has been to form Beta-grouped decile 

portfolios when plotting an empirical SML in order to reduce estimation error. Ironically, 

we demonstrate in Section 4.5 that this grouping procedure itself provably contributes to 

the excessive flatness of the SML exacerbating the very problem it attempts to resolve. 

The remainder of this chapter is organised as follows. Section 4.2 discusses 

related literature and distinguishes our contribution. Section 4.3 demonstrates analytically 

that endogenous reference bias distorts Beta estimation and discusses remedies to 

alleviate the issue. Section 4.4 quantifies the historical impact of endogenous reference 

bias on market Beta estimation for US stocks. Section 4.5 explores the impact of 
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endogenous reference bias in diversified portfolios. Section 4.6 summarises our main 

findings, discusses limitations and opportunities for further research, and then concludes. 

 

4.2 Related literature and contribution 

 

Literature on endogenous reference bias remains scarce but there are some 

existing papers which also consider the issue. Woo et al. (1994) appear to be the first to 

explicitly consider the bias. They focus on two emerging Asian stock markets and 

conclude that the OLS estimated Betas of the largest securities tended to be biased by 5-

7%. Their proposed solution was to adopt an instrumental variable (IV) approach for Beta 

estimation where the IV selected was a portfolio of all other securities in the market 

excluding the dependent variable. Unfortunately, their paper has garnered little attention, 

with zero citations to date. A working paper by Damodaran (1999) also mentions the 

problem of endogenous reference bias amidst a broader discussion of the pitfalls of 

regression Betas. Patton and Verardo (2012) investigate whether stock Betas vary with 

the release of firm-specific news and consider the impact of endogenous reference bias 

during robustness tests. To correct for the bias, they omit the dependent variable from the 

market index and find minimal impact upon their baseline results. 

The paper most closely related to this chapter is by Malloch et al. (2016). The 

authors decompose the bias affecting Beta estimates into an errors-in-variables (EIV) bias 

and an endogenous reference bias. Similarly to Patton and Verardo (2012), they omit the 

dependent variable from the market index to correct for endogenous reference bias. They 

perform simulations for common market proxies across 39 developed and emerging 

markets, finding that endogenous reference bias is more severe in emerging markets 

where market indexes have a higher concentration of the largest stocks. In their 

simulation of the S&P 500, anticipated to be among the least susceptible of financial 

markets to the bias, they observe an average deviation of Betas from their true value of 

0.15.  

This chapter contributes to existing literature in three important ways. Firstly, this 

is the first research to consider the impact of three competing influences on the direction 

of magnitude of endogenous reference bias; facilitating richer insights into when 

endogenous reference bias will be a significant problem. For example, Malloch et al. 

(2016) only consider constituent weight and idiosyncratic risk leading to claims which 
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we dispute: endogenous reference bias “increases monotonically with the stock’s 

weighting in the index and the magnitude of its idiosyncratic risk” (2016, p. 4293). In this 

chapter we demonstrate analytically that the severity of endogenous reference bias is not 

monotonically increasing with a stock’s weighting in an index. We examine the impact 

of varying levels of idiosyncratic risk, index weighting, and stock Betas upon endogenous 

reference bias. We find a non-monotonic relation and a directional bias that differs 

dependent on the exogenous Beta of a stock. An implication is that whilst index weight 

is an important influence, neither the severity of bias, nor even the direction of bias, can 

be assumed without considering a stock’s exogenous Beta. 

None of the aforementioned papers examine the impact of endogenous reference 

bias upon the empirical data of a major developed market. The primary purpose of this 

chapter is to provide relevant guidance on if and when endogenous reference bias is likely 

to be severe and impact empirical analysis. Therefore, the second contribution of this 

chapter is to quantify the historical extent of bias in a major developed stock-market. We 

focus on analysis of US stock data to maximise the relevance of our findings. We find 

that Beta estimation bias is unlikely to be severe for most individual securities when 

working with US stock data. Our empirical results for historical US stock data point to a 

significantly lower average bias than identified by Malloch et al. (2016) in their 

simulation of US data. 

The preceding literature focuses on the impact of endogenous reference bias for 

individual assets. It is common in finance to evaluate the performance of portfolios. 

Examples include anomaly literature and performance evaluation of the mutual fund 

industry. Therefore, it is important to consider whether endogenous reference bias has a 

similar or differing impact on portfolios. As our final novel contribution, this chapter is 

the first to explore the impact of endogenous reference bias on portfolios. We show that 

for a randomly selected portfolio of securities, the bias will generally be negligible despite 

the portfolio being a relatively larger constituent of any market portfolio. This occurs due 

to diversified portfolios having a low variance multiple which reduces the potential for 

upwards bias of parameter estimates. An exception occurs when a portfolio is not 

randomly formed but is instead comprised of high or low exogenous Beta securities. 

Endogenous reference bias causes a wider dispersion of traditional beta estimates when 

compared to exogenous Beta estimates. Traditional Beta estimates for beta-grouped 

portfolios are subject to increasing positive bias (overstatement) as portfolio Betas 

increase beyond zero. An implication is that historical tests of the slope of the security 
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market line which rely on Beta-based portfolio groupings are likely to significantly 

understate the slope of the security market line. The empirical performance of the CAPM 

may be much better than currently envisioned after adjusting for endogenous reference 

bias. Finally, we demonstrate that a simple hedging portfolio against endogenous 

reference bias is capable of generating Alphas economically larger than both the famous 

small-cap and value premiums in our sample. In the next section we provide a derivation 

of endogenous reference bias and explore how its direction and magnitude differ in 

response to several key variables. 

 

4.3 Analytical examination of bias and proposed remedy 

 

4.3.1 Endogenous reference bias 

To demonstrate the effect of endogenous reference bias, we examine its impact 

on a CAPM model: 

𝐸[𝑅𝑖,𝑡] = 𝛽𝑖𝐸[𝑅𝑀,𝑡] + 𝜖𝑖,𝑡,           (4.1) 

where 𝑖 denotes an asset; 𝑡 denotes a time increment; 𝑅𝑖,𝑡 and 𝑅𝑀,𝑡 are returns on asset 𝑖 

and the market in excess of the risk-free rate; 𝛽𝑖 is the exposure of asset 𝑖 to market risk; 

and 𝜖𝑖,𝑡 is an error term. We adopt the following assumptions: 

A1: 𝑉𝑎𝑟(𝑅𝑖,𝑡) = 𝜎𝑖
2   

A2: 𝑉𝑎𝑟(𝑅𝑀,𝑡) = 𝜎𝑀
2  

A3: E[𝜖𝑖,𝑡] = 0  ∀𝑖 

A4: 𝑉𝑎𝑟(𝜖𝑖,𝑡) = 𝜎𝜖𝑖

2   ∀𝑖 

A5: 𝐶𝑜𝑣(𝑅𝑀,𝑡, 𝜖𝑗,𝑡) = 0  ∀𝑖 

A6: 𝐶𝑜𝑣(𝜖𝑖,𝑡, 𝜖𝑗,𝑡) = 0  ∀𝑖≠𝑗 

The true market portfolio is unobservable, resulting in an errors-in-variable 

problem since any portfolio acting as a proxy for the market portfolio differs from the 

true unobservable market portfolio. This chapter is focused explicitly on the bias due to 

inclusion of the dependent variable in the regressor. As a result, we make an important 

simplifying assumption in this section that our reference portfolio is measured without 

error.  
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There are two common proxies used in empirical finance to represent the market 

portfolio: an equal-weighted portfolio and a cap-weighted portfolio. We use a generalised 

approach throughout this section that allows for unequal weighting of securities and 

produces results that also hold for the special cases of equal-weighting and cap-

weighting. Our chosen proxy for the market portfolio is a weighted return of constituent 

securities: 𝑅𝑀𝑡 = ∑ 𝑤𝑖 𝑅𝑖,𝑡
𝑁
𝑖=1 ; where 𝑁 is the total number of securities in the market; 

𝑤𝑖 is the relative cap-weight of asset 𝑖 and ∑ 𝑤𝑖 = 1𝑁
𝑖=1 .38 Consider asset 𝑗. We can 

decompose the market return into two components: the weighted return on asset 𝑗, and 

the sum of weighted returns on the rest of the assets in the market: 𝑅𝑀,𝑡 = 𝑤𝑗  𝑅𝑗,𝑡 +

(1 − 𝑤𝑗)𝑅̃𝑀,𝑡, where 𝑅̃𝑀,𝑡 =
1

(1−𝑤𝑗)
∑ 𝑤𝑖 𝑅𝑖,𝑡

𝑁−1
𝑖=1,𝑖≠𝑗 .39 For our asset of interest, asset 𝑗, 

Equation 4.1 can be restated as: 

𝑅𝑗,𝑡 = 𝛽𝑗[𝑤𝑗𝑅𝑗,𝑡 + (1 − 𝑤𝑗)𝑅̃𝑀,𝑡] + 𝜖𝑗,𝑡,   (4.2) 

where 𝛽𝑗 is a parameter to be estimated against an endogenous regressor that is comprised 

of a 𝑤𝑗 weight in the dependent variable (endogenous component) and a (1 − 𝑤𝑗) weight 

in the rest of the market (exogenous component). The “independent” variable of Equation 

4.1, 𝑅𝑀,𝑡, is comprised of the dependent variable 𝑅𝑗,𝑡, as seen in Equation 4.2. As a result, 

the regressor of Equation 4.1 is perfectly correlated with the regression residuals, so 

estimates of Beta are biased and inconsistent (assumption A.5 is violated). Our biased 

OLS estimate of 𝛽𝑗 is:  

      𝛽̂𝑗 =
𝑤𝑗𝜆𝑗+(1−𝑤𝑗)𝛽̃𝑗

𝑤𝑗
2𝜆𝑗+(1−𝑤𝑗)

2
+2𝑤𝑗(1−𝑤𝑗)𝛽̃𝑗

  ,40     (4.3) 

where 𝛽𝑗 =
𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)

𝑣𝑎𝑟(𝑅̃𝑀,𝑡)
 (an “exogenous Beta” measuring the covariance of the excess 

returns of the test asset with the rest of the market portfolio, and divided by the variance 

of the excess returns of the rest of the market portfolio), and 𝜆𝑗 =
𝜎𝑗

2

𝜎𝑀
2  (a “variance 

multiple” indicating the variance in excess returns of the test asset relative to the variance 

in excess returns of the endogenous market proxy). If we were to regress the dependent 

 
 

38 For simplicity, 𝑤𝑖 is assumed to be time-invariant over the measurement period. 
39 

1

(1−𝑤𝑗)
 is applied to scale the portfolio return up to a weighting of 100%. 

40 An extended derivation is provided in Appendix C.3. 
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variable against only the endogenous component (𝑤𝑗 = 1), then our estimated 𝛽̂𝑗 = 1, 

since we are regressing a variable exclusively against itself. By contrast, if we were to 

regress the dependent variable against solely the exogenous component (𝑤𝑗 = 0) then our 

estimated 𝛽̂𝑗 = 𝛽𝑗, which is an estimate of the Beta of asset 𝑗 in relation to the rest of the 

market. We know that under endogenous reference bias, 𝛽̂𝑗 will be partially weighted 

towards 1 and partially weighted towards 𝛽𝑗 (exogenous Beta). From Equation 4.3 we 

can observe that a stock’s weight in the reference portfolio (𝑤𝑗), its variance relative to 

the variance of the market (𝜆𝑗), and its exogenous Beta in relation to the rest of the market 

(𝛽𝑗) all contribute to endogenous reference bias. These interactions may induce non-

monotonic behaviour in the severity of the bias. 

We present several illustrative cases to demonstrate the nonlinear nature of 

endogenous reference bias. For example, assume a scenario in which the excess returns 

of asset 𝑗 were uncorrelated with the rest of the market. Our Beta estimate from Equation 

4.3 becomes: 

𝛽̂𝑗 =
𝑤𝑗𝑀𝑗

𝑤𝑗
2𝑀𝑗+(1−𝑤𝑗)

2.     (4.4) 

The historical standard deviation of daily returns of the S&P 500 from 1 January, 

1991 to 31 December, 2020 was 1.15% (or 23.8% annualised), which we will use as a 

proxy for the standard deviation of the market portfolio in this hypothetical example. 

Assume that our uncorrelated asset 𝑗 also has 6.65 times the variance of the rest of the 

market.41 We know that an unbiased beta for asset 𝑗 (𝛽𝑗) would be zero since it is 

uncorrelated with the rest of the market. Figure 4.1 plots 𝛽̂𝑗 for our uncorrelated asset 𝑗 

as 𝑤𝑗 increases and endogenous reference bias increases in severity. 

 
 

41 This represents the variance multiple on Apple, the largest company listed on the S&P 500, over the same time period. 
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Figure 4.1: Bias in Beta estimate for an uncorrelated asset 𝒋 as 𝒘𝒋 increases  
Figure 4.1 shows the traditional estimated Beta for an asset ‘𝑗’ that is uncorrelated with the rest of the market as 𝑤𝑗  
increases. 𝑤𝑗  is the weight of the asset in the market portfolio. Since asset 𝑗 is uncorrelated with the market, an unbiased 
estimate of its Beta would be 𝛽̂𝑗 = 0. However, due to endogenous reference bias, 𝛽̂𝑗 is non-zero and increasingly 
biased as 𝑤𝑗  increases. When 𝑤𝑗 = 1, 𝛽̂𝑗 = 1, since asset 𝑗 is now being regressed solely against itself. 
 

The increase in Beta estimation bias as 𝑤𝑗 increases is non-linear. If asset 𝑗 had a 

weighting of 1

500
 in the reference portfolio, then estimation bias would be mild, with 𝛽̂𝑗 −

𝛽𝑗 = 0.01. However, when 𝑤𝑗 = 5%, representative of the largest weighted securities in 

the S&P 500, then Beta estimation bias becomes far more severe with 𝛽̂𝑗 − 𝛽𝑗 = 0.36. 

To put this bias into a performance evaluation perspective, if the excess return of the 

reference portfolio in a year was 15%, then the estimate of Jensen’s Alpha for asset 𝑗 

would be understated by 5.4%; more than 1/3 of the market risk premium!42  

Using Equation 4.3, we can identify the extent of endogenous reference bias as 

𝑤𝑗, 𝛽𝑗, and 𝑀𝑗 change. In Figure 4.2 below we plot four alternate 𝛽𝑗 for increasing 𝑤𝑗; 

𝛽𝑗 = [−1,1,2,3]. Other settings remain the same as above. 

 
 

42 Jensen’s Alpha: 𝛼̂𝑗 = 1

𝑇
∑ 𝑅𝑗,𝑡

𝑇
𝑡=1 − 𝛽̂𝑗 ∗ 1

𝑇
∑ 𝑅𝑀,𝑡

𝑇
𝑡=1 . Bias: −(𝛽̂𝑗 − 𝛽̃𝑗) ∗ 1

𝑇
∑ 𝑅𝑀,𝑡

𝑇
𝑡=1 = −0.36 ∗ 0.15 = −5.4% 
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Figure 4.2: Bias in the Beta estimate as 𝒘𝒋 increases for varying 𝜷̃
𝒋
 

Figure 4.2 (top panel) shows the estimated Beta for an asset ‘𝑗’, with a true Beta of 𝛽𝑗
𝑅𝑜𝑀 with the rest of the market, 

as 𝑤𝑗  increases. 𝑤𝑗  is the weight of the asset in the market portfolio. If Beta estimation was unbiased then we would 
observe 𝛽̂𝑗 = 𝛽̃𝑗. However, due to endogenous reference bias, 𝛽̂𝑗  differs from 𝛽̃𝑗 as 𝑤𝑗  increases. This bias is evident 
in the bottom panel which shows the difference between both estimates. For example, when 𝑤𝑗 = 5%, (𝛽̂𝑗 − 𝛽̃𝑗) =

0.25, 0.26, 0.01, −0.36 for the cases where 𝛽̃𝑗 = −1,1,2, and 3, respectively. When 𝑤𝑗 = 1, 𝛽̂𝑗 = 1 under each case, 
since asset 𝑗 is now being regressed solely against itself. 

 
We can observe from Figure 4.2 that the Beta estimates of the largest securities 

in a market are likely to suffer from substantial bias. However, the exogenous Beta of a 

stock in relation to the rest of the market (𝛽𝑗) is also an important determinant of the 

severity and direction of endogenous reference bias. Also evident is the potential for all 

securities in a market to suffer from the same directional Beta bias; upwards biased betas 

for large-cap stocks do not necessitate downwards biased betas for small-cap stocks and 

vice versa. Figure 4.3 below illustrates a third influence on the bias; the multiple of a 

stock’s variance to the variance of the endogenous market portfolio (𝜆𝑗). 
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Figure 4.3: Bias in the Beta estimate as 𝒘𝒋 increases for varying (𝑴𝒋). 
Figure 4.3 shows the estimated bias in traditional beta estimates for an asset ‘𝑗’, with a true beta of 𝛽̃𝑗 = 1 with the rest 
of the market, as 𝑤𝑗  and 𝑀𝑗 increase. 𝑤𝑗  is the weight of the asset in the market portfolio. If Beta estimation was 
unbiased then we would observe 𝛽̂𝑗 = 𝛽̃𝑗. However, due to endogenous reference bias, 𝛽̂𝑗 differs from 𝛽̃𝑗  as 𝑤𝑗  and 𝜆𝑗 
increase. An increasing variance multiple results in increasingly severe bias indicating that volatile stocks are likely to 
be the most severely impacted by endogenous reference bias. 
 

As the variance multiple increases, we observe a progressively stronger bias in 

Beta estimates. This implies that the most volatile stocks in a market are likely to be the 

most severely impacted by endogenous reference bias. In the next section we consider 

remedies for unbiased Beta estimation.  
 

4.3.2 Towards unbiased estimation 

To remedy the endogenous reference bias, Woo et al. (1994) propose an IV 

approach. Their proposed instrument is 𝑅̃𝑀,𝑡; the excess return of a cap-weighted 

portfolio comprised of all other assets except for asset 𝑗. They perform the regression: 

𝑅𝑀,𝑡 = 𝑎̂ + 𝑏̂𝑅̃𝑀,𝑡 + 𝑒̂𝑖,𝑡, then use the fitted values of 𝑅𝑀,𝑡 in the original regression 

model as per Equation 4.5: 

𝑅𝑗,𝑡 = 𝛼𝑗 + 𝛽𝑗𝑅̂𝑀,𝑡 + 𝜖𝑖,𝑡.     (4.5) 

The instrument chosen is highly correlated with the original regressor and uncorrelated 

with the residuals. As a result, Beta estimation should theoretically become unbiased. 

However, there is not necessarily a need for an IV approach in this setting. We already 

know the endogenous and exogenous components of the original regressor. Therefore, 

we could alternatively replace the original regressor with its exogenous counterpart 

(substitution approach):  
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𝑅𝑗,𝑡 = 𝛼𝑗 + 𝛽𝑗𝑅̃𝑀,𝑡 + 𝜖𝑗,𝑡.     (4.6) 

where 𝑗 denotes an asset; 𝑡 denotes a time increment; 𝑅𝑗,𝑡 is the return of asset 𝑗 in excess 

of the risk-free rate; 𝑅̃𝑀,𝑡 is the excess return of a cap-weighted portfolio comprised of all 

other assets except for asset 𝑗; 𝛽𝑖 is the exposure of asset 𝑗 to market risk; and 𝜖𝑗,𝑡 is an 

error term.  

This substitution approach has also been adopted by Patton and Verardo (2012) 

and Malloch et al. (2016) and is our preferred approach. Given the competing options, 

we can explore the impact of each estimation approach via simulation. We analyse two 

bookend scenarios; one where security returns are white noise (i.e. should be independent 

of the market) and another where security returns are determined by the CAPM. For our 

first simulation (Simulation 1), we generate 100 (𝑁) series of additive Gaussian white 

noise. Each series (𝑧𝑖,𝑡) is of 1,000 observations in length. The first of the 100 series 

becomes our dependent variable “asset 𝑗”. We then select a weight for asset 𝑗 and form a 

market portfolio (our regressor) which has a 𝑤𝑗 weighting in asset 𝑗 and equal (1−𝑤𝑗)

𝑁−1
 

weighting in each of the remaining 𝑁 − 1 white noise series. We hold 𝑤𝑗 constant and 

repeat the simulation 10,000 times. In each iteration, we estimate:  

𝑦𝑡 = 𝛼̂ + 𝛽̂𝑥𝑡 + 𝜀𝑡̂,      (4.7) 

where 𝑥𝑡 = 𝑤𝑗𝑦𝑡 +
(1−𝑤𝑗)

𝑁−1
∑ 𝑧𝑖,𝑡

𝑁−1
𝑖=1,𝑖≠𝑗  with 𝑦𝑡 representing the return series of “asset 𝑗”; 

𝛼̂ is a regression constant; and 𝜀𝑡̂ are regression residuals. 

We record and compare the Beta estimates obtained under an unadjusted 

approach, IV approach, and substitution approach. Absent endogenous reference bias, 

our estimated Betas should be approximately zero across simulations. By contrast, in the 

presence of the endogenous regressor we expect the biased OLS Beta estimates to be:43 

𝛽̂𝑗 =
𝑤𝑗

𝑤𝑗
2+

(1−𝑤𝑗)
2

𝑁−1

.     (4.8) 

 
 

43 𝛽̂𝑗 =
𝑐𝑜𝑣(𝑦𝑡, 𝑥𝑡)

𝑣𝑎𝑟(𝑥𝑡)
=

𝑐𝑜𝑣(𝑦𝑡,  𝑤𝑗𝑦𝑡+
(1−𝑤𝑗)

𝑁−1
∑ 𝑧𝑖,𝑡

𝑁−1
𝑖=1 )

𝑣𝑎𝑟(𝑤𝑗𝑦𝑡+
(1−𝑤𝑗)

𝑁−1
∑ 𝑧𝑖,𝑡

𝑁−1
𝑖=1 )

=
𝑤𝑗𝑣𝑎𝑟(𝑦𝑡)+

(1−𝑤𝑗)

𝑁−1 𝑐𝑜𝑣(𝑦𝑡,∑ 𝑧𝑖,𝑡
𝑁−1
𝑖=1 )

𝑤𝑗
2𝑣𝑎𝑟(𝑦𝑡)+(

(1−𝑤𝑗)

𝑁−1 )

2

𝑣𝑎𝑟(∑ 𝑧𝑖,𝑡
𝑁−1
𝑖=1 )+2𝑤𝑗

(1−𝑤𝑗)

𝑁−1 𝑐𝑜𝑣(𝑦𝑡,∑ 𝑧𝑖,𝑡
𝑁−1
𝑖=1 )

=
𝑤𝑗

𝑤𝑗
2+

(1−𝑤𝑗)
2

𝑁−1
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Since the exogenous Beta is zero, 𝛽̂𝑗 is also equivalent to value of endogenous 

reference bias (𝛽̂𝑗 − 𝛽𝑗) in this scenario. For our simulation we test 𝑤𝑗 = [0.01, 0.05]. 

Based on Equation 4.8, we expect to observe 𝛽̂𝑗~[1.0, 4.3] in the presence of endogenous 

reference bias. Table 4.1 compares the simulation results for the three estimation 

approaches. 

  𝛽̂𝑗
𝐸𝑅𝐵 𝛽̂𝑗

𝐼𝑉 𝛽̂𝑗
𝑆𝑢𝑏 

 𝑤𝑗 = 1%     
 Mean estimate 1.0004 -0.0011 0.0000 
 St dev. 0.3191 0.3219 0.3187 
 𝑤𝑗 = 5%     
 Mean estimate 4.3059 -0.0056 0.0000 
 St dev. 0.2634 0.3356 0.3187 

Table 4.1: Comparison of estimation approaches for Simulation 1 
Table 4.1 compares Beta estimation approaches in the presence of endogenous reference bias. Since our dependent 
variable in Simulation 1 is white noise, we know that absent endogenous reference bias an accurate estimator of Beta 
would produce 𝛽̂𝑗 = 0. The traditional estimation approach (𝛽̂𝑗

𝐸𝑅𝐵) is heavily impacted by the bias, producing estimates 
that differ greatly from 𝛽̂𝑗 = 0. Both the IV approach and substitution approach are designed to produce unbiased 
estimates in the presence of an endogenous regressor. We observe that both approaches yield Beta estimates close to 
the true value. Of the two approaches, the substitution method results in estimates closer to the true value and with a 
lower standard deviation. 
 

Table 4.1 shows strong bias in the Beta estimates of a traditional estimation 

approach which differ greatly from the true Beta value of zero. The extent of bias is 

consistent with the predictions of Equation 4.8. By contrast, the substitution approach 

delivers unbiased Beta estimates in the presence of endogenous reference bias with a high 

level of precision. Similarly, the IV approach produces Beta estimates close to the true 

value albeit with a slightly lower level of precision. The IV approach is impacted by 

choice of 𝑤𝑗 since the dependent variable of Equation 4.7 is likewise the dependent 

variable used in obtaining the fitted values of the instrumental variable. The substitution 

approach delivers the same estimate irrespective of the 𝑤𝑗 selected. 

Simulation 1 compared the performance of estimation approaches in a situation 

where our dependent variable and the regressor should be unrelated. We also want to 

understand whether one approach is superior to another in a situation where our regressor 

does have a causal impact on the dependent variable whilst also being impacted by 

endogenous reference bias. We explore this in Simulation 2. For this second simulation 

we model a CAPM-style relation within our data; asset returns are a linear function of the 

returns of an “unobservable” market portfolio. We perform 10,000 iterations of 



74 
 

Simulation 2 and record results. In each iteration we simulate one daily valuation series 

for an “unobservable” market portfolio using Geometric Brownian motion: 

𝑉𝑡 = 𝑉𝑡−1 ∗ 𝑒(𝜇−𝜎2

2
)𝑑+𝜎𝑊𝑡,     (4.9) 

where 𝑉𝑡 is the market value of the unobservable market factor at time 𝑡; 𝑉𝑡−1 is the prior 

period market value; 𝜇 is the annual percentage drift, set at 10% across simulations; 𝜎 is 

the annual standard deviation of returns, set at 0.15 across simulations; 𝑑 is a time 

increment, set to 1

252
; and 𝑊𝑡 is Brownian motion. The return (𝑟𝑀,𝑡) of the unobservable 

market factor in period 𝑡 is 𝑟𝑀,𝑡 = (𝑉𝑡−𝑉𝑡−1)

𝑉𝑡−1
. In each iteration, we simulate 100 daily asset 

returns series of 252 periods as per the equation: 

𝑅𝑗,𝑡 = 𝛽𝑗𝑅𝑀,𝑡 + 𝜖𝑗,𝑡,      (4.10) 

where 𝑟𝑗,𝑡 is the return of asset 𝑗 in period 𝑡; 𝑟𝑓,𝑡 is the return on a risk-free asset in period 

𝑡, set to zero for convenience; 𝛽𝑗 is the loading of asset 𝑗 on the unobservable market 

factor with 𝛽𝑗~𝑁(𝛽𝑐, 0.2); and 𝜖𝑗,𝑡~𝑁(0,0.001) is noise. An “observable” market 

portfolio (𝑅𝑀,𝑡
∗ ) is then constructed as an equal-weighted portfolio comprised of the 100 

simulated asset returns. Since the true market factor is unobservable, we perform a single-

factor model regression to obtain estimates of 𝛽𝑗 but use the observable 𝑅𝑀,𝑡
∗  as our 

independent variable in place of the unobservable market portfolio. This time-series 

regression model is shown in Equation 4.11 below:  

𝑅𝑗,𝑡 = 𝛼̂𝑗 + 𝛽̂𝑗𝑅𝑀,𝑡 + 𝜖𝑗̂,𝑡,     (4.11) 

It is intuitive for a CAPM-style simulation to centre simulated Betas around 1. 

However, an observation of Betas distributed around 1 is tautological. Whether Betas in 

relation to the unobservable market factor truly were or were not centred around 1, a 

traditional approach to estimation would estimate Betas cross-sectionally centred around 

1 due to endogeneity.44 As a result, Simulation 2 examines 𝛽𝑐 values of 0, 0.5, and 1. 

Results are presented in Table 4.2.  

 

 
 

44 If the reference portfolio is an equal-weighted portfolio then use of OLS results in a cross-sectional average Beta of 1 for 

constituents in the presences of endogenous reference bias. If the reference portfolio is a cap-weighted portfolio then a cap-
weighted average Beta of 1 will be observed in the presence of endogenous reference bias. Even if return series were white noise 
they would appear to follow the market in aggregate (Beta estimates distributed around 1) under a traditional Beta estimation 
approach despite being completely uninfluenced by the market portfolio in actuality (unbiased Beta estimates distributed around 
0). 
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True 

value 

 𝛽̂𝑗
𝐸𝑅𝐵 𝛽̂𝑗

𝐼𝑉 𝛽̂𝑗
𝑆𝑢𝑏 

 𝛽𝑐 = 0     
 Mean estimate 0.9919 -0.0092 -0.0078 
 St dev. 0.3604 0.3661 0.3623 
 𝛽𝑐 = 0.5     
 Mean estimate 1.0141 0.5041 0.5024 
 St dev. 0.4544 0.4585 0.4552 
  𝛽𝑐 = 1     
 Mean estimate 1.0076 0.9802 0.9804 
 St dev. 0.1984 0.1983 0.2002 

Table 4.2: Comparison of estimation approaches for Simulation 2 
Table 4.2 compares Beta estimation approaches in the presence of endogenous reference bias. A single-factor model 
regression is used: 𝑅𝑗,𝑡 = 𝛼̂𝑗 + 𝛽̂𝑗𝑅𝑀,𝑡 + 𝜖𝑗̂,𝑡. Since our dependent variable in Simulation 1 is white noise, we know 
that absent endogenous reference bias an accurate estimator of Beta would produce 𝛽̂𝑗 = 0. The traditional estimation 
approach (𝛽̂𝑗

𝐸𝑅𝐵) is heavily impacted by bias, producing estimates that differ greatly from 𝛽̂𝑗 = 0. Both the IV approach 
and substitution approach are designed to produce unbiased estimates in the presence of an endogenous regressor. We 
observe that both approaches yield beta estimates close to the true value. Of the two approaches, the substitution method 
results in estimates closer to the true value and with a lower standard deviation. 
 

Simulations 1 and 2 both indicate that a substitution approach is capable of 

generating marginally more precise Beta estimates than an IV approach in the presence 

of endogenous reference bias. The substitution approach also has the advantage of being 

able to deliver unbiased Beta estimates without the need to run multiple regressions.45 In 

the following section, we proceed to analyse the extent of historical Beta estimation bias 

for large US stocks.  

 

4.4 Historical beta estimation bias in the US stock market 

 

For endogenous reference bias to warrant the concern of finance practitioners and 

researchers it should be a sufficiently severe problem in empirical data. Market 

capitalisation is a proxy for the aggregate value that investors attribute to an asset. Since 

higher market capitalisations result in higher weightings in a cap-weighted benchmark, 

the most valued assets in the world are likely to be the most severely impacted by 

endogenous reference bias. However, it is not ex ante certain that the extent of bias will 

be severe. This is evident in Equation 4.3 which demonstrates that in addition to portfolio 

 
 

45 𝑅𝑀,𝑡 can easily be converted to 𝑅̃𝑀,𝑡 and used in its place; 𝑅̃𝑀,𝑡 =
𝑅𝑀,𝑡−𝑤𝑗𝑅𝑗,𝑡

1−𝑤𝑗
.  
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weight, a stock’s variance in relation to market variance and a stock’s exogenous Beta 

have a significant influence on the direction and severity of Beta estimation bias. 

In this section, we obtain Beta estimates for US stocks using a traditional (biased) 

Beta estimation approach (see Equation 4.1) as well as the substitution approach 

introduced in the preceding section (see Equation 4.6) which is designed to be unbiased 

in the presence of endogenous reference bias. Our analysis relies on daily US equities 

holding period return data. The data are obtained from the Center for Research in Security 

Prices (CRSP) and covers the sample period from January 1, 1991 to December 31, 2020. 

Only ordinary common shares listed on the NYSE, NASDAQ, and AMEX are included.46 

We omit all microcaps, defined as stocks smaller than the 20th percentile of the market 

equity of NYSE stocks at the beginning of the first trading day of a calendar year, from 

our sample. In the calculation of holding period returns we assume all dividends received 

are reinvested in the underlying stock on the date that the dividends are paid out. Unless 

otherwise specified, the “market factor” (𝑅𝑀,𝑡) from Equation 4.1 is constructed as the 

excess holding-period return of a market-capitalisation-weighted index formed on the 

first trading day of January and held one year. The daily risk-free rate used is the monthly 

rate obtained from Kenneth French’s website and converted into a daily format. For the 

substitution approach of Equation 4.6, the exogenous market factor 𝑅̃𝑀,𝑡 is constructed 

in the same manner as the market factor of Equation 4.1 but without inclusion of the asset 

that constitutes the dependent variable: 

𝑅̃𝑀,𝑡 =
𝑅𝑀,𝑡−𝑤𝑗𝑅𝑗,𝑡

1−𝑤𝑗
.      (4.12) 

Our first objective is to quantify the typical direction and magnitude of 

endogenous reference bias for the US stock market. We compare two scenarios: one 

where our sample and market proxy comprises the 500 largest US stocks in each year 

(representative of the S&P 500) and another where our sample and market proxy 

comprises the 30 largest US stocks in each year (analogous to the Dow Jones Industrial 

Index). Comparing both scenarios facilitates bias assessment in our empirical data. Table 

4.3 below reports traditional (biased) Beta estimates (𝛽̂𝑗) vs Beta estimates adjusted for 

endogenous reference bias (𝛽𝑗). The values presented are the cap-weighted averages in 

 
 

46 CRSP filters: share code (shrcd) is equal to 10 or 11 (i.e., ordinary common shares), exchange code (exchd) is equal to 1, 2, or 3 

(i.e. NYSE, AMEX, NASDAQ). 
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each period.  ∆̅𝜷 Represents the cap-weighted average absolute difference between the 

two estimates.  

 
                     500 Largest Stocks                30 Largest Stocks 

Period   𝜷̂𝒋 𝜷̃𝒋 ∆̅𝜷  𝜷̂𝒋 𝜷̃𝒋 ∆̅𝜷   
1991 - 1995   0.99 0.96 0.03  0.99 0.85 0.14 
1996 - 2000   0.99 0.97 0.03  1.00 0.92 0.08 

2001 - 2005   0.99 0.97 0.02  1.00 0.92 0.08 

2006 - 2010   1.00 0.99 0.01  1.00 0.95 0.06 

2011 - 2015   1.00 0.98 0.02  1.00 0.92 0.08 
2016 - 2020   0.99 0.98 0.02  1.00 0.93 0.07 

All periods   1.00 0.98 0.02  1.00 0.91 0.08 

Table 4.3: Typical endogenous reference bias for varying US benchmarks (1991-
2020) 
Table 4.3 shows the direction and magnitude of endogenous reference bias for the US market over the 30-year period.  
𝛽̂𝑗 represents the biased OLS estimates of Beta. 𝛽̃𝑗 represents Beta estimates adjusted for endogenous reference bias. 
∆̅𝜷 represents the cap-weighted average absolute difference between the two estimates. The table shows that for the 
larger market proxy of 500 stocks the magnitude of endogenous reference bias is small. By contrast, the bias is far 
more significant when using a smaller market proxy. 
 

Table 4.3 shows that the magnitude of endogenous reference bias for the larger 

market proxy of 500 stocks is economically insignificant for most securities; with a cap-

weighted average absolute bias of security OLS Beta estimates of 0.0205. However, the 

magnitude of bias was severe for some securities. Appendix C.1 lists the 5 stocks in each 

year with the most severely biased Betas across our sample period. The most biased stock 

in each year had an average absolute Beta estimation bias of 0.0941. Using a traditional 

Beta estimation approach would result in Jensen’s Alpha for these stocks being, on 

average, misstated by an absolute value of 1.55%. By contrast, the bias to Beta estimates 

when using a smaller, more concentrated, market proxy is noticeably more severe across 

the sample with a cap-weighted average absolute bias of 0.0850.  

Table 4.5 shows the corresponding distortion to Alpha estimates of individual 

securities under a single-factor model regression. Alpha estimates when using a market 

proxy of the 500 largest stocks suffer a cap-weighted average distortion of around 0.42% 

across the 30-year sample period. This Alpha distortion more than triples when moving 

to the smaller market index of 30 stocks. 
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                     500 Largest Stocks                30 Largest Stocks 

Period   𝜶̂𝒋 𝜶̃𝒋 ∆̅𝜶  𝜶̂𝒋 𝜶̃𝒋 ∆̅𝜶   
1991 - 1995   0.86% 1.36% 0.51%  0.61% 2.56% 2.05% 
1996 - 2000   0.58% 0.93% 0.70%  1.18% 2.38% 2.63% 

2001 - 2005   2.10% 2.07% 0.31%  1.63% 1.42% 1.05% 

2006 - 2010   0.92% 1.06% 0.25%  0.09% 0.74% 1.21% 

2011 - 2015   -0.03% 0.22% 0.28%  0.12% 1.39% 1.38% 
2016 - 2020   0.40% 0.84% 0.47%   0.26% 2.04% 1.86% 

All periods   0.80% 1.08% 0.42%   0.65% 1.75% 1.70% 

Table 4.4: Impact of endogenous reference bias on Alpha estimation for varying 
US benchmarks (1991-2020) 
Table 4.4 shows the direction and magnitude of endogenous reference bias for the US market over the 30-year period.  
𝛼̂𝑗  represents the biased OLS estimates of Jensen’s Alpha. 𝛼̃𝑗  represents estimates of Jensen’s Alpha adjusted for 
endogenous reference bias. ∆̅𝜶 represents the cap-weighted average absolute difference between the two estimates. 
The table shows that for the larger market proxy of 500 stocks the magnitude of endogenous reference bias is small. 
By contrast, the bias is far larger when using a smaller market proxy. 

 

To understand how the interaction between exogenous Betas and size affects 

endogenous reference bias we stratify our top 500 sample into percentiles. In each year, 

we sort Betas by size decile then split each decile into 10 groups based on their exogenous 

beta. Table 4.5 shows the mean absolute percentage error (MAPE) in Beta estimates: 

MAPE = 100

𝑁
∑ |

𝛽̂𝑗−𝛽̃𝑗

𝛽̃𝑗
|. Consistent with the analytical results presented in Figure 4.2, 

stocks with higher market capitalisations and lower betas are more susceptible to bias.  
 

 Low 𝛽̃𝑗 2 3 4 5 6 7 8 9 High 𝛽̃𝑗 

Small MC 0.51 0.22 0.20 0.18 0.19 0.20 0.21 0.20 0.21 0.21 

2 0.50 0.27 0.23 0.21 0.19 0.14 0.16 0.18 0.19 0.20 

3 0.69 0.31 0.26 0.21 0.22 0.21 0.21 0.20 0.25 0.24 

4 1.48 0.37 0.32 0.24 0.22 0.28 0.27 0.24 0.27 0.28 

5 1.37 0.41 0.35 0.33 0.28 0.31 0.27 0.27 0.31 0.32 

6 1.54 0.59 0.42 0.42 0.35 0.34 0.35 0.32 0.35 0.38 

7 2.13 0.73 0.56 0.48 0.42 0.41 0.38 0.38 0.45 0.49 

8 1.33 0.83 0.66 0.68 0.57 0.56 0.49 0.47 0.57 0.61 

9 6.01 1.26 1.12 0.99 0.82 0.67 0.83 0.76 0.80 0.90 

Large MC 12.74 4.50 3.71 3.03 2.45 1.96 2.11 2.23 2.04 1.90 

Table 4.5: MAPE of Beta estimates stratified by size and 𝜷̃𝒋 (1991-2020) 
Table 4.5 shows the mean absolute percentage error in Beta estimates for stocks stratified by size (market capitalisation) 
then exogenous Beta. Traditional OLS Beta estimates of stocks with larger market capitalisations, and lower exogenous 
Betas, are subjected to progressively more severe upwards bias.  
 

Similarly, stocks with higher market capitalisations and higher variance multiples 

are more susceptible to bias as shown in Table 4.6.  
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 Low 𝑀𝑗 2 3 4 5 6 7 8 9 High 𝑀𝑗 

Small MC 0.07 0.08 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.17 

2 0.06 0.08 0.08 0.08 0.09 0.11 0.11 0.11 0.15 0.16 

3 0.08 0.09 0.10 0.09 0.10 0.14 0.14 0.17 0.18 0.22 

4 0.09 0.12 0.11 0.16 0.18 0.22 0.28 0.29 0.34 0.52 

5 0.14 0.14 0.11 0.19 0.18 0.21 0.25 0.31 0.33 0.44 

6 0.12 0.14 0.19 0.19 0.26 0.23 0.27 0.35 0.41 0.53 

7 0.18 0.19 0.19 0.26 0.30 0.38 0.38 0.49 0.53 0.72 

8 0.20 0.27 0.27 0.28 0.26 0.29 0.38 0.31 0.37 0.42 

9 0.28 0.39 0.41 0.58 0.64 0.74 0.95 1.16 1.34 1.98 

Large MC 0.59 0.75 0.90 1.01 1.29 1.63 1.88 2.42 2.90 4.82 

Table 4.6: MAPE of Beta estimates stratified by size and variance (1991-2020) 
Table 4.6 shows the mean absolute percentage error in Beta estimates for stocks stratified by size (market capitalisation) 
then variance multiple (the variance of a stock’s daily returns relative to the daily returns of a market-capitalisation-
weighted index). Traditional OLS Beta estimates of stocks with larger market capitalisations, and higher variance 
multiples, are subjected to progressively more severe upwards bias.  

 

Equation 4.3 detailed a closed form solution for the value of 𝛽̂𝑗, demonstrating 

that it was a biased estimator of a security’s exogenous Beta. Preceding papers have 

considered the weight of a security in an index as the lone determinant of the severity of 

endogenous reference bias. By contrast, we derived evidence that a security’s variance 

multiple and exogenous Beta are additional factors that significantly impact both the 

magnitude and direction of endogenous reference bias. This can be further demonstrated 

by comparing the performance of two simple linear fixed effects models.  

Although Equation 4.3 is non-linear, Figure 4.2 suggests that the magnitude of 

endogenous reference bias, (𝛽̂𝑗,𝑡 − 𝛽𝑗,𝑡), monotonically decreases as 𝛽𝑗,𝑡 (exogenous 

Beta) increases. Figure 4.3 suggests that (𝛽̂𝑗,𝑡 − 𝛽𝑗,𝑡) monotonically increases as 𝜆𝑗,𝑡 

(variance multiple) increases. As a consequence, simple linear models may be able to 

provide reasonable approximations of endogenous reference bias which would provide 

insight as to whether the additional drivers have a significant effect on the direction and 

magnitude of bias. We compare the historical performance of three fixed effects (FE) 

models. A fixed-effects model was identified as preferable to a random effects model 

based on the results of a Hausman-test for each data sample. Standard errors in each fixed 

effects model are clustered based on entity and time. 

FE Model 1, presented in Equation 4.13, is a baseline model which considers only 

constituent weight in the reference portfolio as an influence on the direction and 

magnitude of endogenous reference bias: 

∆𝜷,𝒋,𝒕= 𝜙̂0 + 𝜙̂𝑊𝑤𝑗,𝑡 + 𝛾𝑡 + 𝛿̂𝑗 + 𝜀𝑗̂,𝑡  ,      (4.13) 
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where ∆𝜷,𝒋,𝒕 is the endogenous reference bias (𝛽̂𝑗,𝑡 − 𝛽𝑗,𝑡) for a Beta estimate of asset 𝑗 in 

period 𝑡; 𝜙̂0 is a model constant; 𝜙̂𝑊 is the estimated coefficients on asset 𝑗’s % weight 

(𝑤𝑗,𝑡) in the market proxy in period 𝑡, 𝛾𝑡 accounts for time fixed-effects, 𝛿𝑗 accounts for 

entity fixed-effects, and 𝜀𝑗̂,𝑡 are the model residuals. We introduce a second model, FE 

Model 2, which also considers the effect of an asset’s variance multiple and exogenous 

beta as determinants of endogenous reference bias: 

∆𝜷,𝒋,𝒕= 𝜙̂0 + 𝜙̂𝑊𝑀(𝑤𝑗,𝑡 ∗ 𝜆𝑗,𝑡) + 𝜙̂𝑊𝐵(𝑤𝑗,𝑡 ∗ 𝛽𝑗,𝑡) + 𝛾𝑡 + 𝛿𝑗 + 𝜀𝑗̂,𝑡  ,   (4.14) 

where 𝜙̂𝑊𝑀 and 𝜙̂𝑊𝐵 represent coefficients on interaction terms of asset 𝑗’s variance 

multiple with weight, and exogenous Beta with weight in period 𝑡, respectively; whilst 

the remaining parameters are the same as the preceding model. We include a final model, 

FE Model 3, which has the same parameters as FE Model 2 as well as 𝜙̂𝑊𝑤𝑗,𝑡 from FE 

Model 1. The results of each fixed-effects model across the 30-year sample are presented 

in Table 4.7 below. 

 𝐅𝐄 𝐌𝐨𝐝𝐞𝐥 𝟏 𝐅𝐄 𝐌𝐨𝐝𝐞𝐥 𝟐 𝐅𝐄 𝐌𝐨𝐝𝐞𝐥 𝟑 

𝜙̂0 0.0038*** 0.0017*** 0.0003 

𝜙̂𝑊  0.0138***  0.0188*** 

𝜙̂𝑊𝑀  0.0082*** 0.0085*** 

𝜙̂𝑊𝐵   -0.0142*** -0.0272*** 

Firm Fixed Effects Yes Yes Yes 

Time Fixed Effects Yes Yes Yes 

Model R2 0.1068 0.8674 0.9172 

F-test: p-value 0.0000 0.0000 0.0000 

Table 4.7: Drivers of endogenous reference bias (1991-2020) 
Table 4.7 shows the results of the three fixed-effects models across the 1991-2020 sample period. *,**,*** indicate 
statistical significance at the 90%, 95%, and 99% confidence level, respectively. The table shows that whilst weight is 
an important driver of endogenous reference bias, alone it only accounts for a small proportion of the bias. By contrast, 
a model which includes the additional drivers of endogenous reference bias introduced in this chapter has much greater 
explanatory power. The interaction terms of variance multiple and exogenous Beta are both statistically significant 
determinants of endogenous reference bias at the 99% confidence level.   
 

FE Model 1 shows that whilst constituent weight is an important determinant of 

endogenous reference bias it only accounts for a small portion of the variation (~10.7%). 

FE Model 2 shows an alternate specification which includes interaction terms of weight 

with variance multiple and exogenous Betas accounts for significantly more variation 

(86.7%). Stocks with a higher variance multiple exhibit more severe upwards biased 

betas. Stocks with lower exogenous betas exhibit upwards biased betas. Finally, FE 
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Model 3 shows that inclusion of all 3 terms can account for nearly all of the variation in 

endogenous reference bias (91.7%). 

Section 4.4 explored historical endogenous reference bias in individual US 

equities. The magnitude of bias was, on average, small for a large, diversified market 

proxy like the S&P 500. However, certain characteristics were shown to render stocks 

significantly more vulnerable to severe endogeneity. Generally, worse endogeneity 

occurs at higher weight levels. As a result, it’s important to consider the effect of 

endogenous reference bias when we move away from individual assets and into a 

portfolio context. Portfolios are likely to have a much higher weight in a constituent index 

than individual stocks. We explore the consequence of endogenous reference bias within 

a portfolio context in the following section. 

 

4.5 Impact of bias on portfolios 

 

4.5.1 Portfolio formation based on stock characteristics 

Constituent weight is a primary driver of the magnitude of endogenous reference 

bias. In the preceding section, we observed that assets which are sizable constituents of 

the market proxy naturally tend to exhibit greater bias. Despite having much greater 

weight than individual assets in any market constituent, portfolio Betas do not necessarily 

suffer from endogenous reference bias. The primary reason is that the variance of a large, 

diversified portfolio ‘𝑃’ will very quickly approach a variance multiple close to 1. With 

reference to Equation 4.3 from earlier, in the limit, as 𝜆 approaches 1, we have: 

    𝛽̂𝑃 ≈
𝑤𝑃+(1−𝑤𝑃)𝛽̃𝑃

𝑤𝑃
2+(1−𝑤𝑃)2+2𝑤𝑃(1−𝑤𝑃)𝛽̃𝑃

.       (4.15) 

Typically, a large, diversified portfolio that was selected randomly will also have 

an exogenous Beta close to 1. When this is the case, endogenous reference bias becomes 

negligible irrespective of 𝑤𝑗: 

𝛽̂𝑃 ≈
𝑤𝑃+(1−𝑤𝑃)

𝑤𝑃
2+(1−𝑤𝑃)2+2𝑤𝑃(1−𝑤𝑃)

=
1

𝑤𝑃+(1−𝑤𝑃)
= 1.     (4.16) 

An exception occurs when the composition of a portfolio is skewed towards 

constituents based on their exogenous Betas. We explore the resultant bias via simulation. 

We adopt the same simulation approach and settings as used in Simulation 2 in Section 

3.2. However, we now construct exogenous Beta-grouped decile portfolios. We compare 
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traditional Beta estimates and exogenous Beta estimates for each Beta decile and plot the 

security market line for each estimation approach together in Figure 4.4. 
 

 
Figure 4.4: Security market line based on Beta-grouped decile portfolios. 
Figure 4.4 shows that portfolios grouped by Beta deciles are subject to endogenous reference bias. The severity of bias 
worsens for more extreme Beta deciles. The use of an endogenous market proxy results in an artificially flat security 
market line since endogenous betas exhibit a wider dispersion. 
 

Figure 4.4 shows that portfolios grouped by Beta deciles are subject to 

endogenous reference bias. The severity of this bias worsens as betas deviate further from 

zero. To understand why this is the case, consider a decomposition of OLS betas into two 

components: correlation (𝜌𝑃𝑀) and relative volatility (𝜎𝑃

𝜎𝑀
) as per Equation 4.17 below: 

𝛽̂𝑃 = 𝜌𝑃𝑀 ∗
𝜎𝑃

𝜎𝑀
.        (4.17) 

When we transition to use of an exogenous reference as our market portfolio, then 

correlation is highly likely to decrease since we are no longer regressing a portfolio 

partially upon itself. Similarly, all else equal, the standard deviation of an exogenous 

reference portfolio is likely to be higher than an endogenous reference portfolio since it 

is comprised of less securities. Hence both components facilitate a progressively wider 

dispersion of Beta estimates when using an endogenous market proxy as we move away 

from exogenous betas of zero. Consequently, this bias will consistently result in an 

excessively flat security market line when plotting empirical data where endogenous 

estimates of portfolio Betas have been used. 

An alternate way to understand the impact of endogenous reference bias is in the 

context of performance evaluation. Since high Beta portfolios face the most severe 
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upwards bias to Beta estimates, they will be excessively punished in factor models such 

as the CAPM. An investor using Jensen’s Alpha to evaluate their performance would 

over penalise performance by (𝛽̂𝑃 − 𝛽𝑃) ∗ 1

𝑇
∑ 𝑅𝑀,𝑡

𝑇
𝑡=1 ; which is likely to be extremely 

high for high-Beta portfolios, rendering the false appearance of persistent 

underperformance.47 It is unsurprising that Frazzini and Pedersen (2014) find the 

consistent underperformance of high-Beta assets across a variety of asset classes when 

using a traditional Beta estimation approach.  
 

4.5.2 Hedging against endogenous reference bias 

One of the most influential models in finance history, the CAPM (Sharpe, 1964; 

Treynor, 1962; Lintner, 1965; Mossin, 1966), asserts that security returns should be a 

linear function of their market risk exposure (𝐸[𝑅𝑖,𝑡] = 𝛽𝑖𝐸[𝑅𝑀,𝑡]). The support for this 

assertion in historical data appears weak; the CAPM’s empirical performance is “poor 

enough to invalidate the way it is used in applications” (Fama and French, 2004, p. 25). 

If the CAPM holds empirically, then there should not be a noticeable difference in the 

risk-adjusted returns (𝛼𝑖) of low and high Beta securities. However, investment strategies 

which overweight low Beta securities have historically tended to generate positive Alphas 

across a variety of asset classes (e.g. see Frazzini and Pedersen, 2014). The perceived 

underperformance of high Beta securities has also supported the development of literature 

on risk-parity portfolios which seek to deliver superior risk-adjusted returns by weighting 

assets by the inverse of their risk (e.g. 1

𝛽𝑖
) and then leveraging portfolio returns up or down 

to achieve pre-determined return targets. Why might such strategies appear to perform 

well? If these strategies work, why haven’t they been arbitraged out of the market? 

It’s possible there is some underlying economic rationale for the perceived 

outperformance of low Beta securities, in which case weighting assets inversely to their 

betas (e.g. risk-parity strategies) would deliver genuinely superior risk-adjusted returns. 

However, it's certain that if there was no difference between the risk-adjusted returns of 

low and high Beta securities, we would still commonly observe the outperformance of 

low Beta securities in the regression results of simple factor models such as the CAPM. 

 
 

47 Jensen’s alpha: 𝛼̂𝑗 = 1

𝑇
∑ 𝑅𝑗,𝑡

𝑇
𝑡=1 − 𝛽̂𝑗 ∗ 1

𝑇
∑ 𝑅𝑀,𝑡

𝑇
𝑡=1 . Excess risk-adjustment penalty due to beta bias: −(𝛽̂𝑗 − 𝛽̃𝑗) ∗ 1

𝑇
∑ 𝑅𝑀,𝑡

𝑇
𝑡=1 .  
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Figure 4.5 below demonstrates this issue by comparing two bookends for the distribution 

of security returns relative to the CAPM. 
 

 
Figure 4.5: No risk premium misspecification vs. extreme risk premium 
misspecification 
Figure 4.5 presents an illustrative contrast of two scenarios; Scenario 1 (left panel) in which the CAPM accurately 
describes an underlying data set against Scenario 2 (right panel) in which there is no relation between security returns 
and systematic risk. Each blue dot represents an observation. The black dotted line on each chart represents the fitted 
regression line from a cross-sectional regression (𝑅̅𝑖 = 𝑐̂ + 𝜆̂𝑀𝛽̂𝑀,𝑖). The dotted red line represents the penalty imposed 
on Jensen’s Alpha (𝛽̂𝑖 ∗ 𝑅̅𝑀). When the CAPM accurately reflects the underlying data (Scenario 1), the cross-sectional 
risk-return relation is equivalent to the penalty imposed by the CAPM and estimates of Jensen’s Alpha are unbiased. 
By contrast, when there is no relation between security returns and market risk (Scenario 2), the imposed CAPM 
penalty is spurious. In data which deviates from the CAPM, Jensen’s Alpha is progressively biased upwards 
(downwards) for lower (higher) beta securities or portfolios when 𝑅̅𝑀 is positive, and the opposite is true when 𝑅̅𝑀 is 
negative.  

 

Figure 4.5 (left panel) shows an extreme situation in which all security returns, on 

average, follow the CAPM. If historical security data was accurately described by the 

CAPM then there would be no statistically significant difference between the Alpha 

estimates of high and low beta securities. It would be impossible for inverse-beta-

weighted (e.g. risk-parity) strategies to appear to consistently outperform. However, we 

know historical security returns tend to substantially deviate from the precise distribution 

specified by the CAPM. By contrast, Figure 4.5 (right panel) shows an opposing extreme 

where security returns are independent of the market risk factor. In this extreme, all Beta 

estimates are completely spurious since market risk exposure has no bearing on returns. 

However, the “risk-adjusted” returns of high Beta securities would appear much lower 

since they receive much heavier (entirely spurious) return penalties; the imposed CAPM 

penalty remains the same irrespective of the cross-sectional relation present in data. 

The key takeaway is that if the CAPM poorly explains historical data then factor 

model regression don’t estimate risk-adjusted returns, rather they apply a spurious 

penalty to asset returns. This spurious penalty is more severe for high Beta securities. 
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Low Beta securities will not genuinely deliver superior risk-adjusted returns, they simply 

systematically benefit from a biased performance evaluation framework. 

It is highly probable that any historical data we examine will deviate, at least 

partially, from the CAPM. Consequently, traditional approaches to Beta estimation will 

be heavily biased. Therefore, it is desirable to identify Beta estimators that are more 

robust to data samples which deviate from the CAPM. If the exogenous Beta estimation 

approach presented in this chapter provides more meaningful estimates of a stock’s co-

movement with risk factors in noisy data, then portfolios formed on exogenous Betas will 

appear to generate significantly greater Alphas than those formed on traditional 

(endogenous) OLS Beta estimates. We can test this assertion for our historical 30-year 

sample of US stock data by forming an endogenous reference bias “hedging” portfolio. 

Appendix C.4 discusses the rationale as to why a hedging portfolio demonstrates that 

exogenous Beta estimates are more resilient to model misspecification. 

We start by forming two distinct Beta-weighted portfolios whereby portfolio 

weights are based on a security’s Beta estimate divided by the sum of all security Beta 

estimates (such that weights sum to 1): 

𝑤𝑖 =
𝛽𝑖

∑ 𝛽𝑖
.         (4.18) 

Here, 𝑤𝑖 represents the weight of the respective Beta-weighted portfolio towards a 

security. The key difference between the two portfolios constructed is that we calculate 

the weights for one portfolio, 𝑤𝑖
𝑇𝑟𝑎𝑑, based on traditional OLS Beta estimates (𝛽̂𝑖) whilst 

for the other portfolio, weights, 𝑤𝑖
𝐸𝑥𝑜𝑔, are calculated using the exogenous Beta (𝛽𝑖)  

estimation approach presented in this chapter. We then construct a simple hedging 

portfolio which takes a long position in the portfolio constructed using an exogenous 

estimation approach and a short position in the portfolio constructed using a traditional 

estimation approach. The hedging portfolio weights, 𝑤𝑖
𝐻𝑒𝑑𝑔𝑒, sum to zero. This hedging 

portfolio can be interpreted as hedging against endogenous reference bias. The hedging 

portfolio is short securities which have little co-movement with the returns of the market 

proxy yet abnormally high traditional Beta estimates due to severe endogeneity. 

Conversely, the portfolio is long in securities where traditional and exogenous Beta 

estimates are similar. In data which perfectly conformed to the CAPM it would be 

impossible for either constituent portfolio to consistently outperform the other. However, 
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as examined data progressively deviates from the distribution expected by the CAPM, 

the hedging portfolios should generate progressively larger Alphas. 

Having formed our hedging portfolio, we evaluate its historical performance 

when regressed against a single-factor model (Equation 4.11) and Fama-French 3-Factor 

Model (presented below):  

𝑅𝑗,𝑡 = 𝛼̂𝑗 + 𝛽̂𝑗,𝑀𝑘𝑡𝑅𝑀,𝑡 + 𝛽̂𝑗,𝑆𝑀𝐵𝑅𝑆𝑀𝐵,𝑡 + 𝛽̂𝑗,𝐻𝑀𝐿𝑅𝐻𝑀𝐿,𝑡 + 𝜖𝑗̂,𝑡,  (4.19) 

where 𝑅𝑗,𝑡 is the excess return of the test asset at time 𝑡; 𝑅𝑗,𝑀𝑘𝑡, 𝑅𝑗,𝑆𝑀𝐵, and 𝑅𝑗,𝐻𝑀𝐿 are 

the excess returns of the market portfolio, SMB portfolio, and HML portfolio, 

respectively; 𝛽̂𝑗,𝑀𝑘𝑡, 𝛽̂𝑗,𝑆𝑀𝐵, and 𝛽̂𝑗,𝐻𝑀𝐿 are the risk-loadings of the test asset upon these 

respective factor portfolios; 𝛼̂𝑗 is the estimated risk-adjusted return of the test asset, and 

𝜖𝑗̂,𝑡 are estimated residuals of the test asset at time 𝑡. We also test whether using an equal-

weighted or cap-weighted market proxy for the market portfolio influences parameter 

estimates; Mkt𝐸𝑊 indicates use of an equal-weighted proxy whilst Mkt𝐶𝑊 indicates use of 

cap-weighted proxy in Equation 4.19. The results of each factor regression model across 

the 30-year sample are presented in Table 4.8 below.  

 

 𝐒𝐅𝐌 (Mkt𝐸𝑊) 𝐒𝐅𝐌 (Mkt𝐶𝑊) 𝐅𝐅𝟑𝐅 (Mkt𝐸𝑊) 𝐅𝐅𝟑𝐅 (Mkt𝐶𝑊) 

𝛼̂𝐻𝑒𝑑𝑔𝑒  (%) 4.30* 
(0.0691) 

4.23* 
(0.0737) 

4.28* 
(0.0699) 

4.23* 
(0.0721) 

     

𝛽̂𝑀𝑘𝑡  
-0.0793*** 

(0.0000) 
-0.0806*** 

(0.0000) 
-0.0812*** 

(0.0000) 
-0.0811*** 

(0.0000) 

     

𝛽̂𝑆𝑀𝐵    0.0159 
(0.2845) 

-0.0004 
(0.9803) 

     

𝛽̂𝐻𝑀𝐿    -0.0056 
(0.7720) 

-0.0152 
(0.4366) 

     

Model R2 0.0140 0.0122 0.0141 0.0123 

F-test: p-value 0.0000 0.0000 0.0000 0.0000 

Table 4.8: Alpha of portfolio hedged against endogenous reference bias (1991-2020) 
Table 4.8 shows the performance of a portfolio hedged against endogenous reference bias across the 1991-2020 sample 
period. *,**,*** indicate statistical significance at the 90%, 95%, and 99% confidence level, respectively. These time-
series regression coefficients include p-values in parentheses under each estimate. SFM indicates a single-factor model 
regression where the excess returns of the hedging portfolio are regressed against the excess returns of the market 
proxy. FF3F indicates a Fama-French 3-Factor Model regression. Mkt𝐸𝑊 indicates that the chosen market proxy was 
an equal-weighted portfolio, whilst Mkt𝐶𝑊 indicates the market proxy was a cap-weighted portfolio. 𝛼̂𝐻𝑒𝑑𝑔𝑒  represents 
the annual % return of an endogenous reference bias hedging portfolio that can not be attributed to the risk factors 
included in each regression. The 𝛽̂ are respective factor loadings estimated under a traditional OLS approach (i.e. 
subject to endogeneity) The table shows that a simple hedging portfolio against endogenous reference bias generates 
an economically large annual alpha (greater than 4.20%) in each regression. These Alpha estimates are statistically 
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significant at the 90% confidence level in each regression. The interpretation is that exogenous estimates of security 
betas provide substantially more accurate representation of a security’s co-movement with a market proxy than 
traditional OLS estimates which are confounded by endogeneity. Consequently, they will appear to produce Alpha in 
a performance evaluation setting where returns are penalised by endogenous betas (e.g. 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖𝑅̅𝑀𝑘𝑡 for a single-
factor model). 
 

Table 4.8 shows that a simple hedging portfolio against endogenous reference 

bias generates an economically large annual Alpha (greater than 4.20%) in each 

regression. These Alpha estimates are statistically significant at the 90% confidence level 

in each regression. The interpretation is that exogenous estimates of security Betas 

provide a substantially more accurate representation of a security’s co-movement with a 

market proxy than traditional OLS estimates which are confounded by endogeneity. 

Consequently, they will appear to produce Alpha in a performance evaluation setting 

where returns are penalised by traditional (endogenous) OLS Betas (e.g. 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖𝑅̅𝑀𝑘𝑡 

for a single-factor model).  

From Table 4.5 presented earlier, small cap stocks had the lowest mean absolute 

percentage error in Beta estimates so it was plausible that a portfolio formed on 

exogenous Beta would overweight small cap stocks relative to a portfolio formed on 

traditional Beta estimates. This does not appear to be the source of Alpha in the hedging 

portfolio. In Table 4.8 it is evident that there is no economic nor statistically significant 

influence of the small cap premium upon the outperformance of the hedging portfolio. 

Ex ante, we know it is likely that there are a large number of generic “hedging” 

portfolios that are likely produce at least some positive Alpha when taking a short position 

in a high-Beta portfolio. Whilst the mechanism as to why is overlooked in finance, papers 

such as (Frazzini and Pedersen, 2014) have certainly exploited this measurement error to 

produce exceptional empirical results. A randomly formed portfolio should tend to 

generate an Alpha close to zero. Therefore, had our “hedging portfolio” taken a long 

position in a randomly formed portfolio (i.e. if our exogenous measure of Beta produced 

random Beta values) and a short position in a portfolio formed on traditional Beta 

estimates it would still be anticipated to produce a small positive Alpha (with the entirety 

of Alpha driven by the short position). Consequently, it is important to demonstrate that 

both the long and short positions of the hedging portfolio contribute towards Alpha in 

order to demonstrate that exogenous Betas are meaningful estimates of the true relation 

between security returns and the chosen market proxy. In Table 4.9 below we decompose 

the performance of the hedging portfolio into its two constituent portfolios.  
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 𝐅𝐨𝐫𝐦𝐞𝐝 𝐨𝐧 𝛽̂𝑖 𝐅𝐨𝐫𝐦𝐞𝐝 𝐨𝐧 𝛽̃𝑖 𝐇𝐞𝐝𝐠𝐢𝐧𝐠 𝐏𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨 

Regression metrics    

𝛼̂𝑖 (%) 
-0.39 

(0.8528) 
3.84 

(0.2106) 
4.23* 

(0.0737) 

    

𝛽̂𝑀𝑘𝑡  
1.3097*** 
(0.0000) 

1.2291*** 
(0.0000) 

-0.0806*** 
(0.0000) 

    

Model R2 0.8061 0.6303 0.0122 

F-test: p-value 0.0000 0.0000 0.0000 
    

Additional metrics    

    
Geometric return (% annual) 12.53% 15.96% 2.60% 

    
Standard deviation (% annual) 26.01% 27.61% 13.02% 

    
Sharpe Ratio 0.48 0.58 0.20 

    

Table 4.9: Performance comparison of hedging portfolio constituents (1991-2020) 
Table 4.9 shows the performance of a portfolio hedged against endogenous reference bias as well as its’ two constituent 
portfolios across the 1991-2020 sample period. *,**,*** indicate statistical significance at the 90%, 95%, and 99% 
confidence level, respectively. Regression coefficients include p-values in parentheses under each estimate. Each 
regression is based on a single-factor model where the excess returns of the test portfolio are regressed against the 
excess returns of a cap-weighted market proxy. 𝛼̂𝑖  represents the annual % return of an endogenous reference bias 
hedging portfolio that can not be attributed to the risk factors included in each regression. 𝛽̂𝑀𝑘𝑡 is the estimated market 
risk exposure of the respective test portfolios under a traditional OLS approach (i.e. subject to endogeneity) The table 
shows that economically large alpha of the endogenous reference bias hedging portfolio is primarily driven by the long 
position in a Beta-weighted portfolio formed on exogenous Beta estimates rather than a short position in a Beta-
weighted portfolio formed on traditional (endogenous) Beta estimates. 

 

Consistent with expectations, we can observe that a long position in a Beta-

weighted portfolio using traditional Beta estimation would deliver a negative Alpha when 

regressed against a single-factor model, albeit economically small and statistically 

insignificant. A short position in this Beta-weighted portfolio would enhance the alpha 

of a hedging portfolio but unless the long component also generated an economically 

large Alpha the hedging portfolio would not produce a statistically significant Alpha. In 

Table 4.9 we observe that a Beta-weighted portfolio formed on exogenous Beta estimates 

produces an economically large Alpha and is the primary contributor to the risk-adjusted 

outperformance of the hedging portfolio. The table also indicates that this hedging 

portfolio produces positive absolute returns during the 30-year sample period. 
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4.6 Conclusion 

 

This study focused on a prevalent source of endogeneity in finance that has scarce 

coverage in current asset pricing literature; endogenous reference bias. Our primary 

motivation was to examine the severity of endogenous reference bias and provide 

practical guidance on when the bias is likely to undermine empirical analysis. We sought 

to identify whether the current disregard of endogenous reference bias in asset pricing 

literature was “a problem”. Our finding was “it depends”.  

As explored in Section 4.3 of this chapter there are multiple competing influences 

on the direction and magnitude of endogenous reference bias. Where existing research 

has taken the stance that endogenous reference bias monotonically increases with 

constituent weight (e.g. Malloch et al., 2016), we found this not to be the case. We find 

that the exogenous Beta of a security is an important determinant of the magnitude and 

direction of endogenous reference bias impacting traditional Beta estimates. Even for 

exogenous Betas centred on 1, we observe that endogenous reference bias will initially 

increase before hitting an inflection point and decreasing as constituent weight increases. 

In Section 4.4 we examined the magnitude and direction of endogenous reference 

bias for 30 years of historical US stock data. We found that the typical magnitude of bias 

when a large, diversified market proxy is used is economically insignificant. Via use of 

several fixed effect models we compared the key influences of endogenous reference bias 

in historical data. We found that constituent weight alone is a minor determinant of 

endogenous reference bias. By contrast, we identified that the inclusion of variables that 

account for an asset’s variance multiple and exogenous Beta drastically improve a 

model’s explanatory power.  

In Section 4.5 we considered the influence of endogenous reference bias upon 

performance evaluation where the dependent variable was a portfolio rather than 

individual stock. We demonstrated that the bias was likely to be small for a generic, well-

diversified portfolio since the variance multiple quickly approaches a value of 1, 

subduing the bias from increasing constituent weights. However, portfolios which 

systematically exploit stock characteristics, such as Betas, size, low volatility, etc. can be 

severely impacted by endogenous reference bias. A simple hedging portfolio against 

endogenous reference bias is capable of generating a single-factor model Alpha of 

~4.30% during our 30-year sample period; an Alpha economically larger than both the 
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small cap and value premiums. The size of this Alpha was primarily driven by a long 

position in a Beta-weighted portfolio formed on exogenous Beta estimates rather than a 

short position in a Beta-weighted portfolio formed on traditional (endogenous) Beta 

estimates. 

In summary, we find that endogenous reference bias is not likely to significantly 

bias empirical analysis of individual stocks for the US stock market where it is common 

practice to use large market proxies that are not highly concentrated. Whether a researcher 

is estimating the Beta for an individual security, or for a larger portfolio, the magnitude 

of Beta bias is likely to be small. An exception arises for portfolios that are comprised of 

particularly high or low Beta securities. Traditional Beta estimates for these portfolios 

are likely to encounter significant effects from endogenous reference bias with the 

severity of bias increasing for more extreme Beta ranges. There are two key implications 

that arise from this finding. Firstly, portfolio grouping procedures may not be an 

appropriate means to address the errors-in-variables problem since Beta-grouping 

worsens endogenous reference bias. Secondly, the empirical performance of the CAPM 

may be better than previously contemplated if an exogenous reference portfolio is used.  
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5 Chapter 5: Conclusion 
 

Conclusion 
 

5.1 Summary & implications 

Understanding the cross-section of asset returns is a longstanding strand of 

literature in finance. Factor return models have served a central role in this academic 

pursuit. Within the traditional context in which factor models have been applied to the 

study of financial markets, we have found an increasing number of “surprises”. The body 

of literature on return “anomalies” has grown at an exponential rate in recent decades. 

Findings that should be “anomalous” have become “commonplace”. 

The ease with which anomaly literature has grown suggests deficiencies in either 

the underlying financial theory, the econometric approach used by researchers, or some 

combination of both. This thesis set out to identify undocumented econometric 

inconsistencies that could plausibly be the cause. Three distinct issues affecting 

parameter estimation in common applications of factor models have been identified. Each 

issue was covered in a separate chapter of this thesis. 

This chapter summarizes those conclusions from Chapters 2 through 4, including 

the following: (i) the common usage of a non-tangency portfolio as market proxy in 

single-factor model regressions induces Beta estimation bias severe enough to invalidate 

inferences made by the model; (ii) Alphas estimated via time-series regression suffer 

from economically and statistically significant bias caused by a misspecification of cross-

sectional risk premia; and (iii) the inclusion of test assets within a market proxy induces 

non-linear Beta estimation bias with severity influenced by constituent weight, variance 

multiple and exogenous Beta. 

5.1.1 Is Beta Busted?  

Chapter 2 identified an estimation bias introduced to single-factor models when 

using a non-tangency market proxy. In Section 2.3, we developed a novel measure for 

quantifying the severity of estimation error that arises; Beta Mismatch Error (BME). 

BME, indicates the difference between the value of Betas as estimated via OLS vs. the 

values of Beta as interpreted under CAPM theory. Our novel measure allowed us to 

examine the conditions in which the mismatch between theory and estimation creates the 
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most significant divergence between theory and measurement. BME was found to 

become increasingly severe as securities exhibit progressively lower correlations with the 

chosen market proxy.  

In Section 2.4, we examined the historical magnitude of this estimation error 

arising from the mismatch between theory and OLS estimation for individual US equities. 

The average correlation of securities with the market proxy averaged around 0.5 across 

the sample period. Consequently, for a median stock, a Beta estimate consistent with 

CAPM theory would be approximately 2.07x the size estimated under OLS; an 

economically huge magnitude of bias. 

In Section 2.5, we demonstrated that formation of portfolios can reduce the 

severity of BME by increasing correlation with the market proxy. We also identified that 

both the size and value premium are at least partially attributable to mismatch error. In 

each case, these long-short factor portfolios take a long position in a portfolio that exhibits 

an abnormally low correlation with the market proxy. As a result, these long position 

portfolios have inflated Alpha estimates in time-series regressions of factor models.  

The verdict of the chapter was that “Beta is busted”. An empirical measure of 

Beta which is both consistent with CAPM theory and capable of ranking the risk-adjusted 

performance of assets is mathematically impossible; a fact previously noted by Roll 

(1978). 

5.1.2 Is Alpha reliable in practice? 

Chapter 3 questioned the reliability of Alpha estimates obtained via time-series 

regression. Time-series regressions impose an arbitrary market risk premium assumption 

that is not informed by the underlying data; Alpha estimates become a linear function of 

Beta estimates. This model misspecification is likely the genesis of a large number of 

published finance anomalies. For example, even in simulated random returns data we 

observe the low Beta anomaly. The low Beta anomaly is not a representation of some real 

world anomalous investment practice. Rather, it is generated by the arbitrary imposition 

of a CAPM relation upon data by time-series regressions. Examined returns data will 

seldom conform to the CAPM; creating a mismatch between the return structure assumed 

by time-series regression vs. the return structure observed. As a result of model 

misspecification, time-series regression Alpha estimates become a linear function of Beta 
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estimates. These Alpha estimates cannot be a reliable measure of risk-adjusted 

outperformance since they are themselves a linear function of systematic risk!48 

In Section 3.3 we decomposed Jensen’s Alpha into an endogenous component, 

which is a linear function of systematic risk, and an exogenous component (“Excess 

Alpha”) which is a measure of return in excess of systematic risk exposure. We asserted 

that this Excess Alpha is a true measure of risk-adjusted outperformance that accounts 

for the cross-sectional relation between returns and systematic risks in observed data. 

Excess Alpha was demonstrated to have highly desirable statistical properties; it is 

orthogonal to systematic risks in multi-factor models and the average Excess Alpha in 

every period is guaranteed to be zero (it is impossible for the entire market to 

outperform/underperform). We also demonstrated that this exogenous measure of alpha 

can be directly obtained via the residuals of cross-sectional regressions. 

We quantified the magnitude of model misspecification bias for historical US 

data. Since we observed a much weaker cross-sectional relation in our 30-year data 

sample between traditional Beta estimates and security returns, time-series regressions 

suffered from severe model misspecification. The market risk-premium imposed by a 

time-series regression of a single-factor model was more than 7% higher than reflected 

by the cross-sectional relation observed in the data sample. Consequently, low Beta 

securities had severely inflated Alpha estimates whilst high Beta securities had severely 

understated Alpha estimates, generating the perception of a large “low Beta anomaly” in 

the data sample. 

In the final section of the chapter, we demonstrated the ease with which long-

short portfolios can be constructed to exploit model misspecification bias and generate 

practically infinite spurious return anomalies. Our conclusion was that time-series 

regression estimates of security Alphas were “not reliable in practice”. Consequently, we 

recommended empiricists and practitioners transition to use of “Excess Alpha” as a more 

robust measure of risk-adjusted outperformance. 

 

5.1.3 Endogenous reference bias: when is it a problem? 

Chapter 4 built on an existing but understudied area of research. Both single and 

multiple-factor models are commonly subject to a specific form of endogeneity that is 

 
 

48 E.g., under time-series regression of a single-factor model: 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖 ∗ 𝑅̅𝑀.  
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not considered by empiricists in asset pricing literature. This endogeneity arises from the 

practice of regressing dependent variables against “independent” variables of which they 

are a constituent. The impact is biased parameter estimation. In Chapter 4 we sought to 

determine, in practice, whether it is a substantial source of bias likely to invalidate the 

inferences made by factor models. 

Since this understudied form of bias had never explicitly been named, we coined 

the term “endogenous reference bias”. We presented the first research to consider the 

impact of three competing influences on the direction and magnitude of endogenous 

reference bias; constituent weight in a regressor, exogenous Beta, and variance multiple. 

This allowed us to identify asset characteristics that are more susceptible to severe 

parameter estimation bias from this form of endogeneity.  

We provided the first study of the severity of endogenous reference bias in 

historical US stock data and found that Beta estimation bias is unlikely to be severe for 

most individual securities. In a conservative setting, using a large, well-diversified market 

proxy such as the S&P 500, a traditional Beta estimation approach would produce Beta 

estimates with a cap-weighted average absolute bias of 0.0205. In economic terms, 

traditional OLS beta estimates were quantitatively similar to Beta estimates that had been 

corrected for endogenous reference bias. 

By contrast, we identified that parameter estimates for large portfolios formed on 

specific asset characteristics, such as exogenous Beta, can be severely impacted by 

endogenous reference bias. An implication is that Beta-grouping, historically a common 

strategy to address the errors-in-variables problem in finance (e.g. see Fama and French, 

2004, pp. 33), can induce severe endogenous reference bias.  

We also presented the first paper to develop a simple hedging portfolio against 

endogenous reference bias. This hedging portfolio generates an economically large Alpha 

of around 4.30% across our 30-year sample period. The outperformance of the hedging 

portfolio demonstrated the in-sample superiority of exogenous Betas as a more accurate 

representation of security return movements in relation to a market proxy.  

5.1.4 Concluding remarks 

Each chapter presented in this thesis identified distinct econometric issues with 

the current employ of common factor models. In culmination, this thesis serves to raise 

serious concern about the Alpha and Beta estimates produced by factor models. The 
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implication is that potentially thousands of published finance papers are suffering from 

material bias that could invalidate the inferences produced and conclusions drawn.  

In particular, the rapid growth in asset pricing anomaly literature is an excellent 

example of research that is extremely vulnerable to misuse of factor models. It is usually 

the case that historical stock data does not perfectly conform to the CAPM. As 

demonstrated in Section 3.6, this makes it trivial to construct a practically infinite number 

of portfolios that will falsely appear to generate Alpha under a time-series regression 

since time-series regressions will suffer from model misspecification of cross-sectional 

risk premia.  

Even two of the most famous anomalies in finance, the small cap and value 

premiums, have historically benefited from Alpha inflation due to separate econometric 

issues. For example, in Section 2.5.2 we observed that the Alphas produced by the SMB 

and HML portfolios are driven by abnormally low correlations of the small cap and value 

portfolios with the market proxy. This low correlation produces understated OLS Beta 

estimates resulting in overstated Alphas. In Chapter 4 we observed that large-cap stocks 

tend to have overstated Betas and, by consequence, will have understated Alphas. 

Emerging from this thesis, there are two potential paths for the future use of factor 

models in empirical finance. The first, and most convenient, option would be for finance 

practitioners to transition to forsaking time-series regression models in favour of cross-

sectional regression models when it comes to evaluating historical asset performance. In 

this context, risk-adjusted outperformance becomes the cross-sectional regression 

model’s residuals (analogous to Excess Alpha). This would overcome the issue of model 

misspecification and ensure that asset returns are penalised based on actual rather than 

presumed cross-sectional risk premia in examined data. This transition comes with the 

uncomfortable abandonment of the CAPM; one of the most influential models in finance 

history. The CAPM prescribes the exact slope of the security market line. Under this new 

paradigm, unguided, we would instead identify risk premia based on observed relations 

in historical data. We would have transitioned into a field of anti-theoretical data analysts. 

An alternate option, though far more challenging, would be to go back to the 

drawing board and redevelop new finance theory that can more closely explain asset 

returns. If the CAPM accurately described asset returns, then the econometric issues 

identified in Chapter 2 and Chapter 3 would cease to be significant. Similarly, any 

replacement of the CAPM which could closely prescribe the means by which asset returns 

fluctuate would therefore significantly moderate most of the econometric issues raised 
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within this thesis. Given that the majority of academics perceive asset returns to be ex 

ante unpredictable, it is questionable whether such an accurate theoretical model could 

ever be developed. 
 

5.2 Future research 

The most pressing future research emerging from this thesis would be a 

comprehensive replication of published asset pricing papers that claim to identify 

anomalies. As an initial test, anomaly replications should verify whether the claimed 

anomaly can produce a statistically significant49 positive residual within a cross-sectional 

regression of a single-factor model. Within this framework, the test assets would be the 

anomaly portfolio as well as all individual securities such that the cross-sectional risk 

premia of the chosen factor model accurately reflects the underlying data. Anomalies 

capable of consistently producing statistically significant positive Alphas under this 

setting are more likely to be genuine return anomalies. Furthermore, this approach to 

anomaly testing is robust to the prevalent use of high-minus-low portfolio formations that 

exploit the model misspecification issue of time-series regressions. 

Throughout this thesis, the three identified econometric issues were studied in 

isolation. Future research could study the interaction between the competing sources of 

bias. For example, in Chapter 3 we focus on model misspecification emerging from 

reliance on time-series regression with cross-sectionally misspecified risk premia. The 

process of obtaining exogenous Betas that was introduced in Chapter 4 would provide a 

different set of Beta estimates used to obtain the exogenous Alpha estimates of Chapter 

3. It's possible this adjustment may reduce the time-series model misspecification issue 

encountered in Chapter 4 since Figure 4.4 suggests use of exogenous Betas would 

produce a steeper security market line. Similarly, use of exogenous Betas would likely 

effect the results in Chapter 2. Exogenous Betas will exhibit less correlation with a market 

proxy thereby increasing the severity of the Beta Mismatch Error presented in that 

chapter. 

  

 
 

49 The statistical significance of individual residuals can be tested via a t-test. 
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Appendix 
 

Appendix A.1: Theory vs OLS Betas for cap-weighted proxy 

 
Year 𝜆̂0 p-value (𝜆̂0) 𝜆̂1 p-value (𝜆̂1) Model R2 

1991 0.10 0.48 1.13 0.00 0.11 

1992 1.56 0.00 0.09 0.83 0.00 

1993 1.80 0.00 -0.32 0.29 0.00 

1994 -3.14 0.03 2.25 0.10 0.01 

1995 0.58 0.00 0.27 0.00 0.04 

1996 0.35 0.02 0.42 0.00 0.02 

1997 0.51 0.00 0.32 0.03 0.01 

1998 -0.52 0.01 1.14 0.00 0.08 

1999 -2.13 0.00 4.28 0.00 0.16 

2000 -1.21 0.00 1.61 0.00 0.18 

2001 -0.96 0.00 1.46 0.00 0.27 

2002 -0.76 0.00 1.59 0.00 0.41 

2003 0.16 0.25 1.19 0.00 0.15 

2004 2.97 0.00 -1.32 0.00 0.04 

2005 -2.37 0.00 4.06 0.00 0.06 

2006 0.98 0.00 -0.05 0.73 0.00 

2007 -1.46 0.00 2.24 0.00 0.05 

2008 0.02 0.76 1.07 0.00 0.33 

2009 0.13 0.39 1.09 0.00 0.14 

2010 0.18 0.44 1.08 0.00 0.06 

2011 7.11 0.00 -5.92 0.00 0.22 

2012 1.16 0.00 -0.06 0.77 0.00 

2013 0.05 0.79 0.99 0.00 0.08 

2014 1.97 0.00 -0.92 0.00 0.03 

2015 12.91 0.00 -14.32 0.00 0.04 

2016 0.87 0.00 0.31 0.21 0.00 

2017 0.24 0.08 0.65 0.00 0.06 

2018 1.37 0.22 0.96 0.40 0.00 

2019 0.72 0.00 0.23 0.02 0.01 

2020 1.92 0.00 -0.99 0.00 0.02 

Average 0.84 0.12 0.15 0.11 0.09 

Median 0.30 0.00 0.80 0.00 0.05 

Table A.1: Results of regression of CAPM theory Betas against OLS estimated Betas when using a 
cap-weighted market proxy 
Table A.1 shows the annual results of the regression: 𝛽𝑖

𝑇ℎ𝑒𝑜𝑟𝑦
= 𝜆̂0 + 𝜆̂1𝛽̂𝑖 + 𝜀̂𝑖 where 𝛽𝑖

𝑇ℎ𝑒𝑜𝑟𝑦
=

𝐸[𝑅𝑖]

𝐸[𝑅𝑀]
, 𝜆̂0 is an 

estimated regression constant, 𝜆̂1 is an estimated slope coefficient, 𝛽̂𝑖  are OLS estimates of Beta, and 𝜀𝑖̂ are estimated 
regression residuals. If OLS estimates of Beta are equivalent with their theoretical values then the regression performed 
in each year would produce 𝜆̂0 = 0, 𝜆̂1 = 1, and a regression 𝑅2 = 1.  The results presented in the table indicate a 
severe historical disconnect between theoretical Betas and their OLS estimates when using a cap-weighted index as a 
market proxy. 
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Appendix A.2: Theory vs OLS Betas for tangency portfolio 

 
Year 𝜆̂0 p-value (𝜆̂0) 𝜆̂1 p-value (𝜆̂1) Model R2 

1991 0.00 0.00 1.00 0.00 1.00 

1992 0.00 0.00 1.00 0.00 1.00 

1993 0.00 0.00 1.00 0.00 1.00 

1994 0.00 0.00 1.00 0.00 1.00 

1995 0.00 0.00 1.00 0.00 1.00 

1996 0.00 0.00 1.00 0.00 1.00 

1997 0.00 0.00 1.00 0.00 1.00 

1998 0.00 0.00 1.00 0.00 1.00 

1999 0.00 0.00 1.00 0.00 1.00 

2000 0.00 0.00 1.00 0.00 1.00 

2001 0.00 0.00 1.00 0.00 1.00 

2002 0.00 0.00 1.00 0.00 1.00 

2003 0.00 0.00 1.00 0.00 1.00 

2004 0.00 0.00 1.00 0.00 1.00 

2005 0.00 0.00 1.00 0.00 1.00 

2006 0.00 0.00 1.00 0.00 1.00 

2007 0.00 0.00 1.00 0.00 1.00 

2008 0.00 0.00 1.00 0.00 1.00 

2009 0.00 0.00 1.00 0.00 1.00 

2010 0.00 0.00 1.00 0.00 1.00 

2011 0.00 0.00 1.00 0.00 1.00 

2012 0.00 0.00 1.00 0.00 1.00 

2013 0.00 0.00 1.00 0.00 1.00 

2014 0.00 0.00 1.00 0.00 1.00 

2015 0.00 0.00 1.00 0.00 1.00 

2016 0.00 0.00 1.00 0.00 1.00 

2017 0.00 0.00 1.00 0.00 1.00 

2018 0.00 0.00 1.00 0.00 1.00 

2019 0.00 0.00 1.00 0.00 1.00 

2020 0.00 0.00 1.00 0.00 1.00 

Average 0.00 0.00 1.00 0.00 1.00 

Median 0.00 0.00 1.00 0.00 1.00 

Table A.2: Results of regression of CAPM theory Betas against OLS estimated Betas when using the 
tangency portfolio as market proxy 
Table A.2 shows the annual results of the regression: 𝛽𝑖

𝑇ℎ𝑒𝑜𝑟𝑦
= 𝜆̂0 + 𝜆̂1𝛽̂𝑖 + 𝜀̂𝑖 where 𝛽𝑖

𝑇ℎ𝑒𝑜𝑟𝑦
=

𝐸[𝑅𝑖]

𝐸[𝑅𝑀]
, 𝜆̂0 is an 

estimated regression constant, 𝜆̂1 is an estimated slope coefficient, 𝛽̂𝑖  are OLS estimates of Beta, and 𝜀𝑖̂ are estimated 
regression residuals. If OLS estimates of Beta are equivalent with their theoretical values then the regression performed 
in each year would produce 𝜆̂0 = 0, 𝜆̂1 = 1, and a regression 𝑅2 = 1.  The results presented in the table indicate a 
perfect relation between both measures when using the tangency portfolio as a market proxy. 
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Appendix C.1: Most biased Betas by year 

  1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 
Most 
biased 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

PHILIP 
MORRIS 
COS INC 

WAL 
MART 

STORES 
INC 

INTEL 
CORP 

PHILIP 
MORRIS 
COS INC 

INTEL 
CORP 

INTEL 
CORP 

MICROS
OFT 

CORP 

MICROS
OFT 

CORP 

PFIZER 
INC 

PFIZER 
INC 

PHILIP 
MORRIS 
COS INC 

MERCK 
& CO 
INC 

EXXON 
CORP 

 Bias 0.0590 0.1207 0.2408 0.1039 0.1837 0.1088 0.0547 0.0478 0.1003 0.1130 0.0523 0.0379 0.0402 0.1068 0.1067 
2nd most EXXON 

CORP 
EXXON 
CORP 

WAL 
MART 

STORES 
INC 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

MICROS
OFT 

CORP 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

PHILIP 
MORRIS 
COS INC 

MICROS
OFT 

CORP 

AMERIC
A 

ONLINE 
INC DEL 

INTEL 
CORP 

MICROS
OFT 

CORP 

AMERIC
A 

ONLINE 
INC DEL 

MICROS
OFT 

CORP 

PFIZER 
INC 

GENEN
TECH 
INC 

 Bias 0.0481 0.1000 0.2026 0.0910 0.1792 0.1005 0.0530 0.0458 0.0904 0.1119 0.0499 0.0368 0.0374 0.1013 0.1041 
3rd most PHILIP 

MORRIS 
COS INC 

GENER
AL 

MOTOR
S CORP 

MERCK 
& CO 
INC 

GENER
AL 

ELECTR
IC CO 

AMERIC
AN 

TELEPH
ONE & 
TELEG 

CO 

INTEL 
CORP 

MICROS
OFT 

CORP 

EXXON 
CORP 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

LUCENT 
TECHN
OLOGIE

S INC 

GENER
AL 

ELECTR
IC CO 

WAL 
MART 

STORES 
INC 

GENEN
TECH 
INC 

INTEL 
CORP 

PFIZER 
INC 

 Bias 0.0341 0.0929 0.1658 0.0745 0.1617 0.0996 0.0527 0.0446 0.0882 0.0965 0.0479 0.0347 0.0341 0.0787 0.0874 
4th most GENER

AL 
MOTOR
S CORP 

MERCK 
& CO 
INC 

INTEL 
CORP 

EXXON 
CORP 

HEWLE
TT 

PACKA
RD CO 

HEWLE
TT 

PACKA
RD CO 

ORACL
E 

SYSTEM
S CORP 

C U C 
INTERN
ATIONA

L INC 

INTEL 
CORP 

WAL 
MART 

STORES 
INC 

WAL 
MART 

STORES 
INC 

PHILIP 
MORRIS 
COS INC 

PFIZER 
INC 

CISCO 
SYSTEM

S INC 

EBAY 
INC 

 Bias 0.0289 0.0881 0.1267 0.0637 0.1490 0.0968 0.0379 0.0423 0.0753 0.0894 0.0427 0.0307 0.0334 0.0658 0.0856 
5th most INTEL 

CORP 
PHILIP 

MORRIS 
COS INC 

AMERIC
AN 

TELEPH
ONE & 
TELEG 

CO 

GENER
AL 

MOTOR
S CORP 

MOTOR
OLA 
INC 

AMERIC
AN 

TELEPH
ONE & 
TELEG 

CO 

AMERIC
AN 

TELEPH
ONE & 
TELEG 

CO 

PFIZER 
INC 

ORACL
E 

SYSTEM
S CORP 

GENER
AL 

ELECTR
IC CO 

EXXON 
CORP 

JOHNSO
N & 

JOHNSO
N 

EXXON 
CORP 

GENEN
TECH 
INC 

PHILLIP
S 

PETROL
EUM CO 

 Bias 0.0286 0.0836 0.1176 0.0626 0.1399 0.0839 0.0379 0.0421 0.0682 0.0821 0.0406 0.0294 0.0302 0.0577 0.0514                 
Table C.1, Part A: Top 5 most biased Betas (1991-2005) 
Table C.1 presents the absolute value of Beta estimation bias due to endogeneity for the top 5 most affected securities in each year. Beta estimation bias is in relation to a cap-weighted reference 
portfolio comprised of the top 500 largest stocks. 
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  2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
Most 
biased 

EXXON 
CORP 

APPLE 
COMPU
TER INC 

GENER
AL 

ELECTR
IC CO 

MICROS
OFT 

CORP 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

FACEBO
OK INC 

FACEBO
OK INC 

AMAZO
N COM 

INC 

 Bias 0.1109 0.0425 0.0281 0.0371 0.0269 0.0305 0.1843 0.2467 0.1121 0.0709 0.0816 0.2073 0.0614 0.0545 0.0510 
2nd most MICROS

OFT 
CORP 

MICROS
OFT 

CORP 

WAL 
MART 

STORES 
INC 

GENER
AL 

ELECTR
IC CO 

CISCO 
SYSTEM

S INC 

AMAZO
N COM 

INC 

AMAZO
N COM 

INC 

MICROS
OFT 

CORP 

GILEAD 
SCIENC
ES INC 

AMAZO
N COM 

INC 

AMAZO
N COM 

INC 

AMAZO
N COM 

INC 

APPLE 
COMPU
TER INC 

APPLE 
COMPU
TER INC 

TESLA 
MOTOR

S INC 

 Bias 0.0986 0.0359 0.0157 0.0370 0.0265 0.0171 0.0420 0.1004 0.0583 0.0404 0.0739 0.1835 0.0449 0.0528 0.0429 
3rd most PFIZER 

INC 
CISCO 

SYSTEM
S INC 

APPLE 
COMPU
TER INC 

WAL 
MART 

STORES 
INC 

MICROS
OFT 

CORP 

EXXON 
CORP 

GOOGL
E INC 

FACEBO
OK INC 

AMAZO
N COM 

INC 

MICROS
OFT 

CORP 

FACEBO
OK INC 

NVIDIA 
CORP 

AMAZO
N COM 

INC 

AMAZO
N COM 

INC 

APPLE 
COMPU
TER INC 

 Bias 0.0734 0.0313 0.0149 0.0278 0.0214 0.0134 0.0416 0.0711 0.0523 0.0359 0.0535 0.1170 0.0261 0.0442 0.0264 
4th most CISCO 

SYSTEM
S INC 

EXXON 
CORP 

MICROS
OFT 

CORP 

EXXON 
CORP 

GOOGL
E INC 

GOOGL
E INC 

WAL 
MART 

STORES 
INC 

GOOGL
E INC 

TWITTE
R INC 

GOOGL
E INC 

EXXON 
CORP 

WAL 
MART 

STORES 
INC 

GENER
AL 

ELECTR
IC CO 

BOEING 
CO 

FACEBO
OK INC 

 Bias 0.0694 0.0269 0.0133 0.0261 0.0210 0.0128 0.0372 0.0565 0.0450 0.0300 0.0380 0.1033 0.0244 0.0411 0.0166 
5th most GOOGL

E INC 
GENER

AL 
ELECTR

IC CO 

EXXON 
CORP 

PFIZER 
INC 

QUALC
OMM 
INC 

HEWLE
TT 

PACKA
RD CO 

MICROS
OFT 

CORP 

INTERN
ATIONA

L 
BUSINE

SS 
MACHS 

COR 

FACEBO
OK INC 

I D E C 
PHARM
ACEUTI

CALS 
CORP 

BRISTO
L 

MYERS 
SQUIBB 

CO 

GENER
AL 

ELECTR
IC CO 

JOHNSO
N & 

JOHNSO
N 

PACIFIC 
GAS & 
ELEC 

CO 

WAL 
MART 

STORES 
INC 

 Bias 0.0666 0.0240 0.0128 0.0220 0.0181 0.0125 0.0313 0.0450 0.0449 0.0292 0.0320 0.1002 0.0235 0.0348 0.0134 
Table C.1, Part B: Top 5 most biased Betas (2006-2020) 
Table C.1 presents the absolute value of Beta estimation bias due to endogeneity for the top 5 most affected securities in each year. Beta estimation bias is in relation to a cap-weighted reference 
portfolio comprised of the top 500 largest stocks. 
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Appendix C.2: Comparison of fixed effect models 

 

 

 
Figure C.2: Comparison of fixed effect models  
Figure C.2 compares the prediction accuracy of FE Model 1 (LHS) with FE Model 2 (RHS). The inclusion of 
interaction terms for variance multiple and exogenous Beta significantly enhance prediction accuracy. Weight is not 
the sole determinant of endogenous reference bias. 
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Appendix C.3: Derivation of biased OLS Beta estimates 

 

We have a starting model: 

 

𝑅𝑗,𝑡 = 𝛽𝑗𝑅𝑀,𝑡 + 𝜖𝑗,𝑡 

 

where 𝑗 denotes an asset; 𝑡 denotes a time increment; 𝑅𝑗,𝑡 and 𝑅𝑀,𝑡 are returns on asset 𝑗 

and the market in excess of the risk-free rate; 𝛽𝑗 is the exposure of asset 𝑗 to market risk; 

and 𝜖𝑗,𝑡 is an error term. We can decompose the market return into two components: the 

weighted return on asset 𝑗, and the sum of weighted return on the rest of the assets in the 

market:  

 

𝑅𝑀,𝑡 = 𝑤𝑗 𝑅𝑗,𝑡 + (1 − 𝑤𝑗)𝑅̃𝑀,𝑡, 

 

where 𝑤𝑗 represents the weight of asset 𝑗 in the market portfolio, and 𝑅̃𝑀,𝑡 =

1

(1−𝑤𝑗)
∑ 𝑤𝑘 𝑅𝑘,𝑡

𝐾
𝑘=1,𝑘≠𝑗 . Our OLS estimates of beta is derived as: 

 

𝛽̂𝑗 =
𝑐𝑜𝑣(𝑅𝑗,𝑡, 𝑅𝑀,𝑡)

𝑣𝑎𝑟(𝑅𝑀,𝑡)
 

 

substituting in the decomposed value of 𝑅𝑀,𝑡: 

 

𝛽̂𝑗 =
𝑐𝑜𝑣(𝑅𝑗,𝑡, 𝑤𝑗 𝑅𝑗,𝑡 + (1 − 𝑤𝑗)𝑅̃𝑀,𝑡)

𝑣𝑎𝑟(𝑤𝑗 𝑅𝑗,𝑡 + (1 − 𝑤𝑗)𝑅̃𝑀,𝑡)
 

 

expanding:  
 

𝛽̂𝑗 =
𝑤𝑗 ∗ 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅𝑗,𝑡) + (1 − 𝑤𝑗) ∗ 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)

(𝑤𝑗)
2

∗ 𝑣𝑎𝑟( 𝑅𝑗,𝑡) + (1 − 𝑤𝑗)
2

∗ 𝑣𝑎𝑟( 𝑅̃𝑀,𝑡) + 2 ∗ 𝑤𝑗 ∗ (1 − 𝑤𝑗) ∗ 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
 

 

dividing the numerator and denominator by 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡): 

 

numerator: 
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𝑤𝑗 ∗ 𝑣𝑎𝑟(𝑅𝑗,𝑡) + (1 − 𝑤𝑗) ∗ 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
 

 

= 𝑤𝑗 ∗
𝑣𝑎𝑟(𝑅𝑗,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗) 

 

denominator: 

(𝑤𝑗)
2

∗ 𝑣𝑎𝑟( 𝑅𝑗,𝑡) + (1 − 𝑤𝑗)
2

∗ 𝑣𝑎𝑟( 𝑅̃𝑀,𝑡) + 2 ∗ 𝑤𝑗 ∗ (1 − 𝑤𝑗) ∗ 𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
 

 

= (𝑤𝑗)
2

∗
𝑣𝑎𝑟( 𝑅𝑗,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗)

2
∗

1

𝛽̃
𝑗

+ 2 ∗ 𝑤𝑗 ∗ (1 − 𝑤𝑗) 

 

where 𝛽𝑗 =
𝑐𝑜𝑣[𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡]

𝑣𝑎𝑟[𝑅̃𝑀,𝑡]
 (an exogenous measure of the covariance of the excess 

returns of asset 𝑗 with the rest of the market) 

 

 

numerator and denominator recombined: 

𝛽̂𝑗 =

𝑤𝑗 ∗
𝑣𝑎𝑟(𝑅𝑗,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗)

(𝑤𝑗)
2

∗
𝑣𝑎𝑟( 𝑅𝑗,𝑡)

𝑐𝑜𝑣(𝑅𝑗,𝑡,   𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗)

2
∗

1

𝛽̃
𝑗

+ 2 ∗ 𝑤𝑗 ∗ (1 − 𝑤𝑗)

 

 

multiply numerator and denominator by 𝛽𝑗: 

 

𝛽̂𝑗 =

𝑤𝑗 ∗
𝑣𝑎𝑟( 𝑅𝑗,𝑡)

𝑣𝑎𝑟( 𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗)𝛽̃

𝑗

(𝑤𝑗)
2

∗
𝑣𝑎𝑟( 𝑅𝑗,𝑡)

𝑣𝑎𝑟( 𝑅̃𝑀,𝑡)
+ (1 − 𝑤𝑗)

2
+ 2 ∗ 𝑤𝑗 ∗ (1 − 𝑤𝑗) ∗ 𝛽̃

𝑗

 

 

 

𝛽̂𝑗 =
𝑤𝑗𝜆𝑗 + (1 − 𝑤𝑗)𝛽̃

𝑗

𝑤𝑗
2𝜆𝑗 + (1 − 𝑤𝑗)

2
+ 2𝑤𝑗(1 − 𝑤𝑗)𝛽̃

𝑗

 

 

where 𝜆𝑗 =
𝜎𝑗

2

𝜎𝑀
2 , the variance of the excess returns of asset relative to the excess returns of 

an exogenous market portfolio. The OLS estimate of Beta suffers from endogeneity 
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whenever 𝑤𝑗 ≠ 0. By contrast, when 𝑤𝑗 = 0, then 𝛽̂𝑗 = 𝛽𝑗 and hence is an exogenous 

OLS estimate of Beta. 
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Appendix C.4: Perceived outperformance of low Beta assets under 

model misspecification  

 

This appendix recaps how model misspecification, discussed in depth in Chapter 3 of this 

thesis, can result in the perceived outperformance of low-Beta assets. It uses this problem 

to provide context for why a comparison of Beta estimation types (exogenous vs 

endogenous) via Beta-grouped portfolios in Chapter 4.5.2 is an appropriate way to 

demonstrate that exogenous betas are comparatively more resilient to model 

misspecification. 

 

Model misspecification 

If asset returns perfectly conformed to the CAPM, they could be described by the model: 

 

𝑅𝑖,𝑡 = 𝛽𝑖𝑅𝑀,𝑡, 

 

where 𝑖 denotes an asset; 𝑡 denotes a time increment; 𝑅𝑖,𝑡 and 𝑅𝑀,𝑡 are returns on asset 𝑖 

and the market in excess of the risk-free rate; and 𝛽𝑖 is the exposure of asset 𝑖 to market 

risk. If we were to perform a single-factor model time-series regression, we would 

observe a model R2=1 and our estimate of Alpha for every asset would be precisely zero 

(𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂
𝑖
𝑅̅𝑀 = 0 ∀𝑖). Neither high-Beta nor low-Beta assets would exhibit any 

difference in Alpha estimates. The risk-adjusted return penalty, −𝛽̂
𝑖
𝑅̅𝑀, is unbiased and 

precisely accurate. 

Alternatively, consider a situation where asset returns on average conform to the 

CAPM: 

 

𝑅𝑖,𝑡 = 𝛽𝑖𝑅𝑀,𝑡 + 𝜖𝑖,𝑡, 

 

where 𝜖𝑖,𝑡 represents some form of normally distributed noise (e.g. 𝜖𝑖,𝑡~𝑁(0,1)). The 

existence of noise now makes it possible to estimate non-zero Alphas for individual assets 

(although ∑ ∑ 𝜖𝑖,𝑡
𝑇
𝑡

𝐼
𝑖 = 0). However, since asset returns on average conform to the CAPM, 

we still would not expect to observe a persistent difference in the Alpha estimates of 

assets or portfolios based on Betas. The risk-adjusted return penalty, −𝛽̂
𝑖
𝑅̅𝑀, is unbiased. 



110 
 

Due to chance, a Beta-weighted portfolio would produce positive alphas approximately 

50% of the time and negative Alphas approximately 50% of time. Likewise, an inverse-

beta-weighted portfolio would produce positive Alphas 50% of the time and negative 

Alphas 50% of time.  

In both cases presented thus far Jensen’s Alpha is an appropriate measure of risk-

adjusted returns since returns are a function of the CAPM. A model R2=1 would give us 

complete certainty that our Alpha estimates are unbiased (although they would all be 

zero). However, even when data exhibits a high level of noise but on average conforms 

to the CAPM then Alpha estimates will be unbiased estimates of risk-adjusted returns. 

Consequently, a low model R2 isn’t necessarily an indication that Alpha estimates are 

biased nor that we should expect any differences in the Alpha estimates of assets 

conditional on their Beta estimates. 

Estimates of Jensen’s Alpha become biased when asset returns are at least 

partially determined by factors outside of the CAPM; i.e. in the presence of omitted 

variable bias. Suppose in the most extreme case, that asset returns are independent of the 

CAPM. It would remain possible to estimate the market Betas of a single-factor model. 

However, these market Betas would be completely spurious since asset returns in this 

hypothetical are not a function of market risk exposure. Alpha estimates would be based 

on a risk-adjusted penalty, −𝛽̂
𝑖
𝑅̅𝑀, that is now entirely spurious since Beta estimates are 

spurious. An appropriate risk-adjusted outperformance metric would be independent of 

𝛽̂𝑖 in this scenario yet Jensen’s Alpha remains a linear function of 𝛽̂𝑖; 𝛼̂𝑖 = 𝑅̅𝑖 − 𝛽̂𝑖𝑅̅𝑀. 

Consequently, whilst 𝛽̂𝑖 have no causal effect upon the magnitude of asset returns, assets 

with progressively higher Beta estimates will be falsely perceived to have progressively 

worse risk-adjusted performance. If the CAPM had zero explanatory ability for asset 

returns a “low-Beta anomaly” would be ubiquitous. 

Consider the more realistic possibility that asset returns are partially explained by 

the process contemplated by the CAPM, and partially explained by some other unknown 

omitted variables. We might expect that this would present in our data with the 

observation of a security market line that is positively sloped but much flatter than 

expected. The greater the model misspecification, the flatter the observed security market 

line will become and the more overstated / (understated) the risk adjusted performance 

of low-Beta / (high-Beta) securities will become. Chapter 3.3 of this thesis prescribed a 
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method to obtain Alpha estimates robust to the form of model misspecification described 

above. 

 

Why use Beta-grouped portfolios to compare Beta estimators 

In Chapter 4 we are comparing the performance of an endogenous and exogenous 

estimator of asset Betas. In Chapter 4.3.2 we observed that when examining data that 

conforms to the CAPM (Simulation 2, Beta=1), both the traditional Beta estimation 

approach and the substitution approach designed to address endogeneity delivered similar 

estimates. Since neither approach exhibited bias, Alpha estimates of individual assets 

would be positive/negative for approximately 50% of assets. A Beta-weighted portfolio 

of these assets would be expected to exhibit positive/negative Alphas due to chance 

around 50% of the time. By contrast, we know that for data which is independent of the 

CAPM, traditional Beta estimates become completely spurious. Hence, the greater the 

deviation of data from the CAPM, the greater the probability that a Beta-weighted 

portfolio, based on a traditional approach to Beta estimation, will appear to generate 

negative Alphas.  

By contrast, a measure of Beta which was perfectly resilient to worsening model 

misspecification would exhibit Alpha estimates that are independent of Beta. A Beta-

weighted portfolio of such a metric would generate positive/negative Alphas around 50% 

of the time due to chance even in the presence of worsening model misspecification. 

Consequently, there is significant scope to develop a Beta estimator that is more robust 

to model misspecification than a traditional approach. 

  
 

In Chapter 4.3.2 we observed that when examining data that is independent of the 

CAPM (Simulation 1), the traditional Beta estimation approach was significantly biased 

whilst the substitution approach designed to address endogenous reference bias delivered 
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unbiased Beta estimates. This suggests that this alternate Beta estimation approach may 

be more robust to model misspecification. One way to examine whether this is this case 

is to compare the performance of two portfolios within a factor-model framework: one 

which is Beta-weighted based on traditional (endogenous) Beta estimates and another 

which is Beta-weighted based on exogenous Beta estimates. If the exogenous estimation 

approach is capable of more accurately capturing the co-movement of asset returns with 

the included factor portfolios in noisy data then it will appear to produce comparatively 

better Alphas in historical data due to the aversion of endogeneity induced parameter 

estimation bias. A “hedging portfolio” against “endogenous reference bias” can be 

formed by taking a long position in the exogenous Beta-weighted portfolio and short 

position in the traditional Beta-weighted portfolio. This long-short portfolio would have 

a negative weighting towards assets that have upwards biased Beta estimates due to 

endogeneity and positive weighting towards assets have downwards biased Beta 

estimates due to endogeneity. 




