Medium chain fatty acids production from anaerobic fermentation of food wastes: The role of fermentation pH in metabolic pathways

Publisher:
ELSEVIER SCIENCE SA
Publication Type:
Journal Article
Citation:
Chemical Engineering Journal, 2023, 472
Issue Date:
2023-09-15
Filename Description Size
1-s2.0-S1385894723035556-main.pdfPublished version2.87 MB
Adobe PDF
Full metadata record
Using food waste (FW) as a sustainable feedstock for the production of valuable medium-chain fatty acids (MCFAs) would alleviate greenhouse gas emissions while allowing the efficient recovery of carbon contained in this biowaste. The fermentation pH is a crucial factor controlling the type and yields of the MCFAs derived from FW-fed fermentation by steering the biological reactions involved. However, the mechanism shifts that occur at varying pH values are not well understood. Therefore, this study assessed the potential role of fermentation pH (i.e., 5, 7, and 10) on the carbon recovery from FW as MCFAs and the associated mechanisms. Predominantly MCFAs (5.52 g COD/L) were synthesized at pH 5 with caproate formed as the main high-value product. Abundant but a bit fewer MCFAs (1.08 g COD/L) were yielded at pH 7, in which caproate also was the prevalent MCFAs. However, no obvious MCFAs were synthesized under pH 10. The pH also drove the change of key microbial communities that served as chain elongators, which were maximally enriched at pH 5 but were scarce at pH 10. More importantly, mildly acidic pH (i.e., 5) drove less ethanol oxidization, ensuring the effective usage of electron donor for higher MCFAs yield. This study revealed how pH steers the metabolic pathways of MCFAs production from FW in open-culture anaerobic fermentation from a metagenomic viewpoint.
Please use this identifier to cite or link to this item: