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Abstract: 

The efficacy of forward exchange rate as an unbiased predictor of future spot 

exchange rate has been the subject of research for many years. However, observed deviation 

from this hypothesis has been attributed to the existence of risk premium in the forward 

exchange rate. In this article we review two methodologies proposed in the literature for 

inferring this unobserved risk premium. Both these approaches rely on signal extraction 

mechanism with a basic difference in setting up the framework. The more recent approach 

uses the derivatives pricing principle that relates the historical and the risk neutral measures 

with a suitable specification of the market price of risk. The earlier approach directly 

specifies the risk premium in the historical measure. We compare these two methods in term 

of their ability to predict spot exchange rate one step ahead and contrast these with that of 

random walk forecast. 
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Introduction 

 

Several regression based studies attempted to explain the ability (or otherwise) of the forward 

exchange rates in predicting the future realised spot exchange rates. Although with the 

improvements in econometric theory the nature of the tests employed have changed, but the 

basic approach has remained essentially within the regression framework. For example, Wu 

and Zhang (1997) employ a non-parametric test and not only reject the unbiasedness 

hypothesis but also conclude that the forward premium either contains no information or 

wrong information about the future currency depreciation. On the other hand, Bakshi and 

Naka (1997) derive an error correction model under the assumption that the spot and the 

forward rates are cointegrated and conclude using the generalised method of moments that 

the unbiasedness hypothesis cannot be rejected. Phillips and McFarland (1997) develop a 

robust test and reject the unbiasedness hypothesis but conclude that the forward rate has an 

important role as a predictor of the future spot rate. 

The failure of the unbiasedness hypothesis has been attributed to the existence of a 

foreign exchange risk premium. This has led to a great deal of research on the modelling of 

the risk premia in the forward exchange rate market. However, models of risk premia have 

been unsuccessful in explaining the magnitude of the failure of unbiasedness (Engel (1996), 

page 124). We define the term  t t ,k t t krp f E s    as the foreign exchange risk premium. 

Under risk-neutrality the market participants would behave in such a way that t,kf  equals 

 t t kE s   and the expected profit from forward market speculation would be zero. Stulz 

(1994) discusses a model of foreign exchange risk premium based on optimising behaviour of 

international investors. However, alongside such theoretical developments pure time series 

studies of trp have also assumed a renewed importance. These are useful in describing the 

behaviour of  t ,k t t kf E s  . Models of the foreign exchange risks premium that assume 

rational expectations should be able to explain the observed time series properties. Examples 

of such studies include Backus et al (1993) and Bekaert (1994).  

Modelling of the time varying risk premia has been inadequately addressed in the 

literature since there is little theory to guide us in this respect. Wolff (1987) and Cheung 

(1993) have modelled the risk premia as an unobserved component and estimated it using the 

Kalman filter. In their signal extraction approach they empirically determine the temporal 

behaviour of the risk premium using only data of forward exchange rate and the spot 
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exchange rate. Although the signal extraction approach avoids specifying any particular form 

of the risk premia, it offers little insight into the risk premia and other economic variables. 

Cheung (1993) links the estimated risk premia with other macro economic variables. This 

relies on the inter-temporal asset-pricing model of Lucas (1982). However, the results are not 

very encouraging and the estimated regression models have very low R-squares.  

Both Wolff (1987) and Cheung (1993) analyse the quantity  t ,k t kf s   to determine 

the time series characteristic of the unobserved risk premia. This in turn determines the 

dynamics of the unobserved component, the risk premia. For different currencies they 

examine the dynamics of the risk premia can be captured by a low order ARMA process. 

Wolff (2000) further extends the number of currencies studied in the same framework. In 

those papers, therefore, the observed difference between the forward exchange rate at time t 

for the period t+k and the subsequently realised spot rate at time t+k is the main driver for the 

structure of the risk premia. This is assumed to be composed of the unobserved risk premia 

and the unexpected depreciation of the exchange rate. The complete model is, thus, specified 

in the historical measure. 

Bhar, Chiarella and Pham (2001) propose an alternative approach to this problem of 

unobserved risk premium. They model the market price of risk (and hence the risk premia) by 

utilising the no-arbitrage relation between the spot and the forward markets. This requires an 

assumption about the dynamic process for the market price of risk. Then the dynamic system 

involving forward rate, spot rate, interest rates and the market price of risk could be cast into 

the state space model framework. The system is then estimated by Kalman filter. This 

approach fundamentally differs from those of Wolff (1987) and Cheung (1993) in that it 

models the spot and forward dynamics as well as the market price of risk which relates the 

historical and the risk-neutral measures. This approach can also be extended to foreign 

exchange options, which are a rich source of untapped information about markets' view of 

risk premia.  

Both these approaches to estimating forward exchange rate risk premium are applied 

to a set of exchange rate data and the results compared. Since both these models rely of 

filtering and one step ahead prediction, we are able to compare this prediction of spot 

exchange rate with a random walk model. Both these approaches predict one step ahead spot 

exchange rate better than a random walk model. 

In the next section we describe the essential features of these two approaches before 

discussing the empirical results. 
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Approach Based on Bhar, Chiarella and Pham (2001) (BCP Model)  

 

Let the spot exchange rate follow the one-dimensional geometric diffusion process, 

 

 SdS Sdt SdW t           (1) 

 

where   is the expected return from the spot asset, S  is the volatility of this return, both 

measured per unit of time and dW  is the increment of a Wiener process under the so-called 

historical (statistical) probability measure Q , r  is the domestic risk-free interest rate and fr  

as the counterpart in the foreign currency. Since fr  can be interpreted as a continuous 

dividend yield, the instantaneous return to an investor holding foreign exchange is f( r )  . 

Thus the relationship between the excess return demanded and the market price of risk 

)( may be written 

 

f S( r ) r     , or f S(r r )     .      (2) 

 

Thus, under the historical measure Q  equation (1) can be rewritten  

 

f SdS (r r )Sdt SdW(t)     , under Q .      (3) 

 

Alternatively under the risk neutral measure Q  the last equation becomes 

 

f SdS (r r )Sdt SdW(t)    , where, 
t

0

W(t) W(t) (u)du   .   (4) 

 

We recall that under Q , the process W(t)  is not a standard Wiener process since 

E[dW(t)] dt 0    in general. However, Girsanov’s theorem allows us to obtain the 

equivalent measure Q  under which W(t)  does become a standard Wiener process. The 

measures Q  and Q  are related via the Radon-Nikodym derivative. 
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Using standard arguments for pricing derivative securities (see for example, Hull 

(1997), chapter 13), the forward price at time t for a contract maturing at T (>t), is 

 

t TF(t,T) E (S )  .         (5) 

 

But from equation (4), by Ito’s lemma, 

 

f f(r r )t (r r ) t
Sd[S(t)e ] S(t)e dW(t)      , 

 

so that under Q
~

, the quantity f(r r ) tS(t)e  is a martingale and it follows immediately that 

 

f(r r )(T t )
t T tE (S ) S e   , i.e. f(r r )(T t )

tF(t,T) S e   .     (6) 

 

If the maturity date of the contract is a constant period, x, ahead then (6) may be written as  

 

f(r r )x
tF(t, t x) S e   .   (7) 

 

Then from (3), (4) and (7) and by a trivial application of Ito’s lemma we obtain the 

stochastic differential equation for F  under Q  and Q . Thus, under Q  

 

f SdF(t, x) (r r )F(t, x)dt F(t, x)dW(t)     , whilst under Q ,    (8) 

 

f S SdF(t, x) (r r )F(t, x)dt F(t, x)dW(t)      , with, f(r r )x
0F(0, x) S e  . (9) 

 

We now assume that under historical measure Q  the market price of risk,  , follows the 

mean reverting stochastic process 

 

 d dt dW                      (10) 

 

where   is the long-term average of the market price risk,   defines the speed of mean 

reversion. Here, we assume that the same noise process drives both the spot exchange rate 
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and the market price of risk. It would of course also be possible to consider a second 

independent Wiener process driving the stochastic differential equation for  . However, we 

leave investigation of this issue for future research.  

It should be pointed out here that when discretised the stochastic differential equation 

(10) would become a low order ARMA type process of the kind reported in Wolff (1987) and 

Cheung (1993). The parameters in equation (10) may be estimated from the data using the 

Kalman filter as pointed out earlier. 

Considering we have one forward price, f (t, x) , then we have a system of 3 stochastic 

differential equations. These are (under the measure Q ) 

 

f S SdS (r r )Sdt SdW(t)      ,               (11a) 

 

 d dt dW(t)      ,                 (11b) 

 

f S SdF(t, x) (r r )F(t, x)dt F(t, x)dW(t)      ,             (11c) 

 

where, 0S(0) S ,  0)0(  , f(r r )x
0f (0, x) S e  . 

It should be noted that the information contained in equations (11a) – (11c) is also 

contained in the pricing relationships, 

 

f(r r )x
tF(t, x) S e  .                   (12) 

 

To estimate the parameters in the filtering framework, however, it is convenient to work with 

the equation (11c).  

From equation (3), we can write the spot price at time t x  as, usings(t) lnS(t) , as 

 

t x t x2
S

f S S

t t

s(t x) s(t) r r x ( )d dW( )
2

  
           

 
  .               (13) 

 

From equation (13) we can write the expected value of s(t x) as 
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 
t x2

S
t t f S t

t

E s t x s r r x E ( )d
2

  
             

   
 .              (14) 

 

The derivation of this expectation may be found in Bhar, Chiarella and Pham (2001). It turns 

out to be:  

 

   
2 x
S

t f S

1 e
E s t x s(t) r r x (t) x

2

     
                     

.            (15) 

 

The above equation may also be expressed (via use of equation (7)) as, 

 

   
2 x
S

t S

1 e
E s t x f (t, x) (t) x .

2

   
               

              (16) 

 

Let  t, x  represent the risk premium (under Q ) for the x period ahead spot rate, then from 

equation (16) 

 

   
2 x
S

S

1 e
t, x (t) x

2

   
           

.               (17) 

 

It has been pointed out that previous studies attributed the difference between the 

forward rate and the subsequently realised spot exchange rate to a risk premium and the 

unexpected depreciation of the exchange rate. Equation (17) gives an explicit expression for 

the risk premium, characterising how the market price of risk enters the expectation 

formation and thus influence the risk premium. The integral terms involving the Wiener 

increments in equation (13) may be related to the noise terms identified in Wolff (1987) and 

Cheung (1993).  

In order to compute the time variation of risk premia for one-month forward rates 

obtained from equation (17) for a given exchange rate, we need the estimates of the 

parameters describing the stochastic process for   given by equation (10). Bhar, Chiarella 

and Pham (2001) show the state space formulation of the system and estimation of these 

parameters as well as the filtered and smoothed estimates of )(t . They also point out that 
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this method can be easily applied to multiple forward exchange rates and thereby examine the 

term structure of forward risk premia present in the quoted forward exchange rates. 

In this review article, we would also like to compare this with the risk premia 

obtained from the approach outlined in Wolff (1987) and Cheung (1993). Both these methods 

require data synchronisation with respect to matching the forward rate period. This is not 

necessary in the method just outlined above.  

In the following section we also briefly describe the method of Wolff/Cheung so as to 

facilitate comparison with the above approach.  

 

Approach Based on Wolff (1987)/Cheung (1993)  

 

The main idea in modelling the forward exchange rate risk premia in their model is the 

assumption that the forecast error resulting from the forward rate as the predictor of futures 

spot exchange rate consists of a premium component and a white noise error. In this context, 

 

t 1 t,t 1 t tS F P     .                   (18) 

 
Here t  is an uncorrelated zero-mean sequence and tP is the unobserved risk premium. In 

terms of state space system representation this is the measurement equation. Both Wolff and 

Cheung determine the dynamic of the risk premium by studying the time series properties (in 

the Box-Jenkins sense) of the quantity  t ,t 1 t 1F S  . As suggested in Wolff (2000) for most 

currencies either an ARMA (1,1) or an MA(1) representation is adequate. The corresponding 

equations for tP  are given by, 

 

t t 1 tP P      (AR (1)),                  (19) 

 

t t 1 t 1 tP P            (ARMA (1,1))                (20) 

 

t t 1 tP         (MA (1)).                  (21) 

 

It is straightforward to set up the state equation matrices with the above assumed 

dynamics of the unobserved risk premium. Assuming 2  is the variance of the 
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innovation the state space representation is given below. The estimation algorithm for these 

models is straightforward linear Kalman filter and same as for BCP (2001) model. 

For AR (1) specification the measurement equation is (18) and the state equation is 

(19). For ARMA (1,1) specification the state equation is: 

 

t t 1
t

t t 1

P P1 1
+

0 0




      
               

, 

 

and the measurement equation takes the form: 

 

  t
t 1 t,t 1 t

t

P
S F 1 0 

 
     

. 

 

For the MA(1) representation the matrices are similar to that in case of ARMA(1,1) with 

restriction that 0  . 

 

Data and Empirical Results 

 

As part of our empirical investigation we apply both the methodologies reviewed here to five 

different exchange rates, all against U.S. dollars. We restrict ourselves to the pre-Euro era. 

These are Australian dollar (AUD), German marks (DEM), French frank (FRF), British 

pound (GBP) and the Japanese yen (JPY). The data set covers the period January 1986 to 

December 1998 with 156 observations in each series. We use only the one-month forward 

exchange rates so that the results from the BCP model can be compared directly with those 

from the implementation of Wolff/Cheung methodology. It should be pointed out that the 

BCP methodology does not require that the observations should be properly aligned with the 

maturity of the forward rates. The exchange rate data reflects the daily 4PM London 

quotation obtained from DataStream and the interest rate data are the daily closing one-

month Euro currency deposit rates.  

To start the adaptive algorithm of the Kalman filter we initialise the state vector with 

the first observations. The algorithm also requires specifying the prior covariance matrix for 

the state vector. In the absence of any specific knowledge about the prior distribution we use 

the diffuse prior specification following Harvey (1989, p. 121).  
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The parameter estimates are obtained by maximising the log likelihood function 

discussed in detail in BCP (2001). The numerical optimisation algorithm called ‘Newton’ in 

GAUSS is used for this purpose without any parameter constraints. The results of the 

estimation procedure are shown in Table 1. The t-statistics reported in that table are 

computed from the standard error obtained from the heteroscedasticity consistent covariance 

matrix of the parameters at the point of convergence.  

All the parameters of the model except the long-term average market price of risk are 

statistically significant for each of the currencies. The estimated parameter S  compares 

favourably with the sample estimates obtained from the spot exchange rate series (not 

reported separately). How the model fits the data is best analysed by examining the residual 

from the estimation process. These are reported in Table 2. One of the main requirements is 

that the residual be serially uncorrelated both in its level and its squared form. The 

portmanteau test and the ARCH test support this requirement for all the currencies examined.  

As the Kalman filter generated residuals are recursive in nature two other tests are carried out 

to judge the model adequacy. These are modified Von Neumann ratio and the recursive t-

tests (see Harvey (1990), page 157). Both these tests support our modelling approach. 

Finally, the conditional normality assumption made in the modelling is also supported by the 

Kolmogorov-Smirnov test statistics reported in Table 2.  

Since we are interested in comparing and contrasting the two modelling approaches 

we present the estimation results of the Wolff/Cheung models for the same set of currencies 

in Table 3. As can be seen most parameters are statistically significant. We subject the model 

residuals to the same set of tests as in Table 2 (although in their original papers, 

Wolff/Cheung does not report these diagnostics). The results reported in Table 4 support all 

the model adequacy tests.  

For the BCP model the risk premia contained in the one-month forward exchange rate 

can be computed easily from equation (17) with the help of the estimated parameters from 

Table 1 and the filtered (or smoothed) estimates of the market price of risk. Since 

Wolff/Cheung method does not provide this risk premia directly we dot not analyse this 

aspect any further.  

Next, we compare the one-month ahead prediction of the spot exchange rate with the 

realised exchange rate and thus generate the mean absolute prediction error and the root mean 

squared prediction error for each of the exchange rate series. In the context of Kalman filter 

this is really ex ante prediction error since the prediction of the measurement variable for 
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time t+1 is made utilising information up to and including time t. This is true for 

Wolff/Cheung model as well because the way we have implemented it. The comparative 

results are shown in Table 5 for our model, Wolff/Cheung model as well as a martingale 

process.  

Overall conclusion from examining the Table 5 is that both the models perform better 

than the martingale process. There is, however, not much difference in forecasting 

performance between the BCP model and Wolff/Cheung model. It should, however, be 

remembered that the BCP model could be implemented for data set of any observed 

frequency whereas Wolff/Cheung approach is limited to data set where the spot exchange 

rate frequency aligns with the forward rate data used.  

 

Conclusions 

 

In this paper we have reviewed two approaches to analyse the time varying risk premium in 

forward exchange rates. The first one, the BCP model exploits the relationship that links the 

spot exchange rate and the forward exchange rate through the market price of risk. By 

directly modelling the market price of risk as a mean reverting process it is possible to show 

how the market price of risk enters into expectation formation for a future spot exchange rate.  

This BCP methodology allows us to quantify the risk premium associated with a 

particular forward exchange rate in terms of the parameters of the process describing the 

market price of risk. We also discuss how these parameters can be estimated in a state space 

framework by application of Kalman filter. This procedure, in turn, generates the filtered and 

the smoothed estimates for the unobserved market price of risk.  

The second methodology i.e. Wolff/Cheung procedure is also applied to the same data 

set and for three different dynamics of the unobserved risk premium process. This model is 

also estimated via Kalman filter.  

Both these models perform well in one step ahead forecasting spot exchange rate and 

both beat the naïve forecast. However, the BCP model is well suited for any observed data 

frequency, whereas in the Wolff/Cheung method spot and forward exchange rate data 

frequency needs to be matched.  

 



 13

References: 

Backus, D., Gregory, A. and Telmer, C. (1993), “Accounting for forward rates in markets for 

foreign currency”, Journal of Finance, 48, 1887-1908. 

Bakshi, G.S. and Naka, A. (1997), “Unbiasedness of the forward exchange rates”, The 

Financial Review, 32(1), 145-162. 

Bekaert, G. (1994), “Exchange rate volatility and deviation from unbiasedness in a cash-in-

advance model”, Journal of International Economics, 36, 29-52. 

Bhar, R., Chiarella, C. and Pham, T (2001), “Modelling the Currency Forward Risk 

Premium: A New Perspective”, Asia-Pacific Financial Markets, December 2001, 

8(4), 341-360. 

Cheung, Y. (1993), “Exchange rate risk premiums”, Journal of International Money and 

Finance, 12, 182-194. 

Engel, C. (1996), “The forward discount anomaly and the risk premium: A survey of recent 

evidence”, Journal of Empirical Finance, 3, 123-192. 

Harvey, A. C. (1989), Forecasting structural time series models and the Kalman filter, 

Cambridge University Press, Cambridge. 

Harvey, A. C., 1990. The Econometric Analysis of Time Series, 2nd edition. Cambridge, 

Massachusetts: The MIT Press. 

Hull, J. C. (1997), Options, Futures, and Other Derivatives, Third Edition, Prentice Hall 

International Inc. 

Lucas, R. E. (1982), “Interest rates and currency prices in a two country world”, Journal of 

Monetary Economics, 10, 335-360. 

Phillips, P. C. B. and Mcfarland, J. W. (1997), “Forward exchange market unbiasedness: the 

case of Australian dollar since 1984”, Journal of International Money and Finance, 

16, 885-907. 

Wells, C. (1996), The Kalman Filter in Finance, Kluwer Academic Publishers. 

Wolff, C. C. P. (1987), “Forward foreign exchange rates, expected spot rates, and premia: A 

signal-extraction approach”, The Journal of Finance, XLII (2), 395-406. 

Wolff, C. C. P. (2000), "Measuring the forward exchange risk premium: multi-country 

evidence from unobserved component models", Journal of International Financial 

markets, Institutions and Money, 10, 1-8. 

Wu, Y. and Zhang, H. (1997), “Forward premiums as unbiased predictors of future currency 

depreciation: a non-parametric analysis”, Journal of International Money and 

Finance, 16, 609-623.  



 14

 

Table 1 
Parameter Estimates for the Model Based on Market Price of Risk 

 
S        

     
Australian Dollar (AUD) 0.0272 8.0884 0.7226 21.2137 
 (2.16) (2.81) (0.68) (2.16) 
German Mark (DEM) 0.0797 17.8281 -0.2457 6.0437 
 (9.48) (7.88) (-0.67) (2.98) 
French Franc (FRF) 0.0528 11.2577 -0.5531 13.2373 
 (3.45) (5.97) (-0.80) (2.58) 
British Pound (GBP) 0.0609 12.2235 -0.6545 11.8079 
 (5.12) (5.85) (-1.12) (4.54) 
Japanese Yen (JPY) 0.0960 9.3827 0.0590 4.3061 
 (6.79) (0.98) (0.27) (2.15) 
     
 
Numbers in parentheses are t-statistics computed from standard errors obtained using the heteroscedasticity 
consistent covariance matrix at the point of convergence. 
 
 
 

Table 2 
Residual Diagnostics and Model Adequacy Tests (Model in Table 1) 

Market Portmanteau ARCH MNR Recursive T KS Statistic 
      

AUD 0.226 0.702 0.832 0.597 0.042 
DEM 0.080 0.474 0.996 0.887 0.055 
FRF 0.482 0.494 0.871 0.917 0.082 
GBP 0.091 0.342 0.897 0.857 0.068 
JPY 0.286 0.608 0.600 0.956 0.064 

      
 
Entries are p-values for the respective statistics except for the KS statistic. These diagnostics are computed from 
the recursive residual of the measurement equation, which corresponds to the spot index process. The null 
hypothesis in portmanteau test is that the residuals are serially uncorrelated. The ARCH test checks for no serial 
correlations in the squared residual up to lag 26. Both these test are applicable to recursive residuals as 
explained in Wells (1996, page 27). MNR is the modified Von Neumann ratio test using recursive residual for 
model adequacy (see Harvey (1990, chapter 5). Similarly, if the model is correctly specified then Recursive T 
has a Student’s t-distribution (see Harvey (1990, page 157).  KS statistic represents the Kolmogorov-Smirnov 
test statistic for normality. 95% significance level in this test is 0.109. When KS statistic is less than 0.109 the 
null hypothesis of normality cannot be rejected. 
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Table 3 

Parameter Estimates for the Model Based on Wolff (1986), Cheung (1993) 
      
     
Australian Dollar (AUD) 0.9439  0.0261 0.0000 
 (23.18)  (17.01) (0.000) 
German Mark (DEM) -0.7150 0.9206 0.0142 0.0277 
 (-6.57) (5.12) (1.64) (4.28) 
French Franc (FRF) -0.7183 0.9189 0.0077 0.0288 
 (-7.40) (9.70) (5.56) (15.31) 
British Pound (GBP)  0.6318 0.0269 0.0159 
  (5.90) (6.14) (2.25) 
Japanese Yen (JPY)  0.9311 0.0368 0.0054 
  (3.91) (10.27) (0.57) 
     
 
Numbers in parentheses are t-statistics computed from standard errors obtained using the heteroscedasticity 
consistent covariance matrix at the point of convergence. 
 
 
 

Table 4 
Residual Diagnostics and Model Adequacy Tests (Model in Table 3) 

Market Portmanteau ARCH MNR Recursive T KS Statistic 
      

AUD 0.130 0.769 0.297 0.925 0.035 
DEM 0.428 0.938 0.604 0.482 0.055 
FRF 0.591 0.937 0.379 0.275 0.059 
GBP 0.270 0.420 0.486 0.287 0.083 
JPY 0.458 0.551 0.539 0.942 0.063 

      
 
Entries are p-values for the respective statistics except for the KS statistic. These diagnostics are computed from 
the recursive residual of the measurement equation, which corresponds to the spot index process. The null 
hypothesis in portmanteau test is that the residuals are serially uncorrelated. The ARCH test checks for no serial 
correlations in the squared residual up to lag 26. Both these test are applicable to recursive residuals as 
explained in Wells (1996, page 27). MNR is the modified Von Neumann ratio test using recursive residual for 
model adequacy (see Harvey (1990, chapter 5). Similarly, if the model is correctly specified then Recursive T 
has a Student’s t-distribution (see Harvey (1990, page 157). KS statistic represents the Kolmogorov-Smirnov 
test statistic for normality. 95% significance level in this test is 0.109. When KS statistic is less than 0.109 the 
null hypothesis of normality cannot be rejected. 
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Table 5 

One Step Ahead Forecast Error for Spot Exchange Rate 
 Model Based on MAE MSE 

    
AUD Market Price of Risk  0.0205 0.0007 
 Cheung/Wolff 0.0206 0.0007 
 Martingale Process 0.0279 0.0013 
    
DEM Market Price of Risk 0.0258 0.0011 
 Cheung/Wolff  0.0254 0.0010 
 Martingale Process 0.0451 0.0035 
    
FRF Market Price of Risk  0.0248 0.0010 
 Cheung/Wolff 0.0241 0.0009 
 Martingale Process 0.1446 0.0344 
    
GBP Market Price of Risk  0.0235 0.0010 
 Cheung/Wolff  0.0250 0.0011 
 Martingale  Process 0.0143 0.0004 
    
JPY Market Price of Risk  0.0286 0.0014 
 Cheung/Wolff  0.0290 0.0014 
 Martingale Process 3.6540 23.5860 
    
 
‘MAE’ and ‘MSE’ represent mean absolute error and mean squared error respectively. These are computed 
from the one step ahead forecast error obtained during Kalman filter recursion. These forecast errors are used to 
develop the prediction error form of the likelihood function. Cheung/Wolff model refers to our somewhat 
modified implementation of their approach.  
 
 
 

 

 
 
 


