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Abstract

This article derives a series of analytic formulae for various contingent
claims under the real-world probability measure using the stylised minimal
market model (SMMM). This model provides realistic dynamics for the
growth optimal portfolio (GOP) as a well-diversified equity index. It cap-
tures both leptokurtic returns with correct tail properties and the leverage
effect. Under the SMMM, the discounted GOP takes the form of a time-
transformed squared Bessel process of dimension four. From this property,
one finds that the SMMM possesses a special and interesting relationship
to non-central chi-square random variables with zero degrees of freedom.
The analytic formulae derived under the SMMM include options on the
GOP, options on exchange prices and options on zero-coupon bonds. For
options on zero-coupon bonds, analytic prices facilitate efficient calculation
of interest rate caps and floors.
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1 Introduction

In this paper we consider a stylised version of theminimal market model (SMMM)
originally proposed in Platen (2001) for modelling of the growth optimal portfolio
(GOP). The GOP achieves the maximum possible growth rate of any portfolio
over the long-term and can be shown to represent the best performing portfolio
in several different ways. The SMMM provides realistic dynamics for the GOP
as a well-diversified total return equity index, since it captures both leptokurtic
returns with correct tail properties and the well-known leverage effect. As de-
tailed in Platen (2001), the SMMM arises from an analysis of optimal market
dynamics for the GOP. If it is assumed that the drift of the discounted GOP
evolves smoothly over time in an exponential form, the resulting dynamics will
be that of the SMMM. Under this model, the discounted GOP takes the form
of a time-transformed squared Bessel process of dimension four. From this prop-
erty, we find that the SMMM possesses a special and interesting relationship to
non-central chi-square random variables with zero degrees of freedom. This dis-
tribution first appears in the derivation of the real-world price of a zero-coupon
bond under the SMMM. It is also relevant in all subsequent derivations in this
paper, including options on the GOP, options on exchange prices and options on
zero-coupon bonds. Previous analysis of options on the GOP in Heath & Platen
(2002) used numerical integration of the pricing function. The analytic results
derived below allow the efficient calculation of SMMM option prices and corre-
sponding implied volatility surfaces. In the case of options on exchange prices, we
derive results in terms of doubly non-central beta random variables with degrees
of freedom that are either zero or four, revealing the origin of the distribution
as a ratio of non-central random variates. These results are related to the work
in Hulley, Miller & Platen (2005), where analytic prices were derived for options
on primary security accounts for an SMMM that includes jumps. For options on
zero-coupon bonds, analytic prices facilitate efficient calculation of interest rate
caps and floors under the SMMM. The paper is structured as follows: Section 2
details the key quantities of a continuous financial market under the benchmark
approach of Heath & Platen (2006); Section 3 discusses the interest rate term
structure via zero-cpoupon bonds and forward rates given the SMMM; while Sec-
tion 4 concerns options on the GOP under the SMMM; Section 5 provides for
options on exchange prices under the SMMM; and Section 6 details on pricing
interest rate caps and floors under the SMMM via options on zero-coupon bonds.

2 Continuous Financial Market

We consider a continuous multi-asset market with d + 1 primary assets. Uncer-
tainty in this market is modelled by d independent standard Wiener processes
W k = {W k

t , t ∈ [0, T ]}, k ∈ {1, 2, . . . , d}. These are defined on a filtered prob-
ability space (Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞) and filtration
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A = (At)t∈[0,T ] fulfilling the usual conditions, as given in Karatzas & Shreve
(1998). P is the real-world probability measure. In the following we summarise
the benchmark approach as developed in Platen & Heath (2006).

We start by describing the main elements of a financial market, with particular
focus on the key financial quantities discussed under the benchmark approach
of Platen (2002). These include savings accounts, the GOP, exchange prices,
primary security accounts and the discounted GOP.

We assume that the ith savings account Bi
t, denominated in the ith currency and

associated with the ith short rate rit, satisfies the equation

Bi
t = Bi

0 exp

{∫ t

0

ris ds

}

(2.1)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}, where we set B i
0 = 1 without loss of generality.

The growth optimal portfolio (GOP) of our continuous market achieves the max-
imum possible expected growth rate over any time horizon. As such, the GOP
can be shown to be the best performing pathwise portfolio in the long run. It
has been studied previously in Kelly (1956), Long (1990), Karatzas & Shreve
(1998), Platen (2002) and many other researchers. We define the GOP process
Si,δ∗ = {Si,δ∗t , t ∈ [0, T ]} in the denomination of the ith currency by the stochastic
differential equation (SDE)

dSi,δ∗t = Si,δ∗t

[

rit + |θit|2
]

dt+ Si,δ∗t |θit| dW i
t (2.2)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Here |θi| = {|θit|, t ∈ [0, T ]} indicates the total
market price of risk in the ith currency denomination. Also note from (2.2) that
|θit| can be interpreted as the volatility of the GOP. The process W i = {W i

t , t ∈
[0, T ]} is a Wiener process, usually correlated with the Wiener processes driving
the GOP in other currency denominations.

Platen (2005b) shows that appropriately defined well-diversified portfolios ap-
proximate the GOP and exhibit similar behaviour under a mild regularity condi-
tion. Thus commonly used stock market indices can be used to approximate the
GOP, including but not limited to the MSCI Growth World Stock Index (MSCI).
The implications of this Diversification Theorem in Platen (2005b) are that mar-
ket observable data obtained from well-diversified stock market indices can be
used in conjunction with the benchmark approach for practical applications.

The GOP is immediately useful as a means to define an exchange price X i,j
t , as

the amount one pays in units of the ith primary asset at time t to obtain one
unit of the jth primary asset, hence

X i,j
t =

Si,δ∗t

Sj,δ∗t

(2.3)
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for t ∈ [0, T ] and i, j ∈ {0, 1, . . . , d}. Thus exchange prices can be defined analo-
gously to an exchange rate between different currencies. Next we introduce the
primary security account process Si,j = {Si,jt , t ∈ [0, T ]} for i, j ∈ {0, 1, . . . , d}
to model the jth primary asset j ∈ {0, 1, . . . , d} when measured in units of the
ith currency. Each primary security account represents the accumulation of all
income, carrying costs plus capital gains or losses achieved whilst holding the un-
derlying primary asset. The exchange price thus provides a link between primary
security accounts and savings accounts, written as

Si,jt = X i,j
t Bj

t =
Si,δ∗t

Sj,δ∗t

Bj
t (2.4)

for t ∈ [0, T ] and i, j ∈ {0, 1, . . . , d}.
Next note from (2.2) that the GOP dynamics in the ith currency denomination
are characterized by the short rate rit and the total market price of risk |θit| for
t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. We can separate these two effects by considering
the discounted GOP process S̄i,δ∗ = {Si,δ∗t , t ∈ [0, T ]}, given by

S̄i,δ∗t =
Si,δ∗t

Bi
t

(2.5)

satisfying the SDE

dS̄i,δ∗t = S̄i,δ∗t |θit|2 dt+ S̄i,δ∗t |θit| dW i
t (2.6)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Thus discounting in each currency denomina-
tion by its savings account, provides a natural way to separate the corresponding
short rate and the market price of risk components of the GOP in each respective
denomination.

Under the benchmark approach, real-world pricing as outlined in Platen & Heath
(2006), involves the selection of the GOP as the numeraire portfolio. This leads
to the pricing of securities using conditional expectations with respect to the real-
world probability measure P . Since all positive portfolios expressed in units of the
GOP are supermartingales, Platen (2002) showed that the resulting price system
does not permit arbitrage. In words, the definition of no-arbitrage used under
the benchmark approach is that “strictly positive profits cannot be generated
under limited liability with strictly positive probability from zero initial wealth”.
This definition of no-arbitrage is different to the no-free-lunch-with-vanishing-
risk (NFLVR) condition of Delbaen & Schachermayer (1994). Importantly, some
realistic models exist that are excluded by the NFLVR condition. In particular,
the SMMM does not satisfy this condition. The NFLVR condition seems to be too
restrictive since the existence of an equivalent probability measure is not necessary
to capture the economic spirit of no-arbitrage. Loewenstein & Willard (2000)
argue the same point by showing that an absence of arbitrage opportunities is
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equivalent to the existence of an optimum for a representative hypothetical agent
that prefers more to less, and takes prices as given. This may also be expressed
as the existence of a competitive equilibrium resulting in a price system referred
to as ‘viable’ by Harrison & Kreps (1979).

Now we define a contingent claimH i
T̄
that matures at the stopping time T̄ ∈ [0, T ]

for each i ∈ {0, 1, . . . , d} as an AT̄ -measureable non-negative payoff that possesses
a finite expectation when benchmarked by the GOP. As outlined in Platen (2002),

the value U
i,Hi

T̄
t in the ith denomination can be obtained at time t by the real-

world pricing formula

U
i,Hi

T̄
t = E

[

Si,δ∗t

Si,δ∗
T̄

H i
T̄

∣

∣

∣

∣

At

]

(2.7)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}.
Whilst it is possible under the benchmark approach that other self-financing price
processes may replicate the contingent claim H i

T̄
, the real-world price process is

the minimal replicating price process. This follows since a martingale is the
minimal replicating non-negative supermartingale.

From Karatzas & Shreve (1998) it follows that in a complete continuous market,
the candidate Radon-Nikodym derivative process Λi,θ = {Λi,θ

t , t ∈ [0, T ]} in the
ith currency denomination for the putative risk-neutral measure Pi,θ equals

Λi,θ
t =

dPi,θ
dP

∣

∣

∣

∣

At

=
Bi
t

Si,δ∗t

Si,δ∗0

Bi
0

=
S̄i,δ∗0

S̄i,δ∗t

(2.8)

up to a constant normalisation factor, the inverse of the discounted GOP with
initial value Λi,θ

0 = 1. One can obtain the SDE for the candidate Radon-Nikodym
derivative by using (2.6) and (2.8) with the Itô formula as

dΛi,θ
t = −Λi,θ

t |θit| dŴ i
t (2.9)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Obviously, Λi,θ is an (A, P )-local martin-
gale. Whether or not the SDE (2.9) describes a martingale will depend upon
the nature of the volatility |θit| of the GOP. For models where the candidate
risk-neutral measure Pi,θ and the real-world measure P are equivalent, as defined
in Karatzas & Shreve (1998), the Radon-Nikodym derivative process Λi,θ is an
(A, P )-martingale. Here the real-world pricing formula (2.7) simplifies via Bayes’
formula and Girsanov’s Theorem to the standard risk-neutral pricing formula of

U
i,Hi

T̄
t = Ei,θ

[

Bi
t

Bi
T̄

H i
T̄

∣

∣

∣

∣

At

]

(2.10)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Here Ei,θ denotes conditional expectation
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with respect to the risk-neutral probability measure Pi,θ. However, it should be
noted that for the SMMM discussed in this paper, the assumptions underlying
the risk-neutral pricing formula are not satisfied, and thus (2.10) cannot be used.
In contrast, the real-world pricing formula (2.7) remains applicable even when
the candidate Radon-Nikodym derivative is a strict (A, P )-local martingale, as is
the case for the SMMM.

3 Stylised MMM Dynamics

The stylised version of the minimal market model (SMMM) was first discussed in
Platen (2001), subsequently developed in a sequence of papers for equity indices
and interest rate markets summarised in Heath & Platen (2006).

We begin by introducing the discounted GOP drift as ᾱi = {ᾱit, t ∈ [0, T ]} for the
ith denomination i ∈ {0, 1, . . . , d}. It then follows by (2.6) that the discounted
GOP drift takes the form

ᾱit = S̄i,δ∗t |θit|2 (3.1)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Therefore by (2.6) and (3.1) one obtains, with-
out loss of generality, an alternative representation for the SDE of the discounted
GOP as

dS̄i,δ∗t = ᾱit dt+

√

ᾱit S̄
i,δ∗
t dW i

t (3.2)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}.
Empirical long term data on global total return stock indices, for instance those
studied by Dimson, Marsh & Staunton (2002), motivates us to model ᾱit as a
smooth, deterministic function that increases over time in an exponential manner,
via the following assumption.

Assumption 3.1 The discounted GOP drift ᾱit is assumed to be a differentiable
function of the form

ᾱit = ᾱi0 exp
{

ηi t
}

(3.3)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}.

Here ηi is the growth rate of the discounted GOP at time t, which is assumed to
be deterministic. Alternatively, it can be interpreted as the growth rate of the
GOP achieved in excess of the short-term interest rate.

Under Assumption 3.1 the discounted GOP process is a time-transformed squared
Bessel (BESQ) process of dimension four, as shown in Revuz & Yor (1999). The
underlying time change ϕi = {ϕit, t ∈ [ϕi0, ϕ

i
T ]} is defined as

ϕit = ϕi0 + 〈M̄ i〉t = ϕi0 +
1

4

∫ t

0

ᾱis ds = ϕi0 +
ᾱi0
4 ηi

(exp{ηi t} − 1) (3.4)
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or equivalently

dϕit =
1

4
ᾱit dt (3.5)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Therefore the discounted GOP process X i =
{X i

ϕit
, ϕit ∈ [ϕi0, ϕ

i
T ]}, in the transformed time (3.4), is found by setting

X i
ϕit

= S̄i,δ∗t (3.6)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d} with the initial condition X i
ϕi
0

= S̄i,δ∗0 .

From Revuz & Yor (1999) we know that a BESQ process of dimension four
will never reach zero under the real-world probability measure P . In contrast,
under the candidate risk-neutral measure Pi,θ it will be absorbed at zero with
strictly positive probability, since under this measure it is a time-transformed
squared Bessel process of dimension zero. This indicates that the candidate risk-
neutral measure Pi,θ is not equivalent to the real-world measure P . In addition,
the candidate Radon-Nikodym derivative Λi,θ is a strict (A, P )-supermartingale.
Therefore, the basic assumptions of classical risk-neutral pricing, provided in say
Karatzas & Shreve (1998), are not satisfied.

Given the parameterisation for the discounted GOP drift defined in (3.3), it is
useful to introduce an analogous GOP drift term of the form

αit = ᾱitB
i
t (3.7)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}, using (2.1). Thus by (2.1), (3.2) and (3.7) we
can provide the SMMM representation for the SDE of the GOP as

dSi,δ∗t = (rit S
i,δ∗
t + αit) dt+

√

αit S
i,δ∗
t dW i

t (3.8)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. Therefore under the SMMM, the GOP is
modelled as a generalised square root process.

We now re-write the volatility of the GOP using (2.2), (2.5), (3.2) and (3.8) to
find

|θit| =
√

ᾱit

S̄i,δ∗t

=

√

αit

Si,δ∗t

(3.9)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. This expression for GOP volatility can be
interpreted as a local volatility function characterisation of the SMMM. The
dynamics for the volatility of the GOP under the SMMM given in (3.9) are
stationary, and thus always remain within a realistic range. To illustrate this
fact, we calculated a historical time series for the volatility of the GOP using the
World Stock Accumulation Index (WSAI) provided by Global Financial Data to
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approximate the GOP, as plotted in Figure 1 from December 1925 to July 2003.
The calibration uses a discounted WSAI growth rate set close to the empirical
findings of Dimson, Marsh & Staunton (2002), such that ηi = 0.05 with an initial
value of ᾱi0 = 0.05. A comparison of Figure 1 to the original WSAI data reveals
that the GOP volatility implied by the SMMM realistically models the leverage
effect first discussed in Black (1976). When the index moves up, the volatility
moves down and vice-versa, which can be observed in formula (3.9) since the
squared volatility of the GOP is proportional to the inverse of the GOP itself,
and hence the WSAI.
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Figure 1: WSAI volatility |θit| in USD from 1925 to 2003 under the SMMM.

The GOP volatility in Figure 1 is the historical sample path implied by the
SMMM. One way to understand the dynamics for the volatility of the GOP, is to
define the squared volatility vi = {vit = |θit|2, t ∈ [0, T ]}, i ∈ {0, 1, . . . , d}. Then
by (3.2), (3.9) and the Itô formula, one obtains an SDE for the squared volatility
of the GOP as

dvit = ηi v
i
t dt− (vit)

3/2 dW i
t (3.10)

for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}. This is a surprisingly simple stochastic
volatility model. Because of the 3/2 power appearing in the diffusion coefficient,
such volatility dynamics have been referred to as a 3/2 model. It was proposed
in Platen (1997) and similar models were studied in Lewis (2000). We emphasize
that there is only one Wiener process driving the dynamics of the GOP and its
squared volatility. The resulting negative correlation between the two processes
models the leverage effect observed in stock market indices.

Now consider the transition density function p4(ϕ
i
t, x

i
t;ϕ

i
T̄
, xi

T̄
) for a time trans-

formed BESQ process X i = {X i
ϕit
, ϕit ∈ [ϕi0, ϕ

i
T̄
]} i ∈ {0, 1, . . . , d}, of dimension

four, to move from xit = X i
ϕit

at time ϕit to x
i
T̄
= X i

ϕi
T̄

at time ϕi
T̄
. It is derived in
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Revuz & Yor (1999) in the form

p4(ϕ
i
t, x

i
t;ϕ

i
T̄ , x

i
T̄ ) =

1

2(ϕi
T̄
− ϕit)

(

xi
T̄

xit

)

1

2

exp

{

− xit + xi
T̄

2(ϕi
T̄
− ϕit)

}

I1





√

xit x
i
T̄

ϕi
T̄
− ϕit





(3.11)
for ϕit ∈ [ϕi0, ϕ

i
T̄
], i ∈ {0, 1, . . . , d} with the definition of the modified Bessel

function of the first kind I`(·) for index `, given by relation (A.4) in Appendix A.

Non-Central Chi-Square with Zero Degrees of Freedom

The transition density of a BESQ process is related to central and non-central
chi-square random variables, the latter of which are summarised in Appendix A.
A central chi-square random variable with ν ∈ [0,∞) degrees of freedom has a dis-
tribution function denoted as χ2(· ; ν). The corresponding non-central chi-square
distributed random variable with ν degrees of freedom and non-centrality param-
eter λ ∈ (0,∞) has probability density pχ2(· ; ν, λ) and its distribution function is
denoted χ2(· ; ν, λ). Of particular interest are non-central chi-square distributed
random variables with zero degrees of freedom, first studied in Torgerson (1972)
and subsequently by Siegel (1979) and Jones (1987). Making the substitution of
ν = 0 into the definition of the non-central chi-square distribution function (A.2)
leads to

χ2(u ; 0, λ) =
∞
∑

`=0

exp{−λ
2
}(λ

2
)`

`!
χ2(u ; 2 `)

= exp

{

−λ
2

}

+
∞
∑

`=1

exp{−λ
2
}(λ

2
)`

`!
χ2(u ; 2 `) (3.12)

for u ≥ 0 and λ > 0. As in Siegel (1979), we apply the convention that the
case of ` = 0 corresponds to the outcome u = 0 with probability pχ2(u ; 0, λ) =
exp{−λ/2}. One has to be careful not to confuse this with the fact that χ2(u ; 0) =
1 for all u > 0. Thus from the first line in (3.12), χ2(u ; 0, λ) is a mixture of the
distributions 0, χ2(u ; 2), χ2(u ; 4), . . . with Poisson weights. This means that the
non-central chi-square distribution with zero degrees of freedom has a discrete
component at zero and a continuous component for all u > 0. This property
actually holds for all non-central chi-square random variables with degrees of
freedom ν ≤ 2. The analogy to BESQ processes is obvious since for ν > 2 the
process remains strictly positive, but for ν ≤ 2 the boundary condition at zero
must be specified, which is usually absorption. Although the distribution exists
the corresponding probability density is improper since it does not sum to unity,
as shown here

∫ ∞

0

pχ2(x ; 0, λ) dx = 1− exp{−λ/2} < 1 (3.13)
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for λ > 0. This result reflects the existence of positive probability mass at
zero. It is interesting to examine graphical illustrations of the probability den-
sity pχ2(x; 0, λ), as provided in Figure 2 below. The panel on the left-hand-side
provides the density in the case with non-centrality parameter λ = 2, whilst the
right-hand-side panel illustrates the density for λ = 5. One can easily observe
the mixture of discrete and continuous components of the non-central chi-square
probability density with zero degrees of freedom in either of these two charts.
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Figure 2: pχ2(·; 0, λ) and absorption probability, for λ = 2 and λ = 5 respectively.

4 Interest Rate Term Structure

The first investigation of the interest rate term structure within the benchmark
framework was in Platen (2002). In that research it was shown that restrictions
exist on the drift of the forward rate equation under the real-world measure that
are analogous to those obtained for the candidate risk-neutral measure in Heath,
Jarrow & Morton (1992). Next Platen (2005a) provided the first model for the
interest rate term structure in the context of the SMMM.

Zero coupon bonds are fundamental securities in financial markets. We formally
define zero-coupon bonds in the benchmark framework as follows. The price of
a zero-coupon bond P i(t, T̄ ) in the ith currency at time t with fixed maturity
T̄ ∈ [0, T ] is defined as the time t of one unit of the ith currency, and is found
using the real-world pricing formula (2.7) as

P i(t, T̄ ) = E

[

Si,δ∗t

Si,δ∗
T̄

∣

∣

∣

∣

At

]

(4.1)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Note that P i(T̄, T̄ ) = 1. Throughout this
paper we will assume that the driving processes of the ith short rate ri and the
discounted GOP S̄i,δ∗ are independent. This assumption allows us to characterise
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the zero-coupon bond price P i(t, T̄ ) in the following multiplicative way

P i(t, T̄ ) = E

[

S̄i,δ∗t

S̄i,δ∗
T̄

Bi
t

Bi
T̄

∣

∣

∣

∣

At

]

= M i
T̄ (t)G

i
T̄ (t) (4.2)

where the discounted GOP contribution to the zero-coupon bond price is

M i
T̄ (t) = E

[

S̄i,δ∗t

S̄i,δ∗
T̄

∣

∣

∣

∣

At

]

= E

[

Λi,θ

T̄

Λi,θ
t

∣

∣

∣

∣

At

]

(4.3)

and the short rate contribution to the bond price is

Gi
T̄ (t) = E

[

Bi
t

Bi
T̄

∣

∣

∣

∣

At

]

(4.4)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. An example where the discounted GOP and
the short rate are assumed to be independent, is studied in Miller & Platen (2005).
Another relevant example is when the short rate is assumed to be deterministic
and constant, which we do for the remainder of this paper.

The expression in (4.3) referred to as the discounted GOP contribution to the
zero-coupon bond price is quite an important quantity. The second equality in
(4.3) reminds us that it can also be interpreted as the expected value of the Radon-
Nikodym derivative for the candidate risk-neutral measure. An equivalent risk-
neutral probability measure will exist if and only if Λi,θ is an (A, P )-martingale
and hence M i

T̄
(t) = 1 in (4.3) for all t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}.

In Platen (2005a) it was shown tha the real-world price of a zero-coupon bond
P i(t, T̄ ) calculated at time t with maturity date T̄ ∈ [0, T ] under the given SMMM
equals

P i(t, T̄ ) = exp{−ri (T̄ − t)} (1− exp{−λiT̄/2}) (4.5)

where

λiT̄ =
4 ηi

|θit|2 (exp{ηi (T̄ − t)} − 1)
(4.6)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}.
Given that the short rate is assumed to be constant, it is trivial to observe that
the zero-coupon bond price decomposition (4.2) applies. Hence it can be deduced
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from (4.3), (4.4) and (4.5) that for the SMMM

Gi
T̄ (t) = E

[

Bi
t

Bi
T̄

∣

∣

∣

∣

At

]

= exp{−ri (T̄ − t)} (4.7)

M i
T̄ (t) = E

[

S̄i,δ∗t

S̄i,δ∗
T̄

∣

∣

∣

∣

At

]

= 1− exp{−λiT̄/2} (4.8)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. This relatively straightforward calculation
provides some important insights into the SMMM that hitherto have not been
discussed. Since the non-centrality parameter in (4.6) will, in general, be strictly
positive, then (4.8) will be less than or equal to unity. Therefore we conclude
that under the SMMM, the candidate Radon-Nikodym derivative process (2.9)
with volatility defined by (3.9) is a strict (A, P )-supermartingale. Thus in deter-
mining the real-world price of a zero-coupon bond, we have confirmed the earlier
discussion that a key assumption of classical risk-neutral pricing, namely that of
Girsanov’s Theorem, is not satisfied. Under the Fundamental Theorem of Asset
Pricing of Delbaen & Schachermayer (1994), this strict supermartingale property
would exclude the SMMM as a model. However, under the benchmark approach,
the SMMM is not excluded. In Figure 3 below we plotM i

T̄
(0) for the two different

maturity ranges of: T̄ = 30 years and T̄ = 100 years. The remaining parameters
used were: |θi0| = 0.25; and ηi = 0.05. Observe that M i

T̄
(0) appears to be a

martingale for at least the first five years, but then it gradually decays to zero.
The strict supermartingale property of M i

T̄
(0) has important implications for the

pricing of long-term financial contracts. Heuristically, the two plots of Figure 3
show that standard risk-neutral pricing may be reasonably accurate in the short
term, say up to five years, however financial instruments with a maturity beyond
this initial period may be mispriced.
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Figure 3: M i
T̄
(0) for T̄ ∈ [0, 30] and T̄ ∈ [0, 100] under the SMMM.

The second important observation is that the discounted GOP contribution to
the bond price exactly matches the integral of the non-central chi-square random
variable with zero degrees of freedom (3.13), and not by chance. Application of
the results of Yor (1992) to (4.8) leads to an alternative expression for M i

T̄
(t) in

12



the form

M i
T̄ (t) =

∫ ∞

0

xit
xi
T̄

p4(ϕ
i
t, x

i
t;ϕ

i
T̄ , x

i
T̄ ) dx

i
T̄ =

∫ ∞

0

p̃0(ϕ
i
t, x

i
t;ϕ

i
T̄ , x

i
T̄ ) dx

i
T̄ (4.9)

for ϕit ∈ [ϕi0, ϕ
i
T̄
] and i ∈ {0, 1, . . . , d}. Here p̃0(ϕit, xit;ϕiT̄ , xiT̄ ) represents the tran-

sition density of a BESQ process with dimension zero, where zero is an absorbing
boundary. Therefore one observes that the law of the inverse of a BESQ pro-
cess of dimension four is related to the law of a BESQ process with dimension
zero. Furthermore, the right-hand-side of (4.9) is identical to the integral of the
non-central chi-square probability density with zero degrees of freedom, given in
(3.13). Recalling that the exponential term in (3.13) corresponds to the discrete
component of the probability density at zero, we conclude that this exponential
term represents the probability of absorption of a BESQ process of dimension zero
at zero. Therefore any financial contract with a non-zero payoff at zero, such as a
zero-coupon bond or a put option, must take into account this absorption prob-
ability. The benchmark approach accurately reflects this feature of the SMMM.
On the other hand, the putative risk-neutral approach does not account for this
possibility, irrespective of the underlying model assumptions. As an example, for
the case under consideration, the putative risk-neutral zero-coupon bond price
P i,θ(t, T̄ ) will equal the short rate contribution to the zero-coupon bond price
(4.7), hence P i,θ(t, T̄ ) = Gi

T̄
(t) for all T̄ ∈ [0, T ] and i ∈ {0, 1, . . . , d}.

Given zero-coupon bond prices we can also calculate the instantaneous forward
rate f i(t, T̄ ) at time t for the maturity date T̄ ∈ [0, T ] and ith currency, expressed
as

f i(t, T̄ ) = − ∂

∂T̄
ln[P i(t, T̄ )] (4.10)

for all t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Therefore, in the case when the zero-coupon
bond price can be decomposed into the product in (4.2), then the forward rate
(4.10) takes the form

f i(t, T̄ ) = mi
T̄ (t) + giT̄ (t) (4.11)

where the discounted GOP contribution to the forward rate is

mi
T̄ (t) = −

∂

∂T̄
ln[M i

T̄ (t)] (4.12)

and the short rate contribution to the forward rate is

giT̄ (t) = −
∂

∂T̄
ln[Gi

T̄ (t)] (4.13)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}.
As a matter of completeness we also discuss instantaneous forward rates under
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the SMMM. Of course, the short rate contribution to the forward rate, defined
by (4.13), is the short rate itself. Discussion was previously provided on the
discounted GOP contribution to the forward rate in both Platen (2005a) and
Miller & Platen (2005). We provide a slightly different representation via (4.12)
and (4.8) in the form

mi
T̄ (t) =

(λi
T̄
/2)2 |θit|2 exp{ηi(T̄ − t)− λi

T̄
/2}

2 (1− exp{λi
T̄
/2}) (4.14)

for all t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Thus one observes that the volatility of
the GOP is a key input to the discounted GOP contribution to the forward rate.
In fact, a directional relationship exists between medium- and long-term forward
rates and the volatility of the GOP that is simple, intuitive and economically
sensible. Here the volatility of the GOP |θit| can be interpreted as the general level
of uncertainty of the economy. A certain level of volatility in financial markets,
and in the economy in general, is natural and healthy. However, when uncertainty
increases beyond a particular threshold, the ‘risk premium’ in interest rate yields
increases as compensation for this extra risk. This directional relationship is
displayed for mi

T̄
(0) in Figure 4 below. The remaining input parameters used in

this chart were: t = 0; ηi = 0.05; and ri = 0.05.
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Figure 4: mi
T̄
(0) for |θi0| ∈ [0.05, 0.50] and T̄ ∈ [0, 30] under the SMMM.
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5 Options on the GOP

Numerical techniques have previously been employed to solve the problem of
calculating real-world prices for options on the GOP under the given SMMM.
Most notably, Heath & Platen (2002) used numerical integration as an approach
to this problem. However, analytic results are available, as we prove below. In
addition to reducing computation time, the derived analytic formulae expressed in
terms of non-central chi-square distribution functions, provide additional insights
into the pricing and hedging of these options. For example, as in the case for the
zero-coupon bond price, we find that the non-central chi-square distribution with
zero degrees of freedom plays an interesting role in the final results. The proof of
the following call and put option pricing formulae are given in Appendix B.

Lemma 5.1 The real-world prices of call and put options on the GOP at time
t with expiry date T̄ ∈ [0, T ] and strike price K under the given SMMM are
calculated as

ciT̄,K, Si,δ∗ (t) = +Si,δ∗t [1− χ2(
∗
uiT̄ ; 4, λ

i
T̄ )]−K e−ri(T̄−t)[1− χ2(

∗
uiT̄ ; 0, λ

i
T̄ )] (5.1)

piT̄,K, Si,δ∗ (t) = −S
i,δ∗
t χ2(

∗
uiT̄ ; 4, λ

i
T̄ ) +K e−ri(T̄−t)[χ2(

∗
uiT̄ ; 0, λ

i
T̄ )− e−λ

i
T̄
/2] (5.2)

where

∗
uiT̄ =

4 ηi exp{−ri (T̄ − t)}
|θit|2 (exp{ηi (T̄ − t)} − 1) (Si,δ∗t /K)

(5.3)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d} using notation (4.6).

The first conclusion from Lemma 5.1 is that the general put-call parity relation-
ship for options on the GOP is found to be

ciT̄,K, Si,δ∗ (t) +K P i(t, T̄ ) = piT̄,K, Si,δ∗ (t) + Si,δ∗t (5.4)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Note that the real-world zero-coupon bond
price given in (4.5) is necessary to achieve put-call parity. If one were to use the
putative risk-neutral bond price of P i,θ(t, T̄ ) = Gi

T̄
(t), then put-call parity would

not hold.

Further examination of Lemma 5.1 reveals that the real-world price of an SMMM
put option on the GOP contains an exponential term identical to that appearing
within the zero-coupon bond price. These exponential terms are identical because
they have the same origin. We can even be more specific and isolate the origin of
exponential term to the bond binary or ‘cash or nothing’ component of the option
on the GOP, which we denote by Bi,+

T̄,K, Si,δ∗
(t) for a call and by Bi,−

T̄,K, Si,δ∗
(t) for

a put. Under the SMMM, these are essentially the expected value of the inverse
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of a BESQ process of dimension four, subject to certain boundary conditions.
Application of the results of Yor (1992) allows us to rewrite these expressions in
an analogous way to (4.9) as

Bi,−

T̄,K, Si,δ∗
(t) =

Bi
t

Bi
T̄

∫ K

Bi
T̄

0

p̃0(ϕ
i
t, x

i
t;ϕ

i
T̄ , x

i
T̄ ) dx

i
T̄ (5.5)

Bi,+

T̄,K, Si,δ∗
(t) =

Bi
t

Bi
T̄

∫ ∞

K

Bi
T̄

p̃0(ϕ
i
t, x

i
t;ϕ

i
T̄ , x

i
T̄ ) dx

i
T̄ (5.6)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Here we see explicitly that a bond binary
option on the GOP can be interpreted as the integrated probability density of a
BESQ process of dimension zero, scaled by a ratio of savings accounts. Therefore
the bond binary put option (5.5) involves evaluation of a process with a positive
probability of reaching zero. The result includes the abovementioned exponential
term, representing the probability of reaching zero, multiplied by the payoff of the
put option at zero. In contrast, the bond binary call option has zero payoff at all
points below the discounted strike price, as seen in (5.6). Thus the exponential
term representing the probability of reaching zero is not reflected in the real-world
call option price.

Lemma 5.1 also enables us to illustrate clear differences between the SMMM and
the classical model of Black & Scholes (1973). The best way to view the differences
between the two models is to examine the implied volatility term structure of the
given SMMM. Therefore in Figure 5 we plot the implied volatilities for options
on the GOP for four different maturity times T̄ ∈ {10, 20, 50, 100} years. The
implied volatilities for call and put options are equal under the given SMMM
only when the Black-Scholes short rate input is implied from the real-world zero-
coupon bond price given in (4.5). The parameters used in all charts were: t = 0;
Si,δ∗0 = 2, 000; |θi0| = 0.25; ηi = 0.05; and ri = 0.05. One observes a skew in the
direction of the strike in all of the charts in Figure 5. The other feature of note
within Figure 5 is that implied volatilities increase for a period of up to ten years,
and thereafter decline systematically to a long-run level.

The advantage of the approach here is that options on the GOP are presented in
the analytic form of (5.1)−(5.2). This provides an explicit understanding of the
distributional properties underlying the SMMM. Furthermore, market practition-
ers are more receptive to analytic formulae similar to the standard Black-Scholes
formulae than numerical techniques. Another advantage of analytic formulae is
the direct availability of sensitivities with high accuracy, which are essential for
hedging. However, we should comment on the numerical routines used in these
analytic formulae defined in Lemma 5.1 and used to determine Figure 5. Many
standard software packages, such as Mathematica, Matlab, Minitab, SPSS and
SPlus, include built-in functions for the non-central chi-square distribution func-
tion (A.2). Notwithstanding, none of these in-built functions cater for the case
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Figure 5: Implied volatilities for options on the GOP under the SMMM with
T̄ ∈ {10, 30, 50, 100} years, clockwise respectively.

when the degrees of freedom is zero. Therefore we need to make use of alterna-
tive algorithms available from the literature. Of those available, we prefer and
recommend the Ding (1992) implementation because it is intuitive, simple to im-
plement, accurate and quite efficient under a variety of parameter constellations.

6 Options on an Exchange Price

The study of options on an exchange price under the SMMM is significantly
more difficult than was the case for options on the GOP. Recall from (2.3) that
we define an exchange price as the ratio of the GOP in two currency denomina-
tions. In order to maintain analytic formulae we make the simplifying assumption
that different currency denominations of the discounted GOP are independent.
Obviously, when the exchange price is a foreign currency exchange rate, espe-
cially a cross rate, this assumption may be too restrictive. However, there are
many important cases when it is reasonable to impose such an assumption of
independence. For example, an exchange price can also represent the price of a
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stock denominated in a particular currency. In cases where independence can-
not be assumed we suggest using the numerical techniques described in Heath
& Platen (2005). In the following we use a probabilistic approach resulting in
analytic formulae in terms of the doubly non-central beta distribution function
I(· ; νi, νj ; λi, λj) with the two degrees of freedom parameters νi, νj and the two
non-centrality parameters λi, λj, as defined in say Johnson, Kotz & Balakrishnan
(1995). We prove the following results in Appendix B.

Lemma 6.1 The real-world prices of call and put options on an exchange price
X i,j in the ith currency denomination at time t with expiry date T̄ ∈ [0, T ] and
strike price K under the given SMMM are

ciT̄,K,Xi,j(t) = +X i,j
t e−rj (T̄−t)

[

I
(

1/di,j
1 + 1/di,j

; 0, 4 ; λj
T̄
, λiT̄

)

− exp

{

−
λj
T̄

2

}]

−K e−ri (T̄−t)
[

1− I
(

di,j
1 + di,j

; 0, 4 ; λiT̄ , λ
j

T̄

)]

(6.1)

piT̄,K,Xi,j(t) = −X i,j
t e−rj (T̄−t)

[

1− I
(

1/di,j
1 + 1/di,j

; , 0 ; λj
T̄
, λiT̄

)]

+K e−ri (T̄−t)
[

I
(

di,j
1 + di,j

; 0, 4 ; λiT̄ , λ
j

T̄

)

− exp

{

−λ
i
T̄

2

}]

(6.2)

where

di,j =
|θjt |2 (exp{ηj (T̄ − t)} − 1) ηi exp{−ri (T̄ − t)}

|θit|2 (exp{ηi (T̄ − t)} − 1) ηj exp{−rj (T̄ − t)} (X i,j
t /K)

(6.3)

for t ∈ [0, T̄ ] and i, j ∈ {0, 1, . . . , d} and λk
T̄
for k ∈ {i, j} equates to (4.6).

The results from Lemma 6.1 prove that put-call parity only holds for an option on
an exchange price when the real-world zero-coupon bond price (4.5) is used in the
put-call parity relationship. Here, the strike price is discounted by the real-world
zero-coupon bond in the ith currency denomination, whilst the exchange price
itself is discounted by the zero-coupon bond in the jth denomination, such that

ciT̄,K,Xi,j(t) +K P i(t, T̄ ) = piT̄,K,Xi,j(t) +X i,j
t P j(t, T̄ ) (6.4)

for t ∈ [0, T̄ ] and i, j ∈ {0, 1, . . . , d}.
We can also calculate implied volatility surfaces associated with call and put op-
tions on exchange prices under the SMMM, via the results of Lemma 6.1. Once
again implied volatility surfaces provide the best method of comparison between
the SMMM and the classical Black-Scholes model. Figure 6 below contains im-
plied volatility surfaces for options on exchange prices for the four maturity times
T̄ ∈ {10, 30, 50, 100} years. The other parameters used within the charts of Figure
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6 were: t = 0; X i,j
0 = 1.0; |θi0| = |θj0| = 0.25; ηi = ηj = 0.05; and ri = rj = 0.05.

As in previous sections, we include long-dated results to explore the effect of
the strict supermartingale property of the putative Radon-Nikodym derivative.
Indeed, we find that in the short term, out to say T̄ = 10 years, the variation
in implied volatility is relatively small, as observed in the top left-hand-side of
Figure 6. As we move clockwise in Figure 6 to progressively longer time horizons,
the implied volatility surface declines systematically as observed for options on
the GOP. Also note that there is no skew visible in the implied volatilities for the
chosen parameters.
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Figure 6: Implied volatilities for exchange price options under the SMMM with
T̄ ∈ {10, 30, 50, 100} years, clockwise respectively.

Finally we recall the simple relationship between exchange prices and primary
security accounts when the short rate is deterministic, given by (2.4). Therefore
it is not surprising that real-world prices for options on primary security accounts
take a similar form to those presented in Lemma 6.1, as can be seen in Hulley,
Miller & Platen (2005).
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7 Interest Rate Options

We now examine the real-world pricing of simple interest rate contingent claims
under the SMMM. We maintain the assumption that the short rate is constant,
hence rit = ri for all t ∈ [0, T ] and i ∈ {0, 1, . . . , d}, and that the volatility of
the GOP is defined by (3.9). As discussed in Section 4, these assumptions lead
to a model of the interest rate term structure that can be decomposed into two
components related to the discounted GOP and the short rate, as in (4.2). Fur-
thermore, the restriction of a constant short rate limits the dynamics of forward
rate behaviour for short- to medium-term maturities since all randomness is due
to the discounted GOP, or equivalently the volatility of the GOP. A version of
the SMMM with a stochastic short rate is examined in Miller & Platen (2005).

It is obvious that the real-world zero-coupon bond price in (4.5) is bounded above
by the hypothetical risk-neutral zero-coupon bond price. This upper bound for
the bond price translates into a lower bound for the forward rate that equals the
short rate. Therefore the SMMM forward rate will never fall below the short rate.
We also know that the long-term equilibrium forward rate under the SMMM is
asymptotically deterministic. In fact, Platen (2005a) showed that

f i(0,∞) = ri + ηi (7.1)

for i ∈ {0, 1, . . . , d}. Therefore the only variability for the interest rate term
structure under the SMMM is found in medium- and long-term forward rates be-
tween the two anchor points of the initial short rate and the long-term asymptotic
forward rate.

Even when the short rate is assumed to be constant, randomness due to the dis-
counted GOP arises in the real-world pricing of zero-coupon bonds. Although
such an interest rate term structure model is not very accurate for short-dated
maturities, it deserves interest in that it allows us to study the impact of the
discounted GOP on zero-coupon bonds, options on zero-coupon bonds and equiv-
alently interest rate caps and floors. The following formulae are derived in Ap-
pendix B.

Lemma 7.1 The real-world prices of call and put options on a forward zero-
coupon bond, P i(T̄, T ) with maturity T ≥ T̄ in the ith currency with strike price

20



K and the option expiry T̄ under the given SMMM are

zbciT̄,T,K(t) = [+e−ri(T−t) −K e−ri(T̄−t)] [1− χ2(
∗
pi ; 0, λ

i
T̄ )]

− e−ri(T−t) e−
λiT
2 [1− χ2(p̂i ; 0, λ̂

i
T̄ )] (7.2)

zbpiT̄,T,K(t) =















−e−ri(T−t)[χ2(
∗
pi; 0, λ

i
T̄
)− e−

λiT
2 χ2(p̂i; 0, λ̂

i
T̄
)]

+Ke−ri(T̄−t)[χ2(
∗
pi; 0, λ

i
T̄
)− e−

λi
T̄
2 ]







for K < Gi
T (T̄ )

−P i(t, T ) +K P i(t, T̄ ) for K ≥ Gi
T (T̄ )

(7.3)

where

λiT =
4 ηi

|θit|2 (exp{ηi (T − t)} − 1)
(7.4)

λ̂iT̄ =
4 ηi (exp{ηi T} − exp{ηi T̄})

|θit|2 (exp{ηi (T̄ − t)} − 1)(exp{ηi (T − t)} − 1)
(7.5)

∗
pi = −

2 (exp{ηi (T − T̄ )} − 1)

1− exp{−ηi (T̄ − t)} ln

(

Gi
T (T̄ )−K

Gi
T (T̄ )

)

(7.6)

p̂i = −
2 (exp{ηi (T − t)} − 1)

exp{ηi (T̄ − t)} − 1
ln

(

Gi
T (T̄ )−K

Gi
T (T̄ )

)

(7.7)

for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d} using notation (4.5)−(4.7).

One immediately observes from Lemma 7.1 that both the put option price (7.3)
and the call option price (7.2) contain an exponential term, indicating once more
the existence of a non-zero payoff at zero. This is consistent with the prior discus-
sion on the pricing of zero-coupon bonds under the SMMM. Another interesting
aspect of Lemma 7.1 is the separation of the put option price into two cases. The
necessity of doing so, can be deduced from the structure of the logarithmic terms
within relations (7.6)−(7.7).
Lemma 7.1 can also be used to verify the put-call parity relationship for options
on zero-coupon bonds, given in the general case as

zbciT̄, T,K(t) +K P i(t, T̄ ) = zbpiT̄, T,K(t) + P i(t, T ) (7.8)

for 0 ≤ t ≤ T̄ < T and i ∈ {0, 1, . . . , d}. As in all previous cases in this paper,
the real-world zero-coupon bond price (4.5) is necessary for put-call parity to
hold.

The results from Lemma 7.1 are deliberately presented in a format facilitating
comparison to prices for options on zero-coupon bonds under a putative risk-
neutral setting. In the case of a call option on a zero-coupon bond, the real-
world SMMM price (7.2) will always be less than the corresponding hypothetical
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risk-neutral option price. However it is not possible to draw a similar definitive
conclusion from a comparison between the real-world SMMM zero-coupon bond
put option price (7.3) and a corresponding hypothetical risk-neutral price.

Now we examine the nature of interest rate caps and floors for real-world pricing
under the SMMM as compared to the putative risk-neutral approach. We do so
via the analysis of prototypical interest rate caplets and floorlets. This is possible
since interest rate cap and floor behaviour can be examined via interest rate
caplets and floorlets without loss of generality. The precise relationship between
options on zero-coupon bonds, interest rate caps, caplets, floors and floorlets can
be found in standard texts such as Brigo & Mercurio (2006).

We investigate the essential characteristics of interest rate caplet and floorlet
prices under the SMMM by plotting in Figure 7 at-the-money (ATM) caplet
volatilities up to the four different expiry times of T̄ ∈ {10, 30, 50, 100} years. The
remaining input parameters used in Figure 7 were: t = 0; |θi0| = 0.25; ηi = 0.05;
and ri = 0.05. One observes that short-term maturities in the volatility term
structure are not influenced by the discounted GOP, which is consistent with our
earlier results. Furthermore, the influence of the discounted GOP exerts on very
long-dated maturities of the volatility term structure diminishes, as anticipated.
The charts in Figure 7 also highlight that under the SMMM, although the caplet
implied volatility term structure naturally exhibits a hump-shape, consistent with
empirical data found in say Brigo & Mercurio (2006), it fails to adequately capture
short-dated implied volatility. In addition, the caplet implied volatility term
structure is quite rigid, especially in terms of the location of the hump within
the maturity spectrum. These latter restrictive features can be overcome in a
number of ways, most importantly via the addition of a stochastic short rate, as
discussed in Miller & Platen (2005).

Conclusion

This paper derives a series of analytical formulae for various contingent claims
using the stylised version of the minimal market model, where the discounted
numeraire portfolio follows a time-transformed squared Bessel process. These
new results include formulae for European call and put option prices on the
GOP, options on exchange prices and options on zero-coupon bonds. The analytic
formulae for options on zero-coupon bonds can be easily exploited to calculate
prices for interest rate caps and floors.
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Figure 7: ATM interest rate caplet implied volatility term structure under the
SMMM to T̄ ∈ {10, 30, 50, 100} years, clockwise.

Appendix A

Johnson, Kotz & Balakrishnan (1995) define the density pχ2(x ; ν, λ) and distribu-
tion function χ2(u ; ν, λ) for a non-central chi-square distributed random variable
with ν degrees of freedom and non-centrality parameter λ as

pχ2(x ; ν, λ) =
∞
∑

`=0

exp{−λ
2
}(λ

2
)`

`!

(x
2
)
ν
2
+`−1 exp{−x

2
}

2 Γ(ν
2
+ `)

(A.1)

χ2(u ; ν, λ) =

∫ u

0

pχ2(x ; ν, λ) dx =
∞
∑

`=0

exp{−λ
2
}(λ

2
)`

`!
χ2(u ; ν + 2 `) (A.2)

for x > 0, u ≥ 0, ν ≥ 0 and λ ≥ 0 where χ2(u ; ν) represents the distribution
function for a central chi-square distributed random variable with ν degrees of
freedom. The non-central chi-square probability density (A.1) can be rewritten
as

pχ2(x ; ν, λ) =
1

2

(x

λ

)
ν−2

4

exp

{

−λ+ x

2

}

I ν−2

2

(√
λx
)

(A.3)

for x ≥ 0, ν ≥ 0 and λ ≥ 0. This expression is identical in form to that of
the transition density function of a squared Bessel process of general dimension
ν > 2, as found in Revuz & Yor (1999). Also note use of the modified Bessel
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function of the first kind Id(w), defined as

Id(w) =
(w

2

)d
∞
∑

`=0

(

w
2

)2`

`! Γ(`+ d+ 1)
. (A.4)

Comparison between transition density (3.11) with the probability density (A.1)
reveals that equality between the two equations can be recovered by making the
following transformations

λiT̄ =
xit

ϕi
T̄
− ϕit

=
X i
ϕit

ϕi
T̄
− ϕit

=
S̄i,δ∗t

ϕi
T̄
− ϕit

(A.5)

uiT̄ =
xi
T̄

ϕi
T̄
− ϕit

=
X i
ϕi
T̄

ϕi
T̄
− ϕit

=
S̄i,δ∗
T̄

ϕi
T̄
− ϕit

(A.6)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}.

Appendix B

Proof of Lemma 5.1: We apply the real-world pricing formula (2.7) to a call
option on the GOP, thereby obtaining

ciT̄,K, Si,δ∗ (t) = E

[

Si,δ∗t

Si,δ∗
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(

Si,δ∗
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At
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(B.1)
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T̄,K, Si,δ∗
(t) (B.2)

for t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}. Here we decompose the call option price
into the two components of asset and bond binary call options in the notation
of Buchen (2003). They are also referred to as ‘asset or nothing’ and ‘cash or
nothing’ binary or digital options, respectively. If we set xit = X i

ϕit
and xi

T̄
= X i

ϕi
T̄

and make use of (2.5), (3.6) and (3.11), then an asset binary call option on the
GOP is

Ai,+

T̄,K, Si,δ∗
(t) = Si,δ∗t
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i
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whilst the corresponding bond binary call option on the GOP is

Bi,+
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(t) =

Bi
t

Bi
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for ϕit ∈ [ϕi0, ϕ
i
T̄
] and i ∈ {0, 1, . . . , d}. Substitution of (A.5)−(A.6) into the

transition density and algebraic manipulation leads to the real-world price of a
call option on the GOP under the SMMM as per (5.1). The corresponding real-
world price of a put option on the GOP can be found using similar arguments or
via the put-call parity relationship (5.4). ¤

Proof of Lemma 6.1: Application of the real-world pricing formula (2.7) to a
put option on an exchange price leads to

piT̄,K,Xi,j(t) = E
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for t ∈ [0, T̄ ] and i, j ∈ {0, 1, . . . , d}. Thus the put option price can be represented
by asset and bond binary put options in the notation of Buchen (2003). In the
case of the SMMM, we combine (2.5) with (3.6) to yield an asset binary put
option on an exchange price of
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whilst the corresponding bond binary option on an exchange price is
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 (B.7)

for t ∈ [0, T̄ ] and i, j ∈ {0, 1, . . . , d}. Next we invoke the assumption that different
currency denominations of the GOP are independent. Hence the expectations in
(B.6)−(B.7) can be written in terms of two transition densities in the form of
(3.11). If we make the substitutions of xkt = Xk

ϕkt
and xk

T̄
= Xk

ϕk
T̄

for k ∈ {i, j},
then we obtain the asset binary put option relation (B.6) as
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25



whilst the corresponding bond binary put option relation (B.7) becomes
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for t ∈ [0, T̄ ] and i, j ∈ {0, 1, . . . , d}. Substitution of (A.5)−(A.6) in each currency
denomination i, j ∈ {0, 1, . . . , d} and a significant amount of algebra yield the
real-world price of a put option on an exchange price under the SMMM as (6.2).
The corresponding real-world price of a call option on an exchange price is found
using similar reasoning or via the put-call parity relationship (6.4). ¤

Proof of Lemma 7.1: We apply the real-world pricing formula (2.7) to a call
option on a forward zero-coupon bond P i(T̄, T ) to obtain
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for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d}. Again, it is instructive to decompose the
call option price into constituent call asset and bond binary options. Bond binary
options on zero-coupon bonds are similar in structure to bond binary options on
the GOP, since we obtain
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where

p̄i = −2(ϕiT − ϕiT̄ ) ln

(

Gi
T (T̄ )−K

Gi
T (T̄ )

)

(B.12)

for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d}. The solution to (B.11) comes from the
result for a bond binary call option on the GOP within the proof of Lemma 5.1.

The asset binary call option on a forward zero-coupon bond P i(T̄, T ) is found as

Ai,+

T̄,K, P i(T̄,T )
(t) = E

[

Si,δ∗t

Si,δ∗
T̄

P i(T̄, T ) 11{P i(T̄,T )≥K}

∣

∣

∣

∣

At

]

= Gi
T (T̄ )E

[

Bi
t

Bi
T̄

S̄i,δ∗t

S̄i,δ∗
T̄

M i
T (T̄ ) 11{S̄i,δ∗

T̄
≥ p̄i}

∣

∣

∣

∣

At

]

(B.13)
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for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d} using (4.7), (4.8) and (B.12). Expanding
(4.8) within expectation (B.13) leads to
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for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d} using (B.11). We also introduce
the auxiliary function Ξi,+

T̄, T, P i(T̄,T )
(t) by assigning xit = X i

ϕit
and xi

T̄
= X i

ϕi
T̄

to

obtain the integral form of (B.15). Solution to (B.14) is found by substituting
(A.5)−(A.6) in (B.15) and combining with the solution of (B.11). In turn, this
provides the result for a call option on a forward zero-coupon bond under the
SMMM as (7.2).

For a put option on a forward zero-coupon bond P i(T̄, T ) it is advantageous to
separate the solution into two cases because of restrictions imposed by parameters
(7.6)−(7.7). In the case of the bond binary put option on a forward zero-coupon
bond one obtains
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(B.16)

for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d}. The solution to (B.16) when K <
Gi
T (T̄ ) comes from the price of a zero-coupon bond (4.5) and (B.11), whilst when

K ≥ Gi
T (T̄ ) the solution simplifies to (4.5). The asset binary put option on a

forward zero-coupon bond is found as
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(B.17)

for 0 ≤ t ≤ T̄ ≤ T and i ∈ {0, 1, . . . , d}. Thus combination of (B.16) and (B.17)
lead to the expression for a put option a forward zero-coupon bond under the
SMMM as shown in (7.3). ¤
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