
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Verify LTL with Fairness Assumptions Efficiently
Yong Li∗†, Lei Song∗, Yuan Feng‡, Lijun Zhang∗†

∗State Key Laboratory of Computer Science, Institute of Software, CAS, China
†University of Chinese Academy of Sciences, China

‡Centre for Quantum Computation and Intelligent Systems,
University of Technology Sydney, Australia

Abstract—This paper deals with model checking problems with
respect to LTL properties under fairness assumptions. We first
present an efficient algorithm to deal with a fragment of fairness
assumptions and then extend the algorithm to handle arbitrary
ones. Notably, by making use of some syntactic transformations,
our algorithm avoids constructing corresponding Büchi automata
for the whole fairness assumptions, which can be very large in
practice. We implement our algorithm in NuSMV and consider a
large selection of formulas. Our experiments show that in many
cases our approach exceeds the automata-theoretic approach up
to several orders of magnitude, in both time and memory.

I. INTRODUCTION

Linear Temporal Logic (LTL) [24] has been shown to be
a proper specification language. As a result, for verifying
reactive systems, model checkers for LTL, like Spin [18] and
NuSMV [7], have been applied in practice successfully. To
verify whether or not a system satisfies an LTL formula, the
classical automata-theoretic approach [32] is usually adopted:
Firstly, a Büchi automaton is built which accepts all executions
violating the LTL formula; Secondly, a product system is built
from the original system and the Büchi automaton; Finally,
the problem is reduced to finding an accepting path in the
product system. Since in the worst case the constructed Büchi
automaton can be exponentially larger than the LTL formula,
both time and space complexity of the algorithm in [32] is
exponential with respect to the size of the LTL formula. The
complexity of this algorithm is shown to be PSPACE-complete
in [30]. Even if we restrict to a small subset of LTL formulas
(those only containing eventual modality F), it is still NP-
complete. On the other side, due to the popularity of LTL,
many ideas have been proposed optimizing the construction
of Büchi automata, see e.g. [10], [14], [16], [31], [19], [28].

The classification of properties into different categories is
pivotal for efficient verification of reactive systems. In the
seminal paper [22], Lamport introduced the notions of safety
and liveness properties, where “safety” properties assert some-
thing “bad” never happens, while “liveness” properties require
something “good” will eventually happen. These notions were
later formalized by Alpern and Schneider in [1]. Properties
were further classified into strong safety and absolute liveness
in [29], and fair properties. The notion of fairness is important
for verifying liveness in reactive systems to remove unrealistic
behaviors [15].

In practice, fairness assumptions can have a great impact
on the performance in many cases. For instance in the binary

semaphore protocol [17], the fairness assumption that when-
ever a process is ready, it will have a chance to enter the critical
section, is given by:

∧
1≤i≤n(GFenteri→GFcriticali) (G and

F denote “always” and “eventually”, respectively) with n being
the number of processes. When n= 5, the corresponding Büchi
automaton generated by LTL3BA [16] has more than 300
states and 1 million transitions1. Therefore, model checking
formulas under such an assumption will be time and memory
consuming even when given formulas are simple.

In this paper we propose a novel algorithm to verify fairness
as well as general properties with fairness assumptions. We
do not only consider simple fairness formulas as mentioned
above, but also consider more complex fairness with nested
modalities like FG(a∨Fb). Moreover, we extend the notion
of fairness assumptions to full LTL formulas, which allows us
to specify some fairness assumption like “a and X(bUc) holds
infinitely often”. Notably, our algorithm relies on a syntactic
transformation and avoids constructing a Büchi automaton for
the whole fairness. The approach is presented in three steps:
• We first restrict to fairness with only F and G modalities,

for which our syntactic transformation can completely
avoid Büchi automata construction. For this setting our
approach achieves a speedup of four orders of magnitudes
on some examples.

• We then extend the algorithm to deal with fair formulas
of full LTL. The idea is to transform a fair formula
into an equivalent one in disjunctive norm form, each
sub-formula of which can be handled by specific and
efficient algorithms. Even though we may still resort to
the automata-theoretic approach for some sub-formulas,
they are often much smaller than the original one.

• Finally, we show our approach can be adapted to acceler-
ate the verification of generic LTL formulas under fairness
assumptions.

We have implemented the algorithm in NuSMV and com-
pared it with the classical algorithm. Our experimental results
show that for many cases while NuSMV runs out of time
or memory quickly, our algorithm terminates within seconds
using memory less than 100 MB. The main reason is that
after the syntactical transformation, we can avoid constructing
Büchi automata for many sub-formulas. Even for those where
Büchi automata construction is inevitable, their corresponding

1Interested readers can try the online LTL translator available at: http://
spot.lip6.fr/ltl2tgba.html



automata are relatively small and can be constructed effi-
ciently.

It should be pointed out, however, that the syntactical
transformation may also cause exponential blow-ups in the
length of given formulas. Hence, as the experimental results
show, our algorithm may be much slower than NuSMV in
some cases. We then further discuss and characterize the
formulas for which our approach provides better performance.

a) Related Work: There is a plenty of work on optimizing
verification of LTL (or its sub-logic). Here we only briefly
recall a few closely related works. In [4], specialized algo-
rithms are proposed to deal with LTL properties, which can be
represented by either terminal or weak automata. Compared to
general algorithms, specialized algorithms improve the worst-
case time complexity by a constant factor. This result is further
formalized in [6], where it is shown that terminal and weak
automata correspond to guarantee properties (something hap-
pens eventually) and persistence properties (something always
happens eventually), respectively. For guarantee properties,
model checking algorithm reduces to the reachability of an
accepting state, while for persistence properties, it reduces
to finding a fully accepting cycle, i.e., all states on it are
accepting. Furthermore, a decision algorithm is proposed in [6]
to check whether an LTL formula is a guarantee or persistence
property. For properties which are neither guaranteed nor
persistent, the general algorithm has to be used. One exception
is [26], where a decomposition algorithm is proposed for
strong automata, which are neither terminal nor weak. The
idea is to decompose a strong automaton into three sub-
automata, which are terminal, weak, and strong, respectively.
Then specialized algorithms can be used to check the terminal
and weak sub-automata. Since the strong sub-automaton is
smaller than the original automaton, decomposition always
speeds up the verification according to the experiment in [26].

Differently, our algorithm performs decomposition syntac-
tically on given formulas, hence we do not need to build
their corresponding Büchi automata at the beginning. While
the specialized algorithm in [4], [6], [26] is automata-based,
Büchi automata have to be built beforehand, which may take
a significant amount of time and memory, especially when the
given formula is long [17]. Moreover, our algorithm works for
arbitrary fairness including those which are neither guaranteed
nor persistent.

b) Organization of the paper.: Section II introduces
some definitions and notations used throughout the paper.
The algorithm is presented in Section III. We demonstrate
the efficiency of our algorithm via experiment in Section V.
Finally, we conclude our paper in Section VI.

All missing proofs can be found in [?].

II. PRELIMINARIES

We shall first introduce some preliminary definitions and
notations and then present the syntax and semantics of LTL.

Let X be a finite set of elements and ξ = x0x1 . . . ∈ X∗

with X∗ = ∪i≥0X i a finite sequence of elements in X . For
each ξ ∈ X i, we let |ξ | = i+ 1 denote its length. An infinite

sequence ξ ∈ Xω is cyclic if there exists ξ ′ ∈ X i for some i
such that ξ = (ξ ′)ω , i.e., repeating ξ ′ for infinite times. Let
ξ [i] = xi denote the (i+ 1)-th element on ξ if it exists. We
shall write ξ |i to denote the prefix of ξ ending at the (i+1)-
th element, while ξ |i the suffix of ξ starting from the (i+1)-
th element. Let ξ ∈ X∗ and ξ ′ ∈ Xω . Then ξ ·ξ ′ denotes the
infinite sequence obtained by attaching ξ ′ to the end of ξ .

We will fix a finite set of atomic propositions, denoted AP
and ranged over by a,b,c, . . ., throughout the remainder of the
paper. The syntax of LTL is given by the following grammar:

ϕ,ψ ::= a | ¬a | ϕ1∧ϕ2 | ϕ1∨ϕ2 | Xϕ | ϕ1Uϕ2 | ϕ1Wϕ2

where a ∈ AP and ϕ,ψ,ϕ1, and ϕ2 range over LTL formulas.
As usual, we introduce some abbreviations: 1 = a∨¬a and
0 = a∧¬a denote True and False respectively, while Fϕ =
1Uϕ (eventually ϕ), Gϕ = ϕW0 (always ϕ), and (ϕ1→ ϕ2) =
(¬ϕ1∨ϕ2). Let l, l1, l2, . . . range over propositional formulas,
i.e., formulas defined by: l ::= a | ¬a | l1∧ l2 | l1∨ l2.

Given an infinite sequence of sets of atomic propositions
ρ = A0A1 . . . ∈ (2AP)ω and an LTL formula ϕ , we say ρ

satisfies ϕ , written as ρ |= ϕ , if:

ρ |= a iff a ∈ ρ[0]
ρ |= Xϕ iff ρ|1 |= ϕ

ρ |= ϕ1Uϕ2 iff ∃i≥ 0.(ρ|i |= ϕ2∧∀0≤ j < i.ρ| j |= ϕ1)
ρ |= ϕ1Wϕ2 iff (∀i≥ 0.ρ|i |= ϕ1)∨ (ρ |= ϕ1Uϕ2)

All other connectives are defined in a standard way. For
formulas ϕ and ψ , we say that ϕ and ψ are semantically
equivalent, denoted ϕ ≡ ψ , if ρ |= ϕ iff ρ |= ψ for any
ρ ∈ (2AP)ω .

Here we only define LTL formulas in positive normal form,
in the sense that the negation operator can only be applied to
atomic propositions. However, it is well-known that any LTL
formula can be transformed into an equivalent one in positive
normal form, using ¬(Xψ)≡X(¬ψ) and the following duality
laws:

¬(ϕ1Uϕ2) ≡ (ϕ1∧¬ϕ2)W(¬ϕ1∧¬ϕ2)
¬(ϕ1Wϕ2) ≡ (ϕ1∧¬ϕ2)U(¬ϕ1∧¬ϕ2)

Fairness assumptions are critical to rule out unrealistic
behaviors when performing verification; see for instance [25],
[15]. Formally, fairness is a fragment of LTL, which can be
defined as follows:

Definition 1 ([29]). An LTL formula ϕ is a fairness iff for any
ρ ∈ (2AP)ω ,

1) the set of sequences satisfying ϕ is closed under suffixes,
i.e., ρ |= ϕ implies ρ|i |= ϕ for any i≥ 0;

2) the set of sequences satisfying ϕ is closed under prefixes,
i.e., ρ |= ϕ implies ρ1 ·ρ |= ϕ for any ρ1 ∈ (2AP)∗.

We shall refer properties defined in Definition 1 as fair for-
mulas or fairness in the following. According to Definition 1,
the following lemma is straightforward:

Lemma 1. ϕ is a fairness iff ϕ ≡Gϕ and ϕ ≡ Fϕ .
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Fig. 1. An example of Kripke structure

As a result of Lemma 1, we can add any number of F and
G in front of a fairness without changing its semantics. For
instance, fairness Fa∨G¬a is equivalent to GF(Fa∨G¬a).

As usual we consider models given as Kripke structures,
which are formally defined as follows:

Definition 2. A Kripke structure is a tuple K :=
(S, s̄,T,AP,L) where S is a finite set of states, s̄ ∈ S is the
initial state, T⊆ S×S is a set of transitions, and L : S→ 2AP

is a labeling function. We assume that for each s ∈ S, there
exists s′ ∈ S such that (s,s′) ∈ T.

We fix a Kripke structure K = (S, s̄,T,AP,L) throughout
the remainder of the paper. Let r,s, t, . . . range over S. Let
Pathsω(s) ⊆ Sω denote the set of infinite paths starting from
s such that π ∈ Pathsω(s) iff π[0] = s and for any i ≥ 0,
(π[i],π[i + 1]) ∈ T. Similarly, we can define Paths∗(s), i.e.,
finite paths in K starting from s. Let Pathsω(K ) = Pathsω(s̄)
and Paths∗(K )=Paths∗(s̄). Given π ∈ Sω , let trace(π) denote
the trace of π such that trace(π)[i] = L(π[i]) for all i≥ 0, i.e.,
trace(π) denotes the sequence of labels of states in π . For
an LTL formula ϕ , we write π |= ϕ iff trace(π) |= ϕ; s |= ϕ

iff π |= ϕ for all π ∈ Pathsω(s); K |= ϕ iff s̄ |= ϕ . Given an
LTL formula ϕ and a fairness ϕ f , K satisfies ϕ under the
assumption ϕ f iff K |= (ϕ f → ϕ).

Example 1. An example for Kripke structure is K =
({s0,s1,s2},s0,T,{a,b,c},L), where T and L are depicted in
Figure 1, for instance L(s0)= {a}. Obviously, traces in K can
be represented as ({a}∗{}{a,c})∗{a}ω | ({a}∗{}{a,c})ω .

Moreover, we directly conclude the corollary below from
Lemma 1:

Corollary 1. Let π ∈ Pathsω(K ) and ϕ a fairness. Then for
any index j ≥ 0, π |= ϕ iff π| j |= ϕ .

Proof. Since ϕ is a fairness, ϕ ≡ Gϕ . Thus π |= ϕ implies
π| j |= ϕ for any index j. On the other hand, π| j |= ϕ implies
π |= Fϕ . Then we conclude π |= ϕ by Fϕ ≡ ϕ .

Intuitively, we can safely consider only the suffixes of the
paths when the given formula is a fairness.

III. MODEL CHECKING FAIRNESS

In this section, we present an algorithm for model checking
fair formulas. We first describe the overall idea. For fair
formula ϕ , K |= ϕ means that for all infinite paths π starting
from initial state s̄, π |= ϕ . Conversely, if ¬(K |= ϕ), then
there exists an infinite path π such that π |=¬ϕ . Thus, we first
construct the negation ¬ϕ , which is also a fair formula. Then,

we construct a fair normal form of ¬ϕ , denoted by fnf (¬ϕ),
which has the form ∨m

i=1ϕi, with each ϕi being a fair formula.
Then, the problem reduces to checking whether there exists
an infinite path π such that π |= ϕi. In other words, whether
there exists an SCC B satisfying for ϕi: the satisfaction here
can be checked by analysing the SCC B. A strongly connected
component (SCC) B of K is a state set such that for any
s, t ∈B, there exists a path from s to t. We here do not consider
trivial SCCs which are single states without self loops.

We start with treating fairness formulas in LTL(F, G), then
we extend the algorithm to deal with general fairness. Finally,
we handle all LTL formulas with fairness assumptions.

A. Fairness in LTL(F, G)
In this subsection we focus on a fragment of LTL formulas,

denoted LTL(F, G), which only contains F and G modalities,
i.e., it is defined by the following grammar:

ϕ ::= a | ¬a | ϕ ∧ϕ | ϕ ∨ϕ | Fϕ |Gϕ.

For each fairness in LTL(F, G), we shall show that it can be
transformed into an equivalent formula where all propositional
formulas are directly preceded by precisely two modalities,
either FG or GF. Such a transformation is purely syntactical:
we call the transformation procedure the flatten operation,
denoted by fnf .

Theorem 1. Let ϕ ∈ LTL(F, G) be a fairness. Then, it can be
transformed into the following equivalent formula, referred to
also as its fair normal form:

fnf (ϕ) :=
m∨

i=1

(
FGli∧ (

ni∧
j=1

GFli j)

)
where li and li, j are propositional formulas.

Note that m and ni are nonnegative integers and we omit
FGli and GFli j in the fair normal form whenever li and li j are
1. The syntactic transformation fnf is the key of the algorithm:
fnf (ϕ) can be checked directly on K without constructing the
product automaton. We first give an example to illustrate the
main stapes of verifying fair formulas in LTL(F, G).

Example 2. Take ϕ = ¬(FG(a∨ (Fb∧Gc))) for example, the
fair normal form of ¬ϕ is fnf (¬ϕ) = FGa∨ (FGc∧GFb).
Consider model checking the Kripke structure K in Exam-
ple 1 against fair formula ϕ . We already have the fair normal
form of ¬ϕ above, so we only need to check whether there
exists an SCC satisfying fair formula FGa or FGc∧GFb.
Consider fair formula FGa, we find that there exists an SCC
{s0} reachable from initial state s0 that fulfils the formula.
We therefore conclude that K does not satisfy ϕ and give a
counterexample π = (s0)

ω such that π |= ¬ϕ , thus π 6|= ϕ .

We below give the intuition behind the syntactic transfor-
mation.

First, we have to deal with trivial fair formula such as Fa∨
G¬a. Due to Lemma 1, we first add GF in front of the original
formula and then apply the flatten operation, which gives us
the fair normal form GFa∨FG¬a.



Given a fairness ϕ ∈ LTL(F, G), our goal is to obtain an
equivalent formula of the fair normal form. To that end, we
first make sure that there exists at least one FG or GF in front
of every propositional formula, which is guaranteed by safely
adding GF in front of ϕ . After that, we are going to push every
FG and GF directly in front of all propositional formulas. To
achieve this, one needs to discuss the distributivity of GF and
FG over ∨ and ∧.

Suppose ϕ1,ϕ2 ∈ LTL, our goal is pushing GF and FG in-
side such that they appear only before propositional formulas.
We consider the following four cases:

1) GFG≡ FG,GFF≡GF,FGG≡ FG and FGF≡GF are
trivial according to the semantics of LTL. This insures
that we have only GF and FG modalities since we first
add GF in front of ϕ .

2) GF(ϕ1 ∨ ϕ2) ≡ GFϕ1 ∨ GFϕ2 and FG(ϕ1 ∧ ϕ2) ≡
FGϕ1 ∧FGϕ2 hold since GF and FG are distributive
over ∨ and ∧ operator respectively.

3) GF(ϕ1 ∧ Fϕ2) ≡ GFϕ1 ∧ GFϕ2, FG(ϕ1 ∨ Gϕ2) ≡
FGϕ1 ∨ FGϕ2, GF(ϕ1 ∧ Gϕ2) ≡ GFϕ1 ∧ FGϕ2 and
FG(ϕ1 ∨ Fϕ2) ≡ FGϕ1 ∨ GFϕ2. Intuitively, if the
operands of GF and FG are not propositional formulas,
they must be the four cases we listed here after we go
through case 2) and case 4).

4) GF(ϕ1 ∧ϕ2) and FG(ϕ1 ∨ϕ2). This is the most chal-
lenging part since GF (FG) is not distributive over
∧ (∨) operator. The following procedure relies on the
structure of the formula. If the operand of GF or FG
is propositional formula, then it is already the formula
we desire. Otherwise, if they are not case 3) such as
the formula FG(a∨ (Fb∧Gc)), we transform ϕ1 ∧ϕ2
and ϕ1 ∨ ϕ2 to disjunctive normal form (DNF) and
conjunctive normal form (CNF) respectively. After that,
we apply case 2) and may use case 3) for further
processing.

Once we get a formula where all propositional formulas are
adjacent to GF or FG, we transform it into DNF, which
gives us the fair normal form in Theorem 1. We illustrate
the procedure of fnf operator via an example as follows:

Example 3. Let ϕ = FG(a∨ (Fb∧Gc)). We show how to
flatten ϕ step by step.
• Add GF in front of ϕ which gives us ϕ since GFFG ≡

FG;
• Since ϕ is an instance of case 4), we first transform a∨
(Fb∧Gc) into a CNF, which results in FG((a∨Fb)∧
(a∨Gc));

• According to case 2), FG is distributive over ∧ operator,
we therefore directly push FG inside, which gives us
FG(a∨Fb)∧FG(a∨Gc);

• The resulting formula is an instance of case 3), we get
(FGa∨GFb)∧(FGa∨FGc) after we apply the equations
in case 3).

• Since all FG are adjacent to propositional formulas, we
transform above formula to DNF, which gives us the fair
normal form FGa∨ (FGc∧GFb) of ϕ .

Algorithm 1 The procedure fairMC for checking whether
K |= ϕ , where ϕ is a fair formula in LTL(F, G).
fairMC(ϕ,K ) returns True if K |= ϕ , and False otherwise.

1: procedure fairMC(ϕ,K )
2: fnf (¬ϕ)≡ ∨m

i=1ϕi = ∨m
i=1(FGli∧ (

∧ni
j=1 GFli, j));

3: for all (1≤ i≤ m) do
4: B←{s ∈ S | s |= li};
5: if B 6= /0 then
6: for all (SCC B′ ⊆ B) do
7: if (B′ is accepting for ϕi) then
8: return False;
9: return True;

Intuitively, it means whenever π |= ϕ , it must be the case that
π ends up with a loop such that either all states on the loop
satisfy a or all states satisfy c and at least one state satisfies
b. This also can be verified by applying the semantics of LTL.

By Corollary 1, we only need to consider the infinite suffixes
of the paths that all states will be visited infinitely often. That
is to say, we only need to consider all the SCCs of K that
can be reached.

Definition 3 (Accepting SCC). Given a formula ϕ = FGl ∧
(
∧m

j=1 GFl j) and an SCC B. If 1) for every state s ∈ B, s |= l
and 2) for each j, there exists s ∈ B, such that s |= l j, then we
say SCC B is accepting for ϕ .

With the definition of accepting SCC, we have the following
theorem:

Theorem 2. For any ϕ = FGl ∧ (
∧m

j=1 GFl j), there exists
an infinite path π in K such that π |= ϕ iff there exists a
reachable SCC B such that B is accepting for ϕ .

Proof. ⇒ Since K is finite, for any π ∈ Pathsω(K ), there
exists a smallest index k, such that all states in π|k will
be visited by infinite times. By Corollary 1, it suffices
to show that π |= ϕ iff π|k |= ϕ since one can check
that ϕ is a fairness. For convenience, let π1 = π|k. Let
B1 be the set of states on π1. Obviously, all states in B1
are connected since all states will be visited by infinite
times. π1 |= FGl means s |= l for each s ∈ B1 and π |=
GFl j means that there exists s ∈ B1 such that s |= l j
for each l j. Let B = B1 ⊆ S, then B is an SCC and is
accepting for ϕ .

⇐ This direction is trivial, since we can always construct
a path π2 that starts from any s ∈ B and visits all states
in B by infinite times. Since B is reachable, we can find
a finite path π1 which starts from the initial state and
reaches the first state of π2. Let π = π1 ·π2. Obviously
π |= FGl∧ (

∧m
j=1 GFl j), thus we complete the proof.

Based on Theorem 2, Algorithm 1 describes the procedure
to determine whether all paths in K satisfy a given fair
formula ϕ in LTL(F, G). For this, the algorithm first syntac-
tically transforms ¬ϕ into an equivalent formula of the form



∨m
i=1 FGli∧ (

∧ni
j=1 GFli, j). For each 1≤ i≤ m, we then try to

find an accepting SCC B′ such that all states in B′ satisfy li and
at least one state in B′ satisfies li, j for each 1≤ j≤ ni. In case
an accepting SCC is found, there exists a path in K violating
ϕ , hence K 6|= ϕ; otherwise we conclude that K |= ϕ .

By Theorem 2, the soundness and completeness of Algo-
rithm 1 immediately follows.

Note the checking of whether a SCC B′ is accepted by ϕi
in line 7 of Algorithm 1 can be done easily in linear time with
respect to |B′|. Let |K | denote the size of the given model,
i.e., the total number of states and transitions. The complexity
of Algorithm 1 is shown in the following theorem.

Theorem 3. Algorithm 1 runs in time O(|K |×2|ϕ|) and in
space O(|K |+ |ϕ|×2|ϕ|).

Due to case 4) in the explanation of Theorem 1 and the
transformation that gives a formula of DNF, the resulting
formula length can be O(2|ϕ|) in the worst case. Suppose n1
is the number of propositional formulas first preceded by G,
and n2 for number of propositional formulas first preceded
by F, obviously n1 + n2 ∈ O(|ϕ|). We then have 2n1 options
for FGl formulas and 2n2 for ∧kGFlk since the number of
lk is n2, so we will at most have 2n1+n2 formulas have the
form FGl∧(

∧m
k=1 GFlk) and each formula of that form at most

has n2 +1 propositional formulas, which means that formula
length can be |ϕ|×2O(|ϕ|) in the worst case. That is, we will at
most have 2n1+n2 formulas with the form FGl∧ (

∧m
k=1 GFlk),

and the time for model checking FGl ∧ (
∧m

k=1 GFlk) will
be |K | to traverse all SCCs. Comparing to the classical
algorithm presented in [32], Algorithm 1 has the same time
complexity. However, experiment shows that our algorithm
achieves much better performance comparing to the classical
one. Furthermore, Algorithm 1 reduces the space complexity
from O(|K | × 2O(|ϕ|)) to O(|K |+ 2O(|ϕ|)) for fairness in
LTL(F, G).

B. Expressiveness of fairness in LTL(F, G)

We have presented an efficient algorithm to handle the
fairness in LTL(F, G). The question then arises whether fair
formulas in LTL(F, G) are expressive enough to encode all fair
formulas in LTL? First, one can easily verify that the fairness
LTL formula FG(aUb) is equivalent to FG(a ∨ b) ∧GFb.
Intuitively, eventually there is a looping path that satisfies aUb
at every position is equivalent to that eventually there is a loop
path that every state satisfies a∨b and there exists at least one
state on the loop that satisfies b.

The transformation does not work in general. In the follow-
ing, we show that ϕ = FG(a∨X(bUc)) can not be expressed
by any fairness in LTL(F, G). It is easy to see that ϕ is a
fairness by Lemma 1. But it is impossible to find an equivalent
formula in LTL(F, G) to represent ϕ since the order of states
in SCC matters. We show that ϕ can not be represented as a
fairness in LTL(F, G) by an example in the following.

For the trace η = ({a}{}{a,c})ω of K in Example 1, there
are three kinds of letters, namely {a},{} and {a,c}. It is trivial
that {a} |= a or {a,c} |= a. For the word starting from letter {},

we have {}{a,c}· · · |=X(bUc) since every letter {} is directly
followed by the letter {a,c}. Thus we conclude that η |= ϕ .

By Theorem 1, suppose ϕ ≡
∨m

i=1(FGli ∧ (
∧ni

j=1 GFli, j))
holds, we have η |=

∨m
i=1(FGli ∧ (

∧ni
j=1 GFli, j)). In other

words, there exists 1 ≤ i ≤ m such that η |= FGli ∧
(
∧ni

j=1 GFli, j). Further, we conclude that for any k≥ 0, η |k |= li
and for every li, j, there is at least one out of letters {a},{}
and {a,c} must satisfy li, j. As a result, ({a}{a,c}{})ω |=
FGli∧ (

∧ni
j=1 GFli, j), which follows that ({a}{a,c}{})ω |= ϕ .

Contradiction.
Thus we conclude that fairness in LTL(F, G) is not powerful

enough to express all fairness in LTL.

C. Fairness in LTL

In this subsection we deal with arbitrary fair formulas
including those not expressible in LTL(F, G). More notations
are needed. Given B ⊆ S and s ∈ B, let K s

B := (B,s,TB,LB)
where TB =T∩(B×B) and LB : B→ 2AP such that LB(t)=L(t)
for any t ∈ B. In other words, K s

B is a sub-model of K
where only states in B and transitions between states in B
are kept. Moreover, let LTL(U, X) denote the fragment of LTL
only containing U and X modalities, namely, it is defined by
the following grammar:

ϕ ::= a | ¬a | ϕ1∧ϕ2 | ϕ1∨ϕ2 | Xϕ | ϕ1Uϕ2.

Formulas in LTL(U, X) are also known as co-safety in litera-
ture [20], [3], [21].

Similar as in Section III-A, we shall show that any fair
formula can be transformed into an equivalent one, where all U
and X modalities can be separated from F and G such that the
innermost formulas are all in LTL(U, X). Such a transformation
is syntactical as well, after which a formula in DNF will
be obtained and moreover, each sub-formula can be handled
individually by specific and efficient algorithms.

Theorem 4. Let ϕ ∈ LTL be a fair formula. Then, it can be
transformed into the following equivalent formula, referred to
also as its fair normal form:

fnf (ϕ) :=
m∨

i=1

(
ϕi0∧FGϕi1∧ (

ni∧
j=2

GFϕi j)

)
where ϕi0 ∈ LTL(F, G) and ϕi j ∈ LTL(U, X) for all 1≤ i≤ m
and 1≤ j ≤ ni.

Example 4. Take ϕ = ¬(FG(a∨ (X(bUc)∧F¬b))), then the
fair normal form of ¬ϕ is FGa∨ (FG(a∨X(bUc))∧GF¬b).

As before, the model checking of an LTL formula ϕ is
essentially reduced to the problem of finding a path in K
satisfying fnf (¬ϕ). Thus, we shall focus on the procedure
of finding a path in K satisfying the given formula ψ =
ϕ0 ∧ FGϕ1 ∧GFϕ2 ∧ . . . ∧GFϕn with ϕ0 ∈ LTL(F, G) and
ϕ j ∈ LTL(U, X) for all 1≤ j≤ n. Note by Theorem 4, fnf (¬ϕ)
is a disjunction of such formulas.

We show how to optimize the procedure of finding a path
satisfying ψ or not. Case ϕ1 ≡ 1: hence the sub-formula FGϕ1
can be omitted from ψ . The formal procedure for checking



Algorithm 2 The procedure accPath(ψ,K ) for checking
whether there exists π ∈ Pathsω(K ) such that π |= ψ , where
ψ = ϕ0 ∧GFϕ2 ∧ . . .∧GFϕn with ϕ0 ∈ LTL(F, G) and ϕ j ∈
LTL(U, X) for each 2 ≤ j ≤ n. accPath(ψ,K ) returns True
if a path satisfying ψ is found, and False otherwise.

1: procedure accPath(ψ,K )
2: Acc←{all accepting SCCs with respect to ϕ0};
3: for all (B ∈ Acc) do
4: A← /0;
5: for all (2≤ j ≤ n and t ∈ B) do
6: if (not (K t

B |= ¬ϕ j)) then
7: A← A∪{a j};
8: if (A = {a j}2≤ j≤n) then return True;
9: return False;

whether there exists a path in K satisfying ψ is presented
in Algorithm 2. As ψ is a fair formula, we can easily show
that ϕ0 must be also a fair formula. Since ϕ0 ∈ LTL(F, G),
a simple modification of Algorithm 1 can be applied to find
all accepting SCCs with respect to ϕ0 in K (line 2). If no
accepting SCC exists, we can terminate, as no path in K can
satisfy ϕ; Otherwise, for each accepting SCC B and ϕ j with
2 ≤ j ≤ n, add a fresh atomic proposition a j to A (line 7)
iff there exists a state t ∈ B and π ∈ Pathsω(K t

B ) such that
π |= ϕ j (line 6). This step can be done by launching classical
algorithms: A path π ∈ Pathsω(K t

B ) exists such that π |= ϕ j
iff K t

B does not satisfy ¬ϕ j. Finally, an SCC B is accepted by
ψ if at least one state in B is marked by a j for each 2≤ j≤ n,
namely, A = {a j}2≤ j≤n (line 8).

The key point behind Algorithm 2 is that ϕ j (2 ≤ j ≤ n)
is in LTL(U, X), the corresponding Büchi automaton of which
is terminal [4]. Therefore, once a path π satisfies ϕ j, we can
always find a finite fragment of π which suffices to conclude
that π |= ϕ j regardless of the remainder of π . In other words,
whenever π |=ϕ j, there exists i≥ 0 such that (π|i ·π ′) |=ϕ j for
any infinite path π ′. Whenever Algorithm 2 returns True and
finds an accepting B for ψ , we can construct a path satisfying
ψ as follows:

1) Let π1 be a finite path in K t
B for any t such that all

states in B appear in π1 for at least once. Traversing all
states in B is useful to witness ϕ0 ∈ LTL(F, G).

2) Continue from the last state of π1 and go to a state t2 by
following any path, where t2 is a state in B, from which
a path satisfying ϕ2 exists. Let π ′1 be the resultant path
ending at t2. Expand π ′1 by following the path satisfying
ϕ2 and stop whenever ϕ2 is for sure satisfied. Denote
the resultant finite path by π2.

3) Keep extending π2 by repeating step 2 for each 3≤ j≤
n. Let πn denote the resulting path.

4) Let π ′n denote an arbitrary extension of πn such that t is
a direct successor of the last state of π ′n, namely, (π ′n)

ω

is a cyclic path in K t
B .

By construction, it is easy to check that (π ′n)
ω |= ψ , which

also shows the soundness and completeness of Algorithm 2.

Case ϕ1 6≡ 1: we have to make sure that an accepting path
also satisfies FGϕ1. For this purpose, we first transform FGϕ1
to a Büchi automaton, denoted A1, and then build a product
model K ×A1 as in the classical algorithm. Let a1 be a fresh
atomic proposition such that a1 holds at a state iff the state
is accepting in K ×A1. The remainder of the procedure is
similar as the case when ϕ1 ≡ 1 except FGϕ1 is replaced by
GFa1 in ψ and the model under checked will be K ×A1.

Example 5. Consider to verify ϕ from Example 4 over K
in Example 1. As we already have the fair normal form for
¬ϕ by Example 4, we need to check whether there is a path
π such that π |= FGa or π |= FG(a∨X(bUc))∧GF¬b). Note
that if we first check FGa, then we employ Algorithm 1 and
terminate here with a counterexample (s0)

ω .
To further illustrate the algorithm, we continue with formula

FG(a∨X(bUc))∧GF¬b. Since a∨X(bUc) 6≡ 1, we construct
an automaton A for FG(a∨X(bUc)) with Büchi accepting
condition GFaccepting where accepting is a new atomic
proposition. Then we construct the product of K and A
and find an SCC accepted by GFaccepting∧GF¬b, in this
case, say {s0,s1,s2}. We therefore construct a counterexample
(s0s1s2)

ω . Detailed information of A and the product can be
found in [?].

a) Discussions: As mentioned before, formulas in
LTL(U, X) are guarantee properties according to the classifica-
tion in [6]. Their corresponding Büchi automata are terminal,
for which specific and efficient algorithms exist [4]. By sepa-
rating a fair formula, we can identify sub-formulas belonging
to different fragments, each of which will be handled by
specific and efficient algorithms.

D. General Formulas with Fairness Assumptions

In this subsection we show how the model checking problem
for general LTL formulas with fairness assumptions can be
accelerated by the specific algorithms for fair formulas intro-
duced in the above subsections.

Given a fair formula ϕ f and an LTL formula ϕ , the model
checking problem of ϕ under the assumption ϕ f reduces to
checking whether K |= (ϕ f → ϕ). In order to make use of our
specific algorithm for fairness, the procedure can be divided
into two steps:

1) ¬ϕ is first transformed into a Büchi automaton, denoted
A¬ϕ , and the product of A¬ϕ and K is then constructed,
where all accepting states are marked by a fresh atomic
proposition accepting;

2) Then K |= (ϕ f → ϕ) iff there is no path in the product
satisfying ϕ f ∧GFaccepting. Note ϕ f ∧GFaccepting is
still a fair formula, for which our efficient algorithm can
be applied.

Note that we can specify some fairness assumption like
FG(a ∨ (X(bUc) ∧ F¬b)) in Example 4 which is not in
LTL(F, G). Moreover, by making use of our algorithm for
fairness, we gain some speed up in the model checking
procedure if we choose to check FGa in the fair normal form
as discussed in Example 5.



E. Formula Characterization

In this section, we specify some formula sets which are
favourable to our algorithm as well as some formula sets for
which our syntactic transformation leads to dramatic blow up
of the formula lengths.

We first characterize some formula sets to which applying
our transformation does not lead to dramatic growth of formula
length, and we call them the fast LTL formulas.

Definition 4. Let Σ f be a subset of LTL formulas which is
constructed by following rules. Then ϕ f ,ϕe ∈ Σ f where ϕ1 ∈
LTL(U, X).

ϕ0 ::= ϕ1 | Fϕ0 |Gϕ0 | ϕ0∧ϕ0

ϕ f ::= ϕ0 | ϕ f ∨ϕ f

ϕe ::= ϕ1 | ϕe∨ϕe | ϕe∧ϕe | Fϕe |Gϕe

By induction on the structure of formulas defined in Def-
inition 4 and similar analysis from Theorem 3, it is straight-
forward to show that:

Corollary 2. Let ϕ f (ϕe) be a formula defined in Definition 4
and ϕ ′f (ϕ ′e) be the resulting formula after the transformation
defined in Theorem 4. Then |ϕ ′f |=O(|ϕ f |). Similarly, we have
|ϕ ′e|= O(2|ϕe|).

In the following, we give the intuition why the transforma-
tion increase the formula length by the following example.

Example 6. Let

ϕ = ψ1Uψ2 =((GFa1∧GFa2)∨·· ·∨ (GFap−1∧GFap))

U((GFb1∨GFb2)∧·· ·∧ (GFbq−1∨GFbq))

Clearly, |ϕ| = O(p + q). We need first get all F and G
modalities out of the scope of U. To this end, by rules of
(ϕ1∧ϕ2)Uϕ3 ≡ ϕ1Uϕ3∧ϕ2Uϕ3 and ϕ1U(ϕ2∨ϕ3)≡ ϕ1Uϕ2∨
ϕ1Uϕ3, it requires us to transform ψ1 to CNF form and ψ2
to DNF form. After that, we get a formula which is of size
O(2|ϕ|).

We remark that our transformation does not work when the
formula contains W modalities, so we replace W with G and U
modalities. As a result, it may increase the number of modali-
ties after negating a formula. Take ϕ = FG(¬a∨ (¬bU¬c))
for example, after negating ϕ , it gives us GF(a ∧ ((¬b ∧
c)W(b ∧ c))), which is equivalent to GF(a ∧ (G(¬b ∧ c) ∨
((¬b∧ c)U(b∧ c)))). After applying the formula transforma-
tion, the resulting formula becomes (FG(¬b∧ c)∧GFa)∨
GF(a∧ ((¬b∧ c)U(b∧ c))). We notice that the reduction for
W modality contributes to the growth of the formula length.

IV. EXPERIMENT

In this section we first illustrate briefly how our algorithm
is implemented symbolically in NuSMV and then compare
the experiment results with existing algorithms. NuSMV is
a Symbolic Model Verifier extending the first BDD-based
model checker SMV [5]. Compared to tools based on explicit

TABLE I
NUMBER OF REACHABLE STATES

Model PD6 PD9 PD12 BS4 BS8 BS12 BS16
Size 566 13605 324782 80 2304 53248 1114110

representations, NuSMV is able to handle relatively more
complex formulas [27], which is the main reason for choosing
NuSMV in our experiment.

We implement our algorithm in NuSMV symbolically.
The algorithm first decomposes a given formula syntacti-
cally to the specific form according to Theorems 1 and
4 and then uses the fair cycle detection algorithm pro-
posed by Emerson and Lei [12] to find accepting SCCs.
For instance, given a fair formula ϕ ∈ LTL(F, G) such that
fnf (ϕ) =

∨m
i=1

(
FGli∧ (

∧ni
j=1 GFli, j)

)
, the fair cycle detection

algorithm can be applied to determine whether there exists an
SCC in K satisfying FGli∧(

∧ni
j=1 GFli, j) for some 1≤ i≤m.

By doing so, we avoid enumerating all SCCs one by one.
We adopt two well-known and scalable problems as our

benchmarks: dining philosopher problem (PD) and binary
semaphore protocol (BS). Their sizes are summarized in Ta-
ble I, where “Size” refers to the number of reachable states for
each model, PDx denotes the PD model with x philosophers,
and similarly for BSx. All experiment results were obtained on
a computer with an Intel(R) Core(TM) i7-2600 3.4GHz CPU
running Ubuntu 14.04 LTS. We set time and memory limits
to be 2 hours and 3 GB, respectively. The source code and
several cases can be downloaded from

http:// iscasmc.ios.ac.cn/?page id=984
We consider three categories of formulas.

A. Fair LTL(F, G) formulas

The first category takes formulas often used in verification
tasks. Specifically, for PD model we consider the following
formula, saying that the first philosopher will eat eventually
if no one will be starved (fairness assumption), namely,
whenever a philosopher is ready, he/she will be able to eat
eventually:

Spec1 =

(
n∧

i=1

(GFreadyi→GFeati)

)
→ Feat1

For BS model, we consider the following two formulas:

Spec2 =

(
n∧

i=1
(GFenteri→GFcriticali)

)
→ Fcritical1

Spec3 =

(
n∧

i=1
(GFenteri→GFcriticali)

)
→ ((¬critical1∧¬critical3)Ucritical2)

Spec2 denotes a similar specification as Spec1, while Spec3
requires that the second process entering the critical part before
the first and third processes. Notice that all given fairness
assumptions are simple formulas in LTL(F, G).

In the following we write NuSMV to represent the
automata-theoretic approach implemented in NuSMV. Table II



TABLE II
TIME (SECOND) AND MEMORY USAGE (MB) FOR FORMULAS IN THE FIRST

CATEGORY

Formula Model Time (second) Memory (MB)

Ours NuSMV Ours NuSMV

Spec1

PD6 2.65 19.49 63.90 136.98
PD9 1373.41 T-O 113.07 T-O

PD12 T-O T-O T-O T-O

Spec2

BS4 0.30 0.15 11.97 20.67
BS8 0.04 172.63 14.01 141.04

BS12 0.11 T-O 33.85 T-O
BS16 1.06 M-O 319.58 M-O

Spec3

BS4 0.02 0.10 12.22 18.67
BS8 0.03 101.25 14.82 136.64

BS12 0.12 T-O 36.31 T-O
BS16 1.14 M-O 337.55 M-O

TABLE III
FORMULAS IN SCALABLE PATTERNS GENERATED BY “GENLTL”.

Pattern genltl arguments Formula
p1 –and-fg = n ∧n

i=1FGai
p2 –and-gf = n ∧n

i=1GFai

p3 –gh-r = n−1 ∧n−1
i=1 (GFai ∨FGai+1)

p4 –ccj-xi = n, –or-fg = n ∨n
i=1FGai

shows both the time and memory spent by our algorithm and
NuSMV to check formulas in the first category on PD and BS
models, where T-O and M-O denote “timeout” and “out-of-
memory”, respectively.

The above assumptions in formulas Speci (i = 1,2,3) are
fair LTL(F, G) formulas. In this case, our algorithm avoids
the product construction entirely. From Table II, we can see
that our algorithm outperforms NuSMV in almost all cases. In
particular, our algorithm terminates in seconds for some cases,
while NuSMV runs out of time or memory.

B. Fair Pattern Formulas

We consider the second category of fair formulas generated
by “genltl” – a tool of Spot library [11] to generate formulas of
scalable patterns. These patterns and sample formulas are pre-
sented in Table III, where column “genltl arguments” denotes
arguments used by “genltl” to generate corresponding formulas
and n the number of philosophers in PD or the number of
processes in BS. In Table III and the following formulas,
we use ai,bi, . . . as placeholders which will be replaced by
proper atomic propositions during the experiment. To ease the
presentation, we omit the details here. The time and memory
usages of our algorithm and NuSMV to model check formulas
in Table III are presented in Figure 2 where we mark by
circles and triangles the running time and maximal memory
consumption respectively. Each circle (triangle) corresponds
to the time (memory) consumption of our algorithm and
NuSMV. The coordinate values of the y axis and x axis are
the corresponding experimental results for NuSMV and our
algorithm respectively. We fill the marks with red color when
it runs out of time and with blue color for memory out.
For all cases, our algorithm consumes a negligible amount
of time and memory comparing to NuSMV, which runs out of
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Fig. 2. Comparison With NuSMV for Generated Formulas

time and memory in many cases. All points above the main
diagonal indicate that our algorithm is faster or consumes less
memory than NuSMV, which is the case for all large examples.
Moreover, we tried Spin [18] for generating the automata for
formulas in Table III, it can not return the answer within
30 minutes for a single formula. We note that we have run
experimental results on more generated pattern formulas and
observe very similar results as the one presented here.

We remark that all formulas in Table III are simple formulas,
actually a subset of LTL(F, G), which can be converted to
simple Streett/Rabin fairness conditions. We expect some
speedup if optimisations [2] for treating simple fairness are im-
plemented in NuSMV. Our algorithm for fairness in LTL(F, G)
follows the same idea except that we first conduct a formula
transformation so that we can handle fairness like GF(a∧Gb).
More importantly, our treatment of fair LTL(F, G) formulas is
also an essential preparation step of handling general LTL fair
formulas, as considered below.

C. General LTL Fairness

We consider some general fair LTL formulas, summarized
in Table IV. These formulas are often adopted to evaluate per-
formance of an LTL model checker or planner in the literature;
see for instance [31], [14], [23], [13]. The time consumption
for checking these formulas is presented in Table V and VII,
while the memory consumption is shown in Table VI and VIII.
From these results we observe similar phenomena as before
for most cases except for “p10”, “p11”, and “p15”, where
our algorithm uses more time and/or memory than NuSMV
for certain cases, particularly when “p10” and PD models are
concerned. We explain such performance differences in details
in the following.



TABLE IV
FORMULA PATTERNS USED IN OUR EXPERIMENT

Pattern Formula
p5 ∨1≤i≤n((FGai ∨GFbi)∧ (FGci ∨GFdi))
p6 ∧1≤i≤n((FGai ∨GFbi)∧ (FGci ∨GFdi))
p7 ∧1≤i≤n((GF(ai ∧XXbi)∨FGbi)∧FG(ci ∨ (Xdi ∧XXbi)))
p8 ∨1≤i≤n((GF(ai ∧XXbi)∨FGbi)∧FG(ci ∨ (Xdi ∧XXbi)))
p9 ∧1≤i≤n(FG(ai ∨ ci ∨ (aiUbi)∨ (ciUdi))

p10 ∨1≤i≤n(FG(ai ∨ ci ∨ (aiUbi)∨ (ciUdi))
p11 ∨1≤i≤n(FG(ai ∨ (aiUbi))∨GF(ci ∧ (ciUdi)))
p12 ∧1≤i≤n(FG(ai ∨ (aiUbi))∨GF(ci ∧ (ciUdi)))
p13 ∧1≤i≤n(FG((ai ∧XXbi ∧GFbi)U(G(XX¬ci ∨XX(ai ∧bi)))))
p14 ∧1≤i≤n(G(F¬ai ∧F(bi ∧X¬ci)∧GF(aiUdi))∧GF((Xdi)U(bi ∨Gci)))
p15 negations of formulas in p13
p16 negations of formulas in p14

TABLE V
TIME USAGE (SECOND)

model p5 p6 p7 p8 p9 p10

Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV
PD6 0.11 T-O 0.17 T-O 0.27 2216.90 43.65 T-O 0.49 3.88 4353.34 3.90
PD9 1.09 M-O 0.38 M-O 1.74 M-O T-O T-O 18.54 M-O T-O M-O
PD12 41.45 M-O 12.79 M-O 129.50 M-O T-O M-O 1344.55 M-O M-O M-O
BS4 0.07 10.96 0.23 26.67 0.08 116.65 0.64 14.61 0.06 0.07 6.49 0.06
BS8 0.14 M-O 0.02 M-O 0.03 T-O 1072.92 T-O 0.08 5.36 T-O 3.34
BS12 4.55 M-O 0.25 M-O 0.05 M-O T-O M-O 0.32 2519.18 M-O 243.44
BS16 377.33 M-O 1.07 M-O 0.41 M-O T-O M-O 0.94 T-O M-O M-O

TABLE VI
MEMORY USAGE (MB)

model p5 p6 p7 p8 p9 p10

Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV
PD6 14.10 T-O 13.26 T-O 14.63 507.14 90.35 T-O 40.30 95.27 1877.45 159.64
PD9 55.77 M-O 35.61 M-O 48.17 M-O T-O T-O 73.23 M-O T-O M-O

PD12 98.70 M-O 76.07 M-O 92.81 M-O T-O M-O 141.55 M-O M-O M-O
BS4 11.77 62.47 11.70 63.75 12.01 61.32 19.64 61.70 13.37 20.36 89.45 19.57
BS8 16.44 M-O 12.16 M-O 12.68 T-O 508.83 T-O 17.21 62.23 T-O 61.89
BS12 74.95 M-O 12.94 M-O 14.28 M-O T-O M-O 40.95 683.38 M-O 394.22
BS16 423.19 M-O 14.39 M-O 16.84 M-O T-O M-O 63.17 T-O M-O M-O

As mentioned before, our algorithm relies on syntacti-
cal transformations in Theorems 1 and 4. These transfor-
mations can decompose a fair formula into smaller sub-
formulas, whose corresponding Büchi automata are usually
much smaller than the automaton of the original formula.
This is the main reason that our algorithm achieves much
better performance than the classical algorithm for most of
the instances. However, the syntactic transformations adopted
in Theorem 1 and 4 may cause exponential blow-up for
certain cases; for instance formulas whose negations are in
form of “p10” and “p11”. In order to push all F and G
modalities in front of U modality, our transformation may
need to transform back and forth between CNF and DNF of
some formulas, especially for those formulas where F,G and
U are alternatively nested for many times. Therefore, for such
formulas, the syntactic transformation may be time-consuming
and result in formulas of exponentially longer than the original
ones.

We note that many formulas we take from the literature are
characterized by Definition 4, and transforming the negation

of these formulas only leads to a linear increase in the formula
length. The exceptions are “p5”, “p8”, “p10”, “p11”, and
“p13-p16”. It is worthwhile to mention that even though for
formulas such that the transformations result in formulas of
exponential length, our algorithm is not necessarily slower
than NuSMV, as the corresponding Büchi automata may be
exponentially large as well; for instance “p8” and “p10”.
Finally, our algorithm outperforms NuSMV for “p14” and its
negation “p16”; it is faster for “p13” and is only slightly slower
than NuSMV for its negation “p15” for one case.

V. CONCLUSION

We presented a novel model checking algorithm for formu-
las in LTL with fairness assumptions. Our algorithm does not
follow the automata-theoretic approach completely but tries
to decompose a fair formula into several sub-formulas, each
of which can be handled by specific and efficient algorithms.
We showed by experiment that our algorithm in many cases
exceeds NuSMV up to several orders of magnitudes.



TABLE VII
TIME USAGE (SECOND)

model p11 p12 p13 p14 p15 p16

Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV
PD6 4.48 120.16 0.26 1793.13 0.32 122.76 0.07 T-O 125.82 57.35 3.96 M-O
PD9 M-O M-O 1.62 T-O 0.95 M-O 0.29 M-O T-O T-O 2912.29 M-O
PD12 M-O M-O 77.01 M-O 72.20 M-O 10.95 M-O T-O M-O T-O M-O
BS4 15.30 0.26 0.50 3.49 0.14 13.13 0.01 313.46 0.46 10.14 0.32 218.21
BS8 T-O 280.91 0.03 T-O 0.03 T-O 0.01 M-O 742.02 T-O 0.26 M-O

BS12 M-O M-O 0.05 M-O 0.05 T-O 0.34 M-O T-O M-O 1.80 M-O
BS16 M-O M-O 1.00 M-O 0.07 M-O 0.38 M-O M-O M-O 13.16 M-O

TABLE VIII
MEMORY USAGE (MB)

model p11 p12 p13 p14 p15 p16

Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV Ours NuSMV
PD6 139.28 261.5 14.72 457.01 13.76 90.76 12.85 T-O 101.20 93.16 74.48 M-O
PD9 M-O M-O 50.61 T-O 36.09 M-O 29.83 M-O T-O T-O 440.11 M-O
PD12 M-O M-O 90.92 M-O 89.87 M-O 79.64 M-O T-O M-O T-O M-O
BS4 95.83 40.36 12.04 60.96 12.08 51.46 11.68 465.63 20.53 50.18 14.07 460.19
BS8 T-O 143.0 12.71 T-O 12.60 T-O 12.19 M-O 214.81 T-O 27.05 M-O

BS12 M-O M-O 14.07 M-O 13.70 T-O 13.03 M-O T-O M-O 111.46 M-O
BS16 M-O M-O 16.86 M-O 15.42 M-O 14.50 M-O M-O M-O 841.90 M-O
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In CAV, volume 1855 of LNCS, pages 248–263. Springer, 2000.

[32] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In LICS, pages 332–344. IEEE
Computer Society, 1986.


