Time-variant Graph Learning and Classification

Haishuai Wang Faculty of Engineering and Information Technology University of Technology, Sydney

> A thesis submitted for the degree of *Doctor of Philosophy* 30 October 2016

ii

This thesis is dedicated to my loving parents

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Student: Haishuai Wang Date: 30.10.2016

Acknowledgements

I benefited and learned a lot from my supervisors, my colleagues, and my friends during the PhD study at University of Technology, Sydney, Australia. I wish to take this opportunity to thank all of them.

Firstly, I would like to express my sincere gratitude to my advisors, Dr. Ling Chen, Dr. Peng Zhang and Prof. Xingquan Zhu, for the continuous support of my Ph.D study and related research, for their patience, motivation, and immense knowledge. Dr. Ling Chen has been supportive and has given me the freedom to pursue various projects without objection. She has also provided insightful discussions about the research. I am deeply indebted to Dr. Peng Zhang for his fundamental role in my doctoral work. Dr. Zhang provided me with every form of guidance, assistance, and expertise that I needed during my Ph.D study. In addition to our academic collaboration, I greatly value the close personal rapport that Dr. Zhang and I have forged over the years. I am also very grateful to Professor Xingquan Zhu for his scientific advice and knowledge and many insightful discussions and suggestions. Their friendship has also been important to me as they have often given me invaluable advice in a personal sense.

I would like to thank Professor Yixin Chen who has provided me with a great opportunity to visit Washington University in St. Louis and has given me a postdoctoral position. I am extremely grateful for his guidance and all the excellent discussions that I have had with him. His deep insights have helped me at various stages of my research. I also give thanks to Professor Chengqi Zhang, Professor Ivor W Tsang, Professor Huan Liu, Professor Xindong Wu for their very helpful comments and suggestions which were aimed at improving my research skills. I would also like to take this opportunity to thank all my friends in the Quantum Computation & Intelligent Systems Centre at UTS for all the great times that we have shared, in particular, Jia Wu, Shirui Pan, Shaoli Huang, Bo Han, Qin Zhang, Sujuan Hou, Lianhua Chi, Chunyang Liu, Guodong Long, Bozhong Liu, Anjin Liu, Yu Bai, and Tongliang Liu. They are the ones who have given me support during both joyful and stressful times, and to whom I will always be thankful. I am also grateful to Jemima Moore for proof reading my submission drafts.

Finally, I am deeply thankful to my parents and sisters for their endless love, encouragement, support, and various sacrifices. Without them, this thesis would never have been written. I dedicate this thesis to them.

Abstract

Graph classification is an important tool for analyzing data with structure dependency. In traditional graph classification, graphs are assumed to be independent where each graph represents an object. In a dynamic world, it is very often the case that the underlying object continuously evolves over time. The change of node content and/or network structure, with respect to the temporal order, presents a new time-variant graph representation, where an object corresponds to a set of time-variant graphs (TVG). A time-variant graph can be used to characterize the changing nature of the structured object, including the node attribute and graph topological changing over time. Therefore, the evolution of time-variant graphs could be either network structure or node content over time. In this dissertation, we formulate a new time-variant graph learning and classification (TVGLC) task.

To learn and classify time-variant graphs, the vital steps are feature extraction, modeling and algorithm design. However, for time-variant graph classification, frequent subgraph features are very difficult to obtain. Because one has to consider the graph structure space and the temporal correlations to find subgraph candidates for validation, the search space for finding frequent subgraph features is infinite and unlikely to obtain stable structures. Secondly, graph structures that imply subgraph features may irregularly change over time. Thus, to extract effective and efficient features is a great challenge for TVGLC. In addition, carrying out applicable models and algorithms to cater for the extracted features for TVGLC is also a challenge.

Considering the above challenges, this research aims to extract efficient features and design new algorithms to enable the learning of the time-variant graph. Because time variant graphs may involve changes in the network structures and changes in the node content, which complicate the algorithm designs and solutions, our research employs a divide and conquer principle to first solve a simplified case where (1) network topology is fixed whereas the node content continuously evolves (i.e., networked time series classification). After that, we advance to the setting to (2) evolving network structure and propose solutions to TVGLC with incremental subgraph features. To enhance the subgraph feature exploration for time variant graph classification, we propose (3) graph-shapelet features for TVGLC. Last, but not the least, we study (4) an application of online diffusion provenance detection.

Temporal Feature Selection on Networked Time Series: As the time-variant graph can be graph node content and/or graph structure evolution, we first study a simple case where the structure is fixed but the node content continuously evolves. The problem forms time series data when the node content changes over time, and we combine time series data with a static graph to form a new problem called networked time series. We formulate the problem of learning discriminative features (*i.e.*, segments) from networked time series data considering the linked information among time series (e.g., social users are taken as social sensors that continuously generate social signals (tweets) represented as time series). The discriminative segments are often referred to as *shapelets* of time series. Extracting shapelets for time series classification has been widely studied. However, existing works on shapelet selection assumes that time series are independent and identically distributed (i.i.d.). This assumption restricts their applications to social networked time series analysis. This thesis proposes a new Network Regularized Least Squares (NetRLS) feature selection model, which combines typical time series data and user network graph data for analysis.

Incremental Subgraph based TVGLC: To learn and classify the

time-variant graph with network structure evolve, the key challenges are to extract features and build models. To date, subgraphs are often used as features for graph learning. In reality, the dimension of the subgraphs has a crucial dependency on the threshold setting of the frequency support parameter, and the number may become extremely large. As a result, subgraphs may be incrementally discovered to form a feature stream and require the underlying graph classifier to effectively discover representative subgraph features from the subgraph feature stream. Moreover, we propose a *primal-dual incremental sub*graph feature selection algorithm (ISF) based on a max-margin graph classifier. The ISF algorithm constructs a sequence of solutions that are both primal and dual feasible. Each primal-dual pair shrinks the dual gap and renders a better solution for the optimal subgraph feature set. To avoid the bias of the ISF algorithm on short-pattern subgraph features, we present a new incremental subgraph join feature selection algorithm (ISJF) by forcing graph classifiers to join shortpattern subgraphs and generate long-pattern subgraph features.

Graph-shapelet based TVGLC: As graph structure continuously evolves over time, the search space for finding frequent subgraph features is infinite and unlikely to obtain stable structures. To tackle this challenge, we formulate a new time-variant graph classification task, and propose a new graph feature, *graph-shapelets*, for learning and classifying time-variant graphs. Graph-shapelet is compact and discriminative graph transformation subsequences. A graph-shapelet can be regarded as a graphical extension of shapelets – a class of discriminative features designed for vectorial temporal data classification. In order to discover graph-shapelets, we propose to convert a time-variant graph sequence as time-series data, and use shapelets discovered from the time-series data to find graph transformation subsequences as graph-shapelets. By converting each graph-shapelet as a unique tokenized graph transformation sequence, we can use the editing distance to calculate the distance between two graph-shapelets for time-variant graph classification.

Application of Online Diffusion Provenance Detection: In social network analysis, the information propagation graph (i.e., cascade) is a kind of time-variant graph because the information diffusion forms a graph at a certain time and the graph evolves over time. An important application of information diffusion networks (i.e., time-variant graph) is provenances detection. Existing work on network diffusion provenance identification focuses on offline learning where data collected from network detectors are static and a snapshot of the network is available before learning. However, an offline learning model does not meet the needs of early warning, real-time awareness and real-time response to malicious information spreading in networks. In this part, we study a new problem of online discovering diffusion provenances in large networks. To this end, we propose an online regression model for real-time diffusion provenance identification. Specifically, we first use offline collected network cascades to infer the edge transmission weights, and then use an online l_1 nonconvex regression model as the identification model. The proposed methods are empirically evaluated on both synthetic and real-world networks.

Experiments on synthetic and real-world data validate and demonstrate the effectiveness of the proposed methods for time-variant graph learning and classification.

Contents

\mathbf{C}	onter	nts			xi
Li	st of	Figur	es		xv
Li	st of	Table	s	x	xiii
N	omer	nclatur	'e	х	xiii
1	Intr	oduct	ion		1
	1.1	Backg	round		1
	1.2	Motiv	ation		3
	1.3	Resea	rch Problems		7
		1.3.1	Time-variant Graph Feature Extraction		7
		1.3.2	Time-variant Graph Classification Algorithms		8
		1.3.3	Evaluation of Proposed Features and Algorithms		8
		1.3.4	Applications of Time-Variant Graph Learning		8
	1.4	Thesis	s Contributions and Road Map		9
	1.5	Public	cations		11
2	Lite	erature	e Review		15
	2.1	Dynai	mic Graph		15
	2.2	Temp	oral Features for Networked Data		16
		2.2.1	Discriminative Features for Temporal Data		17
		2.2.2	Feature Selection in Networked Data		17
	2.3	Incren	nental Subgraph base TVGLC		18
		2.3.1	Graph Classification		18

		2.3.2	Incremental Feature	19
		2.3.3	Cascade Outbreak Prediction	19
		2.3.4	High Dimensional Data Learning and Data Stream Mining	20
	2.4	Graph	n-shapelet based TVGLC	21
		2.4.1	Graph Features	21
		2.4.2	Graph Stream Mining	22
	2.5	Online	e Diffusion Provenances Detection	22
3	Ten	nporal	Shapelet Feature for Networked Time Series	25
	3.1	Introd	luction	25
	3.2	Prelin	ninaries and Problem Definition	26
		3.2.1	Time Series Segments	26
		3.2.2	Shapelets	27
		3.2.3	Goal	27
	3.3	Netwo	ork Regularized Least Squares Shapelets Learning	28
		3.3.1	Shapelets Selection	28
		3.3.2	Challenges and Convexity	29
		3.3.3	Networked Time Series Classification Algorithm $\ . \ . \ .$.	31
	3.4	Exper	iments	34
		3.4.1	Data Sets	34
			$3.4.1.1 \text{Twitter} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	34
			3.4.1.2 DBLP	35
		3.4.2	Experimental Measures	36
		3.4.3	Experimental Comparisons	36
		3.4.4	Industry case study on clinical data	41
	3.5	Conclu	usion	44
4	Inci	rement	tal Subgraph based TVGLC	45
	4.1	Introd	luction	45
	4.2	Prelin	ninaries	49
	4.3	Graph	Classification	51
		4.3.1	Max-margin Graph Classifier	51
		4.3.2	Incremental Subgraph Features	54

		4.3.3	Long-patter	n Subgraph Features	57
	4.4	Analy	sis		60
	4.5	Exper	iments		61
		4.5.1	Data Sets		61
			4.5.1.1 Re	eal-world Data	62
			4.5.1.2 Sy	nthetic Data	63
		4.5.2	Parameter s	study	66
		4.5.3	Experiment	al Results	69
		4.5.4	Case Study	on Cascading Outbreak Early Prediction	75
	4.6	Concl	usions		77
5		-	-	ure based TVGLC	79
	5.1				79
	5.2			on and Preliminaries	82
		5.2.1		finition	82
		5.2.2		28	83
	5.3			of Graph-shapelet based TVG Learning	88
	5.4	-	-	ature Exploration	89
		5.4.1		ences to Time Series	89
		5.4.2		elet Pattern Candidates	90
		5.4.3	0	aph-Shapelet Patterns	90
	5.5	Graph	-shapelet bas	ed TVG Classification Algorithm	92
		5.5.1	Classificatio	n with Graph-Shapelet Patterns	92
		5.5.2	Time Comp	lexity Analysis	93
	5.6	Exper	iments		93
		5.6.1	Data sets		93
			5.6.1.1 Sy	nthetic Time-Variant Graph Data	93
			5.6.1.2 Re	eal-World Time-Variant Graph Data	94
		5.6.2	Experiment	al Settings	95
			5.6.2.1 Ba	seline Approaches	95
			5.6.2.2 Ev	aluation Measures	96
		5.6.3	Experiment	al Results	96
			5.6.3.1 Ef	fectiveness Results	96

		5.6.3.2 Efficiency Results
		5.6.3.3 Analysis of gShapelet Algorithm $\ldots \ldots \ldots \ldots 100$
	5.7	Discussions
	5.8	Conclusion
6	App	plication of Online Diffusion Provenance Detection from $\mathrm{TVG105}$
	6.1	Introduction
	6.2	Preliminaries
	6.3	Regression Model
	6.4	Online Algorithm
		6.4.1 Relative Time Difference
		6.4.2 Convex Approximation
		6.4.3 Online Sub-gradient
		6.4.4 The Online Stochastic Sub-gradient (OSS) Algorithm 119
	6.5	Experiments
		6.5.1 Experimental Data
		6.5.2 Experimental Setup
		6.5.3 Experimental Results
	6.6	Conclusions
7	Cor	clusions and Future Work 135
	7.1	Summary of This Thesis
	7.2	Future Work
\mathbf{A}	ppen	dix A 141

List of Figures

- 1.2 An example of an information diffusion network. The information propagation cascade can be regarded as a graph. The cascade on the left (with bold-faced edges and green nodes) quickly grows and propagates to an increasing number of nodes (*i.e.* outbreak), whereas the cascade on the right (with bold-faced edges and yellow nodes) remains steady and is therefore a non-outbreak cascade. Cascade outbreak prediction aims to build a graph classification model to accurately identify outbreak cascades from non-outbreak cascades.
- 1.3 An illustration of social robots identification. We aim to identify social robots (Left) from real social users (Right). Each social node can be taken as a **social sensor** [104] that generates continuous social signals (tweets). Each social signal is independent and identically distributed because nodes are mutually connected in social networks.

2

4

5

1.4	An example of time-variant graph provenance detection. In social
	networks, information propagation forms a cascade (time-variant
	graph). The cascade in the figure originates from a provenance
	(i.e., PKU_news) and propagates to a huge number of users over
	time (outbreak cascade). We aim to identify the provenance from
	the time-variant graph in a timely fashion to avoid malicious in-
	formation break outs as early as possible

6

3.1 The network (Left) has 200 nodes and 210 edges, social robots are densely connected while the remaining two groups of real users are sparsely connected. The generated time series (Mid.) of the three classes of nodes, social robots and active VIP users have discriminative patterns while ordinary users tend to have flat curves. The shaplets (Right) of a typical social robot is concave ([a, b, c]), while shapelets of an active VIP user is convex ([a,b,c]). Time series of ordinary users have heavy noise and it is hard to capture a shapelet. 33

3.2	Parameter test (a) and model comparison (b)	35
3.3	Accuracy comparison on Twitter data set $w.r.t.$ various window length and parameter ρ .	37
3.4	AUC comparison on Twitter data set $w.r.t.$ various window length and parameter ρ .	38
3.5	Accuracy comparison on DBLP data set $w.r.t.$ various window length and parameter ρ	39
3.6	AUC comparison on DBLP data set $w.r.t.$ various window length and parameter ρ	40
3.7	An illustration of the shapelets learned by NetRSL on the Twitter and DBLP datasets.	40

3.8	A part of the heart rate data. The network (Left) is based on age of patients, and we link two patients if their age difference is within 3 years. The middle time series represents heart rate for one minute interval. The blue time series represents these kinds of patient were transferred to ICU, and the orange one represents the patient was not transferred to ICU. We use both the patients network and heart rate time series to classify if the patient will be transferred to ICU or not. Obviously, only using the time se- ries data with inseparability can make the learning task difficult. Thus, together with the network data we can improve the final	
	classification performance.	42
3.9	Performance on the clinical data set $w.r.t.$ various window length and parameter ρ	43
3.10	AUC comparison on the clinical data set $w.r.t.$ various window length and parameter ρ	44
4.1	The number of frequent subgraphs $w.r.t.$ the support threshold in frequent pattern mining. The cascade data, containing about 2.76 million cascades and 3.3 million nodes, are obtained from the SNAP data set (http://snap.stanford.edu/infopath/data.html/). When the parameter <i>Supp</i> is 50, the number of discovered sub- graph features is more than $8 * 10^5!$	46
4.2	Subgraph features. The graph (left) is converted into a binary feature vector (right) by examining the existence of subgraph features. The feature vector can be processed by traditional classifiers such as SVMs.	50
4.3	Joining correlated subgraph fragments.	51

An illustration of a long-pattern subgraph feature buried under two short-pattern subgraph features in the information cascade data.	
	57
$k \text{ in top}_k$	63
# of subgraph features $w.r.t.$ support threshold on the Meme-	
Tracker data set.	65
Memory cost $w.r.t.$ the support threshold $Supp$ under different	
propagation time stamps on the MemeTracker data set	66
Running time $w.r.t.$ the support threshold $Supp$ under different	
propagation time stamps on the MemeTracker data set	67
Percentage of patterns $w.r.t.$ the support threshold and pattern	
length	68
Precision comparison under different $Supp$ on the MemeTracker	
data set	68
Recall comparison under different $Supp$ on the MemeTracker data	
set	69
F1 score comparison under different $Supp$ on the MemeTracker	
data set	70
Accuracy and variance comparisons $w.r.t.$ time stamp on the	
MemeTracker data set	71
# of subgraph features w.r.t. support threshold on the DBLP data	
set	72
Memory cost and running time w.r.t. the support threshold at	
different year on the DBLP data set	73
Accuracy comparison under different Supp on the DBLP data set.	74
	short-pattern subgraph features in the information cascade data. Consider four graphs g_1, \ldots, g_4 . g_1 and g_2 from class "+1" while g_3 and g_4 from "-1". Assume we have two short-pattern subgraphs $f_1: U_1 \rightarrow U_2$ and $f_2: U_2 \rightarrow U_3$, and a long-pattern subgraph $f_3: U_1 \rightarrow U_2 \rightarrow U_3$ by joining f_1 and f_2 . If one feature is allowed to select for classification, then f_1 or f_2 is likely to be selected, instead of the more interesting f_3

75

80

- 4.18 Early prediction of information cascade outbreaks. We compare the subcascade-based method (red line) with the node-based method (blue line). The figure shows that the subcascade-based method provides better prediction accuracy than the node-based method.76
- 5.1 An illustration of graph-shapelet patterns. Graph-shapelet patterns are compact and discriminative graph transformation subsequences that describe the graph transformation patterns shared in the same class of time-variant graphs, *e.g.* two time-variant graphs (the two entire rows above) with the outbreak labels. When we explore a univariate time series from a time-variant graph, we can see that the location of a *graph-shapelet pattern* is consistent with that of a *shapelet* in time series (detailed in Section 5.4.1). In this case, graph-shapelet patterns can be used for time-variant graph prediction such as dynamic graph outbreak prediction.
- 5.2 A toy example of graph-shapelet pattern mining to explain the definitions of related operations. We first explore univariate time series from a set of time-variant graphs (detailed in Section 5.4.1), where shapelets are discovered using shapelet pattern mining algorithms. The graph-shapelet patterns (discriminative graph transformation sequences) are then relocated by calculating the graph edit similarity (as in Definition 8) between shapelet patterns which match a set of graph subsequences. To make the above illustration clear, we use this example through *Examples* $1 \sim 4. \ldots 83$

framework. We first explore univariate time series from time- variant graphs via a sample kernel method in each graph (step $①$, Section 5.4.1). Then, we find shapelet patterns from the time series by using shapelet pattern mining (step $②$, Section 5.4.2). Next,	
Section 5.4.1). Then, we find shapelet patterns from the time series by using shapelet pattern mining (step 2), Section 5.4.2). Next,	
by using shapelet pattern mining (step 2), Section 5.4.2). Next,	
we locate the sub-time-variant graphs that match the shapelet pat-	
terns from the original time-variant graphs (step \Im , Section 5.4.3).	
Note that each sub-time-variant graph corresponds to a unique	
graph transformation subsequence by the proposed time-variant	
graph representation approach. At the last step, we calculate the	
graph edit similarity between graph transformation subsequences	
and find the most discriminative transformation subsequences as	
graph-shapelet patterns (step (Φ) , 5.5.1). Step (\mathfrak{T}) shows the process	
of time-variant graph prediction	85
5.4 Accuracy comparisons with respect to different time stages on both	
synthetic and real-world time-variant graph data sets	97
5.5 The average CPU time with respect to different time stages on	
both synthetic and real-world time-variant graph data sets	98
5.6 Comparisons with varying graph-shapelet length on both synthetic	
and real-world time-variant graph data sets	99
5.7 Two graph transformation sequences extracted from the MIT phone	
call time-variant graph data. The symbol "N" represents normal	
person and "H" represents hub person. The first graph sequence	
shows that a weekly phone call time-variant graph data contain a	
hub person, while the second graph sequence shows that all the	
participants are normal persons	100
5.8 An example of message propagated in a Sina weibo time-variant	
graph. At different propagation stage, the diffusion (including	
reached nodes and propagation edges) constitutes a graph. The	
propagation of the message in temporal order will form a set of	
temporally related graphs. Each weibo propagation is regraded as	
a time-variant graph	101

6.1	The rumor "Malaysian Flight 370 has been found" propagated on	
	Twitter from March 22 to April 21, 2014. The x axis is the time	
	and the \boldsymbol{y} axis is the total number of tweets including the rum or	106
6.2	An example of twitter diffusion path. At the unknown time $t = t^*$,	
	the information provenance S_0 initiates the diffusion of a tweet.	
	The propagation time delay between any two nodes is τ and the	
	time window $T = [t^*, t^* + 3\tau]$.	108
6.3	Gaussian time delay and the shortest-path propagation. The prop-	
	agation path from the provenance s_0 to detector S_3 is approximated	
	by the shortest path $\mathcal{P}(S_0, S_3) = \{S_0 \to S_2 \to S_3\}$. The propaga-	
	tion delay is an aggregate Gaussian distribution of paths p_1 and	
	p_2	113
6.4	An illustration of the OSS algorithm. Detectors are split into two	
	sets. The first set is observed (activated) within the time window,	
	and the second set is unobserved (inactivated) outside the time	
	window. Function 1 is called by OSS within the time window T ,	
	and Function 2 is called after the time window T	120
6.5	A network with one provenance S_0 , and three detectors S_1 , S_3 and	
	S_5 . At the unknown time $t = t^*$, propagation starts from S_0 . Time	
	delay along each edge is $\theta_i \sim N(1, 0.01)$. Monitoring time window	
	$T = [t^*, t^* + T]$, where T is the size of the time window. Detector	
	S_1 is activated at time point $t = t^* + \frac{1}{2}T$. Detectors S_3 and S_5 are	
	inactivated during time window T . We only consider eight nodes	
		122
6.6	Parameter study on synthetic and real-world data sets by using the	
	proposed regression learning model and Online Stochastic Sub-	
	gradient algorithm. The number of hops (error rate) $w.r.t$: (A)	
	the diffusion provenances number k ; (B) the detector number m ;	
	(C) the monitoring time window T; (D) the parameter λ ; (E) the	
	parameter ρ . (F) the online detection. The average distance on	
	synthetic/real-world data sets $w.r.t$ propagation time	126
6.7	Parameter η_t in the proposed Online Stochastic Sub-gradient OSS	
	algorithm. \ldots	127

LIST OF FIGURES

6.8	The online detection under the Linear Threshold propagation pro-	
	Cess	128
6.9	Running time $w.r.t$ the propagation time on the synthetic and	
	real-world data sets.	129

List of Tables

3.1	The data sets summarization	34
4.1	Analysis of the new constraint	60
4.2	List of the synthetic and real-world data sets. \ldots \ldots \ldots \ldots	62
4.3	F1 score under the parameter $support=30$ on the four synthetic	
	data sets.	64
5.1	Operation Definitions	84
5.2	Symbols and notations	87
6.1	List of the four data sets	124
6.2	Comparisons on the four data sets	131