S. Chien, S. Choo, M. A. Schnabel, W. Nakapan, M. J. Kim, S. Roudavski (eds.), Living Systems and
Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the
Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016, 829-838. © 2016,
The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

‘I’M A VISUAL THINKER.’

Rethinking algorithmic education for architectural design

MATTHEW AUSTIN and WAJDY QATTAN
University of Technology Sydney, Sydney, Australia.
matthew.austin@uts.edu.au
wajdy.qattan@student.uts.edu.au

Abstract. The representational and visual aspects of architectural de-
sign education cause certain pedagogical stresses in student’s capaci-
ties to learn how to code, and this paper will serve as a critique of the
current state of algorithmic pedagogy in architectural education. The
paper will suggest that algorithmic curriculum should not frame code
as ‘a design tool’, but as something to be designed in its own right; the
writing of the code is the ‘design brief’ itself and not something addi-
tional to an architectural design brief. The paper will argue for an ar-
chitecture-less educational environment that focuses on computational
competencies such as logic, loops and lists along with building a
strong analytical basis for students’ understanding of programming
and digital geometries.

Keywords. Pedagogy; algorithmic; programming; education.

1. Introduction

This paper will argue for a new mode of algorithmic education within the
discipline of architecture in order to deal with new modes of architectural
thinking. The rise of complexity theory and emergence has changed the way
we frame and talk about architectural design in relationship between design
outcomes and algorithmic processes'. Ideas such as ‘top-down design’ and
‘bottom-up processes’ have entered the way we frame and understand code
within design processes. Although the introduction of these sorts of ideas in-
to design is by no means new, it is becoming clearer that architecture lacks
the educational frameworks in order to increase student literacy within the
family of algorithms that embody these complex and emergent properties
that seem to simulate the natural world.



830 M. AUSTIN AND W. QATTAN

The problem for architecture is two fold. Firstly, one would expect to see
an increase in the complexity and sophistication of algorithms within archi-
tecture over time; however, this is not occurring. Instead there is an increase
in the complexity and sophistication in understanding direct applications of
the algorithm. Secondly, as algorithmic problems in architecture become
more complex and dynamic, and thus the code required becomes more com-
plex, new modes of algorithmic andragogy are required to bring students in-
to a position where they can not only engage with these algorithms, but also
innovate them. Further to this, as these problems become more complex, it is
very likely that we require more algorithmic-literate architects to engage in
these new modes of practice and problem solving in order for architecture to
deal with complex and ‘big data’ problems.

This paper therefore positions itself as a critique on current algorithmic
educational frameworks and attempts to question, understand and propose a
solution to some of the deficiencies in current educational frameworks.

2. The nature of algorithmic education

Programming is undoubtedly difficult. Computer Science courses have one
of the highest dropout rates of any course at a university level (Ljungkvist
and Mozelius, 2012, p. 285) and many students have trouble learning even
within introductory subjects (Lahtinen et al, 2005, p. 14). These subjects are
not difficult because they are necessarily ill-structured or the tutelage is
weak, but because the fundamental content is both theoretically and practi-
cally challenging to students, especially in fields in which students have no
formal background (Eckerdal, 2009, p. 12; Robins et al, 2003, p. 138). Fun-
damental computer science ideas such as classes, functions, arrays, matrices,
loops and gates are taught implicitly alongside their mathematical basis of
number theory, set theory and logic.

Programming for architectural purposes adds the additional requirements
of computational geometry, vector algebra and topology. To further conflate
the problem, programming is often taught after a core competency with basic
CAD, for example Rhino3D, is met. Students are therefore familiarized with
user-friendly graphical user interfaces and thus programming within an inte-
grated development environment is extremely alienating (Muller and Kidd,
2014, p. 176). Although Muller and Kidd (2014) are referring directly to
teaching programming in a geography andragogy, they quite rightly argue
that reintroducing mathematics, statistics and computer programming sub-
jects at a later stage in student education can lead to anxiety, and architecture
is no exception to this. This alienation and anxiety requires particular en-
gagement from the educator in order to help students learning. Further to



I’'M A VISUAL THINKER 831

this, material aimed at assisting students learning to code are generally ill-
conceived and poorly designed. The Grasshopper Primer (ModeLab, 2015),
is a particularly poignant example; its 242 pages rush through mathematical
basics, logic and list structures at an alarming rate. Further, at no point does
it attempt to meaningfully challenge the reader to engage with their learning,
by coding something from scratch. Finally, to make the issue of program-
ming andragogy worse, the educators within the field tend to have no formal
computer science or mathematical education themselves. They are often self-
taught making the process of framing core computer-science concepts diffi-
cult.

In short, a general algorithmic-design course in architecture is far more
difficult than a programming fundamentals course. This is because more is
taught faster and students in architecture have no fundamental understanding
of computational geometry. For example, although students comfortable
with any given CAD package can draw a B-Spline, very few know what it is
or how it works. Although within the majority of architectural production,
the technicalities of how geometry is computationally constructed is irrele-
vant, in the instance of programming understanding a geometric object’s un-
derlying construction is fundamental in framing how to build it from first
principles and debugging potential problems that rise from this construction.
This is not to say that we should change the way we teach CAD, as some
students have no interest in programming, but that students lack the ability to
understand the deficiencies in their knowledge (Kruger and Dunning, 1999,
p. 30).

Further, this paper’s second author has produced a series of interviews
with computer science researchers revealing a general belief within the dis-
cipline that students require two to three programming courses in order to
become sufficiently skilled (Nassir, 2015). It is important to note that in this
instance ‘skilled’ does not refer to students capacity to know a ‘program-
ming language’ but an understanding of programming fundamentals and log-
ic (B. Fageh, 2015). This begs the question: what has lead to the current cur-
riculum expectation in architecture, that students with no deep knowledge of
logic, programming or computational geometry can pick up algorithmic de-
sign and produce a ‘good project’ within twelve to fifteen weeks?

3. Unpicking the visual thinker

Architecture predominantly represents itself through visual communication,
for example images, drawings and models. As such it is no surprise that
many students, architects and academics consider themselves ‘visual think-
ers’. It is because of this visual nature of the discipline that architecture has



832 M. AUSTIN AND W. QATTAN

gravitated to more visual modes of programming, such as Processing and
Grasshopper, in which designers are given visual feedback to help under-
stand what a piece of code does.

However, visual programming has its limitations; it doesn’t alleviate the
lack of understanding about more non-visual fundamentals of programming
and mathematics, for example, 4-dimensional transforms. Further to this,
visual programming allows users to employ geometry without any under-
standing of its mathematical basis (Ozcan, Akarum, 2001, p. 27). Although
at first glance this seems like an ideal situation in the andragogy of algorith-
mic design for architecture, it does make algorithms that are inherently ob-
ject oriented, such as agent-based systems, far less obtainable to students
learning to program. This is not to say that students would not be able to use
an agent-based system, but that they would be far less likely to both under-
stand it fully and write it from scratch.

Visual programming itself is not a problem as the majority of program-
ming done within architecture is inherently visual. The issue is that most al-
gorithmic design curricula within architecture rarely extend themselves out-
side the visual aspects of programming and reinforce these visual aspects
through lesson and assessment design®. Most curricula direct students to cre-
ate ‘architecture’ or at least something architectural as the goal of the course,
rather than directly grade students on their capacity to program. Further to
this issue, the fundamentals of programming are usually compressed into a
smaller portion at the beginning of semester to make more room for design.
This therefore transmutes the problem of ‘learning to code’ into a more com-
fortable ‘architectural design problem’. This generally leads to a low per-
centage, somewhere between 5 to 15 percent, of students leaving an algo-
rithmic design course knowing how to program at a basic level.

It is important to mention that architectural design andragogy is not mere-
ly problem solving but a creative endeavour in its own right, in which the
outcome is judged by the merits of how the problem is solved and not just on
the fact that it solves the problem (Harfield, 2007, p. 164). Further, this ar-
chitectural design favours ‘creative’, ‘novel’ and/or ‘good’ outcomes not on-
ly from the perspective of the student themselves but also the tutor and coor-
dinator. Although the relationship between outcome and process may be
causal (i.e. a ‘good’ process implies a ‘good’ outcome), the process is gener-
ally only graded on its capacity to produce ‘good’ outcomes. Student focus
therefore moves from learning the fundamentals of programming to ‘design-
ing through code’. Ironically, ‘designing through code’ is difficult, problem-
atic and foolhardy without knowing the fundamentals of programming as
students will know in a general sense what kind of outcome they want, how-
ever they lack the skills in order to produce it. This can likely lead to stu-



I’'M A VISUAL THINKER 833

dents not using programming techniques and reverting back to methods of
design they are personally comfortable with.

4. The Dunning-Kruger effect and algorithmic education

The Dunning-Kruger effect is a psychological phenomenon of cognitive bias
where a relatively unskilled individual overestimates their abilities and their
very lack of skills also robs them of the ability to realize they have over- es-
timated it (Kruger and Dunning, 1999, p. 30). For example, in the context of
an architectural design studio, a failing or passing student may personally
expect a grade of a credit, distinction or high distinction. This should come
as no surprise to the reader. However, evidence suggests that the converse is
also true, namely, that skilled individuals will underestimate their abilities
(Kruger and Dunning, 1999, p. 33, p. 42-43). Using again the example of an
architectural design studio a high distinction student may expect a grade of a
distinction or a credit (while of course secretly hoping for an ‘HD’).

The Dunning-Kruger effect has been well studied and applied to under-
standing and grading student self-assessment within universities (Karatjas
and Web, 2015, p. 30). What has not occurred, however, is a critique of cur-
riculum design through this lens. Kruger and Dunning (1999, p. 43) argue
that individuals that are skilled in a task, and thus find it easy, assume that
other people would be equally skilled. This implies that individuals that easi-
ly learnt programming in architecture, which are the individuals most likely
to be teaching programming in architecture, assume that other people will
find it equally easy. This begs the question: Do algorithmic design curricula
in architecture assume that students will retain fundamental programming
concepts and logics beyond what is reasonable to expect? Considering the
rate in which algorithmic design is taught, the amount of time that is spent
within those curriculum on programming fundamentals in comparison to
computer science courses, and the findings from Muller and Kidd (2014), it
would not be foolhardy to suggest the answer to that question is yes.

It would, however, be foolhardy to suggest the solution to the problem is
simply to go slower over a longer period of time. The problem, with algo-
rithmic design in architecture, is that a lot of the simplest and most canonical
algorithms (for example, voxelisation, recursive subdivision, packing,
swarms, diffusion-limited aggregation, dynamic relaxation, cellular automa-
ta, etc.) require fairly well-established and fundamental knowledge of loops,
logic gates, arrays, functions and classes in order for students to understand
them, read them and write them. In other words the issue with algorithmic
andragogy within architecture is that quite advanced programming concepts
are required to produce quite basic visual outputs. This issue, along with the



834 M. AUSTIN AND W. QATTAN

Dunning-Kruger effect, therefore calls for a radical shift in the way that pro-
gramming is taught within architecture schools.

5. The death of the tutorial

From the student’s perspective, electives are a rare commodity. From the
perspective of academia, core subjects are of equally rare value. Architecture
requires knowledge of design, history, theory, construction, etc. Space in ar-
chitectural studies is limited, and programming, in the scheme of a wider ar-
chitectural education is a specialisation. Students are likely to only be inter-
ested in using one elective on programming, rather than the two to three
subjects suggested by Nassir (2015).

The next problem is that it is likely that after completing an algorithmic
design course, students will not program again. This may be because of sub-
ject focuses and tutor positions outside of the students’ control, or a general
dislike of programming. On this note, Bjork (2013, p. 2) states that the goal
of instruction is to “equip the learner with the type of knowledge or skills
that are durable and flexible”. It is clear that current algorithmic andragogy
in architecture struggles to retain ‘durable’ and ‘flexible’ knowledge within
the majority of students. Nevertheless, if algorithmic design courses wish to
educate more architecture students with base programming competencies,
curricula need to be designed in a manner that focuses on the retention of
programming fundamentals as its core goal.

Leonard (2015) quite aptly states that:

Researchers have shown that, in laboratory tests, people quite consist-
ently have “illusions” of competence. That is, they over-estimate their
ability to solve future problems when they’ve been given a lot of help
during lessons. When shown answers to questions, experiment sub-
jects are likely to think they could have produced them (“Oh, sure, I
knew that!”) And the more familiar the material seems to them, the
worse the students do in actually using it. Familiarity breeds compla-
cency.

Leonard’s statement implies a reasonable explanation for why students
can understand programming concepts in particular contexts and not others.
Showing students how to use abstract programming fundamentals in one
context does not give ‘flexibility’ to the knowledge, and further it is only in
hindsight that students see the solution to simple programming problems.
Further, it allows the student to confuse performance, “...which is what can
be observed and measured during instruction...” (Bjork, 2013, p. 2) with
learning, that which is exhibited after instruction. This confusion between
performance and learning suggests that the lab tutorial itself is a non-



I’'M A VISUAL THINKER 835

productive mode of learning and should instead be replaced with, for lack of
a better phrase, the lab problem. If we, for example, momentarily consider
the famous turtle algorithm from LOGO in which users learn to move a tur-
tle around a screen. Over time users would get better at moving a turtle
around a screen and not better at programming algorithms as the problem is
solved for them. Asking students to write code constitutes learning in a way
that is relevant to them being able to solve different problems in the future.

Therefore algorithmic education should focus on setting students up to
practice solving problems rather than following through a problem. In fol-
lowing through a problem students tend to copy the code without any under-
standing of its meaning. For example, students don’t understand that they
may have forgotten a ‘(’ or a *:” in an IDE, or not add a number to a ‘division
component’ in Grasshopper because there appears to be nothing to copy. If
students regularly problem-solve while slowly understanding the abstract
ideas of fundamental programming concepts, these ideas will remain ab-
stract, flexible and more durable then standard tutorial methods. This mode
of andragogy already exists within core architectural subjects; core design,
construction and communication subjects already focus on practicing prob-
lem solving rather than following through problems. Further, it could be ar-
gued that this is intrinsic to architectural education. This is not to say that ex-
isting algorithmic design curricula do not practice problem solving, but that
they practice solving architectural problems rather than solving program-
ming problems.

What this suggests is that algorithmic design should be taught in a man-
ner in which students are required to grapple with abstract programming
fundamentals in a variety of different ways (Ekerdal, 2009, p. 11) in order to
maximise learning at the cost of other significant architectural ideals such as
‘good’, ‘novel’ and ‘creative’ outcomes.

6. The architecture-less environment

At this point, it should be clear to the reader that the writing of an effective
algorithmic design curriculum within architecture is a wicked problem.
There is no clear solution, and any solution will have to sacrifice particular
pieces of knowledge and trust students to develop those pieces of knowledge
independently. This is under the assumption that the students understand
why they should independently develop this knowledge and that they are en-
gaged enough with their education to do so.

The authors propose that architecture itself should be thrown out of algo-
rithmic design curricula, in order to shift the focus away from outcomes to a
fundamental understanding of algorithmic processes. This is not to say that a



836 M. AUSTIN AND W. QATTAN

curriculum would remove students understanding of architectural applica-
tions of a said algorithm, but that it should not be directly assessed within the
design of a curriculum. In other words, what if rather than grading the archi-
tectural potentials generated from an algorithm, the students understanding
of the algorithm itself is graded? For example, the architectural potentials of
cellular automata are ignored, and instead the focus is on the students writing
Conway’s Game of Life. The architectural applications and lack thereof of
many canonical algorithms in architecture are already well known and can
be set as a reading task at the beginning of a curriculum. Now students no
longer focus on designing a ‘good’ outcome with cellular automata; students
are free to research, program, and most likely struggle through, Conway’s
Game of Life, thus giving far more focus and understanding to core pro-
gramming competencies, namely in this example, arrays, functions, loops,
logic gates and classes. In short, the focus shifts from designing with code to
designing code.

In context, a curriculum asking students to research and program a piece
of code has several advantages over traditional modes of teaching algorith-
mic design in architecture. Firstly, the problem is not wicked like a design
problem and as such it is very clear to the student what constitutes a ‘good’
outcome (i.e. a working piece of code) rather than a student’s first foray into
algorithmic architecture, in which both the outcomes and processes appear
quite abstract. Secondly, the process of learning to program is stretched over
a whole curriculum, and students are not disadvantaged for struggling to
learn core skills quickly. Often algorithmic design curricula in architecture
attempt to push towards ‘good’ design outcomes as quickly as possible, even
though it is clear from Muller and Kidd (2014 p. 176), Eckerdal (2009),
Robins et al (2003), Ljungkvist and Mozelius (2012, p. 285), and Nassir
(2015) that not only some students will struggle with the content, thus being
disadvantaged, but it is very likely that the majority of students will! And
thirdly, it requires students to develop core-programming competencies
along with analytic problem-solving skills. In other words, the goal of the
curriculum’s design is to give students the skills in order to program, which
assumedly, is the reason that students would have enrolled in it. On this note,
in this paper’s first author’s experiences, students can solve programming
problems very easily if computers are not involved. For example, when stu-
dents are given three hours to translate a given board game into pseudo code
consisting of while loops, for loops and logic gates, the vast majority of stu-
dents easily complete the task in the time limit. However, when students are
asked to write a small piece of python script that draws a line between two
points without assistance, many struggle and many simply give up. The point
here is not that programming is difficult, but that this shift in curriculum fo-



I’'M A VISUAL THINKER 837

cus doesn’t give students the capacity to get through a curriculum via their
architectural expertise, aesthetic sensibilities and visual-thinking skills, but
pushes students to slowly solve logical-programming problems over the
course of a curriculum rigorously and in detail.

This method of algorithmic andragogy falls short on other vital character-
istics of a perfect algorithmic design course. It does not completely solve is-
sues of student anxiety (Muller and Kidd, 2014 p. 176) and it doesn’t solve
the problem that students require additional subjects to complete their educa-
tion on the topic. On a side note, it would appear wise that this method of al-
gorithmic andragogy be considered a pre-requisite for algorithmic-design
studio streams within core university subjects.

7. Conclusion

This paper’s findings are in no way complete as to make any clear judgment
about the success and failures of new modes of andragogy requires a sub-
stantial amount of research. However, this initial attempt highlights the is-
sues with current modes of algorithmic andragogy within architectural edu-
cation.

In conclusion, programming is undoubtedly difficult. Our current modes
of algorithmic andragogy are severely limited by time, student capacity and
curriculum design, and as such are unsatisfactory for successfully educating
the majority of students. If architecture wants to deal with complex algo-
rithms, emergence and ‘big data’, algorithmic architects need to move past
visual programming and engage in core programming fundamentals. Albeit
not perfect, the architecture-less environment offers several advantages over
traditional modes of education and appears to have the capacity to produce a
stronger programmer in conjunction with support from the core curriculum.

Endnotes

1. Although not all algorithmic processes are necessarily digital, in the sense that they
use a computer, instances where students are required to write, read and understand
code will be the focus of this paper.

2. This statement is made from the perspective of the authors. Having taught at several
universities and seeing a wide range of differing algorithmic design core subjects and
electives between the years 2009-2015 the general design of curriculum prioritising
visuality has been a consistent theme.

References

Bjork, R.A.: 2015, “Learning verses  performance”. Available from:
<bjorklab.psych.ucla.edu/pubs/Soderstrom Bjork Learning versus_Performance.pdf>
(accessed 4 November 2015).



838 M. AUSTIN AND W. QATTAN

Ekerdal, A.: 2009, Novice Programming Students’ Learning of Concepts and Practise, PhD
Thesis, Uppsala University.

Faqeh, B.: 2015, Interviewed by Wajdy Qattan, 16 August.

Harfield, S.: 2007, On Design ‘Problematization’: Theorising Differences in Designed Out-
comes, Design Studies, 28(2), 159-173.

Karatjas A.G. and Web J.A.: 2015, The Role of Gender in Grade Perception in Chemistry
Courses, Journal of College Science Teaching, 45(2), 30-35.

Kruger J. and Dunning D.: 1999, Unskilled and Unaware of It: How Difficulties in Recogniz-
ing One’s Own Incompetence Lead to Inflated Self-Assessments, Journal of Personality
and Psychology, 77(6), 30-46.

Lahtinen, E, Ala-Mutka K., and Jarinen H-M.: 2005, A Study of the Difficulties of Novice
Programmers, ITiCSE 05 Proceedings of the 10™ annual conference on innovation and
technology in computer science education, 14—18.

Leonard, D.: 2015, “Why Organizations need to Make Learning Hard”, Harvard Business
Review, Available from: < https://hbr.org/2015/11/why-organizations-need-to-make-
learning-hard> (accessed 5 November 2015).

Ljungkvis P. and Mozelius, P.: 2012, Educational Games for Self Learning in Introductory
Programming Courses — a Straightforward Design Approach with Progression Mecha-
nisms, Proceedings of the European Conference on Games Based Learning, 285-293.

ModeLab: 2015, “The Grasshopper Primer V3.3”, Available from: <grasshopper-
primer.com/GrasshopperPrimer_V3-3-EN.pdf> (accessed 16 November 2015).

Muller, C.L. and Kidd, C.: 2014, Debbugging geographers: teaching programming to non-
computer scientists, Journal of Geography in Higher Education, 38(2), 175-192.

Nassir, S.: 2015, Inverviewed by Wajdy Qattan, 3 September.

Ozcan O. and Akarum L.: 2001, Mathematics and Design Education, Design Issues, 17(3),
26-34.



