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Abstract

We study the possible difference between the quantum and the private capacities of a quan-
tum channel in the zero-error setting. For a family of channels introduced by [LLSS14], we
demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-
error private capacity is maximum given the quantum output dimension.

1 Introduction

Given Alice, a sender, and Bob, a receiver, any communication from Alice to Bob can be mod-
eled by a quantum channel N . Various capacities of the quantum channel N can be defined to
quantify its capability for communicating different types of data. The quantum capacity Q(N ),
measured in qubits per channel use, establishes the maximum rate for transmitting quantum in-
formation and how well we can perform quantum error correction. The private capacity P(N ),
in bits per channel use, gives the maximum rate of private classical communication. Errors that
become negligible as the number of channel uses increases are allowed in the above definitions.

Understanding the relation between the quantum and the private capacities is an essential task in
quantum Shannon theory. In [HHHO05], some channels N are found for which Q(N ) = 0 but
P(N ) > 0, breaking a long-held intuition that coherence is necessary for privacy. In [LLSS14], a
class of channels with Q(N ) ≤ 1 and P(N ) = log d is presented, where d2 is the input dimension
and log is taken base 2. As d increases, these channels saturate an upper bound for P(N )− Q(N )
thus approximately realizing the largest possible separation between the two capacities.

Introduced by Shannon in 1956 [SHA56], the zero-error capacity characterizes the optimal achiev-
able communication rate of a noisy channel when information must be transmitted without any
error. The zero-error capacity has deep connections to combinatorial optimization and it plays an
essential role in graph theory and communication complexity theory [LOV79, ALON98]. Quite
recently, the notion of zero-error capacity has been introduced for quantum channels [MA05,
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MACA06, BS07], and many further interesting results are found [DUAN09, CCH11, CS12, DSW13,
SS14, SS15, S15]. In particular, some channels cannot transmit quantum data perfectly given only
one use, but have a large transmission rate with two uses. Also, there exist channels with no
zero-error capacity but whose joint zero-error capacity is positive, a phenomenon called superac-
tivation. In fact, quantum channels with no zero-error classical capacities are found to have joint
zero-error quantum capacities (that activates all of zero-error classical, private, and quantum ca-
pacities)! Superactivation is impossible for classical channels. Various assisted communication
scenarios have also been studied but they are out of the current scope.

We denote the zero-error quantum and private capacities for a quantum channel N as Q0(N ) and
P0(N ) respectively. Zero-error private classical communication requires perfect data transmission
such that no one but the receiver gains any information on the data. Clearly Q0(N ) ≤ Q(N ) ≤
P(N ) and Q0(N ) ≤ P0(N ) ≤ P(N ).

In this paper, we study the zero-error quantum capacity of the channels introduced in [LLSS14],
and demonstrate an exact extreme separation. For these channels, P0(N ) = log d and Q0(N ) = 0.
In other words, each of these channels has no capacity to transmit quantum information perfectly,
even it has full ability to distribute private information perfectly.

2 Preliminaries

In this section, we discuss some background and notation in quantum information and zero error
capacities for a quantum channel. Readers familiar with these subjects can proceed to the next
section.

A complex Euclidean space refers to any finite dimensional inner product space over the complex
numbers. Let HA and HB be arbitrary complex Euclidean spaces. A pure quantum state of HA is
a normalized vector |ψ〉 ∈ HA.

The space of linear operators mapping HA to HB is denoted by L(HA,HB), while L(HA) is the
shorthand for L(HA,HA). IHA

is used to denote the identity operator on HA. The adjoint of
M ∈ L(HA) is denoted by M†. The notation M ≥ 0 means that M is hermitian, M = M†, and is
positive semidefinite.

With respect to a fixed basis, the complex conjugate of a state |α〉 and a linear operator M are
denoted as |αc〉 and Mc, respectively.

A general quantum state of HA is characterized by its density operator ρ ∈ L(HA), which is a
positive semidefinite operator with trace one on HA. We denote the set of density matrices as
D(HA). The density operator of a pure state |ψ〉 is simply the projector ψ := |ψ〉〈ψ|. The support
of ρ, denoted by supp(ρ), is the vector space spanned by the eigenvectors of ρ with positive eigen-
values. More concretely, if ρ has spectral decomposition ρ = ∑

n
k=1 pk|ψk〉〈ψk|, where 0 < pk ≤ 1

and ∑
n
k=1 pk = 1. Then supp(ρ) = span{|ψk〉 : 1 ≤ k ≤ n}. The null space of any M ≥ 0 is the

orthogonal complement of supp(M).

A nonzero positive semidefinite operator E ∈ L(HA ⊗HB) is said to be a PPT operator (or simply
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PPT) if EΓHA ≥ 0, where ΓHA
denotes the partial transpose with respect to the system HA, i.e.,

(|ij〉〈kl|)ΓHA = |kj〉〈il|. (1)

While ΓHA
is basis dependent, the property being PPT is not. For simplicity, we will specify the

system HA for ΓHA
in the text and denote the operation with the shorthand Γ.

A quantum channel N from Alice to Bob is a completely positive trace preserving linear map from
the input state space of Alice D(HA) to the output state space of Bob D(HB). There are several
characterizations of quantum channels (see [NC00] chapter 8 or [Wat11]). We use the isometric
extension for a channel, N (ρ) = trHE

UρU†, where U ∈ L(HA,HB ⊗HE) is an isometry mapping
the input to the output space for Bob and some auxilary space called the “environment”, and trHE

denote the partial trace over HE. The isometry U is unique up to left multiplication by another
isometry acting on HE, and this degree of freedom has no physical effect on our analysis, and
can be chosen to facilitate it. The complementary channel N c(ρ) = trHB

UρU† describes what
information leaks to the environment.

The notion of zero-error quantum capacity can be introduced as follows. Let αq(N ) be the maxi-
mum integer k such that there is a k-dimensional subspace H′

A of HA that can be perfectly trans-
mitted through N . That is, there is a recovery quantum channel R from D(HB) to D(HA′) so that
(R◦N )(ψ) = ψ for any |ψ〉 ∈ HA′ (recall ψ = |ψ〉〈ψ|). Then, log2 αq(N ) represents the maximum
number of qubits one can send perfectly by one use of N . The zero-error quantum capacity of N ,
Q0(N ), is defined as:

Q0(N ) = sup
n≥1

log2 αq(N ⊗n)

n
. (2)

The main difficulty of evaluating the zero-error capacity of a quantum channel is that there is no
upper bound on the required number of uses n in evaluating the above expression. This remains
the case even for the simpler problem of determining whether Q0(N ) = 0. For example, in [SS14],
for any integer k, the authors found a channel N for which αq(N ) = 1 but αq(N ⊗2) ≥ k. They
also found a channel N for which the k-shot capacity vanishes but Q0(N ) > 0. Furthermore, su-
peractivation is possible (see section 1) and [CS12] exhibits an extreme example in which channels
N1, N2 have no zero-error classical capacity but Q0(N1 ⊗N2) > 0. Fortunately, for our purpose,
we can invoke the following lemma from [CS12].

Lemma 1. Let N : D(HA) → D(HB) be a quantum channel. One can transmit quantum information
without error through a single use of N if and only if there are states |α〉 and |β〉 such that

tr [N (|α〉〈α|) E(|β〉〈β|)] = 0 (3)

and
tr [N (|α + β〉〈α + β|)N (|α − β〉〈α − β|)] = 0. (4)

where |α ± β〉 = 1/
√

2(|α〉 ± |β〉).

Private communication via a memoryless classical channel and quantum key distribution are well
established subjects. Private classical communication of a quantum channel has more recently
been formally introduced in [Dev05]. The private capacity of N measures the maximum rate of
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reliable classical data transmission via N while keeping the output of the complementary channel
independent of the data. In [Dev05], an expression for the private capacity is derived,

P(N ) = max
E

1

n
[I(X : B1 · · · Bn)− I(X : E1 · · · En)] (5)

where Bi, Ei are the output and environment spaces for the ith channel use, I(C : D) = S(C) +
S(D)− S(CD) is the quantum mutual information between C and D evaluated on the state of CD,
S(·) denotes the von Neumann entropy, and E = {px, ρx} is a general ensemble of possibly mixed
states ρx on the n input spaces A1 · · · An. The expressions I(X : B1 · · · Bn), I(X : E1 · · · En) are
evaluated on ∑x px|x〉〈x|X ⊗N ⊗n(ρx) and ∑x px|x〉〈x|X ⊗N c⊗n(ρx) respectively. Once again, the
requirement to optimize over n in the capacity expression Eq. (5) is an obstacle for evaluating the
private capacity in general. However, useful lower bounds and properties of the private capacity
can still be inferred from Eq. (5).

Consider any quantum channel N with a quantum output B and a classical output C. We use
Eq. (5) to show that P(N ) ≤ log2 dim(B). We first consider the one shot case.

I(X : BC)− I(X : E) = I(X : BC)− I(X : EC) = ∑
c

pc[I(X : B|C = c)− I(X : E|C = c)] . (6)

The first equality comes from the classicality of C, that the environment E already has a copy
of the information. The second equality follows from decomposing the von Neuman entropy
of a quantum-classical system [NC00]. If we optimize the expression in the square brackets, we
obtain the one-shot private capacity for N conditioned on C = c, which is upper bounded by
log2 dim(B). The argument for the n-shot case is identical, with B, C, E replaced by n-tuples.

3 Zero-error Quantum Capacity of Nd

In this section, we first describe the family of channels that will exhibit the extreme separation
between the zero-error quantum and private capacities. Then, we derive those capacities.

The family of channels Nd introduced in [LLSS14] can be schematically summarized as follows:

A2

A1

V

P

E,“VE”

B,“VB”

(7)

For each integer d ≥ 2, we define the channel Nd which has two input registers A1 and A2, each
of dimension d. A unitary operation V is applied to A2, followed by a controlled phase gate
P = ∑i,j ωij|i〉〈i| ⊗ |j〉〈j| acting on A1A2, where ω is a primitive dth root of unity. Bob receives only
A1 (now relabeled as B) and “VB”, which denotes a classical register with a description of V. The
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A2 register is discarded. The complementary channel has outputs A2 (relabeled as E) and “VE”
which also contains a description of V. The isometric extension is given by

Ud |ψ〉A1 A2
= ∑

V

√

pr(V)
(

P (I ⊗ V) |ψ〉A1 A2

)

⊗ |V〉VB
⊗ |V〉VE

.

Here, V is drawn from any exact unitary 2-design G = {g1, g2, · · · , gm} (such as the Clifford group,
see [CLLW15] and the references therein).

It was shown in [LLSS14] that P(Nd) = log d. The method given by [LLSS14] to transmit private
classical data has no error and has perfect secrecy so P0(Nd) = log d. To be self-contained, we
provide a quick argument here. Suppose the input into A2 is half of a maximally entangled state
|Φ〉 = 1√

d
∑i |i〉A2

|i〉A3
where A3 stays in Alice’s possession. By the transpose trick, the unitary

operations V and P can be replaced by unitary operations acting on A1 and A3 without changing
the final state on B, E, A3, VB, VE. So, the output of the complementary channel (E, VE) is indepen-
dent of the input. Moreover, Nd(|i〉〈i| ⊗ I/d) = |i〉〈i|. So log d bits can be transmitted perfectly
and secretly.

Furthermore, [LLSS14] also shows that Q(Nd) ≤ 1. Intuitively, superposition of states in sys-
tem A1 will be heavily decohered by the P gate, because error correction is ineffective due to the
random unitary V. However, [LLSS14] finds that Q(Nd) ≥ 0.61 for large d.

This motivates the current study, to demonstrate an extreme separation of P0 and Q0 using the
channels Nd. Our main result is that, no finite number of uses of Nd can be used to transmit one
qubit with zero error. This implies in particular Q0(Nd) = 0, while P0(Nd) = log d, attaining the
extremes allowed by the quantum output dimension (see end of section 2.)

In [DUAN09, DSW13, SS14], the non-commutative graph of a quantum channel is defined and
used to study several different zero-error capacities. In particular, [SS14] derived sufficient con-
ditions for the impossibility of superactivation of zero-error quantum capacity of a channel in
terms of properties of the single-copy non-commutative graph. If a channel satisfies any of these
conditions, and has no one-shot zero error quantum capacity, then it has no zero-error quantum
capacity by induction. However, we show in the appendix that the non-commutative graph of Nd

does not satisfy any of these conditions, along with a discussion of its non-commutative graph.

Our main technical result is a characterization of pairs of input states whose orthogonality is pre-
served by n uses of the channel.

Theorem 2. Let n be any positive integer, |ψ1〉 = ∑i1,··· ,in
|i1, · · · , in〉 |αi1,··· ,in〉, and |ψ2〉 = ∑i1,··· ,in

|i1, · · · , in〉 |βi1 ,··· ,in〉 be two arbitrary pure state inputs for N ⊗n
d . Then, tr[N ⊗n

d (ψ1)N ⊗n
d (ψ2)] = 0 if

and only if at most one of |αi1,··· ,in〉 and |βi1,··· ,in〉 is nonzero for each tuple (i1, · · · , in).

In other words, states suitable for transmitting classical information through N ⊗n
d without any

error have no “overlap” in the computational basis of A⊗n
1 .

We first state the consequence of Theorem 2 and then we will return to prove it.

Theorem 3. For any positive integer n, N ⊗n
d cannot transmit a qubit with zero error. In particular,

this implies Q0(Nd) = 0.
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Proof (theorem 3). Suppose by contradiction, some n uses of Nd can be used to transmit a 2-
dimensional subspace spanned by a basis {|ψ1〉 , |ψ2〉}, where |ψ1〉 = ∑i1,··· ,in

|i1, · · · , in〉 |αi1,··· ,in〉,
and |ψ2〉 = ∑i1,··· ,in

|i1, · · · , in〉 |βi1 ,··· ,in〉. According to Lemma 1,

tr
[

N ⊗n
d (ψ1)N ⊗n

d (ψ2)
]

= 0 (8)

and
tr
[

N ⊗n
d (|ψ1+ψ2〉〈ψ1+ψ2|)N ⊗n

d (|ψ1−ψ2〉〈ψ1−ψ2|)
]

= 0. (9)

Invoking Theorem 2 on the conditions above, for each i1, · · · , in, at most one of |αi1,··· ,in〉 = 0 and
|βi1,··· ,in〉 is nonzero, and at most one of (|αi1···in〉+ |βi1,··· ,in〉) and (|αi1···in〉 − |βi1,··· ,in〉) is nonzero,
which implies |αi1···in〉 = |βi1 ,··· ,in〉 = 0. Then, |ψ1〉 = |ψ2〉 = 0 a contradiction. �

We now turn to a proof for Theorem 2. We first consider the simpler one-shot case to illustrate the
main ideas without the burden of the n-shot notations. Then, we prove Theorem 2 with similar
techniques.

Lemma 4. Let |ψ1〉 = ∑i |i〉 |αi〉 and |ψ2〉 = ∑i |i〉 |βi〉 be two possible pure input states for Nd.
Then, tr[Nd(ψ1)Nd(ψ2)] = 0 if and only if at most one of |αi〉 and |βi〉 is nonzero for each i.

Proof (lemma 4). We first rephrase the condition tr[Nd(ψ1)Nd(ψ2)] = 0.

Recall that V is chosen from an exact unitary 2-design G = {g1, g2, · · · , gm}. We rewrite the gate
P = ∑i |i〉〈i| ⊗ Zi where Z = ∑k ωk|k〉〈k|, and Zl = Zl. So, for V = gj,

P(I ⊗ V) |ψ1〉 = ∑
i

|i〉
(

Zigj |αi〉
)

,

P(I ⊗ V) |ψ2〉 = ∑
i

|i〉
(

Zigj |βi〉
)

,

where the first and second systems are B and E respectively. Then reducing the above states to B
gives respectively

ρ(j) = ∑
i,k

ρ
(j)
i,k |k〉〈i| with ρ

(j)
i,k = 〈αi|g†

j Zk−igj|αk〉,

σ(j) = ∑
i,k

σ
(j)
i,k |k〉〈i| with σ

(j)
i,k = 〈βi|g†

j Zk−igj|βk〉.

Their trace inner product can be rephrased:

tr(ρ(j)†σ(j)) = tr(ρ(j)σ(j)) = ∑
i,k

ρ
(j)
i,k σ

(j)
k,i = ∑

i,k

ρ
(j)
i,k σ

(j)∗
i,k

= ∑
i,k

〈αi|g†
j Zk−igj|αk〉〈βc

i |g†c
j Zc

k−ig
c
j |βc

k〉

= ∑
i,k

〈αi|〈βc
i |(g†

j Zk−igj)⊗ (g†c
j Zc

k−ig
c
j )|αk〉|βc

k〉

= 〈x|A(j)|x〉 ,

where

A(j) = ∑
i,k

|i〉〈k| ⊗ (g†
j Zk−igj)⊗ (g†c

j Zc
k−ig

c
j ) , and

|x〉 = ∑
i

|i〉 |αi〉 |βc
i 〉 .
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Let A := Ej A
(j). By the construction of Nd,

tr[Nd(ψ1)Nd(ψ2)] = 0 ⇐⇒ ∀j, tr(ρ(j)†σ(j)) = 0 ⇐⇒ Ej tr(ρ(j)†σ(j)) = 0 ⇐⇒ 〈x|A|x〉 = 0.

Having rephrased the condition tr[Nd(ψ1)Nd(ψ2)] = 0 as 〈x|A|x〉 = 0, we show below that the
latter implies |x〉 = 0. This is done by first evaluating A which has very simple structure, then
analyzing its null space, and showing that the null space contains no nonzero state of the form
given by |x〉.

One can calculate A directly because {gj} is an exact unitary 2-design [DCEL09, CLLW15]:

A = Ej A
(j) (10)

= ∑
i,k

|i〉〈k| ⊗ Ej(g†
j ⊗ g†c

j )(Zk−i ⊗ Zi−k)(gj ⊗ gc
j ) (11)

= ∑
i,i

|i〉〈i| ⊗ I + ∑
i 6=k

|i〉〈k| ⊗ Ej(g†
j ⊗ g†c

j )(Zk−i ⊗ Zi−k)(gj ⊗ gc
j ) . (12)

Here, for i 6= k, we have Ej(g†
j ⊗ g†c

j )(Zk−i ⊗ Zi−k)(gj ⊗ gc
j ) = − 1

d2−1
(I − Φ) + Φ, where |Φ〉 =

1√
d

∑i |i〉 |i〉 is the maximally entangled state, {Φ, I − Φ} form a maximal set of invariances for the

averaging, and the coefficients − 1
d2−1

and 1 come from evaluating 1
d2−1

tr[Zk−i ⊗ Zi−k(I−Φ)] and
tr[Zk−i ⊗ Zi−kΦ] respectively. Therefore,

A = ∑
i,i

|i〉〈i| ⊗ I + ∑
i 6=k

|i〉〈k| ⊗
(

− 1

d2 − 1
(I − Φ) + Φ

)

(13)

= ∑
i,k

|i〉〈k| ⊗ (ai,k(I − Φ) + Φ), (14)

where ai,i = 1 and ai,k = − 1
d2−1

for i 6= k.

Having found an explicit expression for A, we analyze the support of A as follows:

A = ∑
i,k

|i〉〈k| ⊗ (ai,k(I − Φ) + Φ)

=

(

∑
i,k

ai,k|i〉〈k|
)

⊗ (I − Φ) + d |ν〉〈ν| ⊗ Φ ,

where |ν〉 = 1√
d

∑i |i〉. Notice that ∑i,k ai,k|i〉〈k| ≥ 0, so the projector onto the support of A is

I ⊗ (I − Φ) + |ν〉〈ν| ⊗ Φ.

So the null space of A is spanned by |µ〉 ⊗ |Φ〉 where |µ〉 is any vector orthogonal to |ν〉.

We now show that |x〉 = 0. Suppose by contradiction that |x〉 6= 0. Since 〈x|A|x〉 = 0, we have
|x〉 = |µ〉 ⊗ |Φ〉 for some |µ〉 6= 0. But |x〉 = ∑i |i〉 |αi〉

∣

∣βc
i

〉

. For each l ∈ {1, · · · , d},

(〈l| ⊗ I ⊗ I)|x〉 = |αl〉 |βc
l 〉 = 〈l|µ〉|Φ〉,

which is a contradiction unless 〈l|µ〉 = 0. But now |µ〉 = 0 which is a contradiction.
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Putting the above together, tr[Nd(ψ1)Nd(ψ2)] = 0 if and only if 〈x|A|x〉 = 0 if and only if at most
one of |αi〉 and

∣

∣βc
i

〉

is nonzero for each i. �

We are now going to prove Theorem 2, using similar techniques.

Proof (theorem 2). Consider two arbitrary pure input states for n uses of Nd, |ψ1〉 = ∑i1,··· ,in

|i1 · · · in〉 |αi1···in〉 and |ψ2〉 = ∑i1,··· ,in
|i1 · · · in〉 |βi1 ,··· ,in〉. For V1 ⊗ · · · ⊗Vn = gj1 ⊗ · · · ⊗ gjn , we have

P⊗n(I⊗n ⊗ V1 ⊗ · · · ⊗ Vn) |ψ1〉 = ∑
i1,···in

|i1 · · · in〉 (Zi1 ⊗ · · · ⊗ Zin
)(gj1 ⊗ · · · ⊗ gjn ) |αi1···in〉 ,

P⊗n(I⊗n ⊗ V1 ⊗ · · · ⊗ Vn) |ψ2〉 = ∑
i1,···in

|i1 · · · in〉 (Zi1 ⊗ · · · ⊗ Zin
)(gj1 ⊗ · · · ⊗ gjn ) |βi1···in〉 .

Then the corresponding output states on B1 · · · Bn are

ρ(j1 ,··· ,jn) = ∑
i1···in,k1···kn

|k1 · · · kn〉〈i1 · · · in| ρ
(j1 ,··· ,jn)
i1···in,k1···kn

σ(j1 ,··· ,jn) = ∑
i1···in,k1···kn

|k1 · · · kn〉〈i1 · · · in| σ
(j1 ,··· ,jn)
i1···in,k1···kn

,

where

ρ
(j1 ,··· ,jn)
i1···in,k1···kn

= 〈αi1···in
|(g†

j1
⊗ · · · ⊗ g†

jn
)(Zk1−i1 ⊗ · · · ⊗ Zkn−in

)(gj1 ⊗ · · · ⊗ gjn)|αk1 ···kn
〉,

σ
(j1 ,··· ,jn)
i1···in,k1···kn

= 〈βi1···in
|(g†

j1
⊗ · · · ⊗ g†

jn
)(Zk1−i1 ⊗ · · · ⊗ Zkn−in

)(gj1 ⊗ · · · ⊗ gjn )|βk1 ···kn
〉.

As in the one-shot case,

tr[N ⊗n
d (ψ1)N ⊗n

d (ψ2)] = 0 ⇐⇒ Ej1 ,··· ,jn tr(ρ(j1 ,··· ,jn)†σ(j1 ,··· ,jn)) = 0 ⇐⇒ 〈x|A⊗n|x〉 = 0 ,

where |x〉 = ∑i1,··· ,in
|i1 · · · in〉 |αi1···in〉

∣

∣

∣
βc

i1···in

〉

and A is as defined in the one-shot case. To verify

the last equivalence:

Ej1 ,··· ,jn tr(ρ(j1 ,··· ,jn)†σ(j1 ,··· ,jn))

= Ej1 ,··· ,jn ∑
i1···in,k1···kn

ρ
(j1 ,··· ,jn)
i1 ···in,k1···kn

σ
(j1 ,··· ,jn)∗
i1···in,k1···kn

= Ej1 ,··· ,jn ∑
i1···in,k1···kn

〈αi1···in
|(g†

j1
⊗ · · · ⊗ g†

jn
)(Zk1−i1 ⊗ · · · ⊗ Zkn−in

)(gj1 ⊗ · · · ⊗ gjn )|αk1 ···kn
〉

〈βc
i1···in

|(g†c
j1
⊗ · · · ⊗ g†c

jn
)(Zi1−k1

⊗ · · · ⊗ Zin−kn
)(gc

j1
⊗ · · · ⊗ gc

jn
)|βc

k1 ···kn
〉

= ∑
i1···in,k1···kn

〈αi1···in
|〈βc

i1 ···in
|Ej1 [(g†

j1
Zk1−i1 gj1)⊗ (g†c

j1
Zc

k1−i1
gc

j1
)]⊗ · · ·

· · · ⊗ Ejn [(g†
jn

Zkn−in
gjn )⊗ (g†c

jn
Zc

kn−in
gc

jn
)] |αk1 ···kn

〉|βc
k1 ···kn

〉
= 〈x|A⊗n|x〉 .

As in the one-shot case, it suffices to show that 〈x|A⊗n|x〉 = 0 implies |x〉 = 0.

Note that A ≥ I ⊗ (I − Φ), so, A⊗n ≥ I⊗n ⊗ (I − Φ)⊗n. Therefore,

0 = 〈x|A⊗n|x〉 ≥ 〈x|I⊗n ⊗ (I − Φ)⊗n|x〉 ≥ 0
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so, 〈x|I⊗n ⊗ (I − Φ)⊗n|x〉 = 0. Equivalently, ∀i1 · · · in, tr[αi1···in
⊗ βc

i1···in
(I − Φ)⊗n] = 0. Finally,

αi1···in
⊗ βc

i1···in
is a matrix with positive partial transpose. According to the following lemma 5,

αi1···in
⊗ βc

i1···in
= 0. So, at most one of |αi1 ···in

〉 and |βc
i1···in

〉 can be nonzero and |x〉 = 0.

This completes the proof of Theorem 2. �

Lemma 5. [YDY14] For all positive integer n, there is no non-zero matrix M satisfying M ≥ 0,
MΓ ≥ 0, and tr(M(I − Φ)⊗n) = 0.

This lemma was proved in [YDY14]. We include a proof here to be self-contained.

Proof. Suppose by contradiction, there is such a matrix M satisfying those conditions. Let

N =
∫

U

UMU†dU, (15)

where U ranges over all unitaries of the form ⊗n
k=1(Uk ⊗ Uc

k), and Uk ranges over all unitaries for
each k, and each Uk ⊗ Uc

k acts on the system corresponding to the kth copy of I − Φ. Note that
N satisfies the same properties as M, because the operation in Eq. (15) is completely positive (so
N ≥ 0), trace preserving (so N 6= 0), PPT preserving (so NΓ ≥ 0), and finally tr(N(I − Φ)⊗n) = 0.
Additionally, N satisfies the property that there are non-negative pk such that

N = ∑
Rk∈R

pkRk,

where R = {Φ, I − Φ}⊗n \ {(I − Φ)⊗n}.

Since ΦΓ has both strictly positive and strictly negative eigenvalues, there exists a nonzero Q such
that Q ≥ 0 and tr(QΦΓ) = 0. Thus,

r := tr(Q(I − Φ)Γ) = tr(Q)− tr(QΦΓ) = tr(Q) > 0.

Then the following holds

tr1,2··· ,n−1[(Q
⊗n−1 ⊗ I)( ∑

Rk∈R
pkRΓ

k )] ≥ 0, (16)

where tr1,2··· ,n−1 denotes the partial trace operation on the first n− 1 parties (because the above is a
completely positive map to NΓ = ∑Rk∈R pkRΓ

k ≥ 0.) Eq. (16) implies that for Rk = (I − Φ)⊗n−1 ⊗
Φ, we have rn−1pkΦΓ ≥ 0 which implies that pk = 0. Permuting the systems gives pl = 0 for
any Rl with n − 1 tensor factors of (I − Φ). Finally, we can recursively prove that pk = 0 for any
Rk ∈ R with n − 2 tensor factors, n − 3 tensor factors etc. So, N = 0 which is a contradiction. �

4 Conclusion

In this paper, we show an extreme separation between zero-error quantum capacity and the pri-
vate capacity by demonstrating for a class of channels that the private capacity is maximum given
the output dimension, while there is no ability to transmit even one-qubit with any finite number
of channel uses, when no error can be tolerated. We hope techniques from our work can be used
to study the zero-error capacity of other channels.
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6 Appendix

For a channel E with Kraus representation E(ρ) = ∑ EiρE†
i (see [NC00] for example), its noncom-

mutative graph [DUAN09, DSW13] G(E) is defined as the subspace spanned by {E†
i Ej : i, j}. In

[SS15], superactivation on the zero-error quantum capacity is studied. For a channel E with no
one-shot zero-error quantum capacity, if one of the following conditions hold, E cannot be super-
activated with any other channel.

a) G(E) contains a maximal commutative *-subalgebra whose dimension is the dimension of the
input state space. In other words, G(E) contains all matrices which are diagonal with respect to
some basis.

b) G(E) is an algebra. In other words, it is closed under matrix production.

In particular, an inductive argument than implies that E has no zero-error quantum capacity.

In this Appendix, we will show that G(Nd) violates both conditions, so, our result cannot be
inferred from [SS15].

First, we observe that the Kraus space of Nd is spanned by

{(I ⊗〈k|)P(I ⊗V)⊗ |V〉VB
⊗ |V〉VE

: V ∈ G, 1 ≤ k ≤ d} = {Zk ⊗〈k|V ⊗ |V〉VB
⊗ |V〉VE

: V ∈ G, 1 ≤ k ≤ d},

where G is a two-design as described in the main text. Therefore,

G(Nd) = span{Zk−l ⊗ V†|l〉〈k|V : V ∈ G, 1 ≤ k, l ≤ d}.
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For any k, l, we can calculate the span of {V†|l〉〈k|V : V ∈ G} by considering the isomorphism
from M to (I ⊗ M)Φ(I ⊗ M†) where Φ = |Φ〉〈Φ| and |Φ〉 = 1√

d
∑i |i〉 |i〉 and by averaging over V:

EV∈G(V†|l〉〈k|V ⊗ I) Φ (V†|l〉〈k|V ⊗ I)†

= EV∈G(V
† ⊗ VT)(|k〉〈k| ⊗ |l〉〈l|)(V† ⊗ VT)†

=
1 − δk,l/d

d2 − 1
(I − Φ) +

δk,l

d
Φ .

Inverting the isomorphism, the span of {V†|l〉〈k|V : V ∈ G} is the whole matrix space when
k = l, and is the space of all traceless matrices when k 6= l. Note that in particular, G(Nd) does not
contain Z ⊗ I.

Now, if condition (a) holds, then there are d2 linearly independent commuting matrices in G(Nd),
which together with Z ⊗ I, gives d2 + 1 linearly independent commuting matrices in B(C ), a
contradiction. To see that condition (b) does not hold, note that I ⊗ Z, Z ⊗ Z† ∈ G(Nd) but their
product Z ⊗ I /∈ G(Nd).
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