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Abstract

Graph classification is an important tool for analyzing data with struc-

ture dependency. In traditional graph classification, graphs are as-

sumed to be independent where each graph represents an object. In

a dynamic world, it is very often the case that the underlying object

continuously evolves over time. The change of node content and/or

network structure, with respect to the temporal order, presents a new

time-variant graph representation, where an object corresponds to a

set of time-variant graphs (TVG). A time-variant graph can be used

to characterize the changing nature of the structured object, including

the node attribute and graph topological changing over time. There-

fore, the evolution of time-variant graphs could be either network

structure or node content over time. In this dissertation, we formu-

late a new time-variant graph learning and classification (TVGLC)

task.

To learn and classify time-variant graphs, the vital steps are feature

extraction, modeling and algorithm design. However, for time-variant

graph classification, frequent subgraph features are very difficult to

obtain. Because one has to consider the graph structure space and

the temporal correlations to find subgraph candidates for validation,

the search space for finding frequent subgraph features is infinite and

unlikely to obtain stable structures. Secondly, graph structures that

imply subgraph features may irregularly change over time. Thus, to

extract effective and efficient features is a great challenge for TVGLC.

In addition, carrying out applicable models and algorithms to cater

for the extracted features for TVGLC is also a challenge.

Considering the above challenges, this research aims to extract effi-

cient features and design new algorithms to enable the learning of the



time-variant graph. Because time variant graphs may involve changes

in the network structures and changes in the node content, which

complicate the algorithm designs and solutions, our research employs

a divide and conquer principle to first solve a simplified case where

(1) network topology is fixed whereas the node content continuously

evolves (i.e., networked time series classification). After that, we ad-

vance to the setting to (2) evolving network structure and propose

solutions to TVGLC with incremental subgraph features. To enhance

the subgraph feature exploration for time variant graph classification,

we propose (3) graph-shapelet features for TVGLC. Last, but not

the least, we study (4) an application of online diffusion provenance

detection.

Temporal Feature Selection on Networked Time Series: As

the time-variant graph can be graph node content and/or graph struc-

ture evolution, we first study a simple case where the structure is

fixed but the node content continuously evolves. The problem forms

time series data when the node content changes over time, and we

combine time series data with a static graph to form a new problem

called networked time series. We formulate the problem of learning

discriminative features (i.e., segments) from networked time series

data considering the linked information among time series (e.g., so-

cial users are taken as social sensors that continuously generate social

signals (tweets) represented as time series). The discriminative seg-

ments are often referred to as shapelets of time series. Extracting

shapelets for time series classification has been widely studied. How-

ever, existing works on shapelet selection assumes that time series are

independent and identically distributed (i.i.d.). This assumption re-

stricts their applications to social networked time series analysis. This

thesis proposes a new Network Regularized Least Squares (NetRLS)

feature selection model, which combines typical time series data and

user network graph data for analysis.

Incremental Subgraph based TVGLC: To learn and classify the



time-variant graph with network structure evolve, the key challenges

are to extract features and build models. To date, subgraphs are often

used as features for graph learning. In reality, the dimension of the

subgraphs has a crucial dependency on the threshold setting of the

frequency support parameter, and the number may become extremely

large. As a result, subgraphs may be incrementally discovered to form

a feature stream and require the underlying graph classifier to effec-

tively discover representative subgraph features from the subgraph

feature stream. Moreover, we propose a primal-dual incremental sub-

graph feature selection algorithm (ISF ) based on a max-margin graph

classifier. The ISF algorithm constructs a sequence of solutions that

are both primal and dual feasible. Each primal-dual pair shrinks

the dual gap and renders a better solution for the optimal subgraph

feature set. To avoid the bias of the ISF algorithm on short-pattern

subgraph features, we present a new incremental subgraph join feature

selection algorithm (ISJF ) by forcing graph classifiers to join short-

pattern subgraphs and generate long-pattern subgraph features.

Graph-shapelet based TVGLC: As graph structure continuously

evolves over time, the search space for finding frequent subgraph fea-

tures is infinite and unlikely to obtain stable structures. To tackle

this challenge, we formulate a new time-variant graph classification

task, and propose a new graph feature, graph-shapelets, for learning

and classifying time-variant graphs. Graph-shapelet is compact and

discriminative graph transformation subsequences. A graph-shapelet

can be regarded as a graphical extension of shapelets – a class of

discriminative features designed for vectorial temporal data classifi-

cation. In order to discover graph-shapelets, we propose to convert

a time-variant graph sequence as time-series data, and use shapelets

discovered from the time-series data to find graph transformation sub-

sequences as graph-shapelets. By converting each graph-shapelet as a

unique tokenized graph transformation sequence, we can use the edit-

ing distance to calculate the distance between two graph-shapelets for

time-variant graph classification.



Application of Online Diffusion Provenance Detection: In so-

cial network analysis, the information propagation graph (i.e., cas-

cade) is a kind of time-variant graph because the information dif-

fusion forms a graph at a certain time and the graph evolves over

time. An important application of information diffusion networks

(i.e., time-variant graph) is provenances detection. Existing work on

network diffusion provenance identification focuses on offline learning

where data collected from network detectors are static and a snap-

shot of the network is available before learning. However, an offline

learning model does not meet the needs of early warning, real-time

awareness and real-time response to malicious information spreading

in networks. In this part, we study a new problem of online discover-

ing diffusion provenances in large networks. To this end, we propose

an online regression model for real-time diffusion provenance identifi-

cation. Specifically, we first use offline collected network cascades to

infer the edge transmission weights, and then use an online l1 non-

convex regression model as the identification model. The proposed

methods are empirically evaluated on both synthetic and real-world

networks.

Experiments on synthetic and real-world data validate and demon-

strate the effectiveness of the proposed methods for time-variant graph

learning and classification.
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