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Abstract. Accurate scenario simulation methods for solutions of multi-
dimensional stochastic differential equations find application in stochastic
analysis, the statistics of stochastic processes and many other areas, for
instance, in finance. They have been playing a crucial role as standard models
in various areas and dominate often the communication and thinking in a
particular field of application, even that they may be too simple for more
advanced tasks. Various discrete time simulation methods have been devel-
oped over the years. However, the simulation of solutions of some stochastic
differential equations can be problematic due to systematic errors and
numerical instabilities. Therefore, it is valuable to identify multi-dimensional
stochastic differential equations with solutions that can be simulated exactly.
This avoids several of the theoretical and practical problems encountered
by those simulation methods that use discrete time approximations. This
paper provides a survey of methods for the exact simulation of paths of
some multi-dimensional solutions of stochastic differential equations including
Ornstein-Uhlenbeck, square root, squared Bessel, Wishart and Lévy type
processes.
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1University of Technology Sydney, School of Finance & Economics and Department of

Mathematical Sciences, PO Box 123, Broadway, NSW, 2007, Australia



1 Introduction

Accurate scenario simulation of solutions of stochastic differential equations
(SDEs) is widely applicable in stochastic analysis and its areas of application, for
instance, in finance or filtering, see Kallianpur (1980). Monographs in the direc-
tion of stochastic numerical methods include Kloeden & Platen (1999), Kloeden,
Platen & Schurz (2003), Milstein (1995), Jäckel (2002) and Glasserman (2004).
Many simulation techniques have been developed over the years. However, some
SDEs can be problematic in terms of simulation. Therefore, it is necessary to
understand and avoid the problems that may arise during the simulation of so-
lutions of such SDEs. For illustration, let us consider a family of SDEs of the
form

dXt = a(Xt)dt+
√

2XtdWt. (1.1)

Note that the diffusion coefficient function f(x) =
√

2x is non-Lipschitz. Its
derivative becomes infinite as x tends to 0. The standard convergence theorems
derived in the above mentioned literature do not easily cover such case. It is,
therefore, of interest to identify approximate simulation methods for various non-
linear types of SDEs and also for multi-dimensional SDEs. This paper emphasizes
the fact that the problem of non-Lipschitz continuous coefficients is circumvented
for SDEs where we can simulate exact solutions. For instance, for squared Bessel
processes of integer dimension, see Revuz & Yor (1999), we will explain how to
simulate exact solutions. Based on results in Craddock & Platen (2004), exact
solutions can be simulated by sampling from the explicitly available transition
density of some nonlinear SDEs where the drift function a(·) in (1.1) takes a
particular form. These then include also squared Bessel processes of noninteger
dimension.

Another problem with the simulation of SDEs may be the lack of sufficient nu-
merical stability of the chosen scheme. Numerical stability is understood as the
ability of a scheme to control the propagation of initial and roundoff errors. This
ability may get lost for some parameter ranges when using some given scheme.
There is a wide range of literature which deals with the issue of numerical sta-
bility. In particular, implicit or predictor-corrector methods are used to control
the propagation of errors. We refer here to papers by Talay (1982), Klauder
& Petersen (1985), Milstein (1988), Hernandez & Spigler (1993), Saito & Mit-
sui (1993), Kloeden & Platen (1992), Milstein, Platen & Schurz (1998), Higham
(2000), Higham, Mao & Yuan (2007), Alcock & Burrage (2006), Bruti-Liberati
& Platen (2008) and Platen & Shi (2008). The issue of numerical stability can
be circumvented when it is possible to simulate exact solutions.

Moreover, for theoretically strictly positive processes it is often not acceptable to
use discrete time simulation methods that may generate negative values. This
problem, however, can be in some cases solved by a transformation of the initial
SDE, via the Itô formula, to a process which lives on the entire real axis. This is,
in particular, useful for geometric Brownian motion, the standard asset dynamics
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under the Black-Scholes model in finance. Here one can take the logarithm to
obtain a linearly transformed Wiener process. One may try such an approach to
transform the square root process of the form

dXt = κ(θ −Xt)dt+ σ
√

XtdWt, (1.2)

where t ∈ ℜ+. This process remains strictly positive for dimension δ = 4κθ
σ2 > 2.

Suppose that we simulate for δ > 2 the process Yt =
√
Xt using a standard explicit

numerical scheme such as the Euler scheme, see Kloeden & Platen (1999). The
SDE of the corresponding stochastic process Y = {Yt =

√
Xt, t ≥ 0} has then

additive noise and is given by

dYt =

(

κθ − σ2/4

2Yt
− κ

2
Yt

)

dt+
σ

2
dWt. (1.3)

Theoretically, by squaring the resulting trajectory of Y we should obtain an
approximate trajectory of the square root process X. However, note that the

drift coefficient κθ−σ2/4
2y

− κ
2
y is non-Lipschitz and may almost explode for small y.

Even that we have additive noise, this feature will most likely produce simulation
problems for trajectories near zero. This kind of problem becomes dominant for
small dimension δ < 2 of the square root process. In such case it would be very
valuable to have an exact solution to avoid this kind of problem.

Beyond the Wiener process with its direct transformations, including the geomet-
ric Brownian motion and the Ornstein-Uhlenbeck process, the family of square
root and squared Bessel processes are probably the most frequently used diffusion
models in applications. In general, it is a challenging task to obtain efficiently a
reasonably accurate trajectory of a square root process using simulation, as is doc-
umented in an increasing literature on this topic. This literature includes the use
of the balanced implicit method introduced in Milstein, Platen & Schurz (1998),
the adaptive Milstein scheme of Kahl (2004), the balanced Milstein method of
Kahl & Schurz (2005) and Alcock & Burrage (2006). Additionally, various other
methods have been designed to approximate the square root process. Here we
refer to Deelstra & Delbaen (1998), Diop (2003), Bossy & Diop (2004), Berkaoui,
Bossy & Diop (2005), Alfonsi (2005), Broadie & Kaya (2006), Lord, Koekkoek
& van Dijk (2006), Smith (2007) and Andersen (2008). The current paper con-
tributes to this literature by studying also the simulation of multi-dimensional
square root and squared Bessel processes.

In various areas of application one has to model vectors or even matrices of
evolving dependent stochastic quantities. This is typically the case, for instance,
when modeling asset prices in financial markets. Also in hidden Markov chain
filtering vectors of unconditional probabilities have to be numerically evaluated.
The above mentioned numerical problems can arise in a complex manner when
simulating the trajectories of multi-dimensional models. For instance, different
time scales in the dynamics of certain components can create stiff SDEs, see Hairer
& Wanner (1996) and Kloeden & Platen (1999), which are almost impossible to
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handle by standard schemes. This makes it also worthwhile to identify classes of
multi-dimensional SDEs with exact solutions or almost exact approximations.

The current paper surveys and develops exact simulation methods for solutions
of several classes of multi-dimensional SDEs, aiming to avoid the numerical prob-
lems mentioned above. In Section 2 we show how the systematic application
of the Itô formula extends the family of SDEs for which exact solutions can be
generated via simulation. Furthermore, in Sections 3-6 we discuss the exact sim-
ulation of selected matrix valued stochastic processes. These include: the matrix
Ornstein-Uhlenbeck process, the Wishart process, the matrix affine processes and
the matrix Lévy processes. We conclude with Section 7, where we discuss sam-
pling from available transition densities of multi-dimensional stochastic processes.
In this section we also describe alternatives related to the simulation of solutions
of multi-dimensional SDEs.

2 Multi-dimensional Itô Formula

We will start our discussion by recalling some basic facts including the application
of the multi-dimensional Itô formula. Given some family of explicitly solvable
multi-dimensional SDEs, one can obtain by application of the multi-dimensional
Itô formula another family of explicitly solvable multi-dimensional SDEs. This
results in a wide range of multi-dimensional SDEs that can be simulated exactly.
In this section we illustrate this property by simulating a 2-dimensional Black-
Scholes model, the standard asset price model in finance.

Vector of Independent Wiener Processes

Let us consider an m-dimensional Wiener process W = {W t = (W 1
t , . . . ,W

m
t )⊤,

t ∈ [0,∞)}. We assume that the components of this vector stochastic process
W , are independent. The increments of the Wiener processes W j

t − W j
s for

j ∈ {1, 2, . . . , m}, t ≥ 0 and s ≤ t are then independent Gaussian random
variables with mean zero and variance equal to t− s. Therefore, one obtains the
vector increments of the standard m-dimensional Wiener process W t − W s ∼
Nd(0, (t− s)I) as a vector of zero mean independent Gaussian random variables
with variance t−s. I denotes here the identity matrix. We obtain for the values of
the trajectory of the standard m-dimensional Wiener process at the discretization
times ti = i∆, i ∈ {0, 1, 2, . . .}, with ∆ > 0 the following iterative formula

W 0 = 0 (2.1)

W ti+1
= W ti +

√
∆N i+1,

where N i+1 ∼ Nm(0, I) is an independent standard Gaussian random vector and
0 denotes the corresponding vector of zeros.
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Multi-dimensional Itô Formula

Let be given them-dimensional Wiener process W = {W t = (W 1
t , . . . ,W

m
t )⊤, t ∈

[0,∞)}, a d-dimensional drift coefficient vector function a : [0, T ] × ℜd → ℜd

and a d × m-matrix diffusion coefficient function b : [0, T ] × ℜd → ℜd×m. In
this framework we assume that we have already a family of explicitly solvable
d-dimensional SDEs given as

dX t = a(t,X t)dt+ b(t,X t)dW t, (2.2)

for t ∈ [0,∞), X0 ∈ ℜd. This means that the kth component of (2.2) equals

dXk
t = ak(t,X t)dt+

m
∑

j=1

bk,j(t,X t)dW
j
t . (2.3)

For a sufficiently smooth vector function U : [0, T ]×ℜd → ℜk of the solution X t

of (2.2) we obtain a k-dimensional process

Y t = U(t,X t). (2.4)

The expression for its pth component, resulting from the application of the Itô
formula, satisfies the SDE

dY p
t =

(

∂Up

∂t
+

d
∑

i=1

ai∂U
p

∂xi
+

1

2

d
∑

i,j=1

m
∑

l=1

bi,lbj,l
∂2Up

∂xi∂xj

)

dt (2.5)

+

m
∑

l=1

d
∑

i=1

bi,l
∂Up

∂xi
dW l

t ,

for p ∈ {1, 2, . . . , k}, where the terms on the right-hand side of (2.5) are evaluated
at (t,X t). It is a trivial but very valuable observation that also the paths of the
solution of the SDE (2.5) can be exactly simulated since X ti can be obtained
exactly at all discretization points and, by (2.4), Y ti is simply a function of X ti .

Vector of Correlated Wiener Processes

Let us now define a d-dimensional continuous process W̃ = {W̃ t = (W̃ 1
t , W̃

2
t , . . . ,

W̃ d
t )⊤, t ∈ [0,∞)} such that its components W̃ 1

t , W̃
2
t , . . . , W̃

d
t are transformed

scalar Wiener processes. In vector notation, such a d-dimensional transformed
Wiener process can be expressed by the linear transform

W̃ t = at+ BW t, (2.6)

where a = (a1, a2, . . . , ad)
⊤ is a d-dimensional vector, B is a d ×m-matrix and

W = {W t = (W 1
t ,W

2
t , . . . ,W

m
t )⊤, t ∈ [0,∞)} is an m-dimensional standard

Wiener process. By the application of the multi-dimensional Itô formula one
obtains

dW̃ k
t = akdt+

m
∑

i=1

bk,idW
i
t , (2.7)
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for k ∈ {1, 2, . . . , d}. This means that W̃ k
t , k ∈ {1, 2, . . . , d}, is constructed as a

linear combination of components of the vector W t plus some trend.

From the properties of Gaussian random variables, the following relation results

W̃ 0 = 0, (2.8)

W̃ ti+1
= W̃ ti + a∆ +

√
∆Ñ i+1,

for ti = i∆, i ∈ {0, 1, . . .} with ∆ > 0. For each i ∈ {0, 1, 2, . . .} the random vec-
tor Ñ i+1 ∼ Nd(0,Σ) is here a d-dimensional Gaussian vector with the correlation
matrix Σ = BB

⊤.

Multi-dimensional Geometric Brownian Motions

Now, we describe multi-dimensional geometric Brownian motions that yield the
Black-Scholes model. This model emerges when taking the exponent of the lin-
early transformed Wiener process. Denote by St a diagonal matrix with jth
diagonal element Sj

t , j ∈ {1, 2, . . . , d}, representing the jth asset price at time
t ∈ [0,∞). Then the SDE for the jth Black-Scholes asset price Sj

t is defined by

dSj
t = Sj

t

(

aj
tdt+

d
∑

k=1

bj,kt dW k
t

)

(2.9)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. Here W k, k ∈ {1, 2, . . . , d}, denotes an
independent standard Wiener process. Note that the Zakai equation for the
Wonham filter is of a similar form, see Kallianpur (1980). To represent the above
SDE in matrix form we introduce the diagonal matrix At = [Ai,j

t ]di,j=1 with

Ai,j
t =

{

aj
t for i = j

0 otherwise
(2.10)

and diagonal matrix B
k
t = [Bk,i,j

t ]di,j=1 with

Bk,i,j
t =

{

bj,kt for i = j
0 otherwise

(2.11)

for k, i, j ∈ {1, 2, . . . , d} and t ∈ [0,∞). If all these diagonal matrices commute
in the sense

AB
l = B

l
A and B

l
B

k = B
k
B

l (2.12)

for all k, l ∈ {1, 2, . . . , m}, then we can write the SDE (2.9) as matrix SDE

dSt = AtStdt+

d
∑

k=1

B
k
t StdW

k
t (2.13)

for t ∈ [0,∞). Consequently, we obtain for the jth asset price the explicit solution

Sj
t = Sj

0 exp

{

∫ t

0

(

aj
s −

1

2

d
∑

k=1

(bj,kt )2

)

ds+

d
∑

k=1

∫ t

0

bj,ks dW k
s

}

(2.14)
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for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. When taking the above exponential elemen-
twise, the explicit solution of (2.9) can be expressed as the following exponential

St = S0 exp

{

∫ t

0

(

As −
1

2

d
∑

k=1

(

B
k
s

)2

)

ds+
d
∑

k=1

∫ t

0

B
k
sdW

k
s

}

(2.15)

for t ≥ 0. Additionally, if the appreciation rates and volatilities are piecewise
constant, then we can simulate exact solutions. The main advantage of the
multi-dimensional Black-Scholes model, which also made it so popular, is that
it provides an explicit solution for the market dynamics and allows a range of
explicit formulas.

Before we consider later more complicated SDEs let us give a simple example for
a two-dimensional Black-Scholes model with

B
1 =

(

b1 0
0 b2̺

)

and B
2 =

(

0 0

0 b2
√

1 − ̺2

)

. (2.16)

Here we obtain the following exact solution

S1
t = S1

0 exp

{(

a1 −
1

2
b21

)

t+ b1W
1
t

}

, (2.17)

S2
t = S2

0 exp

{(

a2 −
1

2
b22

)

t+ b2

(

̺W 1
t +

√

1 − ̺2W 2
t

)

}

, (2.18)

for t ∈ [0,∞). The trajectory of this two-dimensional model is illustrated in
Fig. 2.1 for the parameter choice S1

0 = S2
0 = 1, a1 = a2 = 0.1, b1 = b2 = 0.2 and

̺ = 0.8.

3 Matrix Ornstein-Uhlenbeck Processes

In this section we will show how to simulate matrices of Ornstein-Uhlenbeck
(OU)-processes. This can be performed by using matrices of time changed Wiener
processes. Therefore, we will first introduce matrix Wiener processes and show
how to simulate time changed matrix Wiener processes.

Matrix Wiener Processes

Let us define a d×m standard matrix Wiener process W = {W t = [W i,j
t ]d,m

i,j=1, t ∈
[0,∞)}. This matrix stochastic process can be obtained by the following construc-
tion

W 0 = 0 (3.1)

W ti+1
= W ti +

√
∆N i+1,

for the times ti = i∆, i = {0, 1, . . .} with ∆ > 0 and d × m-matrix 0 of zero
elements. Here N i+1 ∼ Nd×m(0, Im ⊗ Id) is a matrix of zero mean Gaussian
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Figure 2.1: Trajectory of a two-dimensional Black-Scholes model with parameters
S1

0 = S2
0 = 1, a1 = a2 = 0.1, b1 = b2 = 0.2 and ̺ = 0.8

distributed random variables. The covariance matrix Im ⊗ Id is an m×m block
matrix with d× d block matrices as its elements, that is,

Im ⊗ Id =











Id 0 . . . 0
0 Id . . . 0
...

...
...

...
0 0 . . . Id











. (3.2)

Here Id denotes the d × d identity matrix. Moreover, similar to the vector
case, we are able to define a transformed matrix Wiener process W̃ = {W̃ t =
[W̃ i,j

t ]d,m
i,j=1, t ∈ [0,∞)} using the above matrix Wiener process W as follows

W̃ t = M t+ Σ1W tΣ
⊤

2 , (3.3)

where M is a d ×m matrix and Σ1 and Σ2 are nonsingular d × d and m ×m
matrices, respectively. Values of such a matrix stochastic process can be obtained
at the discrete times ti = i∆ by the following recursive computation

W̃ 0 = 0 (3.4)

W̃ ti+1
= W̃ ti + M∆ +

√
∆Ñ i+1,

for i ∈ {0, 1, . . .} and Ñ i+1 ∼ Nd×m(0,Σ2 ⊗ Σ1). Here, the covariance matrix
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Figure 3.1: 2 × 2 matrix Wiener process with both correlated rows and columns

Σ2 ⊗ Σ1 is an m×m block matrix of the form

Σ2 ⊗ Σ1 =











σ2
1,1Σ1 σ2

1,2Σ1 . . . σ2
1,mΣ1

σ2
2,1Σ1 σ2

2,2Σ1 . . . σ2
2,mΣ1

...
...

...
...

σ2
m,1Σ1 σ2

m,2Σ1 . . . σ2
m,mΣ1











, (3.5)

where Σ1 = [σ1
i,j ]

d
i,j and Σ2 = [σ2

i,j ]
m
i,j.

In Fig.3.1 we illustrate a 2×2 matrix transformed Wiener process W̃ for ̺ = 0.8,
which was obtained from the standard 2 × 2 matrix Wiener process W by the
following transformation

W̃ t = Σ1W tΣ
⊤

2 , (3.6)

where

Σ1 = Σ2 =

(

1 0

̺
√

1 − ̺2

)

. (3.7)

We note in Fig. 3.1 the correlation effect on the trajectories on both the elements
of the columns and rows of such a 2×2 matrix valued transformed Wiener process.

Time Changed Wiener Processes

Instead of multiplying the time by some constant to scale the fluctuations of the
Wiener paths, one can introduce time dependent scaling by a, so called, time
change ϕ = {ϕ(t), t ≥ 0}. Let us now consider a vector of time changed standard
independent Wiener processes W = {W ϕ(t) = (W 1

ϕ(t), . . . ,W
m
ϕ(t))

⊤, t ∈ [0,∞)}.
Given the time discretization ti = i∆, i ∈ {0, 1, 2, . . .}, with time step size ∆ > 0
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we obtain this time changed standard Wiener process at discretization times by
the following iterative formula

W ϕ(0) = 0 (3.8)

W ϕ(ti+1) = W ϕ(ti) +
√

ϕ(ti+1) − ϕ(ti)N i+1,

where the vector N i+1 ∼ Nm(0, I) is formed by independent standard Gaussian
random variables. Here I is the m×m identity matrix. Obviously, it is possible to
apply different time changes to different elements of the vector W . For instance,
let us define

ϕj(t) =
b2j
2cj

(e2cjt − 1) (3.9)

for t ∈ [0,∞), bj > 0, cj > 0 and j ∈ {1, 2, . . . , m}. Then the Gaussian elements
of the vector W ϕ(t) can be defined such that

W j
ϕj(ti+1) −W j

ϕj(ti)
∼ N (0, ϕj(ti+1) − ϕj(ti)), (3.10)

where W j
ϕj(0)

= 0, j ∈ {1, 2, . . . , m} and i ∈ {0, 1, . . .}.
In order to obtain a time changed vector Wiener process, whose elements are
correlated time changed Wiener processes, it is sufficient to define a new vector
W̃ = {W̃ ϕ(t) = (W̃ 1

ϕ(t), . . . , W̃
d
ϕ(t))

⊤, t ∈ [0,∞)} by the following transformation

W̃ ϕ(t) = BW ϕ(t), (3.11)

where B is a d×m-matrix of coefficients and W = {W ϕ(t) = (W 1
ϕ(t), . . . ,W

m
ϕ(t))

⊤,

t ∈ [0,∞)} is an m-dimensional time changed Wiener process with independent
components as in (3.10).

Additionally, let us define a d×m standard time changed matrix Wiener process
W = {W ϕ(t) = [W j,k

ϕ(t)]
d,m
j,k=1, t ∈ [0,∞)}. Here, the independent elements of the

matrix W ϕ(t) are such that

W j,k
ϕj,k(ti+1) −W j,k

ϕj,k(ti)
∼ N (0, ϕj,k(ti+1) − ϕj,k(ti)) , (3.12)

whereW k,j
ϕk,j(0)

= 0, ti = i∆, i ∈ {0, 1, . . .} and j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , m}.
For instance, we may define the (j, k)th time transformation by

ϕj,k(t) =
b2j,k
2cj,k

(

e2cj,kt − 1
)

(3.13)

for t ∈ [0,∞), bj,k > 0, cj,k > 0, and j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , m}. In order
to obtain a time changed matrix Wiener process with correlated elements we can
use the formula (3.3).

In Fig. 3.2 we display a time changed matrix Wiener process for d = m = 2 with
the covariance matrix I⊗Σ1, where Σ1 is as in (3.7), ̺ = 0.8 and the parameters
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Figure 3.2: Matrix valued time changed Wiener process

in the time change equal bj,k =
√

2 and cj,k = 1 for j, k ∈ {1, 2}. That is, the
same time change is applied to each of the elements of this matrix Wiener process.
More precisely, we construct W̃ by the relation

W̃ ϕ(t) = Σ1W ϕ(t)I. (3.14)

In this case we obtain a time changed matrix Wiener process W̃ whose rows have
independent elements, while its columns have dependent elements.

Multi-dimensional Ornstein-Uhlenbeck (OU)-processes

Let us now consider vector and matrix valued OU-processes. We will here
construct multi-dimensional OU-processes as time changed and scaled multi-
dimensional Wiener processes. Note that given the following two functions

st = exp{−ct} and ϕ(t) =
b2

2c
(e2ct − 1) (3.15)

for t ∈ [0,∞), b, c > 0, a scalar OU-process Y = {Yt, t ∈ [0,∞)} can be repre-
sented in terms of a time changed and scaled scalar Wiener process, that is

Yt = stWϕ(t), (3.16)

where W = {Wϕ, ϕ ≥ 0} is a standard Wiener process in ϕ-time. By Itô’s formula
we obtain

dYt = Wϕ(t)dst + stdWϕ(t) = −Yt

st

cstdt+ st
b

st

dW̃t (3.17)

= −cYtdt+ bdW̃t,
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Figure 3.3: Matrix valued Ornstein-Uhlenbeck process

where dWϕ(t) = b
st
dW̃t, with W̃ denoting a standard Wiener process in t-time.

It is straightforward to obtain a vector OU-process by

Y t = stW ϕ(t), (3.18)

that is,
Y j

t = sj
tW

j
ϕj(t)

(3.19)

for j ∈ {1, 2, . . . , d} and t ≥ 0. The generalization to a matrix OU-process
is obvious. The construction of this process starts by forming a time changed
d×m matrix Wiener process and is then scaling each element of this matrix by
a function sj,k

t for j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}. Hence, the elements of
such a matrix can be expressed by the relation

Y j,k
t = sj,k

t W j,k
ϕj,k(t) (3.20)

for j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}.
We illustrate in Fig. 3.3 the matrix OU-process, obtained from the time changed
matrix Wiener process in Fig. 3.2, by the use of formula (3.20). Since, the time
changed matrix Wiener process has correlated rows and independent columns,
the OU-process in Fig. 3.3 shares this feature.

Multi-dimensional Geometric Ornstein-Uhlenbeck Processes

The Itô formula provides a general tool to generate a world of exact solutions of
SDEs based on functions of the solutions of those SDEs we have already consid-
ered. As an example, let us generate explicit solutions for a geometric OU-process.
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Figure 3.4: Matrix valued geometric OU-process

Here each element of a matrix valued OU-process is simply exponentiated. More
precisely, when denoting by X t = [Xj,k

t ]d,m
j,k=1 a d ×m matrix OU-process value

and by Y t = [Y j,k
t ]d,m

j,k=1 the corresponding d ×m matrix geometric OU-process
value at time t, then we obtain the elements of the matrix Y t by

Y j,k
t = exp{Xj,k

t } (3.21)

for t ∈ [0,∞).

In Fig. 3.4 we illustrate a 2 × 2 matrix geometric OU-process obtained from the
matrix OU-process in Fig. 3.3 by application of (3.21) to each of its elements.
More complex applications of the Itô formula for generating exact solutions will
be considered in the next section.

4 Wishart Processes

In this section we will discuss the exact simulation of Wishart processes, see Bru
(1991). These are matrix valued stochastic processes whose one-dimensional case
is generating squared Bessel processes. Therefore, we will start by describing the
exact simulation of a squared Bessel process, which later will be generalized to
its matrix equivalent, the Wishart process.

13



Squared Bessel Processes

A squared Bessel process (BESQδ
x) X = {Xϕ, ϕ ∈ [ϕ0,∞)}, ϕ0 ≥ 0, of dimension

δ ≥ 0 and with initial value x > 0, see Revuz & Yor (1999), is a fundamental
stochastic process which appears in various ways, for instance, in financial mod-
eling. This process can be described by the SDE

dXϕ = δ dϕ+ 2
√

|Xϕ| dWϕ (4.1)

for ϕ ∈ [ϕ0,∞) with Xϕ0
= x ≥ 0, where W = {Wϕ, ϕ ∈ [ϕ0,∞)} is a standard

Wiener process starting at the initial ϕ-time, ϕ = ϕ0, δ > 0. This means, for
ϕ ∈ [ϕ0,∞) one has as increment of the quadratic variation of W the difference

[W ]ϕ − [W ]ϕ0
= ϕ− ϕ0

for all ϕ ∈ [ϕ0,∞). Furthermore, if we fix the behavior of Xϕ at the boundary
zero as reflection, then the absolute sign under the square root in (4.1) can be
removed, and Xϕ remains nonnegative and has a unique strong solution, see
Revuz & Yor (1999).

The solution of the above SDE can be simulated exactly for the case when the
dimension of this process is an integer, that is δ ∈ {1, 2, . . .}. More precisely, for
δ ∈ {1, 2, . . .} and x ≥ 0 the dynamics of a BESQδ

x process X can be expressed
as the sum of the squares of δ independent Wiener processes W 1,W 2, . . . ,W δ in
ϕ-time, which start at time ϕ = ϕ0 in w1 ∈ ℜ, w2 ∈ ℜ, . . . wδ ∈ ℜ, respectively,
such that x =

∑δ
k=1(w

k)2. We can now construct the solution of (4.1) as

Xϕ =
δ
∑

k=1

(wk +W k
ϕ)2 (4.2)

for ϕ ∈ [ϕ0,∞). Applying the Itô formula we obtain

dXϕ = δdϕ+ 2

δ
∑

k=1

(wk +W k
ϕ)dW k

ϕ (4.3)

for ϕ ∈ [ϕ0,∞) with X0 =
∑δ

k=1(w
k)2 = x. Furthermore, by setting

dWϕ = |Xϕ|−
1

2

δ
∑

k=1

(wk +W k
ϕ)dW k

ϕ (4.4)

we obtain the SDE (4.1). Note that we have for Wϕ the quadratic variation

[W ]ϕ =

∫ ϕ

ϕ0

1

Xs

δ
∑

k=1

(wk +W k
s )2ds = ϕ− ϕ0. (4.5)

Hence, by the Lévy theorem the process Wϕ is a Wiener process in ϕ-time.

14
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Figure 4.1: Wishart process

Wishart Process

The matrix generalization of a squared Bessel process is a Wishart process, see
Bru (1991). The m × m matrix valued Wishart process with dimension δ ∈
{1, 2, . . .} is the matrix process S = {St, t ≥ 0} with

St = W
⊤

t W t (4.6)

for t ∈ ℜ+ and initial matrix s0 = W
⊤

0 W 0. Here W t is the value at time t ≥ 0 of
a δ ×m matrix Wiener process. Itô calculus applied to the relation (4.6) results
in the following SDE

dSt = δIdt+ dW⊤

t W t + W
⊤

t dW t, (4.7)

where I is the m×m identity matrix. It can be shown that W̃ t expressed by

dW̃ t =
(

√

St

)−1

W
⊤

t dW t (4.8)

is an m×m matrix Wiener process. Here
√

St represents the symmetric positive

square root of St, while
(√

St

)−1
is the inverse of the matrix

√
St. Note also that

dW̃
⊤

t = dW⊤

t W t

(

(

√

St

)−1
)⊤

= dW⊤

t W t

(

(

√

St

)⊤
)−1

(4.9)

= dW⊤

t W t

(

√

S
⊤

t

)−1

= dW⊤

t W t

(

√

St

)−1

,
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Figure 5.1: Time ϕ(t) against time t

since St is a symmetric matrix. Therefore, (4.7) can be rewritten in the following
form

dSt = δIdt+
√

StdW̃ t + dW̃
⊤

t

√
St (4.10)

for t ∈ ℜ+.

In Fig.4.1 we plot a 2×2 Wishart process of dimension δ = 2. The matrix Wiener
process in this example was obtained by assuming the covariance matrix I ⊗Σ1,
where Σ1 is as in (3.7), with ̺ = 0.8.

5 Affine Matrix Processes

Another group of matrix valued stochastic processes that can be simulated exactly
is a matrix of affine processes. This family of stochastic processes has as its special
case a matrix of square root (SR) processes, which are directly linked to Wishart
processes. They also can be obtained from matrices of OU-processes. These two
methods of exact simulation are described below.

SR-Processes Generated via OU-Processes

Let us first consider δ ∈ {1, 2, . . .} standard OU-processes, that is

dX i
t = −cX i

tdt+ bdW i
t (5.1)

for t ∈ [0,∞), with X i
0 = x0, c, b ∈ ℜ and independent standard Wiener processes

W i for i ∈ {1, 2, . . . , n}. The square of such an OU-process has the Itô differential

d(X i
t)

2 = (b2 − 2c(X i
t)

2) + 2bX i
tdW

i
t , (5.2)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , δ}. Furthermore, we can form the sum of the δ
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Figure 5.2: Time changed Wishart process in log-scale

squared OU-processes, that is,

Yt =
δ
∑

i=1

(X i
t)

2 (5.3)

for t ∈ [0,∞). The SDE for Yt turns out to be

dYt =
δ
∑

i=1

(

b2 − 2c(X i
t)

2
)

dt+ 2b
δ
∑

i=1

X i
tdW

i
t (5.4)

for t ∈ [0,∞). In order to simplify the above SDE we introduce another Wiener
process W̄ = {W̄t, t ∈ [0,∞)} defined as

W̄t =

∫ t

0

dW̄s =

δ
∑

i=1

∫ t

0

X i
s√
Ys

dW i
s (5.5)

for t ∈ [0,∞). It can be shown that the quadratic variation of W̄ equals

[W̄ ]t =

∫ t

0

n
∑

i=1

(X i
s)

2

Ys
ds = t. (5.6)

Hence, by the Lévy theorem we see that W̄ is a standard Wiener process. There-
fore, we obtain an equivalent SDE for the square root process Y in the form

dYt = (δb2 − 2cYt)dt+ 2b
√

YtdW̄t (5.7)
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Figure 5.3: Matrix valued square root process

for t ∈ [0,∞) with Y0 = δ(x0)
2. Note that this process is an SR-process of

dimension δ ∈ {1, 2, . . .}. It is well-known that for δ = 1 the value Yt can reach
zero and is reflected at this boundary. For δ ∈ {2, 3, . . .} the process never reaches
zero for x0 > 0.

Matrix Valued Squares of OU-Processes

Kendall (1989) and Bru (1991) studied the matrix generalization for squares of
OU-processes. Denote by X t a δ ×m matrix solution of the SDE

dX t = −cX tdt+ bdW t, (5.8)

for t ≥ 0, with X0 = x0. Here W t is a δ ×m matrix Wiener process and x0 is a
δ ×m deterministic initial matrix; b, c ∈ ℜ. By setting

St = X
⊤

t X t, s0 = x
⊤

0 x0 (5.9)

and denoting dW̃ t =
√

S
−1
t X

⊤

t dW t we obtain an m ×m matrix SR process S

of dimension δ = {1, 2, . . .}. Note that the elements of W̃ t can be correlated.
Then St solves the SDE

dSt = (δb2I − 2cSt)dt+ b(
√

StdW̃ t + dW̃
⊤

t

√

St) (5.10)

for t ≥ 0, S0 = s0. Here St corresponds to a continuous-time process of stochas-
tic, symmetric, positive definite matrices, while

√
St is the positive symmetric

square root of the matrix St, see Gouriéroux & Sufana (2004). Furthermore, S
−1
t

is the inverse of the symmetric positive definite m×m matrix St and
√

S
−1
t its

square root.
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Note that for m = 1 the transform (5.9) simplifies to equation (5.3). We illustrate
in Fig. 5.3 the matrix SR-process obtained from the matrix OU-process from
Fig. 3.3. Note that not all elements of such a matrix remain always positive.
The elements S1,2 and S2,1 are identical and, in general, not positive. Most
importantly, the diagonal elements S1,1 and S2,2 are correlated SR-processes,
which are always positive.

SR-processes Generated via Squared Bessel Processes

Using squared Bessel processes one can derive SR-processes by certain transfor-
mations. For this reason let c : [0,∞) → ℜ and b : [0,∞) → ℜ be given
deterministic functions of time. We introduce the exponential

st = s0 exp

{
∫ t

0

cu du

}

(5.11)

and the ϕ-time

ϕ(t) = ϕ(0) +
1

4

∫ t

0

b2u
su
du (5.12)

for t ∈ [0,∞) and s0 > 0. Note that we have an explicit representation for the
function ϕ(t) in the case of constant parameters bt = b̄ 6= 0 and ct = c̄ 6= 0, where

ϕ(t) = ϕ(0) +
b̄2

4c̄s0

(1 − exp{−c̄t}) (5.13)

for t ∈ [0,∞) and s0 > 0. Furthermore, if ϕ(0) = − b̄2

4c̄s0
, then this function simply

equals

ϕ(t) = − b̄2

4c̄s0
exp{−c̄t} (5.14)

for t ∈ [0,∞), s0 > 0, b̄ 6= 0 and c̄ 6= 0. We show the function ϕ(t) in Fig. 5.1 for

the choice of b̄ = 1, c̄ = −0.05, s0 = 20 and ϕ(0) = − b̄2t
4c̄s0

= 0.25.

Given a squared Bessel process X of dimension δ > 0, using our previous notation,
we introduce the SR-process Y = {Yt, t ≥ 0} of dimension δ > 0 via the relation

Yt = stXϕ(t) (5.15)

indexed by time t ≥ 0, see also Delbaen & Shirakawa (1997).

Furthermore, by (4.1), (5.15), (5.11) and (5.12) and the Itô formula we can express
(5.15) in terms of the SDE

dYt =
(δ

4
b2t + ct Yt

)

dt+ bt
√

Yt dUt (5.16)

for t ∈ [0,∞), Y0 = s0Xϕ(0) and

dUt =

√

4st

b2t
dWϕ(t).
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Note that Ut forms by the Lévy theorem a Wiener process, since

[U ]t =

∫ t

0

4sz

b2z
dϕ(z) = t. (5.17)

The same time-change formula can be applied in the more general matrix case.
Given the Wishart process X it can be shown that the matrix square root process
can be obtained from the Wishart process by the following transformation

Y t = stXϕ(t), (5.18)

where st and ϕ(t) are as in (5.11) and (5.12), respectively. By (4.10), (5.18), (5.11)
and (5.12) and the Itô formula we can express (5.18) in terms of the matrix SDE

dY t =

(

δ

4
b2t I + ctY t

)

dt+
bt
2

(

√

Y tdU t + dU⊤

t

√

Y t

)

(5.19)

for t ∈ [0,∞), Y 0 = s0Xϕ(0) and where dU t =
√

4st

b2t
dW ϕ(t) is the stochastic

differential of a matrix Wiener process.

In Fig.5.2 we display the trajectory of the elements of a 2×2 matrix time changed
Wishart process Xϕ(t) in log-scale. Here the off-diagonal elements do not show
any value for the time periods when the argument of the logarithm becomes
negative. Such periods do not arise for the diagonal elements which are of main
interest. We now construct a trajectory of a 2 × 2 matrix SR-process obtained
as time changed Wishart process by the use of formula (5.18). Note that this
matrix SR-process is identical to the matrix SR-process in Fig. 5.3 obtained via
squares of OU-processes. In Fig. 5.3 we see that the off-diagonal elements have
near the time t = 7 indeed negative values.

Multi-dimensional Affine Processes

Let us now transform further the above obtained multi-dimensional SR-process
in order to obtain multi-dimensional affine processes, see Duffie & Kan (1994).
These processes have affine, that is linear drift and linear squared diffusion coeffi-
cients. In order to obtain members of this class of multi-dimensional processes we
can simply shift the multi-dimensional SR-process by a nonnegative, differentiable
function of time a : [0,∞) → [0,∞), defined through its derivative

a′t =
dat

dt
(5.20)

for t ∈ [0,∞) with a0 ∈ [0,∞). More precisely, we define the process R =
{Rt, t ∈ [0,∞)} such that

Rt = Y t + atI (5.21)

for t ∈ [0,∞). It is also possible to obtain more general affine processes by
shifting the matrix valued SR-process by a matrix At of nonnegative differentiable
functions of the type (5.20), that is

Rt = Y t + At (5.22)
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Figure 6.1: Gamma process

for t ∈ [0,∞). In this case Rt solves the following matrix SDE

dRt =

(

δ

4
b2t I + A

′

t − ctAt + ctRt

)

dt+
bt
2

(

√

Rt − AtdW̃ t + dW̃
⊤

t

√

Rt − At

)

,

(5.23)
for t ∈ [0,∞). Here A

′

t denotes the matrix of the derivatives of the type (5.20)
for the shifts of each element. Obviously, we applied here the Itô formula to the
equation (5.22).

6 Matrix Lévy Processes

We considered so far the exact simulation of solutions of multi-dimensional SDEs
driven by vector or matrix Wiener processes. The simulation methods described
can be, however, adapted also to multi-dimensional SDEs when these are driven
by more general vector or matrix valued Lévy processes. In principle, one can
substitute the Wiener processes by some Lévy processes.

Since Lévy processes have independent stationary increments, it is possible to
construct paths of a wide range of d-dimensional Lévy processes L = {Lt, t ≥ 0}
at given discretization times ti = i∆, i ∈ {0, 1, 2, . . .}, with fixed time step size
∆ > 0. The distribution of the Lévy increments Lti+1

− Lti , however, must
be infinitely divisible for the process L to be the transition distribution of a
Lévy process. One example of a family of infinitely divisible distributions is
the generalized hyperbolic (GH) distribution, see for instance McNeil, Frey &
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Figure 6.2: Matrix VG-process

Embrechts (2005). This family of distributions yields variance gamma (VG) and
normal inverse Gaussian (NIG) processes as special cases.

Simulation of the d-dimensional VG and NIG processes results from their repre-
sentation as subordinated vector Wiener processes with drift. That is,

Lt = aVt + BW Vt
, (6.1)

for t ∈ [0,∞). Here a = (a1, a2, . . . , ad)
⊤ is a d-dimensional vector, B is a

d×m-matrix and W = {W Vt
= (W 1

Vt
,W 2

Vt
, . . . ,Wm

Vt
)⊤, t ∈ [0,∞)} is a standard

m-dimensional vector Wiener process. When Vt is the gamma process or the
inverse Gaussian process, we obtain, respectively, the d-dimensional VG process
and the NIG process.

We also define the d×m matrix VG and NIG processes by

Lt = MVt + Σ1W Vt
Σ2, (6.2)

where M is a d ×m matrix and Σ1 and Σ2 are nonsingular d × d and m ×m
matrices, respectively. Here W = {W Vt

= [W i,j
Vt

]d,m
i,j=1, t ∈ [0,∞)} is a standard

d×m matrix Wiener process.

Processes of type (6.1) and (6.2) possess a number of useful properties because
they are conditionally Gaussian. In particular, if one knows how to simulate the
increments of the subordinator V , the values of L in (6.2) can be obtained at the
discrete times ti = i∆ by the following recursive computation

L0 = 0 (6.3)

Lti+1
= Lti + M∆Vi+1 +

√

∆Vi+1Ñ i+1,
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Figure 6.3: Wishart process driven by the matrix VG-process in Fig. 6.2

for i ∈ {0, 1, . . . , } and Ñ i+1 ∼ Nd×m(0,Σ2 ⊗ Σ1). Here the covariance matrix
Σ1 ⊗ Σ2 is as in (3.5).

The VG process is obtained by (6.3), where ∆Vi+1 ∼ κGa(∆
κ
, 1) are gamma

random variables for i ∈ {1, 2, . . .}, while the NIG process is obtained by (6.3),
where ∆Vi+1 ∼ IGaussian(∆2

κ
,∆) are inverse Gaussian random variables for i ∈

{1, 2, . . .}. Here the parameter κ is the variance of the subordinator V . See
also Cont & Tankov (2004) who describe exact simulation of scalar VG and NIG
processes. This includes algorithms for generators of gamma and inverse Gaussian
random variables.

Since we can simulate the paths of such driving Lévy processes exactly it is
possible to simulate solutions for the type of the above introduced SDEs when
driven by Lévy noise. For instance, let us consider a Wishart process of dimension
δ driven by a VG-process. That is, we consider the multi-dimensional SDE of the
form

dSt = δIdt+
√

StdLt + dL⊤

t

√
St (6.4)

for t ∈ ℜ+. In order to simulate this Wishart process, which may be driven by the
VG-process L, we first need to simulate a δ×m matrix VG-process. Afterwards
we obtain the m×m VG-Wishart process of dimension δ ∈ {1, 2, . . .} by setting
St = L

⊤

t Lt, for t ∈ ℜ+.

In Fig. 6.1 we show a trajectory of a gamma process, which is always nonde-
creasing. Here we have chosen κ = 1. Moreover, in Fig. 6.2 we display a 2 × 2
VG matrix process, with parameters M = 0 and the covariance matrix I ⊗ Σ1,
where Σ1 is as in (3.7) with ̺ = 0.8. The subordinator is here chosen to be
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the gamma process illustrated in Fig 6.1. Additionally, in Fig. 6.3 we display
the corresponding trajectory of the resulting 2× 2 Wishart process of dimension
δ = 2.

The subordination methodology can be widely applied to generate trajectories of
other matrix Lévy processes, for instance, matrix Lévy OU-processes and matrix
Lévy-affine processes.

7 Direct Sampling

It remains to emphasize that advanced software packages, as Matlab and Mathe-
matica, provide routines that generate a range of random variables with various
distributions that are needed in the above described simulations. For some multi-
dimensional distribution functions it is possible by using such software to sample
corresponding vector random variables. These are directly available for compu-
tation and should have exactly the requested multivariate transition distribution
function. For instance, the increment of the multi-dimensional Wiener process
can be simulated from available Gaussian random vectors

X t+∆ − X t ∼ Nd(0,Σ∆), (7.1)

where Nd denotes a d-dimensional Gaussian distribution with mean vector 0 and
covariance matrix Σ∆. Of course, one can build these random vectors also from
independent Gaussian random variables. Similarly, the value at time t + ∆ of
the standard d-dimensional OU-process can be obtained by using the Gaussian
random vector

X t+∆ ∼ Nd(X te
−∆,Σ(1 − e−2∆)). (7.2)

The m ×m Wishart process value X t+∆ can be simulated from the noncentral
Wishart distribution Wm with δ degrees of freedom, covariance matrix Σ∆ and
noncentrality matrix Σ−1

X t∆
−1, when random variables of the kind

X t+∆ ∼Wm(δ,Σ∆,Σ−1
X t∆

−1) (7.3)

are directly available. For details on how to sample from the noncentral Wishart
distribution we refer to Gleser (1976).

Also the increments of some Lévy processes, which are constructed from a GH
distribution, can be obtained exactly by using available vector random variables

X t+∆ − X t ∼ GHd(λ, χ, ψ, µ,Σ, γ) (7.4)

for fixed ∆ > 0.

Finally, we refer to Kloeden & Platen (1999) for a list of different, mostly scalar
specific examples of explicitly solvable multi-dimensional SDEs. These dynamics
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can be further generalized in the above indicated directions, using time changes
and applying time changed Lévy processes instead of Wiener processes. For in-
stance, the Wiener process driving the Black-Scholes model can be easily general-
ized by subordination to multi-dimensional Lévy processes, yielding exponential
Lévy asset price models, similar to those described in Barndorff-Nielsen & Shep-
hard (2001), Geman, Madan & Yor (2001) and Eberlein (2002).

The above presented exact and almost exact simulation methods for multi-dimen-
sional SDEs lead to accurate scenario simulations that are reliable over long pe-
riods of time. This is important for various applications, for instance, the pricing
of insurance contracts. Typically arising numerical stability problems are simply
avoided by exact simulation. Finally, we remark that there is no major prob-
lem to introduce further jump effects into the considered type of dynamics via a
jump-adapted time discretization, see Platen (1982), which enlarges significantly
the class of processes that allow exact simulation.
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Geman, H., D. Madan, & M. Yor (2001). Asset prices are Brownian motion:
only in business time. In Quantitative Analysis in Financial Markets, pp.
103–146. World Sci. Publishing.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Vol-
ume 53 of Appl. Math. Springer.

Gleser, L. J. (1976). A canonical representation for the noncentral Wishart
distribution useful for simulation. Journal of the American Statistical As-

sociation 71(355), 690–695.

Gouriéroux, C. & R. Sufana (2004). Derivative pricing with multivariate
stochastic volatility: Application to credit risk. Working paper CREST .

Hairer, E. & G. Wanner (1996). Solving ordinary differential equations II, Stiff

and differential algebraic systems. Springer.

Hernandez, D. B. & R. Spigler (1993). Convergence and stability of implicit
Runge-Kutta methods for systems with multiplicative noise. BIT 33, 654–
669.

Higham, D. J. (2000). Mean-square and asymptotic stability of numerical meth-
ods for stochastic ordinary differential equations. SIAM J. Numer. Anal. 38,
753–769.

Higham, D. J., X. Mao, & C. Yuan (2007). Almost sure and moment exponen-
tial stability in the numerical simulation of stochastic differential equations.
SIAM J. Numer. Anal. 45, 592–609.
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