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Abstract

Graph classification is an important tool for analyzing data with struc-

ture dependency. In traditional graph classification, graphs are as-

sumed to be independent where each graph represents an object. In

a dynamic world, it is very often the case that the underlying object

continuously evolves over time. The change of node content and/or

network structure, with respect to the temporal order, presents a new

time-variant graph representation, where an object corresponds to a

set of time-variant graphs (TVG). A time-variant graph can be used

to characterize the changing nature of the structured object, including

the node attribute and graph topological changing over time. There-

fore, the evolution of time-variant graphs could be either network

structure or node content over time. In this dissertation, we formu-

late a new time-variant graph learning and classification (TVGLC)

task.

To learn and classify time-variant graphs, the vital steps are feature

extraction, modeling and algorithm design. However, for time-variant

graph classification, frequent subgraph features are very difficult to

obtain. Because one has to consider the graph structure space and

the temporal correlations to find subgraph candidates for validation,

the search space for finding frequent subgraph features is infinite and

unlikely to obtain stable structures. Secondly, graph structures that

imply subgraph features may irregularly change over time. Thus, to

extract effective and efficient features is a great challenge for TVGLC.

In addition, carrying out applicable models and algorithms to cater

for the extracted features for TVGLC is also a challenge.

Considering the above challenges, this research aims to extract effi-

cient features and design new algorithms to enable the learning of the



time-variant graph. Because time variant graphs may involve changes

in the network structures and changes in the node content, which

complicate the algorithm designs and solutions, our research employs

a divide and conquer principle to first solve a simplified case where

(1) network topology is fixed whereas the node content continuously

evolves (i.e., networked time series classification). After that, we ad-

vance to the setting to (2) evolving network structure and propose

solutions to TVGLC with incremental subgraph features. To enhance

the subgraph feature exploration for time variant graph classification,

we propose (3) graph-shapelet features for TVGLC. Last, but not

the least, we study (4) an application of online diffusion provenance

detection.

Temporal Feature Selection on Networked Time Series: As

the time-variant graph can be graph node content and/or graph struc-

ture evolution, we first study a simple case where the structure is

fixed but the node content continuously evolves. The problem forms

time series data when the node content changes over time, and we

combine time series data with a static graph to form a new problem

called networked time series. We formulate the problem of learning

discriminative features (i.e., segments) from networked time series

data considering the linked information among time series (e.g., so-

cial users are taken as social sensors that continuously generate social

signals (tweets) represented as time series). The discriminative seg-

ments are often referred to as shapelets of time series. Extracting

shapelets for time series classification has been widely studied. How-

ever, existing works on shapelet selection assumes that time series are

independent and identically distributed (i.i.d.). This assumption re-

stricts their applications to social networked time series analysis. This

thesis proposes a new Network Regularized Least Squares (NetRLS)

feature selection model, which combines typical time series data and

user network graph data for analysis.

Incremental Subgraph based TVGLC: To learn and classify the



time-variant graph with network structure evolve, the key challenges

are to extract features and build models. To date, subgraphs are often

used as features for graph learning. In reality, the dimension of the

subgraphs has a crucial dependency on the threshold setting of the

frequency support parameter, and the number may become extremely

large. As a result, subgraphs may be incrementally discovered to form

a feature stream and require the underlying graph classifier to effec-

tively discover representative subgraph features from the subgraph

feature stream. Moreover, we propose a primal-dual incremental sub-

graph feature selection algorithm (ISF ) based on a max-margin graph

classifier. The ISF algorithm constructs a sequence of solutions that

are both primal and dual feasible. Each primal-dual pair shrinks

the dual gap and renders a better solution for the optimal subgraph

feature set. To avoid the bias of the ISF algorithm on short-pattern

subgraph features, we present a new incremental subgraph join feature

selection algorithm (ISJF ) by forcing graph classifiers to join short-

pattern subgraphs and generate long-pattern subgraph features.

Graph-shapelet based TVGLC: As graph structure continuously

evolves over time, the search space for finding frequent subgraph fea-

tures is infinite and unlikely to obtain stable structures. To tackle

this challenge, we formulate a new time-variant graph classification

task, and propose a new graph feature, graph-shapelets, for learning

and classifying time-variant graphs. Graph-shapelet is compact and

discriminative graph transformation subsequences. A graph-shapelet

can be regarded as a graphical extension of shapelets – a class of

discriminative features designed for vectorial temporal data classifi-

cation. In order to discover graph-shapelets, we propose to convert

a time-variant graph sequence as time-series data, and use shapelets

discovered from the time-series data to find graph transformation sub-

sequences as graph-shapelets. By converting each graph-shapelet as a

unique tokenized graph transformation sequence, we can use the edit-

ing distance to calculate the distance between two graph-shapelets for

time-variant graph classification.



Application of Online Diffusion Provenance Detection: In so-

cial network analysis, the information propagation graph (i.e., cas-

cade) is a kind of time-variant graph because the information dif-

fusion forms a graph at a certain time and the graph evolves over

time. An important application of information diffusion networks

(i.e., time-variant graph) is provenances detection. Existing work on

network diffusion provenance identification focuses on offline learning

where data collected from network detectors are static and a snap-

shot of the network is available before learning. However, an offline

learning model does not meet the needs of early warning, real-time

awareness and real-time response to malicious information spreading

in networks. In this part, we study a new problem of online discover-

ing diffusion provenances in large networks. To this end, we propose

an online regression model for real-time diffusion provenance identifi-

cation. Specifically, we first use offline collected network cascades to

infer the edge transmission weights, and then use an online l1 non-

convex regression model as the identification model. The proposed

methods are empirically evaluated on both synthetic and real-world

networks.

Experiments on synthetic and real-world data validate and demon-

strate the effectiveness of the proposed methods for time-variant graph

learning and classification.
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Chapter 1

Introduction

1.1 Background

Graph classification is an important branch of data mining research, given much

structured and semi-structured data can be represented as graphs. Images [23],

text [135, 136] and biological data [24] are just a few examples.

However, recently, time-variant graph data generated from dynamic graphs

has entered the domain. For example, for the information propagation of graphs

(i.e., a series of graphs in time series), when analysing the information propaga-

tion in time windows, a sequence of graphs showing information propagation over

time, where the target is to predict the class label that describes the outbreak

or non-outbreak of an information propagation record, as shown in Figure 1.1.

At a specific point in time, the status of the information diffusion is a graph,

however the graph is evolutionary over time. Therefore, an information diffusion

at different stages forms a time-variant graph.

A time-variant graph can be used to characterize the changing nature of a

structured object. As both the node attributes and graph structure keep chang-

ing in each time-variant graph, in this thesis, we refer to a sequence of graphs

whose node content and/or network structure continuously change as a time-

variant graph. We first address a simple case where the graph structure is fixed

but node content continuously evolves, which becomes the networked time series

problem. In this case, only the attribute of nodes changes over time but the struc-
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Time-Variant Graph Representation for Information Propagation 

Outbreak

Non-Outbreak

Figure 1.1: An example of a time-variant graph representation for large-scale in-
formation propagation. The information propagation can be regarded as a series
of graphs. At different time periods, both the node volume and the graph struc-
ture are diverse, i.e., the information propagation is a process that takes place
on the graph. The information propagation outbreak prediction aims to build a
time-variant graph classification solution to accurately identify an outbreak infor-
mation diffusion graph (above) from a non-outbreak information diffusion graph
(below).

ture of the graph is static. The variation of the nodes attribute over time forms

the time series. By combining with the static graph structure, we call this kind of

time-variant graph a networked time series. For example, users in social networks

(i.e., Twitter) have follower/friend relationships, which constructs a graph. The

number of tweets of each user in the graph changes over time (i.e., every day),

which forms the time series. To predict the class label of users, both the user

graph and tweets time series are used, which forms the networked time series. Af-

ter this, we address another case where the graph structure changes. In this case,

both the node volumes and network structure keep changing in each graph. For

example, a chemical compound [24] can be represented as a graph. By varying

the temperature or other environmental conditions, the structure of the chemical
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compound with respect to each changed condition can be recorded, and a set of

graphs (i.e. a time-variant graph) would capture its evolution. This representa-

tion is much more comprehensive and more accurate than simply representing a

chemical compound as a single static graph.

1.2 Motivation

The main challenge in graph classification is that graphs do not have vectorial fea-

tures directly available for classification, and therefore, traditional vector-based

classifiers such as support vector machines (SVM) are not applicable. Research

efforts in this area have focused on extracting discriminative substructures from

graph data, so that graphs can be represented as vectorial features for learning

and classification. One of the most widely used methods is to extract frequent

subgraph patterns as discriminative features, and many studies have shown that

this approach provides good performance [59, 43, 102].

Despite positive results for many applications [61, 158], using discriminative

subgraph patterns as features, is based on a strict assumption that graph data

is static, and frequent subgraph patterns are obtainable and finite. However,

as time-variant graphs keep evolving over time, two essential challenges need

to be addressed for feature extraction: the first is that the size of subgraph

features may become extremely large, and the second is that the distance between

subgraph features may irregularly change over time. Considering the dynamic

nature of time-variant graphs, and the inherent complexity of learning tasks, this

research has focused on exploring new features and designing algorithms for time-

variant graph learning and classification (TVGLC) as well as its applications.

The research first conducts a simple case where the network is fixed but the node

content continuously evolves and formulates a new problem called networked

time series classification. Then we advance to the setting of time-variant graphs

of evolving network structure. From the perspectives of mining new features for

the time-variant graph, this thesis explores three sub-tasks of features selection

for handling the high dimension feature, infinite search space and networked time

series: (1) Temporal Feature Selection on Networked Time Series, (2) Incremental

Subgraph based TVGLC, and (3) Graph-shapelet Feature based TVGLC. Based
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Figure 1.2: An example of an information diffusion network. The information
propagation cascade can be regarded as a graph. The cascade on the left (with
bold-faced edges and green nodes) quickly grows and propagates to an increasing
number of nodes (i.e. outbreak), whereas the cascade on the right (with bold-
faced edges and yellow nodes) remains steady and is therefore a non-outbreak
cascade. Cascade outbreak prediction aims to build a graph classification model
to accurately identify outbreak cascades from non-outbreak cascades.

on the explored new features, this research extends traditional graph mining to

more complex time-variant graph data. All of these tasks are well motivated in

a variety of applications.

• Cascade Outbreak Prediction. In cascade outbreak prediction in so-

cial networks [22], each cascade data record can be regarded as an acyclic

graph that describes a path of information propagation in a social net-

work. In Figure 1.2, two directed networks (with green and yellow nodes,

respectively) show two cascades. Although both cascades start from a seed

node, the cascade with green nodes propagates to a large number of nodes

(i.e. graph labeled as outbreak), whereas the cascade with yellow nodes

remains steady or may die off (i.e. graph labeled as non-outbreak). A cas-

cade propagation with different stages forms a time-variant graph. Graph

classification can then be used for cascade outbreak prediction to distin-

guish outbreak cascades from non-outbreak cascades. The general idea is

to extract subcascades (subgraphs) as features by using frequent subgraph

pattern mining.
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Social Network

Social robots Social users

Figure 1.3: An illustration of social robots identification. We aim to identify so-
cial robots (Left) from real social users (Right). Each social node can be taken as
a social sensor [104] that generates continuous social signals (tweets). Each so-
cial signal is independent and identically distributed because nodes are mutually
connected in social networks.

• Social Robots Identification. In emerging applications such as Twit-

ter, there are three types of nodes: 1) Social robots which are zombies

controlled by a master node and occasionally distribute spams over the net-

work. Because we have already located the master nodes, we can infer the

network link among these zombies nodes. 2) Active social users who are

famous/VIP users. These users are very active and update their pages fre-

quently. The links among them are sparser than those of the social robots.

3) Ordinary social users who barely post messages, and the links are the

sparsest.The task is to detect social robots that auto-distribute advertise-

ments for viral marketing on social networks, as shown in Figure 1.3. As

the number of tweets over time forms time series data, a naive approach

would be to analyse the time series data to identify social robots. How-

ever, time series data generated by social users are not independent and

identically distributed. Users construct a graph with follow/unfollow rela-

tionships and the attributes of each node in the graph change over time,

which can be regarded as a kind of time-variant graph.

• Online Diffusion Provenance Detection In social networks, informa-

tion propagation (cascade) can be regarded as time-variant graphs because

the information diffusion forms a graph at a certain time and the graph
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… two weeks0.5 hour 1 hour 1.5 hours 2 hours

…

 ime- ariant raph
→

Figure 1.4: An example of time-variant graph provenance detection. In social
networks, information propagation forms a cascade (time-variant graph). The
cascade in the figure originates from a provenance (i.e., PKU news) and propa-
gates to a huge number of users over time (outbreak cascade). We aim to identify
the provenance from the time-variant graph in a timely fashion to avoid malicious
information break outs as early as possible.

evolves over time. An important application of information diffusion net-

works (i.e., time-variant graphs) is provenances detection, as shown in

Figure 1.4. In recent years, information diffusion in large networks has

attracted much attention. The spread of malicious information such as

viruses, spams and rumors have made various networks vulnerable to pri-

vacy attacks and viral advertising etc. To stop the propagation of mali-

cious information, researchers recently proposed several models to identify

the diffusion provenances in large networks. However, to the best of our

knowledge, most existing work on the diffusion provenance locating problem

falls into the category of offline identification, where the data are assumed

to be static and available all the time. In fact, for time-critical security

monitoring applications, it is necessary to unveil the diffusion provenances

as soon as an observation arrives. This way, it is important to detect dif-

fusion provenances as early as possible to enable early warning, real-time

awareness, and real-time response to the spread of malicious information.

The time-variant graph learning and classification (TVGLC) tasks are impor-

tant but, as yet, have not been studied in the literature. The objectives of the

dissertation are to model structured data, such as information propagation in so-

cial networks, as time-variant graph. Huge number of features can be generated
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from a time variant graph. Hence, in order to learn and classify time-variant

graphs, we need feature selection techniques to handle huge and variational fea-

ture space for different kinds of time-variant graph. In addition, an application

of time-variant graph is proposed to real-time detect provenances from an infor-

mation diffusion network.

1.3 Research Problems

As time-variant graph classification is essential in real-life applications while tra-

ditional features are not applicable, our research examines the unique challenge

of time-variant graph classification tasks carefully and exploits several research

problems accordingly.

1.3.1 Time-variant Graph Feature Extraction

As traditional subgraph features for graph classification are not applicable for the

time-variant graph, in this thesis, we first generalize the aforementioned tasks as

time-variant graph learning, then propose with three types of features to classify

time-variant graph, whereby:

The time-variant can be regarded as the graph streaming form, and can be

classified by traditional subgraph features. However, as the time-variant graphs

change over time, the size of the graph in the last stage might be huge and

the number of mined subgraphs may even become infinite. Therefore, how to

deal with the infinite subgraph features for classification is one of the research

problems in our research.

As the entire graph data changes over time and we are unlikely to obtain

stable subgraph features in time-variant graphs, the conventional graph classi-

fication methods, i.e., the subgraph feature based method and distance based

approaches (including graph kernel, graph, embedding, and transformation) are

not applicable. Thus, new types of graph features are needed for time-variant

graph classification.

As the attribute (node content) continuously evolves in the time-variant graph

and this can be regarded as a networked time series, some existing time series
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classification features can reoccur for attribute changed time-variant graph clas-

sification. A line of work has been proposed to extract discriminative features,

which are often referred to as shapelets, from the time series. However, existing

shapelets mining are only based on univariant/multivariant time series data. Ex-

tending the shapelets mining algorithms to the networked time series is another

research problem in our research.

1.3.2 Time-variant Graph Classification Algorithms

The infinite number and variational features make existing classifiers unsuitable.

Numerous feature selection models have been proposed to select sparse features

by filter, wrapper, and embedding approaches. However, these feature selection

methods are inefficient in infinite and variational feature space. For example,

when using l1 regularization, we need 1 TB memory to store the feature coef-

ficients of 1012 features. Therefore, how to design models and build classifiers

from graphs with infinite and variational features, and how to design an efficient

algorithm to rapidly solve the graph classifier are also investigated in our thesis.

1.3.3 Evaluation of Proposed Features and Algorithms

Given the unique characteristics of the problem, various data is required to eval-

uate performance. Time-variant graphs are potential representations of large and

dynamic graph data such as social network data. Both real-world and synthetic

data sets are required to compare the proposed features and approaches with

existing baselines.

In summary, how to evaluate the performance of the proposed features and

algorithms is an important research problem in this thesis.

1.3.4 Applications of Time-Variant Graph Learning

As the time-variant graph is popularly employed in social networks, especially

information propagation (cascade) in social networks, a case study needs to show

the real-world application of the time-variant graph. Because the out-break time-

variant network graph in information propagation probably causes malicious in-
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formation (e.g., rumor) to be propagated to large populations, identifying a prove-

nance in a timely way can avoid malicious information break outs as soon as pos-

sible. Thus, how to build a model to detect a provenance from the time-variant

graph in real-time is an application case study of this thesis.

1.4 Thesis Contributions and Road Map

This thesis addresses a number of fundamental problems of time-variant graph

learning and classification from four aspects; these are temporal feature selection

on networked time series, incremental subgraph feature based TVGLC, graph-

shapelets feature based TVGLC, and a case study of the time-variant graph. The

main contributions of this study can be summarized in four parts, accordingly.

The thesis is structured into seven parts. We first provide a detailed liter-

ature review that surveys existing works on graph learning and classification,

graph feature mining, graph stream mining, cascade outbreak prediction, big di-

mension data learning, feature based time series classification, feature selection

in networked data and online diffusion provenances detection in Chapter 2, with

major approaches in each learning task being summarized accordingly.

Chapter 3 proposes a Network Regularized Least Square feature selection

method (NetRLS in short) to incorporate network information for shapelet selec-

tion. We test the model on a real-world Twitter data set to discover shapelets

of social robots engaging in viral marking in Twitter, and we also test the model

on another real-world DBLP data set to classify influential authors in the data

mining area. Finally, we use a clinical heart rate data set as a case study to show

the performance of the proposed model on medical data. The results demonstrate

the advantages of the model.

In Chapter 4, we study the problem of time-graph classification with incre-

mental subgraph features. We first propose a general max-margin graph classifier,

based on which we propose a primal-dual incremental subgraph feature selection

algorithm. The incremental algorithm constructs a sequence of solutions that

are both primal and dual feasible. Each primal-dual pair shrinks the primal-dual

gap and renders a better solution towards the optimal; We propose a new Incre-

mental Subgraph Join Feature selection algorithm (ISJF for short). ISJF adds
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a new constraint on the max-margin graph classifier and forces the classifier to

select long-pattern subgraphs by joining short-pattern subgraph features; The

performance of the algorithms is validated on four synthetic networks and two

real-world networks (DBLP graph data and social network cascade data set with

2.76 million information cascades). The results show that the proposed incremen-

tal algorithm enjoys the merit of early prediction which is more than 400 seconds

faster than existing models for cascading outbreak prediction.

Chapter 5 proposes a new class of graph patterns, graph-shapelet patterns, as

features for time-variant graph classification. Graph-shapelet patterns are com-

pact and discriminative graph transformation subsequences that can be used to

classify graph sequences. Technically, in order to solve these challenges, we first

convert a graph sequences into a time series by using a fast graph statistics.

Then, we extract shapelets from the converted time series by using a traditional

shapelets mining algorithms. Next, we locate the graph subsequences that match

the shapelets from the original graph sequences. Each graph subsequence corre-

sponds to a unique graph transformation subsequence based on our new graph

transformation rules. At the last step, we extract the most discriminative graph

transformation subsequences as graph-shapelets based on their graph edit simi-

larity. Experiments on both synthetic and real-world data demonstrate the per-

formance of the proposed algorithms.

Chapter 6 demonstrates a real-world application of the time-variant graph in

social networks. We regard the information diffusion graph as the time-variant

graph, and study a new problem of online diffusion provenance detection. We

present a new online regression learning model to identify diffusion provenances

in large networks. The proposed model can handle the issues of the unknown

number of diffusion provenances k, the partially activated detectors, the unknown

initial propagation time t∗, the uncertain propagation path, and the uncertain

propagation time delay. In addition, we present an online stochastic algorithm

to solve the proposed online regression learning model. The algorithm uses a

stochastic sub-gradient decent algorithm to continuously detect the provenances.

We summarize the whole thesis and point out several future directions of this

study in Chapter 7.

In summary, this thesis mainly forces on formulating the novel learning tasks
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based on time-variant graph feature selection, model design, and its application.

Some of the contents of this thesis come from our published papers [126, 123,

129, 125, 127, 124, 128, 9, 137, 138], with the details provided in the following

section. Specifically, our proposed NetRLS algorithm includes network informa-

tion, in addition to time series data, for temporal feature selection on networked

time series data. This method was submitted to TII-2016 and a preprint version

is available in [126]. Our proposed incremental subgraph join feature selection

algorithm (ISJF) was first published in CIKM-2015 [123], and then the extended

version with primal-dual incremental subgraph feature selection algorithm (ISF)

was published in TKDE-2016 [129] and IJCNN-2016 [125]. Our proposed graph-

shapelet feature for time-variant graph learning and classification is currently

under second round review by TSMC and a preprint version is available in [127].

Our non-convex sparse regression model (NSR) for diffusion provenances detec-

tion in real time was published in IJCNN-2015 [124] and Journal of Computer

Networks [128].
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Chapter 2

Literature Review

This chapter presents a discussion of the research background and existing works

in connection with this research. This work is closely related to a variety of works

from different aspects: temporal features for networked time series classification,

incremental subgraph features and graph-shapelet features for time-variant graph

learning and classification, and online diffusion provenance detection. In this

chapter, we review the related work accordingly.

2.1 Dynamic Graph

Graphs are commonly used to represent objects, such as images and text, for pat-

tern classification. Graph classification is an important tool for social network

and biological data analysis, where the objective is to learn and classify objective

represented in graph structure. For example, chemical compounds can be rep-

resented in graph formats, predicting chemical compound activities in bioassay

tests is a known graph classification problem. In social networks, a user is a node

in the graph data, and the relationship (like following or fans) is the edge in the

graph.

In a dynamic world, an object may continuously evolve over time, which forms

dynamic changing graph records. Examples of the dynamic changing graphs are

delay-tolerant networks [52], opportunistic-mobility networks [18], and complex

networks [69]. As the notion of (static) graph is the natural means for representing
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a static network, the notion of dynamic graph is the natural means to represents

these highly dynamic networks. Some research efforts carried out a number of

approaches for dynamic graph or graph streams learning and classification. The

authors in [3] propose a random walk method to classify nodes in a dynamic

content-based graph. [1, 19] proposes a hash-based probabilistic method to find

discriminative subgraphs for massive graph streams classification. A Nested Sub-

tree Hash Kernel algorithm [70] is proposed to project different subtree patterns

to a set of common low-dimensional feature spaces, and construct an ensemble

method for graph stream classification. [146] adopts an incremental learning

strategy to incorporate the discriminative substructure patterns to improve the

algorithm performance.

Even dynamic graph or graph streams are closely related to the problem con-

sidered in this paper, however, there are two main differences with our TVGLC

problem: 1) dynamic graph and graph streams do not consider the relationship

between two graphs at different time. In other words, they classify graphs at a cer-

tain time instead of the entire time-variant graph; 2) the graph size or subgraph

feature dimension is small, while the subgraph features mined from the entire

time-variant graph is usually high-dimensional. For example, it is not reasonable

if we mine features at a certain graph in an information propagation network

because the features from the entire propagation network are more valuable for

classification. While outbreak information propagation usually has huge number

of subgraph features because of the large size network. Therefore, it is signif-

icantly to propose new features and algorithms for time-variant graph learning

and classification.

2.2 Temporal Features for Networked Data

In this section, we give a brief review of state-of-the-art feature learning based

time series classification methods and feature selection approaches in networks

respectively.
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2.2.1 Discriminative Features for Temporal Data

Discriminative features for temporal data classification have been studied exten-

sively [27, 55, 140]. Examples include bursts [58], periods [33], anomalies [134],

motifs [72], shapelets [147] and discords [145]. Time series shapelets have recently

attracted increasing interest in data mining [42, 80, 141], because shapelets are

usually much shorter than the original time series which means we only need one

shapelet for classification rather than the entire data set. Shapelets were first

proposed by [147] as time-series segments that maximally predict the target vari-

able. However, the runtime of brute-force shapelet discovery is not feasible due

to the large number of candidates. Therefore, a series of speed-boosting tech-

niques such as early abandonment of distance computations and entropy pruning

of the information gain metric have been proposed [147]. The work in [81] relies

on the reuse of computations and pruning of the search space to speed up the

shapelets discovery. The work [37] proposes a novel method that learns near-to-

optimal shapelets directly, without the need to search exhaustively among a pool

of candidates extracted from time-series segments. However, all addressed time

series issues fall into either the univariate or multivariate problem categories, and

ignore the structural information behind a time series which can be represented

with graphs.

2.2.2 Feature Selection in Networked Data

Many supervised feature selection algorithms have been proposed to select infor-

mative features from labeled data. A commonly used criterion in feature selection

is to score the features. State-of-the-art methods to score the features are the

filter-based, wrapper-based, and embedded approaches [41]. The embedded meth-

ods combine feature selection with the classifier, and are often considered as more

effective than the first two methods [41]. However, traditional feature selection ap-

proaches assume that the data is independent and identically distributed, which

is not suited for networked data. Based on the embedded method and graph reg-

ularization, Laplacian Regularized Least Squares (LapRLS) [13] is proposed for

networked data, [40] which combines linear regression and graph regularization

to select features in networked data and outperforms traditional feature selection
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methods from the networked method.

Since the prior works are either for time series data or networked data, the re-

search for networked time series data is an untouched area. Therefore, none of the

aforementioned works can directly address the networked time series classification

problem studied in this work.

2.3 Incremental Subgraph base TVGLC

The increasing availability of networked data is creating great potential for knowl-

edge discovery from graph data. Generally, real-world network graphs tend to be

big and complex. One difficulty of big graph data is the transfer of graph data into

proper formats for learning methods to train classifiers for graph classification.

2.3.1 Graph Classification

Existing graph classification methods mainly fall into two categories: 1) Dis-

tance based methods, which design a pairwise similarity measure between two

graphs, such as the graph kernel [54], graph embedding [99], and transforma-

tion [100]. The main shortcomings of this type of method are that it is com-

putationally expensive to calculate graph distance and prediction rules are hard

to interpret, because graph features are numerous and implicit. 2) Subgraph

feature-based methods, which identify significant subgraphs as signatures for one

particular class. [34] proposed to extract subgraph structural information for

classification. [94] formulated subgraph selection as a combinatorial optimization

problem, used heuristic rules, and combined a frequent subgraph mining algo-

rithm, gSpan [45], to find subgraph features. [60] presented a semi-supervised

subgraph feature selection method which uses unlabeled graphs to boost sub-

graph feature selection for classification. Several boosting methods [62, 46] use

individual subgraph features as weak classifiers to build an ensemble for graph

classification. None of the existing subgraph-based methods consider high dimen-

sion of subgraph features as incremental.
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2.3.2 Incremental Feature

To handle high dimensional features, many research efforts have been made to

address the incremental feature challenge. The work in [91] proposed a graft-

ing algorithm based on a stage-wise gradient descent approach for incremental

feature selection. However, grafting is ineffective in dealing with incremental

features with unknown feature size because choosing a suitable regularization pa-

rameter inevitably requires information about the global feature set. The work in

[155] studied stream-wise feature selection and proposed two algorithms based on

steam-wise regression, information-investing and alpha-investing. However, this

method only considers adding new features and never evaluates the redundancy

of selected features after new features are added. The authors in [47] presented a

framework based on feature relevance. The work [119] used a new, adaptive com-

plexity penalty, the Information Investing Criterion (IIC), to dynamically adjust

the threshold on the entropy reduction required for adding a new feature. The

work in [139] involved the tolerance of information for selecting incremental fea-

tures. These methods require prior knowledge about the structure of the feature

space in order to heuristically control the choice of candidate feature selection.

In real-world applications, obtaining such prior knowledge is difficult.

The primal-dual approach provides a powerful tool for designing approxi-

mate online and incremental algorithms. Typical primal-dual methods include

primal-dual online linear programming [17], primal-dual online set cover [76],

and primal-dual online SVMs [114]. By following the weak duality theorem [111],

online learning algorithms quickly converge to approximate solutions by contin-

uously updating both primal and dual feasible solutions which generate tight

competitive bounds with respect to off-line algorithms.

2.3.3 Cascade Outbreak Prediction

Cascade outbreak prediction has been studied extensively. Most existing

research efforts can be categorized into two classes: how to detect an outbreak

cascade with minimum detection time or minimum affected population [68], and

how to predict outbreaks at an early stage according to the cascading behaviors

of a given network and dynamic cascades over the network [22]. The former
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assumes that a portion of nodes in a given cascade can be accessed and used to

select some of them as sensors for outbreak detection, whereas the latter aims to

predict whether an arbitrary given cascade may outbreak or not. However, both

of them use the nodes in a network as features for classification and prediction,

ignoring the fact that cascades consist of sequential paths, while monitoring nodes

in a network is costly because a user may post messages intensively.

2.3.4 High Dimensional Data Learning and Data Stream

Mining

High dimensional data learning. High dimensionality is important and chal-

lenging because the immense growth of feature dimensionality in data analytics

has exposed the inadequacies of many existing methodologies [149]. Directly learn-

ing a classifier from high dimensional subgraphs is infeasible. So far, many feature

selection methods have been proposed to transform high dimensional data into

a lower space representation while preserving the intrinsic data structure. The

existing feature selection methods are often categorized as filter, wrapper, and

embedding approaches [74]. Among the above sparsity induced methods, l1 regu-

larization has been popularly used in the literature [116]. However, l1 regulariza-

tion is inadequate in this work because it is inefficient when the data dimension

is ultra-high. For example, 1TB memory is needed to store the weight vector

w when the data dimension is 1012. Moreover, feature selection bias inevitably

exists in the l1 norm, and different levels of sparsity can be achieved by changing

the regularization parameter C [117].

Data stream mining is one of the important data mining tasks. Existing

data stream mining algorithms [4, 79, 89, 161, 152] focus on the challenges of

high dimensional stream records, concept-drift, concept-evolution, and feature-

evolution. However, none of these stream algorithms touches the problem of

incremental subgraph features.

Frequent subgraph mining approaches, such as AGM [48], Gaston [82] or

gSpan [142], have been applied to enumerate frequently appearing subgraph pat-

terns. Then, a graph is represented as a vector of binary indicators, and the

traditional methods such as streaming feature selection are applicable to graph
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data. In contrast to incremental feature selection and subgraph mining methods,

we have combined streaming feature selection and subgraph extraction to tackle

high dimensional subgraph features for graph classification.

2.4 Graph-shapelet based TVGLC

The increasing availability of structured data holds great potential for knowledge

discovery from graph data. Generally, real graphs tend to be time-variant graphs

with time changing. However, one of the difficulties when classifying time-variant

graphs is converting the graph data into a format that allows extraction of effec-

tive features for graph classification.

2.4.1 Graph Features

Exploring new graph features is a persistent research focus in the graph data min-

ing community, and many feature extraction methods have been proposed [61,

158]. Existing graph classification approaches can be roughly categorized into two

groups: 1) distance based methods that include a pairwise similarity measure be-

tween two graphs, such as graph kernel [8], graph embedding [98, 78, 101, 26],

graph matching [108, 105], and transformation [51, 71, 130]; and 2) subgraph

feature based methods that identify significant subgraphs as signatures for one

particular class. For example, the work in [35] proposed to extract subgraph

structural information for classification. The work in [95] formulated the sub-

graph selection problem as a combinatorial optimization problem and they used

heuristic rules and a combination of a frequent subgraph mining algorithm such

as gSpan [142] to find subgraph features. Some boosting methods, such as [103,

87] use individual subgraph features as weak classifiers to build an ensemble for

graph classification. Yet none of these methods consider the dynamic property

of graphs. Since the structure of time-variant graph may change continuously

over time, the subgraph features mined by these existing methods fail to consider

the variation between graphs at different time. If subgraph mining algorithms

are applied to the entire time-variant graph directly, huge number of features

can be generated from a time variant graph. This will be time-consuming and
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inefficiently because of the large size of time-variant graph (such as outbreak in-

formation propagation networks). Hence, we need feature selection techniques to

handle huge and variational feature space.

2.4.2 Graph Stream Mining

Some graph stream mining methods have been recently proposed that address the

streaming feature challenge. The work [92] proposed a grafting algorithm based

on a stage-wise gradient descent approach for streaming feature selection. The

work [156] studied streaming feature selection and proposed two novel algorithms

based on steam-wise regression, information investing and alpha investing. The

work in [120] developed a new, adaptive complexity penalty, the Information

Investing Criterion (IIC), for the model to dynamically adjust the threshold of

the entropy reduction required for adding a new feature. In [90], a graph ensemble

boosting approach was proposed to handle the imbalance in noisy graph stream

classification. Again, these graph streaming methods ignore the dynamic nature

behind graph sequences.

2.5 Online Diffusion Provenances Detection

Malicious information such as rumors and viruses has recently been observed

propagating in networks, incurring privacy and security concerns [86, 64] and mo-

tivating the research of diffusion provenance detection. To date, existing works on

diffusion provenance detection have focused on offline detection, where a snapshot

of a large network or data harvested from detectors are assumed to be available in

advance. In order to design an online detection algorithm, three technical ques-

tions need to be answered: 1) how to design stochastic propagation models, 2)

how to design an objective function for online detection, and 3) how to design an

online algorithm as the solution. We survey related work regarding these three

aspects.

In terms of stochastic propagation models in diffusion provenance locating,

existing works simulate the spreading by using infection models such as the

Susceptible-Infected-Recovered (SIR) [157] model, the Susceptible-Infected SI [109]
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model, and others [57, 122]. On the other hand, recent works [36, 31, 154]

have claimed that modeling propagation cascades and information diffusion using

continuous-time diffusion networks can provide accurate models.

Based on the stochastic models, several learning models were proposed to infer

the provenances. For example, a recent work [109] provided a systematic survey

of locating rumor provenances in a network, and presented a rumor centrality

estimator to estimate the rumor provenances by assigning a score to each infected

node. The work [30] studied the problem of a single rumor provenance locating

with priori knowledge. Most existing estimators are based on either topological

centrality measures [160] or distance measures between observed data. Owing to

this, maximum likelihood estimator can be used to infer the provenances.

A limitation of the above works is that they all assume that the infection

status of the nodes (i.e., labels) is known a priori. For example, the work [77, 109]

considered the multiple infection provenances estimation problem and assumed

that the number of infection provenances is unknown in advance. Some work [53]

assumed that not all nodes are infected and only a subset of detectors are used

for the provenance estimation.

For online algorithms, online learning has been extensively studied in machine

learning. Typical methods include the Passive-Aggressive (PA) [21] and truncated

gradient algorithms [63]. However, these online learning algorithms are based on

linear and convex optimization, which do not fit our non-convex online learning

problem.

Despite the complexity of inferring the diffusion provenances in a network, a

simple heuristic is to say that the provenance is the center of the network [110].

There are many notions of network centrality, but a very common one is known

as distance centrality, e.g., betweenness centrality [12], closeness centrality [84]

and Bonacich centrality [15]. Betweenness centrality measures a node’s centrality

in a network. The infection closeness centrality heuristic claims the node with

the maximum infection closeness is the source. Bonacich Centrality is a measure

of the influence of a node in a network. One may argue that the most influential

nodes are more likely to be the provenances of the diffusion. However, in actuality,

an almost isolated node that has few connections to the most influential nodes is

most likely to be the source. Therefore, traditional central-based algorithms are
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hardly applicable.

In summary, none of the aforementioned works can be directly used to address

the online diffusion provenance detection problem studied in this work.

24



Chapter 3

Temporal Shapelet Feature for

Networked Time Series

3.1 Introduction

A simple case of the time-variant graph is that the network is fixed but node con-

tent/attributes continuously evolve. When the node attributes of graphs change

over time, the sequence can be regarded as time-series, and some time-series fea-

tures and classification approaches can be recurred to time-variant graph learning

and classification. To date, there exist two categorises of time series classification

approaches: distance-based methods, and feature-based methods. The former

measures the similarity between two time series (e.g., dynamic time warping

(DTW) [56]), while the later considers time series as a feature vector so that

a traditional feature-based classifier (e.g., SVM or logistic regression) can be

applied. For the feature-based methods, the features can be simple statistics

(e.g., mean and variance) or a subsequence of the time series (e.g., shapeltes).

Shapelets are discriminative segments of time series that best predict class labels

[148]. We have also observed a line of work extracting accurate and interpretable

shapelets for time series classification, such as the decision tree based shapelets

extraction [148][97], regression-based shapelets learning [38], and the time series

transformation method [73].

On the other hand, a recent work [39] proposes a new time series shapelets
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learning approach. Instead of searching shapelets from a candidate pool, they

use regression learning and aim to learn shapelets from time series. This way,

shapelets are detached from candidate segments and the learnt shapelets may

differ from all the candidate segments. More importantly, shapelets learning is

fast to compute, scalable to large datasets, and robust to noise.

In this chapter, we propose a Network Regularized Least Square feature selec-

tion method (NetRLS in short) to incorporate network information for shapelet

selection. We test the model on a real-world Twitter data set to discover shapelets

of social robots engaging in viral marking in Twitter, and we also test the model

on another real-world DBLP data set to classify influential authors in data min-

ing area. Finally, we use a clinical heart rate data set as case study to show the

performance of the proposed model on medical data. The results demonstrate

the advantages of the model.

The remainder of this chapter is organized as follows. Section 3.2 gives the

preliminaries and problem definition. We introduce the proposed network reg-

ularized least squares shapelets learning model in Section 3.3. In Section 3.4,

we conduct the experiments on real-world data sets and compare the proposed

method with benchmark approaches. Finally, we draw a conclusion and point

out the future work in Section 3.5.

3.2 Preliminaries and Problem Definition

In the problem setting, we have two types of data: a network G = (V,E) where

nodes |V | = n and edges |E| = l, and a set of time series data denoted by a

matrix X ∈ Rq×n where the j-th column vector xj = [x
(1)
j , x

(2)
j , · · · , x(q)

j ] ∈ Rq

represents time series generated by node vj ∈ V . There are totally c class labels

denoted by a label matrix Y ∈ {0, 1}c×n where each row yj ∈ Rc is a unit vector

denoting the label of node vj and xj ∈X.

3.2.1 Time Series Segments

Consider a sliding window of length t, when the window slides along a time

series, a set of segments can be obtained. For time series xj ∈ X, we can
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generate totally q − t + 1 segments by sliding the window from x
(1)
j to x

(q−t+1)
j .

Thus, for the entire time series X, there are totally (q− t+1)×n segments, i.e.,

Ω = [ϕ1, · · · , ϕ(q−t+1)×n] where each ϕj ∈ Ω denotes a segment. Each element

s(j,k) is the distance between time series xj and segment ϕk. It can be defined

as the differential minimum distance that approximately denotes the minimum

distance between the time series and the segment. Note that the segment length

t� q, the number of segments (q − t+ 1)× n is very large.

3.2.2 Shapelets

Shapelets are defined as the most discriminative time series segments [148]. There-

fore, time series segments are shapelet candidates, and we can use Ω as the fea-

ture space for shapelets selection. To represent each time series xj ∈ X in the

space Ω, we use a column vector si = [si,1, · · · , s(i,(q−t+1)×n)] to record x′
js fea-

ture values, where each element si,j depends on a distance function between xj

and segment ϕj ∈ Ω, i.e., si,j = d(xi,ϕj) (We will discuss this distance function

later). This way, the time series data set X can be represented by a data matrix

S = [s1, s2, · · · , sn] ∈ R(q−t+1)×n,n, where each column vector sj represents a time

series xj in space Ω. Note that each sj is a ultra-high dimensional vector.

3.2.3 Goal

The purpose is to select the most discriminative segments as shapelets. Consider

a multi-class problem with c class labels, denote a mapping matrix W ∈ Rq×c

where the j−th column stores the classier wj that identifies the j−th class from

the remaining c− 1 classes. We expect to obtain a sparse matrix W with only a

few non-zero row vectors by minimizing the L2,0−norm ‖W ‖2,0. The L2,0-norm

of W is defined as ‖W2,0‖ = card(‖w1‖2, · · · , ‖wc‖2). wj shrinks to zero if the

j-th feature is not discriminative. Therefore, the features corresponding to zero

column of W will be discarded when performing feature selection. This way, a

few segments (row vectors in W ) are selected as the shapelets for building the

classifiers.
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3.3 Network Regularized Least Squares Shapelets

Learning

Network regularization. Network information can help identify the classifiers W .

The idea behind this is to use network regularization based on the rule that, if

two nodes are linked together, then they are likely to share the same class label.

Technically, consider an undirect network with the adjacent matrix A ∈ Rn×n

derived from the edge set E, the network regularization term RG(W ) can be

formulated as:

RG(W ) =
1

2

c∑
k=1

∑
i,j

(wT
ksi −wT

ksj)
2Aij

=
c∑

k=1

∑
i,j

wT
ksiAijs

T
i wk −

c∑
k=1

∑
i,j

wT
ksiAijs

T
j wk

=
c∑

k=1

∑
i

wT
ksiDiis

T
i wk −

c∑
k=1

∑
i,j

wT
ksiAijs

T
j wk

=
c∑

k=1

wT
kS(D −W )STwk

= tr(W TSLSTW ),

(3.1)

where L = D − A is an undirected graph Laplacian [16] and D is a diagonal

matrix called degree matrix with Dii =
∑

j Aij. Eq. (3.1) can be easily extended

to a directed network by replacing the undirected graph laplacian with a directed

graph laplacian L = Π − 1
2
(ΠP + P TΠ), where Π is a diagonal matrix and P

is the transition matrix of random walk on the directed network [20].

3.3.1 Shapelets Selection

We use the embed-based feature selection [40]. Specifically, we propose to use

a network regularized least squares learning (NetRLS for short) for shapelets

selection. The NetRLS aims to learn c linear classifiers and select the top-k most
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discriminative shapelets as shown in Eq. (3.2),

minW ‖Y −W TS‖2F + α‖W ‖2F + βtr(W TSLSTW )

s.t. : ‖W ‖2,1 ≤ λ, α, β > 0. (3.2)

The first two terms in the objective function are the regularized least squares and

the third term is the network regularization. The constraint ‖W ‖2,1 ≤ λ is a

relaxation of the L2,0 norm ‖W ‖2,0 ≤ λ and ‖W ‖2,1 is defined as the sum of the

l2 norm of all the column vectors wj ∈W , i.e, ‖W ‖2,1 =
∑

j ‖wj‖2. ‖W ‖2,1 ≤ λ

guarantees that at most λ rows in W are selected.

3.3.2 Challenges and Convexity

The matrix S is intimidatingly large because the segment space Ω is ultra-high.

Therefore, Eq. (3.2) cannot be solved directly on S. In the sequel, we propose

to trim matrix S by using the correlation of segments.

Keogh et al. [28] conducted an experimental comparison of time series rep-

resentations and distance measures, where they compared eight representation

methods and nine similarity measures and their variants and tested their perfor-

mance on 38 time series data sets. They claimed that the Euclidean distance is

surprising competitive with other more complex approaches, although it is very

sensitive to misalignments. Because the focus of this chapter is not introducing

new representation/distance methods, we simply use the Euclidean distance to

measure the similarity between segments. Note our method can be extended to

other representation/distance methods discussed in their work [28].

Define a diagonal matrix M = diag(0, 1, · · · , 1, 0), where rank(M ) = ρ �
(q − t+ 1)× n which means only ρ element one in M , and the problem turns to

calculating M .

Based on the Euclidean distance, we define a distance matrix Ũ as in Eq.
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(3.3). Note that the matrix is symmetric and non-negative.

Ũ =

⎛⎜⎜⎜⎜⎜⎝
d(ϕ1,ϕ1) · · · d(ϕ1,ϕ(q−t+1)×n)

d(ϕ2,ϕ1) · · · d(ϕ2,ϕ(q−t+1)×n)

...
. . .

...

d(ϕ(q−t+1)×n,ϕ1) · · · d(ϕ(q−t+1)×n,ϕ(q−t+1)×n)

⎞⎟⎟⎟⎟⎟⎠ (3.3)

Based on the matrix, we define a diagonal matrix P̃ = D̃ − Ũ , where D̃ii =∑
j Ũij. Then, selecting the optimal S̃ is equivalent to selecting the maximum

triangle elements, i.e.,

M̃ = argmax
M

tr(P̃M)

s.t. : rank(M ) = ρ.
(3.4)

Then, we can obtain a lower space segment space S̃ based on S, and W̃ based

on W , as shown in Eq. (3.5).

S̃ = SM̃ ∈ Rρ×n, W̃ = WM̃ . (3.5)

Eq. (3.4) aims to find the top-ρ segments S̃ from all the segment candidates

S. The constraints denotes only ρ segments from P̃ are selected. The objective

function denotes we want to obtain which segments have the maximal distances

to all the other segments. Eq. (3.4) is easy to solve, because it is equivalent to

selecting the maximum values on the diagonal matrix P̃ .

Convexity. In Eq. (3.5), we have reduced the high dimension W and S into

low dimension space W̃ and S̃. Once we replace S with S̃ in Eq. (3.2), we want

to show if the problem is convex. If so, then we can use gradient-based algorithms

as the solution.

Theorem 1. The problem in Eq. (3.2) is convex w.r.t. W̃ and gradient-based

algorithms can achieve a global optimum.

Proof. Due to ‖W̃ ‖2F = tr(W̃ TW̃ ), Eq. (3.2) can be converted to the following

optimization problem with parameters α, β > 0,

min
‖W̃ ‖2,1≤λ

tr
(
W̃ T [X̃X̃T + αI + βS̃L̃S̃T ]W̃ − 2tr(S̃TY W̃ T ) (3.6)
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Algorithm 1 NetRLS for Shapelets Selection on Networked Time Series.

Require:
Time series X ∈ Rq×n, Network G = (V,E), window length t, # of classes c,
# of segments η, # of shapelets ρ;

Ensure:
Shapelets S̃∗;

1: Initialize α, β, θ0, W̃1, γ1 = 1
2: Generate a segment space Ω = [ϕ1, · · · , ϕ(q−t+1)×n]

3: Generate an Euclidean distance matrix Ũ based on Ω
4: Generate a diagonal matrix P̃ based on Ũ
5: Generate a selection matrix M = diag(0, .., 1),rank(M ) = ρ

6: Solve M̃ = argmaxM tr(P̃M) s.t. : rank(M ) = ρ.

7: Generate the candidate shapelet matrix S̃ = SM̃
8: Prune matrices in Eq. (3.2), L̃ = LM̃ , W̃ = WM̃
9: repeat

10: while F (W̃k) > Gθt−1(W̃k+1, W̃k) do
11: Set θt−1 = τθt−1

12: end while
13: Set θk = θk−1

14: W̃k+1 = argminW̃ Gθk(W̃ , J̃k)

15: γk+1 =
1+
√

1+4γ2
k

2

16: J̃k+1 = W̃k +
γk−1
γk+1

(W̃k+1 − W̃k)

17: until Convergence

18: Score(i) =
√∑

j W̃
2
i,j

19: Output: Segments S̃k with the largest Scores

Let Λ = S̃S̃T + αI + βS̃L̃S̃T . Obviously, Λ is always non-negative and thus

it is a positive semi-definite matrix. The constraint ‖W̃ ‖2,1 < λ is also convex.

Therefore, the optimization problem is convex.

3.3.3 Networked Time Series Classification Algorithm

We use a recently proposed gradient-based algorithm, the Accelerated Proximal

Gradient Decent (APG) algorithm [40], as the solution. The computational com-

plexity of APG algorithm can be found in [118]. The convergence rate of APG

is very fast of O( 1√
(ε)
). Because Eq. (3.2) is convex, APG can achieve a global
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optimum.

Recall that the purpose of APG is to find a sequence of variables {· · · , W̃k+1, · · · }
such that the objective function converges to a global minimum. Eq. (3.2) can be

relaxed to F (W̃ ) = f(W̃ ) + λ‖W̃ ‖2,1, where f(W̃ ) is the objective function in

Eq. (3.2) and λ‖W̃ ‖2,1 is a relaxation of the constraint. According to the Taylor

series expansion, F (W̃ ) approximately equals to Gθk(W̃ , W̃k) as follows,

Gθt(W̃ , W̃k) = f(W̃k)+ < ∇f(W̃k), W̃ − W̃k >

+
θk
2
‖W̃ − W̃k‖2 + λ‖W̃ ‖2,1

(3.7)

where ∇f(W̃k) is the first order derivative of f(W̃ ) at W̃k.

Now, the iterative step W̃k+1 can be obtained by minimizing Gθk(W̃ , W̃k),

i.e.,

W̃k+1 = argmin
W̃

Gθk(W̃ , W̃k)

= argmin
W̃

1

2
‖W̃ − Ṽk‖2F +

λ

θk
‖W̃ ‖2,1

(3.8)

where Ṽk = W̃k − 1
θk
∇f(W̃k). It is not difficult to prove that the solution of Eq.

(3.7) can reduce the objective function F (W̃ ) and the algorithm is convergent.

Eq. (3.7) can be further broken down into c separate subproblems, each of

which has a closed form solution given in Eq. (3.9), where w̃i
k+1, w̃

i and vi
k are

the i-th rows of W̃ , W̃ and Vk respectively.

wi
k+1 =

⎧⎨⎩(1− λ
θk‖vi

k‖
)vi

k, if ‖vi
k‖ > λ

θk

0, otherwise.
(3.9)

Moreover, we construct a linear combination of W̃k and W̃k+1 to update J̃k+1

as follows,

J̃k+1 = W̃k + (γk − 1)(W̃k+1 − W̃k)(γk+1), (3.10)

where the sequence of γk is conventionally set to be γk+1 =
1+
√

1+4γ2
k

2
. The
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Figure 3.1: The network (Left) has 200 nodes and 210 edges, social robots are densely connected while the remaining
two groups of real users are sparsely connected. The generated time series (Mid.) of the three classes of nodes, social
robots and active VIP users have discriminative patterns while ordinary users tend to have flat curves. The shaplets
(Right) of a typical social robot is concave ([a, b, c]), while shapelets of an active VIP user is convex ([a,b,c]). Time
series of ordinary users have heavy noise and it is hard to capture a shapelet.
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Table 3.1: The data sets summarization.

Data set Classes Size Length

Twitter 3 200 30
DBLP 2 700 20
Medical data 2 2565 50

algorithm is summarized in Algorithm 1.

3.4 Experiments

We design experiments to validate that the proposed NetRLS model, which com-

bines both time series data and network data, can obtain better performance

than using only time series data. All the experiments are conducted on a Linux

Ubuntu server with 16*2.9GHZ CPU and 64G memory. The experiments are

implemented in Matlab.

3.4.1 Data Sets

We collect a Twitter data set and a DBLP data set for testing, and we use

a clinical heart rate data set for a case study to show the performance of the

proposed model on medical data. The detailed information is summarized in

Table 3.1.

3.4.1.1 Twitter

The task is to detect social robots that auto-distribute advertisements for viral

marketing on social networks. We located and collected 200 social time series in

the last 30 days from three types of nodes: 1) Social robots which are zombies

controlled by a master node and occasionally distribute spams over the network.

Because we have already located the master nodes, we can infer the network link

among these zombies nodes. 2) Active social users who are famous/VIP users.

These users are very active and update their pages frequently. The links among

them are sparser than that of the social robots. 3) Ordinary social users who
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Figure 3.2: Parameter test (a) and model comparison (b).

barely post messages, and the links are sparsest.

The network information is shown in Fig. 3.1. Fig. 3.1 gives a small portion

of the time series data. We calculate the total number of tweets for each node in

each day and obtain time series of length 30. There are 20 social robots, 30 active

social users, and 150 ordinary social users. Intuitively, we can observe that the

social robots have a very short yet sharp time period of distributing information.

But in the rest time, these nodes are in sleep. The active social users have a

more regular and frequent information distribution while the ordinary users are

in low-frequency. These basic features can guarantee satisfactory shapelets for

classification.

3.4.1.2 DBLP

The task is to classify if an author is an influential author in a given research

field. We retrieve around 700 authors from DBLP 1 in data mining area, i.e.,

authors in the conferences of ICDM, PKDD/ECML and KDD. There are 300

influential authors (e.g., Jiawei Han, Philip S. Yu, etc.) and the remaining are

normal authors in data mining area. Note that the normal authors do not rep-

resent small quantities papers in each year or small quantities papers in a cer-

tain data mining conference. We label the influential or normal users based on

prior knowledge (i.e., some already well-known researchers) and their frequent

1http://dblp.uni-trier.de/db/
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co-authors appeared on top-5 data mining conferences. There are some authors

who have duplication names (denoted as noise authors), we manually remove the

noise authors and mislabeled authors. We crawl the number of papers in each

year to form time series data of each author between 1996 to 2015. Then, we

based on the coauthorship to construct the network information, i.e., there ex-

ist an edge if two authors have coauthorship relation and set the weight is 1,

otherwise 0.

Baseline Methods. To show the power of the network information in building

a classifier, we compare the proposed NetRLS model with a regularized least

squares (RLS) model which only uses time series data for classification. Also, we

compare NetRLS with a state-of-the-art shapelet learning method (denoted as

LTS) [38]. The LTS performance has been demonstrated better than other state-

of-the-art methods [38], e.g., the Fast Shapelets (FSH) which is a fast random

projection technique on SAX representation [28], and the Dynamic Time Warping

(DTW) [97].

3.4.2 Experimental Measures

We measure the performance by classification accuracy: tp / (tp+fp+fn+tn),

where tp is true positive, fp is false positive, fn is false negative, and tn is true

negative. We also use the AUC value to evaluate the performance. We use 70%

for training and the remaining 30% for testing.

Parameter testing. Fig. 3.2(a) shows the parameter tests with respect to α,

β, λ on the Twitter data set. The parameters are α = 1, β = 1, λ = 1 by

default. We can observe that when the parameter β is set to a small value of

0.1, the model obtains the worst result, this is because the network information

is nearly dropped in the analysis. The sparse terms ‖W‖2 and ‖W‖2,1 obtain

the best results when the parameters λ and β equal to 10. Thus, we will set the

parameters α = 10, β = 10, λ = 10.

3.4.3 Experimental Comparisons

Fig. 3.2(b) shows the improvement of NetRLS over RLS on Twitter data set.

We can observe that NetRLS steadily lays above RLS. The accuracy gap is 3%
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Figure 3.3: Accuracy comparison on Twitter data set w.r.t. various window
length and parameter ρ.

on average. The accuracy gap reflects the power of the network data. This is

because social time series contain more noise than traditional time series data

and network data is useful in improving performance.

Fig. 3.3 and Fig. 3.4 show the results of comparisons between NetRLS,

RLS and LTS on the Twitter data set, and Fig. 3.5 and 3.6 show the results

on the DBLP data set. We compare the two methods under different pairs of

parameters: candidate segment (shapelet) size ρ and window length t.

From the results, we can conclude that: 1) given a shapelet space ρ, increasing

the window length t will not guarantee better prediction results. When the length

is 5, both NetRLS and RLS obtain relatively better results. 2) given a window

length t, increasing ρ will generally improve the performance, but the improve-

ment is insignificant when ρ > 40. For example, on the Twitter data set, NetRLS

is 0.768 when ρ = 30 and t = 4, which is the same as ρ = 50. Considering that
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Figure 3.4: AUC comparison on Twitter data set w.r.t. various window length
and parameter ρ.

increasing ρ will generate more candidate segments and increase memory and

computation costs, ρ can be set to between 30 and 50. 3) given the same ρ and

t, NetRLS obtains higher accuracy and AUC value than RLS because NetRLS

can model both time series and network data and obtain more accurate and ro-

bust results. 4) NetRLS performs better than LTS. LTS shows high accuracy on

the UCR time series data sets but produces a different result in social network

data sets (Twitter and DBLP). This is because there are undistinguishable users

and noise when based solely on the time series data. For example, in the Twitter

data set, a famous user may have only posted a few tweets during the date ranges

fetched in our data set. This could easily be categorized to normal user if the

number of tweets was the only consideration. In the DBLP data set, an author

may only focus on the top conferences in data mining, and contribute a lot to

them, but the total number of papers published per year may limited. Without
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Figure 3.5: Accuracy comparison on DBLP data set w.r.t. various window length
and parameter ρ.

additional data, this might indicate classification as a non-influential author.

Fig. 3.7 lists the shapelets learnt by NetRLS on the Twitter and DBLP

data set. Fig. 3.7 (a) shows the social robots have sharp fluctuant shapelet

since they usually post a mass of tweets within a short time, while normal users

tend to post tweets with regular fluctuant shapelet. VIP users post tweets with

gently fluctuant shapelet because they keep posting plenty of tweets. Fig. 3.7 (b)

demonstrates normal authors have subtle changing shapelet because the published

papers by normal authors is not significantly changed every year while influential

authors tend towards great change due to coauthors or new topics.

Discussions. In this part, we discuss two problems regarding the selected

shapelets from networked time series.

First, one may ask if the network information can alter the shapelets? In

Eq. (3.2), the optimization problem has only one variable, the classifier weight

39



Temporal Shapelet Feature for Networked Time Series

10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

Parameter ρ

AU
C

NetRLS
RLS
LTS

(a) AUC with window length t = 2.

10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

Parameter ρ

AU
C

NetRLS
RLS
LTS

(c) AUC with window length t = 4.

10 20 30 40 50

0.65

0.7

0.75

0.8

Parameter ρ

AU
C

NetRLS
RLS
LTS

(b) AUC with window length t = 3.

10 20 30 40 50
0.65

0.7

0.75

0.8

Parameter ρ

AU
C

NetRLS
RLS
LTS

(d) AUC with window length t = 5.

Figure 3.6: AUC comparison on DBLP data set w.r.t. various window length
and parameter ρ.
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(a) The learnt shapelets from Twitter data set. The most left one is from social
robots, the middle one is from VIP users, and the most right one is from normal users.
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(b) The learnt shapelets from DBLP data set. The most left one is from normal authors,
while the most right one is from influential authors.

Figure 3.7: An illustration of the shapelets learned by NetRSL on the Twitter
and DBLP datasets.

W , so the network information will change only the classifier boundaries but not

shapelets themselves. In fact, our solution can be taken a two-step hierarchical
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way that first solve Eq. (3.4) to get a trimmed concise segment space and then

solve Eq. (3.2) to obtain shapelets. In our experiments, the network links are

relatively sparse 1. This is because social time series data often contain heavy

noise and social nodes label are usually incorrect, network link information can

somewhat alleviate the noise and mislabel problems, and thus improve the clas-

sification accuracy.

Second, in what case the link information can alter the shapelets themselves?

We can relax Eq. (3.2) to be a more flexible problem that optimize the objective

function between variables W and S. This way, the third item of network reg-

ularization L will impact the optimal value of S. However, similar to the work

of learning shapelets [38], if we allow to optimize w.r.t. S, we will arrive higher

accuracy at cost of obtaining shapelets that slightly all the segments derived from

time series data.

Note that we do not show run-time and memory consumption in the experi-

ments because the data sets we used are not very large and the size of network

is small, hence, the difference with the baselines is minor. In fact, the run-time

and memory cost of the proposed algorithms mainly relies on the feature learning

from time series, since time series is usually long and feature extraction from long

time series is time and memory consuming. In contrast, the influence of run-time

and memory cost for extracting network features is insignificant. Therefore, com-

paring with the accuracy improvement, the run-time and memory consumption

of the proposed networked time series algorithm is insignificant.

3.4.4 Industry case study on clinical data

In this section, we test the proposed NetRSL method on a real-world clinical

data from Saint Louis Children Hospital. This data set includes heart rate and

patients age from 2565 patients. The heart rate data was recorded from admission

to recovery (denoted as positive class) or transfer to ICU (denoted as negative

class) for every minute. Based on the observation from the data, we find that the

1Fig. 3.1 shows the 200 nodes and 210 edges. Because we have located all the social robots,
so all the links between social robots are captured. On the other hand, the edges between real
users, including VIP users and ordinary users, are relatively sparse. Even though the network
is sparse, we can still observe performance improvement as shown in Fig. 3.2(b).
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Figure 3.8: A part of the heart rate data. The network (Left) is based on age of
patients, and we link two patients if their age difference is within 3 years. The
middle time series represents heart rate for one minute interval. The blue time
series represents these kinds of patient were transferred to ICU, and the orange
one represents the patient was not transferred to ICU. We use both the patients
network and heart rate time series to classify if the patient will be transferred to
ICU or not. Obviously, only using the time series data with inseparability can
make the learning task difficult. Thus, together with the network data we can
improve the final classification performance.

age of patients can influence if the patient will be transferred to ICU. Thus, we

compare the age of each two patients, there is a link between two patients if their

ages differ within 3 years. In this way, we can form an age 1 information graph

between each of the two patients, i.e., a node represents a patient, and there

exists an edge if the age differ of two patients is less than 3 years. The heart rate

recorded in every minute constructs time series data. Fig. 3.8 shows the network

structure and time series formed by a part of the clinical data, where the learning

task only via time series data can be very difficult to solve. As there are many

empty or very short records in this data set, we remove the patients whose data

is empty or short. Usually, the last part of heart rate before transferring to ICU

or recovery is more significant, so we cut out the length with 50 from the end of

each time series. As a result, there are 147 negative class and 1432 positive class.

To make the data set more balance, we randomly sample 353 instance from the

1In our clinical data set, besides the age features, we also have demographic features such
as height and weight etc. However, those features are not very related to the heart rate data
and ICU prediction. Thus, the reason why we only used age for constructing patients network
is that age is the only one influential feature we can access from the data. The influence of
the age network is illustrated in Fig. 3.9. We will include more factors when constructing the
patient networks once we have more influential features to the outcome prediction in the future.
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Figure 3.9: Performance on the clinical data set w.r.t. various window length
and parameter ρ.

positive class. The task is to predict if the patient will be transferred to ICU or

not.

Fig. 3.9 and Fig. 3.10 show the performance of NetRSL compared with RSL

and LTS. We can see from the results that the accuracy and AUC of LTS is

the lowest in the most of cases, which indicates that the traditional time series

classification is not suitable in the heart rate data set. With the window length

increasing, the proposed NetRLS can continuously outperform RLS and LTS.

This is because that NetRLS utilizes the user network structure information to

enhance the final classification performance.
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Figure 3.10: AUC comparison on the clinical data set w.r.t. various window
length and parameter ρ.

3.5 Conclusion

In this chapter, we have explored a new problem of networked time series clas-

sification, where the data contain both the typical time series data and net-

work structure data. A network regularized least square feature selection method

(NetRLS) is proposed to incorporate the network structure information for shapelet

selection, accordingly. Our work drops the independent and identically dis-

tributed (i.i.d.). assumption and enables to use rich network structure informa-

tion to improve the performance. The experiments and comparisons on real-world

Twitter and DBLP, and validations on medical data analysis, demonstrate that

NetRLS outperforms state-of-the-art time series shapelet learning algorithms and

is suitable for a wide range of learning tasks.
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Chapter 4

Incremental Subgraph based

TVGLC

4.1 Introduction

When mining subgraph as features, the number of frequent subgraphs is sensitive

to the setting of the support parameter. In reality, the number of subgraphs cru-

cially depends on the setting of the frequent pattern mining threshold, and with

a very small threshold value, the dimension of the subgraphs may be extremely

large. As shown in Fig. 4.1, the dimension of the subgraph (subcascade) fea-

tures increases exponentially as the frequent pattern threshold parameter Supp

decreases. For example, when the parameter is 50, the number of discovered

subgraph features is more than 8 ∗ 105!
The reality of high dimensional or potentially infinite subgraph features mo-

tivates the need to select a small number of representative subgraph features. In

machine learning, high dimensional features are a common challenge and a large

number of feature selection models [91, 139, 155] have been proposed to reduce

data dimensionality. However, the information propagation network is dynamic

with the time variation, and the number of subgraphs might tend to infinite. As

the features are subgraphs and features are infinite, these models are incapable of

handling infinite subgraph features. In this case, new feature selection techniques

need to be proposed to handle huge and variational information subgraph feature
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Figure 4.1: The number of frequent subgraphs w.r.t. the support threshold
in frequent pattern mining. The cascade data, containing about 2.76 mil-
lion cascades and 3.3 million nodes, are obtained from the SNAP data set
(http://snap.stanford.edu/infopath/data.html/). When the parameter Supp is
50, the number of discovered subgraph features is more than 8 ∗ 105!

space effectively.

Subgraph feature selection [25, 144, 46] has been proposed in the literature to

combine substructure mining and feature learning in graph data. For example,

frequent substructure mining methods, such as AGM [49] and gSpan [45], are

used to enumerate frequently appearing subgraph patterns, with each subgraph

corresponding to a feature, so existing machine learning methods (e.g., SVM [50])

can be applied to the converted feature space. These works, however, can only

handle low dimension subgraph features extracted from small graphs. For in-

stance, a recent work [46] used only 4,337 subgraph features in the experiment.

Since the number of subgraph features in big graph (outbreak cascade) and under

small threshold can be extremely large, traditional graph classifier cannot handle

high-dimensional subgraph feature space. As a result, existing methods are inap-

plicable to big graph data such as social network cascade data where the number

of connected subgraphs can be extremely large.

Online incremental feature selection [47] was recently proposed to select fea-

tures from high dimensional feature streams. For example, a recent work [139]

involved tolerance of information for selecting incremental features and presented
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a method for selecting strongly relevant and non-redundant features on the fly.

This is a two-phase algorithm, including online relevance analysis and online re-

dundancy analysis. However, there is no graph mining involved in this work,

which makes it is unable to compute the relevance and redundancy of graph fea-

tures. Thus, this method is inapplicable to incremental subgraph features where

the challenges of subgraph pattern mining and incremental feature selection are

tangled. In addition, the method in [139] assumes that the prior knowledge on

the structure of the feature space is known a priori, so heuristic rules can be ap-

plied. Since the support threshold for subgraph feature mining is a user-defined

value, it is hard to know the structure of the feature space as a priori informa-

tion. Therefore, this strong assumption does not hold in general graph and social

network settings, neither.

Motivated by the above observations, our research mainly aim to solve the

following challenges:

• How to build a classifier from graphs with an high dimensional number of

subgraph features, and how to design an efficient algorithm to rapidly solve

the graph classification. The high dimensional number of features makes

existing classifiers either inapplicable or ineffective. Numerous feature selec-

tion models have been proposed to select sparse features by filter, wrapper,

or embedding approaches. However, these feature selection methods are

inefficient in high dimensional subgraph feature space. For example, when

using l1 regularization, we need 1 TB memory to store the feature coeffi-

cients of 1012 features.

• How to join short-pattern subgraphs and design a feature selection model

that prefers to select long-pattern subgraph features. We observe that the

feature space is dominated by short-pattern subgraphs due to the down-

ward closure property of the frequent subgraph mining algorithms [143],

i.e., short-pattern subgraph features are always more frequent than long-

pattern interesting subgraphs. To discover long-pattern subgraphs buried

under a huge number of short-pattern subgraphs, we need to systematically

design a new feature selection method. Generally, a small value of the fre-

quency support threshold is employed such that all candidate subgraphs can
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be preserved in the feature space. However, this method will unavoidably

generate an exponential number of short-pattern subgraphs which flood in-

teresting long-pattern subgraph features. While there are many possible

ways to join short-pattern subgraphs, the join rules between subgraph frag-

ments need to be established for efficient computation. New constraints are

required to force traditional max-margin based graph classifiers to select

long-pattern subgraph features.

• How to evaluate the performance of the proposed method. Both real-world

and synthetic data sets are required to compare the proposed method with

existing methods.

In this chapter, we aim to address discriminative subgraph features selection

from high dimensional subgraph feature space for max-margin graph classification

(Section 4.3.1). Our research extends the max-margin graph classifier to handle

high dimensional incremental subgraph features using a primal-dual subgraph fea-

ture selection which continuously selects subgraph features that are both primal

and dual feasible (Section 4.3.2). Because the primal-dual subgraph feature se-

lection algorithm converges quickly and tends to select short-pattern subgraphs,

we further propose a long-pattern driven subgraph feature selection model for

selecting interesting long-pattern subgraphs (Section 4.3.3). In experiments, we

test the methods on both synthetic and real-world data sets. The results show

that the proposed algorithms can both solve the incremental subgraph feature

problem and select discriminative long-pattern subgraph features.

The major contribution of the chapter is threefold:

• We study the problem of graph classification with incremental subgraph

features. We first propose a general max-margin graph classifier, based

on which we propose a primal-dual incremental subgraph feature selection

algorithm. The incremental algorithm constructs a sequence of solutions

that are both primal and dual feasible. Each primal-dual pair shrinks the

primal-dual gap and renders a better solution towards the optimal.

• We propose a new Incremental Subgraph Join Feature selection algorithm

(ISJF for short) [123]. ISJF adds a new constraint on the max-margin graph
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classifier and forces the classifier to select long-pattern subgraphs by joining

short-pattern subgraph features.

• The performance of the algorithms is validated on four synthetic networks

and two real-world networks (DBLP graph data and social network cascade

data set with 2.76 million information cascades). The results show that the

proposed incremental algorithm enjoys the merit of early prediction which

is more than 400 seconds faster than existing models for cascading outbreak

prediction.

The rest of the chapter is organized as follows. Section 4.2 introduces the

preliminaries including important definitions. Section 4.3 discusses the new clas-

sification model and extends the classification model into long-pattern feature

mining. We present theoretic analysis in Section 4.4. Section 4.5 conducts exper-

iments and Section 4.6 concludes the chapter.

4.2 Preliminaries

A graph G = (V,E) consists of a set of nodes V = {1, . . . , p} and a set of edges

E ⊆ V × V . A directed acyclic graph (DAG) is a graph G whose edges are

directed and do not contain directed cycles. We use lower-case bold-faced letters

to represent vectors and upper-case bold-faced letters to represent matrices. For

example, symbol e represents a unit vector with all entries equal to 1.

Definition 1. (Subgraph) Consider a directed acyclic graph G = (V,E), gi =

(V ′, E ′) is a subgraph of G, i.e., gi ⊆ G, iff (1) V ′ ⊆ V , (2) E ′ ⊆ E. If gi is a

subgraph of G, then G is a supergraph of gi.

Definition 2. (Subgraphs Join (SgJ)) Consider two directed acyclic subgraphs

gi and gj. The vertex sets are V (gi) = {Vα, · · · , Vβ} and V (gj) = {Vα
′, · · · ,

Vβ
′}. If Vβ = Vα

′ or V ′
β = Vα, then gi

⊗
gj = {Vα, · · · , Vβ, Vγ

′, · · · , Vβ
′} is defined

as SgJ, where
⊗

is a concatenation operation.

Because subgraph mining often outputs many short-pattern subgraphs, Defi-

nition 2 joins these subgraphs to generate long-pattern subgraphs. The difficulty

49



Incremental Subgraph based TVGLC

Figure 4.2: Subgraph features. The graph (left) is converted into a binary feature
vector (right) by examining the existence of subgraph features. The feature vector
can be processed by traditional classifiers such as SVMs.

is that the result may be uncertain due to graph isomorphism [159]. In this chap-

ter, we only consider joining correlated subgraph features, as shown in Fig. 4.3.

This is because correlated subgraph features have a high probability of generat-

ing interesting long-pattern subgraphs. As shown in Fig. 4.3, the join result is

determined based on Definition 2.

In binary classification, the task is to learn a classification boundary from a

training graph set {(Gk, yk)}, 1 ≤ k ≤ n, where each Gk is a training graph with

class label yk ∈ {−1,+1}.

Definition 3. (Subgraph Features) Let S = {g1, · · · , gm} be a set of subgraphs

in a training graph and |S| = m. Each graph Gk is encoded as an m-dimensional

vector xk with xu
k(1 ≤ u ≤ m) denoted by

xu
k = I(gu ⊆ Gk), ∀gu ∈ S,

where I(·) equals 1, if the condition is satisfied; otherwise, it is 0.

We use a simple example in Fig. 4.2 to explain the generation of the subgraph

feature space. Consider a graph A → B · · · → E which contains subgraphs

B → C and C → D → E, the corresponding elements in the subgraph feature

space are set to 1.

Given a set of training graphs, the subgraph feature space increases expo-

nentially w.r.t. graph size. Therefore, it is impractical to use all subgraphs as

features. We use frequent subgraphs to prune trivial subgraph patterns.

A handful of algorithms have been proposed to mine frequent subgraphs Fs

from a set of graphs, such as the Depth-First-Search (DFS) algorithm gSpan [45].
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Figure 4.3: Joining correlated subgraph fragments.

The key idea of gSpan is that each subgraph has a unique DFS Code, which is

defined by a lexicographic order during the search process. Two subgraphs are

isomorphic iff they have the same minimum DFS Code. By employing a depth

first search strategy on the DFS Code tree (where each node is a subgraph),

gSpan can enumerate all frequent subgraphs efficiently.

4.3 Graph Classification

We present a primal-dual incremental subgraph feature selection algorithm based

on a max-margin graph classifier. First, we assume that the subgraph feature

space is finite, based on which we present a max-margin graph classifier. Then,

we extend the classifier to handle high dimensional incremental features using the

primal-dual subgraph feature selection.

4.3.1 Max-margin Graph Classifier

We introduce a feature scaling vector d ∈ [0, 1]m with ||d||1 =
∑m

i=1 dj ≤ B to

encourage sparsity. This way, at most B subgraphs are selected. Given a graph

Gi, we impose
√
d = [

√
d1, · · · ,

√
dm]

T on its features [121, 115] to a re-scaled

example x̂i = xi

⊙√
d, where xi �

√
d represents the element-wise product

between vectors xi and
√
d. Let D = {d ∈ Rm | ||d||1 ≤ B, dj ∈ [0, 1], j =

1, · · · ,m} be the domain of d, the max-margin graph classifier can be formulated

as follows,

min
d∈D

min
w,ξ,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w
T (xi �

√
d) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m.

(4.1)

51



Incremental Subgraph based TVGLC

where w ∈ Rm and b determine the classification boundary, ξi is the empirical

error of xi, and C is a trade-off parameter. The problem is non-convex w.r.t. w

and d.

When d is fixed, Eq. (4.1) degenerates to a standard SVM model. By intro-

ducing the Lagrangian multiplier αi ≥ 0 to each constraint yi(w
T (xi�

√
d)+b) ≥

1− ξi, and setting the derivatives of the Lagrange function to be 0 with respect

to parameters w, ξ and b, we obtain

w =
n∑

i=1

αiyi(xi �
√
d),

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C.

Plugging the above results back into Eq.(4.1), we obtain the dual form of the

original problem as follows,

min
d∈D

max
α∈A

− 1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 + eTα (4.2)

where A = {α|∑n
i=1 αiyi = 0,α ≥ 0}. Based on the minimax saddle-point

theorem [112], we can interchange the order of mind∈D and maxα∈A, and solve

the following minimax problem instead,

min
α∈A

max
d∈D

1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 − eTα (4.3)

Apparently, the primal problem in Eq.(4.1) can be equivalently formulated as

its dual in Eq. (4.3). Eq. (4.3) has only two variables d and α, and it is linear

with respect to d and convex with respect to α, which can be solved by the block

coordinate descent algorithm that alternates between the optimization of d and

α.

Given a fixed d, the optimization problem in Eq. (4.3) is reduced as follows,

(Optimization 1: fix d and solve α)
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Algorithm 2 The max-margin graph classifier.

Require:
Graph G, parameters C, B

Ensure:
Graph classifier f

1: α0 ← 1/C · 1, U ← ∅, t← 0
2: repeat
3: Calculate dt based on αt using Eq.(4.5)
4: // Optimization 2
5: U ← U ∪ dt

6: Calculate αt+1 based on U using Eq.(4.4)
7: // Optimization 1
8: t← t+ 1
9: until Convergence
10: Output f ← SVM(U,C)

min
α

1

2
‖

n∑
i=1

αiyix̂i‖2 − eTα

s.t.
n∑

i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , n.

(4.4)

where x̂i is re-scaled by the given d, i.e., x̂i = xi

⊙√
d. Due to the sparsity

of the scaler d, the above problem can be solved by using standard quadratic

programming with a small set of features x̂i (the formal statement is given in

Appendix A).

When the variable α is determined, we select the number of features B as in

Eq. (4.5).

(Optimization 2: fix α and solve d)

max
d

‖
n∑

j=1

αjyj(xj �
√
d)‖2

s.t.
m∑
j=1

dj ≤ B, 0 ≤ dj ≤ 1, j = 1, · · · ,m.

(4.5)

To solve Eq. (4.5), we define a score function to denote the weight of each
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feature, i.e.,

c(α) =
n∑

i=1

αiyixi ∈ Rm. (4.6)

Based on the above definition, we have

‖
n∑

j=1

αjyj(xj �
√
d)‖2 =

m∑
j=1

[cj(α)]2dj.

The optimization problem in Eq. (4.5) can then be converted to a linear program-

ming problem with respect to d as follows:

max
d

m∑
j=1

[cj(α)]
2dj

s.t.
m∑
j=1

dj ≤ B, 0 ≤ dj ≤ 1, j = 1, · · · ,m.

(4.7)

Eq. (4.7) can be solved analytically. First, we construct a feasible solution by

finding the top B largest scores [cj(α)]
2. Then, we set the number of B scaler dj

to 1 and the remaining (m− B) dj to 0. Clearly, such a feasible solution is also

the optimal solution. The algorithm is given in Algorithm 2.

4.3.2 Incremental Subgraph Features

Eq. (1) provides a basic classifier for solving high-dimensional but finite sub-

graph feature space. To process high dimensional subgraph feature streams, we

introduce a primal-dual incremental subgraph feature selection algorithm.

Our method is based on the online linear programming of the feature selection

function given in Eq. (4.7). We assume that the constraint matrix is revealed col-

umn by column along with the objective function, i.e., the features are processed

column by column in a one-scan manner.

In incremental feature selection scenarios, a feature set is split and loaded

into memory in a mini-batch manner. At each time window t = �mε�, the

incremental algorithm learns both primal and dual feasible solutions. The primal

problem is formulated as in Eq. (4.8) which allows (1− ε) approximation to the
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offline solution given by Eq. (4.9) [5]. Eq. (4.10) is clearly a small linear program

problem defined on the �mε� features.
(Primal)

max
d

t∑
j=1

[cj(α)]
2dj

s.t.
t∑

j=1

dj ≤ (1− ε)
t

m
B

0 ≤ dj ≤ 1, j = 1 · · · , t

(4.8)

For Eq. (4.8), we use p ∈ Rm to denote the dual variable. The dual problem

of Eq.(4.8) is as follows:

(Dual)

min
p

m∑
i=1

bipi(1− ε)
t

m
+

m+t∑
i=m+1

pi

s.t.
m∑
i=1

pi + pi+j ≥ [cj(α)]
2, j = 1, ..., t

pi ≥ 0, 1 ≤ i ≤ m.

(4.9)

The dual problem converts a high dimensional problem in Eq. (4.8) into a big

constraint problem with respect to dual vector p. For any given p, we define the

function xt(p) denoting dual feasibility as follows,

xt(p) =

{
0 if bi ≤ pT

1 if bi > pT
(4.10)

The incremental algorithm constructs a sequence of solutions that are both

primal and dual feasible. Each primal-dual pair shrinks the dual gap and renders

a better solution towards the optimal.

In the online problem, at time t, the coefficient cj(α) is updated, and the

algorithm makes a decision xt. Given the previous decisions x1, · · · , xt−1, and

cj(α)
2 till time t, the tth decision is to select an xt such that

∑t
j=1 xj ≤ B,

0 ≤ xj ≤ 1. The goal of the online algorithm is to choose xt such that the

objective function
∑m

t=1 cj(α)
2xj is maximized.

To evaluate the performance of an online algorithm, one approach is based on
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Algorithm 3 Primal-dual incremental subgraph feature selection for graph clas-
sification

Require:
Graph G, parameters C, B, mini-batch size K

Ensure:
classifier c

1: α0 ← 1/C · 1, S ← ∅, t← 0
2: repeat
3: S ← a mini-batch of K features
4: Calculate top-k candidate features based on αt using Eq. (4.9)

// mini− batch scores
5: for each feature xt in top-k do
6: if xt(p) ≤ bi −

∑t−1
j=1 djxj then

7: xt = xt(p)
8: else
9: xt = 0
10: end if
11: end for
12: Calculate αt+1 based on dt using Eq. (4.4)
13: // Optimization 1
14: t← t+ 1
15: until no feature left
16: Output c← SVM(S,C)

its performance on the worst-case input, e.g., completely robust to make input

uncertainty [17]. This approach leads to gloomy bounds for the online problem:

no online algorithm can achieve better than O(1/m) approximation of the optimal

offline solution [7]. In our problem settings, subgraph features arrive in a random

order, and the total number of features m is known a priori. We consider the

average behavior of the online algorithm over random permutations, and can use

m to decide the length of history used to learn the dual bounds in the algorithm.

In this case, the total number of m is a known priori [5], we can relate the

approximate knowledge of m within at most 1 ± θ multiplicative error without

affecting the final results.

The primal-dual incremental subgraph feature selection algorithm is given

in Algorithm 2. The primal solution xt(p) constructed using sample dual so-

lutions in Eq. (4.9) is a feasible solution to the linear program Eq. (4.8) with
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Figure 4.4: An illustration of a long-pattern subgraph feature buried under two
short-pattern subgraph features in the information cascade data. Consider four
graphs g1, . . . , g4. g1 and g2 from class “+1” while g3 and g4 from “-1”. Assume
we have two short-pattern subgraphs f1 : U1 → U2 and f2 : U2 → U3, and a
long-pattern subgraph f3 : U1 → U2 → U3 by joining f1 and f2. If one feature is
allowed to select for classification, then f1 or f2 is likely to be selected, instead
of the more interesting f3.

high probability. In fact, the iterative primal solutions constructed using sample

dual solutions converge and approach to optimal, e.g., with probability 1 − ξ,∑
t∈N xt(p) ≥ (1−3ξ)OPT given B ≥ 6mlog(n/ξ)

ξ3
, where OPT denotes the optimal

objective value for the offline problem [5].

4.3.3 Long-pattern Subgraph Features

In fact, the number and size of subgraph features crucially depend on the thresh-

old parameters of frequent subgraph mining algorithms. Any improper setting

of the parameters will generate many trivial short-pattern subgraph fragments

which dominate the feature space, distort graph classifiers, and flood interesting

long-pattern subgraphs.

The primal-dual incremental feature selection converges rapidly; however, the

algorithm often traps in generating a large number of short-pattern subgraph
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features which may flood interesting long-pattern subgraph features. Fig. 4.4

shows an example in which a long-pattern subgraph feature f3 is buried under

two subgraph features f1 and f2. A classifier is likely to choose the two subgraph

features instead of the more informative long-pattern subgraph feature which

reflects a latent social group. In this section, we design a long-pattern driven

algorithm that prefers long-pattern subgraphs as features, with only one scanning

of the feature set.

Intuitively, the size of a subgraph compromises the classification accuracy.

In graph classification, based on the minimum description length theory, the

relationship between the size of a subgraph and the size of the original graph is

compromised when subgraphs are used as features.

Formally, we add extra constraints to allow the algorithm to choose long

patterns. The new constraint can be stated as: if two short patterns pa and pb

are in the active feature set, i.e., dpa = 1 and dpb = 1, then their derived pattern

pa ⊗ pb will be also selected, i.e., d pa⊗pb = 1.

Based on the new constraints, we obtain a new classification model as follows,

min
d∈D

min
w,ε,b

1

2
||w||2 + C

2

n∑
i=1

ξi

subject to yi(w
T (xi �

√
d+ b) ≤ 1− ξi

ξ ≥ 0, i = 1, . . . ,m.

d pa
⊗

pb = 1, ∀ dpa = 1 ∧ dpb = 1

(4.11)

The new constraints enforce that if two features can be concatenated into a

long cascade, then the corresponding new cascade will be set to 1. The algorithm

thus tends to select long patterns.

max
d

cj(α)
2dj

s.t.
m∑
j=1

dj ≤ B, 0 ≤ d ≤ 1,

d pa
⊗

pb = 1, ∀ dpa = 1 ∧ dpb = 1.

(4.12)

Eq. (4.12) can be solved analytically. First, we construct a feasible solution

by finding the largest scores [cj(α)]
2. Then, we set the scaler δj to 1 and the
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Algorithm 4 Long-pattern classifier

Require:
Graph G, parameters C ,B, mini-batch size K

Ensure:
classifier c

1: α0 ← 1/C · 1, S ← ∅, t← 0
2: repeat
3: S ← a mini-batch of K features
4: Calculate candidate top-k features based on αt using Eq. (4.9)

// mini− batch scores
5: Calculate αt+1 based on dt using Eq. (4.4)

// Optimization 1
6: t← t+ 1
7: until no feature left
8: Output c← SVM(S,C)

remaining to 0.

Table 4.1 shows three different types of result when a long-pattern subgraph

pab is generated from two short-pattern subgraph fragments pa and pb. For exam-

ple, consider the four training graphs g1, · · · , g4, where g1 and g2 belong to the

same group, while g3 and g4 fall into another group. Assume we have obtained

two subgraph fragments P (a) = A → B and P (b) = B → C. We can generate

a long-pattern subgraph A → B → C based on Definition 3. The classifier may

have three different types of result, Equal, Improve and Reduce. Therefore, we

have the following intuitive conclusion.

Theorem 2. Consider two subgraph fragments pa = 1 and pb = 1, if pab = pa⊗pb,
then the generated long-pattern subgraphs pab can be used to replace the original

two patterns pa and pb.

Proof: Evidently, if pab = pa ⊗ pb, then pab = 1 is the solution of Eq. (4.12).

�
Based on the above analysis, we design the long-pattern driven incremental

feature selection algorithm given in Algorithm 3. The algorithm processes data

in mini-batches. The algorithm examines the concatenation of short-pattern sub-

graphs and generates long-pattern subgraphs that comply with Theorem 2. The

complexity of the algorithm is still o(m) in the worst case.
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Table 4.1: Analysis of the new constraint

Equal Improve Reduce

X pa Pb pab pa Pb pab pa Pb pab

x1 1 1 1 1 1 1 1 0 0

x2 1 1 1 1 1 1 1 0 0

x3 0 0 0 1 0 0 0 1 0

x4 0 0 0 0 1 1 0 1 0

4.4 Analysis

Algorithm 2 is equivalent to the cutting-plane algorithm for solving the semi-

infinite programming problem. In each iteration, the cutting-plane algorithm

removes nonactive constraints that correspond to redundant features in the primal

problem. The algorithm iteratively finds active constraints that heavily violate

the KKT condition. In the following, we prove the convergence of Algorithm 2.

Theorem 3. Let {αt,dt} be a sequence of solutions generated by Algorithm 2. If

Algorithm 1 stops at iteration {t+1}, then {αt,dt} is the global optimal solution

of Eq.(4.3).

Proof: The objective function of Eq. (4.3) is convex w.r.t. α and linear w.r.t.

d. Thus, Eq. (4.3) has a global optimum. The algorithm, by iteratively solving

Eqs. (6) and (7), will converge to the global optimum. �
The stop criterion is based on the bound of d. Specifically, Algorithm 2 stops

when d becomes stable. In each iteration, the algorithm scans the entire feature

space and chooses B features. In the worst case, the algorithm iteratesm/B times

and selects all m features, i.e., the algorithm takes O(m2) time at worst. The

square time complexity is, unfortunately, unaffordable for ultra-high dimensional

data, which is often the case in our problem setting.

The incremental feature selection is motivated by the limitations of Algorithm

2. First, the algorithm needs to fully scan all the features in each iteration, which

requires O(m2) complexity in the worst case and is therefore unsuitable for big

networks. Second, the number of selected features tB increases as the number of
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iterations t continue, which may become high dimensional. Therefore, we propose

a new primal-dual incremental feature selection method.

Algorithm 3 is based on the observation that the optimal solution for the

offline linear program is almost entirely determined by the optimal dual solution

corresponding to the inequality constraints. The algorithm is 1−O(θ)-competitive

and the results can be stated as follows:

Because optimization 1 can be solved by using convex quadratic programming,

there is polynomial time interior point algorithm in Matlab. The primal-dual

incremental feature selection selects a mini-batch and only calculates the scores

on the mini-batch. The algorithm firstly selects m features, and then calculates B

features which has highest score, and it scans the feature set only once. Therefore,

the time complexity of the algorithm is O(m*BlogB). Since B is a small value,

the time complexity can be a linear time complexity O(m).

4.5 Experiments

We test the proposed algorithms on two real-world networks and four synthetic

network data sets. The purpose of the experiments is to: 1) conduct a parameter

study for the purpose of choosing optimal parameter settings for our experiments;

2) compare the proposed algorithms with benchmark methods to validate the

performance of our method; and 3) test our method on real-world social network

applications.

The source codes and data sets are available online1. The frequent subgraph

mining is implemented in Java, the feature generation is implemented in Python,

and the optimization algorithms are implemented in Matlab. All experiments are

tested on a Linux Ubuntu server with 16*2.9GHz CPU and 64G memory.

4.5.1 Data Sets

We use two real-world networks and four synthetic data sets for testing. The

data sets are summarized in Table 4.2.

1https://github.com/BlindReview/streaming for the source codes and the synthetic data
sets. http://snap.stanford.edu/infopath/ for the cascade data set.
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Table 4.2: List of the synthetic and real-world data sets.

Data Set Nodes Edges / Cascades Other parameters

Albert-Barabasi 5000 19990 n = 4
Forest Fire 5000 21124 f = 0.35, b = 0.32
Small World 5000 19996 α = 4, p = 0.1
Erdos-Renyi 5000 6000 [0.5, 0.5; 0.5, 0.5]
MemeTracker 3.3 mil. 27559952 \
DBLP 2000 95411 \

4.5.1.1 Real-world Data

MemeTracker : MemeTracker data set [65] is downloaded from the SNAP cascade

data website, and is the topic-based MemeTracker containing 27.6 million news

articles and blog posts from 3.3 million online sources with time-stamps over a

one-year period, fromMarch 2011 to February 2012. The data format is as follows,

<meme id>;<website id>,<timestamp>, ..., <website id>,<timestamp> . The

time-stamp indicates the information arrival time of a node from its parent nodes.

We generate information propagation graphs as shown in Fig. 1. We treat each

website as a graph node, there is an edge between two nodes if a website forward

articles or blogs from another website. Thus, the propagation network forms a

graph at a speicific observation time stamp (e.g., 361000(s)). All the graphs at

different time stamps in a cascade have the same label with the cascade (outbreak

or non-outbreak). Predicting each graph label forms a graph classification task.

DBLP : DBLP author classification refers to the task of predicting author’s

research areas based on co-authorship network where two authors are connected

if they publish at least one paper together. We retrieve around 2000 authors from

DBLP and 95411 coauthors. The training sets are drawn from different domain,

i.e., the conferences in each research areas. We mainly crawl the authors from

the areas in Software Engineering and Data Mining. We fetch the co-authorship

network graphs of each author from 2001 to 2015, and formulate the co-authorship

graphs at different year. Specifically, we have three phases’ graphs, i.e., 2001 to

2005, 2006 to 2010, and 2011 to 2015. Subgraph features are commonly used

in author classification that is based on co-authorships. However, predicting an

authors research areas using only a single coauthor or conference is infeasible due

to the interdisciplinary nature of research.
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(i) ISF: accuracy w.r.t. the observed
features.

(ii) OSF: accuracy w.r.t. the selected
columns B.

(iii) ISF: accuracy w.r.t. the selected
columns B.

Figure 4.5: Parameter study on min-batch size B at each iteration and value k
in top k.

4.5.1.2 Synthetic Data

We use four well-known models to generate synthetic networks for testing and

comparison, namely, the Erdos Renyi [14], Albert Barabasi [10], Forest Fire [66]

and Small World [133] models.

Erdos Renyi [14] generates random graphs with arbitrary degree distributions.

Each edge is included in the graph with a probability p independent of other edges.

All graphs with N nodes and L edges have equal probability of pL(1 − p)(
N
2 )−L.

The parameter p is a weighting function. In particular, p = 0.5 corresponds to

the case in which all 2(
N
2 ) graphs on N vertices are chosen with equal probability.

Albert-Barabasi (Scale-free network) [10] generates random scale-free networks

using a preferential attachment mechanism. The network begins with an initial

connected network containing β0 nodes. New nodes are added to the network

one at a time. Each new node is connected to β ≤ β0 existing nodes with a
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Table 4.3: F1 score under the parameter support=30 on the four synthetic data
sets.

Data Sets Time OSF RSF MSF ISF ISJF

Albert-Barabasi

100 0.711±0.146 0.611±0.070 0.564±0.019 0.682±0.077 0.651±0.126

300 0.762±0.077 0.700±0.094 0.743±0.026 0.762±0.027 0.791±0.102

500 0.885±0.037 0.739±0.094 0.664±0.109 0.785±0.094 0.863±0.082

700 0.903±0.006 0.667±0.059 0.782±0.011 0.912±0.028 0.910±0.006

Erdos Renyi

100 0.750±0.125 0.667±0.178 0.712±0.169 0.750±0.067 0.750±0.125

300 0.824±0.122 0.703±0.067 0.624±0.058 0.817±0.058 0.824±0.058

500 0.807±0.122 0.798±0.044 0.766±0.044 0.815±0.100 0.889±0.044

700 0.889±0.104 0.796±0.114 0.813±0.044 0.889±0.103 0.824±0.181

Forest Fire

100 0.891±0.007 0.793±0.027 0.796±0.131 0.910±0.067 0.891±0.017

300 0.880±0.004 0.799±0.035 0.761±0.021 0.846±0.001 0.873±0.027

500 0.897±0.002 0.826±0.044 0.801±0.061 0.885±0.030 0.849±0.021

700 0.879±0.105 0.916±0.08 0.862±0.065 0.889±0.117 0.870±0.121

Small-world

100 0.526±0.005 0.404±0.003 0.470±0.004 0.579±0.008 0.406±0.013

300 0.563±0.007 0.484±0.009 0.519±0.006 0.585±0.016 0.592±0.009

500 0.746±0.012 0.498±0.005 0.479±0.007 0.595±0.007 0.746±0.003

700 0.699±0.021 0.552±0.107 0.519±0.003 0.760±0.143 0.763±0.006

probability proportional to the number of links that existing nodes already have.

For this model, we need to set parameter n, which denotes the number of edges

created by each new node.

Small-world (Watts-Strogatz model) [133] is defined as a network in which

the typical distance ζ between two randomly chosen nodes grows proportionally

to the logarithm of the number of nodes N in the network, that is ζ ∝ logN . We

use parameter α to denote that each node is connected to α nearest neighbors in

topology, and p denotes the rewiring probability.

Forest Fire model (Scale-free network) [66] is defined as a cellular automaton

on a grid with γd cells. γ is the side-length of the grid and d is its dimension. In

this model, we need to set the parameters of the forward burning probability f ,

and the backward burning probability b.

To better simulate real-world network diffusion, we generate synthetic net-

works under a power-law degree distribution exponent α = 1.5, which corresponds

to the power-law degree exponent of the MemeTracker network.

Synthetic cascades are generated using the following methods. First, we ran-
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Figure 4.6: # of subgraph features w.r.t. support threshold on the MemeTracker
data set.

domly select a root node r with a non-zero out-degree. The node r is then added

to the initially empty list of the infected nodes I and all outgoing edges (r, s) are

added to the initially empty FIFO queue of the infected-susceptible node pairs S.

We choose an edge from the candidate set each time and calculate the time delay

for the edge until the time delay exceeds a given time window (we use [0,1000] as

the time window). The data are generated by repeating the above steps for each

source node.

In the synthetic networks, nodes are continuously included in the network, we

separate each cascade by different time stamp (e.g., 100, 200), and each network at

a specific time stamp (e.g., time is 100) can be treated as a graph. All the graphs

in a cascade have the same label with the cascade (outbreak or non-outbreak).

We aim to classify outbreak cascades from non-outbreak ones by using graph

classification.

Benchmark methods. We compare the proposed ISF and the Incremental

Subgraph Join Feature selection algorithm (ISJF) with the following three meth-

ods: 1) Meta Subgraph Feature selection (MSF ) which randomly selects meta

subgraphs (nodes) as features for graph classification [22]. In MSF, each node of

a graph is taken as a feature; 2) Off-line Subgraph Feature selection (OSF ) [88]

which loads all features into memory at one time and selects top k columns (with

top k scores) at each iteration until the condition ‖αt+1 − αt‖ < ε is met, where

ε = 0.001 in our experiments; 3) Random Subgraph Feature selection (RSF ) [142]

which randomly selects B features for graph classification.
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Figure 4.7: Memory cost w.r.t. the support threshold Supp under different prop-
agation time stamps on the MemeTracker data set.

Measures. We compare the algorithms with respect to running time, pre-

diction accuracy (tp / (tp + fp + fn + tn)), precision(tp / (tp + fp)), recall (tp

/ (tp + fn)), and the F1 Score (2 * (precision * recall / (precision + recall))) to

evaluate classification performance, where tp is true positive, fp is false positive,

fn is false negative, and tn is true negative.

4.5.2 Parameter study

We first test the parameters in Eq. (4.8) w.r.t. the number of features B, and

the parameter k of the top k features in OSF and ISF.
Fig. 4.5 shows the performance of the two algorithms under different param-

eter settings on the real-world data.
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Figure 4.8: Running time w.r.t. the support threshold Supp under different
propagation time stamps on the MemeTracker data set.

The mini-batch size B: B > 0 represents the portion of selected features w.r.t.

the number of features at each iteration. If B is too large, the algorithm suffers

from large computation and memory cost. In the worst case, B equals to the

number of all features which degenerate to the off-line method. Fig. 4.5 shows

that the best prediction accuracy is achieved when B is 30% of all features.

The parameter top k: We use the optimal value of B = 30% to study pa-

rameter k, which indicates the number of features being selected for the next

mini-batch of feature selection. Fig. 4.5 shows that both OSF and ISF have the

highest accuracy when k equals to 40% of mini-batch B.
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(i) # of subgraph patterns w.r.t. pattern
length.

I I

(ii) # of long-pattern subgraphs w.r.t.
support threshold.

Figure 4.9: Percentage of patterns w.r.t. the support threshold and pattern
length.
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Figure 4.10: Precision comparison under different Supp on the MemeTracker data
set.
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Figure 4.11: Recall comparison under different Supp on the MemeTracker data
set.

4.5.3 Experimental Results

The dimension of subgraph features and running time on the MemeTracker data

set: Fig. 4.6 shows the dimension of subgraph features w.r.t. the support thresh-

old Supp. Figs. 4.7 and 4.8 show the memory consumption and running time

comparisons for ISF and OSF w.r.t. the support threshold under different propa-

gation time stamps. The different propagation time stamps and support thresh-

olds indicate the different dimensions of the subgraph features. The number of

features approximates to 2 ∗ 105 when the support threshold is 30 and the prop-

agation time reaches 364,000. Figs. 4.7 and 4.8 show that our ISF algorithm can

handle high dimensional features faster than OSF. This is because ISF uses a

primal-dual subgraph feature selection which continuously selects subgraph fea-

tures to quickly solve the graph classifier. In contrast, OSF loads all features into
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Figure 4.12: F1 score comparison under different Supp on the MemeTracker data
set.

memory at one time which costs heavy in both memory and time.

Prediction Accuracy: The five algorithms are compared under different sup-

port thresholds (30, 50, 70 and 90) in the subgraph mining. The settings for

the time stamps are 3.61, 3.62, 3.63 and 3.64 * 105 seconds. We report the per-

formance of ISF, ISJF and three benchmarks on the MemeTracker data set in

Figs. 4.10 - 4.13 and on the synthetic data sets listed in Table 4.3. Fig. 4.9(i)

shows the proportion of short-pattern subgraph features (length < 3) and long-

pattern subgraph features (length ≥ 3) when the support is equal to 30. Fig. 4.9

(ii) shows the comparison of the long-pattern subgraphs. From these results, we

make the following observations.

1) The classification precision and F1 score increase with propagation time.

This is because more nodes and paths in the cascade graphs are available for

classification as time increases. Because the incremental cascade classifier selects
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Figure 4.13: Accuracy and variance comparisons w.r.t. time stamp on the Meme-
Tracker data set.
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top k features at each iteration and uses the dual problem to solve the high

dimensional problem, our method is more advantageous than the benchmark

methods.

2) The precision, F1 score, and accuracy show that OSF outperforms other

methods. This is because OSF always selects the top k columns from all the

features while ISF selects the top k of t ∗B � N features, where t is the number

of iterations, B is the number of selected columns, and N is the number of all

the used features.

3) In terms of prediction variance, OSF and ISF have lower variance error,

which means they are more stable than the benchmark methods.

4) From the four synthetic data sets in Table 4.3, when the time is around

300-500, ISJF is usually better than ISF, because there are more short-pattern

subgraphs and useful long-pattern subgraphs when the time is around 300-500.

In addition, the long patterns are useful for small world data than scale free net-

works, as any vertices in the small world be connected by at most 6 vertices [151].
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Figure 4.14: # of subgraph features w.r.t. support threshold on the DBLP data
set.

Experiments on the DBLP data set: The number of subgraph features with

respect to support threshold, the memory cost with respect to the support thresh-

old, the running time with respect to the support threshold, and the accuracy

comparison in each year bracket are reported in Figs. 4.14 - 4.16.

From the results on the DBLP data set, we make observations similar to

the MemeTracker data set. The classification accuracy increases with each year

bracket. This is because more nodes and paths in the co-authorship graph are
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Figure 4.15: Memory cost and running time w.r.t. the support threshold at
different year on the DBLP data set.
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Figure 4.16: Accuracy comparison under different Supp on the DBLP data set.
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Figure 4.17: The probability distribution of cascades. The dotted line is the linear
fitting result to the red curve, showing that the distribution fits the power-law.
The two dotted vertical lines indicate the threshold which discriminates outbreaks
from non-outbreak cascades. The sizes in [100, 300] are the gap cascades which
are not used in our experiments.

available for classification as time goes by. The proposed approach also shows

significant improvement with respect to the running time and memory cost, es-

pecially when the subgraphs’ dimensions are high.

4.5.4 Case Study on Cascading Outbreak Early Predic-

tion

We test the incremental subgraph features method on real-world social networks

to predict outbreak cascades. Cascade data represents a new type of graph data

that reflect information flows. Because there are no cascade descriptors (features)

directly available to reflect the direction of information flows, we resort to sub-

cascades as features. Existing works on cascade outbreak prediction are based

on node features and MSF can be used as the solution. Fig. 1.2 (Introduction

Chapter) samples several information cascades in a social network. Each cascade

can be denoted as a graph, and subcascades correspond to subgraphs. For ex-

ample, the cascade n1 → n2 → n3 → n4 is a propagation graph which contains a

simple subgraph of n1 → n2 → n3. If a cascade becomes an outbreak, we label

it as the positive class +1; otherwise, -1. The subgraph features and class labels
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Figure 4.18: Early prediction of information cascade outbreaks. We compare
the subcascade-based method (red line) with the node-based method (blue line).
The figure shows that the subcascade-based method provides better prediction
accuracy than the node-based method.

are used to build classifiers.

The problem of cascade outbreak prediction is defined as: Given a network

graph G, consider a cascade x = {xID; 〈V , T 〉} where V is a network of nodes,

T is a time-stamp, and a threshold parameter γ ∈ (0, 1), if |V | ≥ �γ|G|�, then x

is labeled as outbreak, i.e., y = +1; otherwise, y=-1.

Fig. 4.17 shows the log-log distribution of the cascade size and its node num-

ber. As shown in Fig. 4.17, the size of the MemeTracker cascade data set follows

the power-law with long-tails, which indicates that only a small proportion of

these cascade become outbreak cascades.

We select cascades having more than 300 nodes as outbreaks (877 positive

examples), and cascades having less than 100 nodes as non-outbreaks (27,515,721

negative examples). We randomly select outbreak and non-outbreak examples to

construct balanced training sets.

Fig. 4.18 shows that ISF outperforms MSF, which validates the superiority

of the proposed subcascade-based outbreak prediction method. This is mainly

because node features ignore the path (graph) information. For example, cascade

α → β and β → α will be predicted as the same class label because they share

the same node features.
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4.6 Conclusions

In this chapter, we study graph classification with incremental subgraph fea-

tures. Based on the observation that subgraph features follow the downward

closure property and long-pattern subgraph features are often buried underneath

short-pattern subgraph features, we propose a primal-dual incremental subgraph

feature selection algorithm (ISF ) for mining incremental subgraph features, and

a subgraph join feature selection algorithm (ISJF ) to exact long-pattern sub-

graphs. The proposed ISF and ISJF algorithms split feature set and load into

memory in a mini-batch manner, which is a significant reduction in memory and

running time. Experiments show the ISF algorithms can reduce both the run-

ning time and memory cost. In the meanwhile, it has the comparable accuracy

with offline algorithms. The incremental algorithm learns both primal and dual

feasible solutions, and the dual problem converts a high dimensional problem into

a big constraint problem with respect to dual vector. ISJF adds a new constraint

on the max-margin graph classifier and forces the classifier to select long pattern

subgraphs by joining short-pattern subgraph features. Compared with baseline

method OSF, the different is that OSF is an offline algorithm and loads all fea-

tures into memory at one time, while ISF does not have access to all features at a

time. Experiments on real-world cascade outbreak prediction in social networks

demonstrate the effectiveness of the proposed models.
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Chapter 5

Graph-shapelets Feature based

TVGLC

5.1 Introduction

In time-variant graph classification, frequent subgraph patterns are very difficult

to find because it is necessary to consider both the graph structure space and

the temporal correlations to find subgraph candidates for validation. The search

space becomes infinite and hence unlikely to yield stable structures. Secondly, the

distance between subgraph patterns may change irregularly over time, therefore

even though a relatively large threshold parameter could be set to mine frequent

subgraph patterns, the resulting set may be empty.

Although there are many works on graph stream classification [2, 90], these

works typically assume that graphs are independent of one another and flow in

a stream fashion. As a result, subgraph features are still applicable because the

structure of each graph is static and the static graph distribution assumption

and satisfactory empirical results have been reported [107]. However, in time-

variant graph classification, the entire graph data changes over time and therefore

obtaining stable subgraph features is unlikely. New types of graph patterns are

needed as features for time-variant graph classification.

In this chapter, we outline a new class of graph patterns, called graph-

shapelet patterns, that can be used as features for time-variant graph clas-
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Figure 5.1: An illustration of graph-shapelet patterns. Graph-shapelet patterns
are compact and discriminative graph transformation subsequences that describe
the graph transformation patterns shared in the same class of time-variant graphs,
e.g. two time-variant graphs (the two entire rows above) with the outbreak labels.
When we explore a univariate time series from a time-variant graph, we can see
that the location of a graph-shapelet pattern is consistent with that of a shapelet
in time series (detailed in Section 5.4.1). In this case, graph-shapelet patterns
can be used for time-variant graph prediction such as dynamic graph outbreak
prediction.

sification. Graph-shapelet patterns are inspired by the shapelets in [147], which

were proposed as discriminative features for time-variant data stream classifica-

tion. Shapelets are compact and discriminative subsequences that significantly

reduce the time and space required for time-variant data classification [81, 37].

However, all the existing time series issues fall into either univariate or multi-

variate problems. They ignore the structural information behind time sequences

that can be represented as graphs.

Graph-shapelet patterns can be taken as a graphical extension of the tradi-

tional shapelets used in time series classification. From the time series classi-

fication viewpoint, our study extends the univariate and multi-variant time se-

ries data classification into time-variant graph classification where at each time

stamp we obtain a graph instead of a single variable or a vector. As shown in
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5.1 Introduction

Fig. 5.1, graph-shapelet patterns are compact and discriminative graph trans-

formation subsequences extracted from a sequence of graph data that describes

graph transformation patterns. The graph-shapelet patterns look similar to the

frequent graph subsequences proposed in graph sequence mining [44], and they

are discriminative graph subsequences that can differentiate two classes of graph

sequences with high accuracy. In contrast, frequent graph subsequences do not

contain the class label information and thus are not helpful for time-variant graph

classification.

The design of graph-shapelet patterns requires a graph sequential pattern

mining to be grafted onto time series shapelet pattern mining. The main technical

challenges include:

• Challenge #1: From the time series shapelet pattern mining viewpoint,

existing shapelet pattern mining is only based on univariant/multi-variant

time series data. Extending existing shapelet pattern mining algorithms to

time-variant graphs is the first challenge, and requires downscaling a graph

sequence into a univariant/multi-variant time series by designing a graph

statistics, which can minimize information loss during the conversion of a

graph into a univaraint/multivariant time series.

• Challenge #2: From the graph sequence mining viewpoint, existing graph

sequence mining aims to find frequent transformation subsequences directly

from graph sequences by using graph edit similarity, which measures the

similarity between two neighboring graphs. However, such methods are

unscalable to the large sets of graph sequences which commonly occur in

dynamic graphs. Moreover, these graph sequence mining algorithms cannot

always guarantee that the frequent graph transformation subsequences are

discriminative transformation subsequences for graph classification. There-

fore, how to design a scalable algorithm that can extend existing graph

sequence mining algorithms to discover discriminative transformation sub-

sequences is the second challenge.

• Challenge #3: From the application viewpoint, time-variant graphs have

the potential to represent large and dynamic graph data. How to evaluate

81



Graph-shapelets Feature based TVGLC

the performance of the proposed method by collecting persuasive data sets

and designing proper benchmark methods is the third challenge.

In this chapter, we propose a new class of graph patterns, graph-shapelet

patterns, as features for time-variant graph classification [127]. Graph-shapelet

patterns are compact and discriminative graph transformation subsequences that

can be used to classify graph sequences. Technically, to solve these challenges,

we first convert a graph sequence into a time series using fast graph statistics.

Then, we extract shapelets from the converted time series by using a traditional

shapelets mining algorithms. Next, we locate the graph subsequences that match

the shapelets from the original graph sequences. Each graph subsequence corre-

sponds to a unique graph transformation subsequence based on our new graph

transformation rules. At the last step, we extract the most discriminative graph

transformation subsequences as graph-shapelets based on their graph edit simi-

larity. Experiments on both synthetic and real-world data demonstrate the per-

formance of the proposed algorithms.

The remainder of the chatper is organized as follows. Section 5.2 presents

the preliminaries with key definitions. An overall framework of graph-shapelet

based TVGLC is demonstrated in Section 5.3. Section 5.4 introduces the pro-

posed graph-shapelet pattern based classifier. The proposed algorithm is shown

in Section 5.5. Section 5.6 reports the experimental results, with discussion being

conducted in Section 5.7. We conclude this chapter in Section 5.8.

5.2 Problem Formulation and Preliminaries

5.2.1 Problem Definition

Definition 4. (Graph) For a time-variant graph gi, each graph g
(j)
i is represented

as g
(j)
i = (V, E), where V = {v1, · · · , vz} is a set of vertices, E = {(v, v′)|(v, v′) ∈

V× V} is a set of edges. V(g
(j)
i ), E(g

(j)
i ) are sets of nodes and edges of g

(j)
i .

Definition 5. (Time-Variant Graph) A time-variant graph (i.e., graph sequence)

is represented by gi = 〈g(1)i · · · g(j)i · · · g(m)
i 〉, where the superscript represents the
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Figure 5.2: A toy example of graph-shapelet pattern mining to explain the def-
initions of related operations. We first explore univariate time series from a set
of time-variant graphs (detailed in Section 5.4.1), where shapelets are discovered
using shapelet pattern mining algorithms. The graph-shapelet patterns (discrim-
inative graph transformation sequences) are then relocated by calculating the
graph edit similarity (as in Definition 8) between shapelet patterns which match
a set of graph subsequences. To make the above illustration clear, we use this
example through Examples 1 ∼ 4.

temporal order of the graph (e.g., g
(1)
i ) in the sequence, and each time-variant gi

is assigned a label Li.

Definition 6. (Sub-Time-Variant Graph) For a time-variant graph (i.e., graph

sequence) gi = 〈g(1)i · · · g(m)
i 〉, a sub-time-variant graph g′i = 〈g(k)i · · · g(m

′)
i 〉 is a

fragment of a time-variant graph, where 1 ≤ k ≤ m′ ≤ m.

Given a set of time-variant graphs G = {g1, · · · , gn}, time-variant graph clas-

sification aims to learn classification models from G to accurately predict pre-

viously unseen time-variant graphs with maximum accuracy. For simplicity, we

only consider binary time-variant graph classification tasks.

5.2.2 Preliminaries

In this subsection, we formally define notations and introduce time series data

and graph transformation subsequences. We state the distance between the time-
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variant graphs and the two approaches to convert the time-variant graphs into

graph transformation sequences. Fig. 5.2 shows a toy example of the given def-

initions and the proposed approaches. The main operations used in the graph

dynamic changes are defined in Table 5.1.

In a time-variant graph gi, we assume that nodes v and v′ are exclusive to

each other in g
(j)
i . We define a set of unique IDs ID(V) and pairs of unique IDs

ID(E) as:

ID(V) = {id(v)|v ∈ ∪
g
(j)
i ∈giV(g

(j)
i )},

ID(E) = {(id(v), id(v′))|(v, v′) ∈ ∪
g
(j)
i ∈giE(g

(j)
i )}.

Table 5.1: Operation Definitions

v+
(j,k)
u

¬∃v ∈ V(g
(j)
i ) s.t. id(v) = u and

∃v′ ∈ V(g
(j+1)
i ) s.t. id(v′) = u}

v−(j,k)
u

∃v ∈ V(gki ) s.t. id(v) = u,

¬∃(v1, v2) ∈ E(g
(k)
i ) s.t. (id(v1) = u) ∨ (id(v2) = u)

and ¬∃v′ ∈ V(gk+1
i ) s.t. id(v′) = u}

e+
(j,k)
(u1,u2)

¬∃(v1, v2) ∈ E(g
(j)
i ), ∃v1 ∈ V(g

(j)
i ),

∃v2 ∈ V(g
(j)
i ) s.t.(id(v1) = u1) ∧ (id(v2) = u2) and

∃(v′1, v′2) ∈ E(g
(j+1)
i )s.t.(id(v′1 = u1) ∧ (id(v′2 = u2)

e−(j,k)
(u1,u2)

¬∃(v1, v2) ∈ E(g
(j)
i ), s.t.(id(v1) = u1) ∧ (id(v2) = u2)

and ¬∃(v′1, v′2) ∈ E(g
(j+1)
i ), ∃v′1 ∈ V(gj+1

i ),

∃v′2 ∈ V(g
(j+1)
i ) s.t.(id(v′1 = u1) ∧ (id(v′2 = u2)

∗: k is the index of operation in a transformation sequence.

A transformation from g
(k)
i to g

(k+1)
i is represented by opkgi , and opkgi = 〈op(k,1)gi ,

· · · , op(k,lk)gi 〉 with lk denoting the length of opkgi , is a series of transformations such

as insertions and deletions of nodes and edges between neighboring graphs, e.g.,

v+, e+, e−, v−.

Definition 7. (Graph Transformation Sequence and Graph Transformation Sub-

sequence) Given a time-variant graph gi = 〈g(1)i · · · g(m)
i 〉, the corresponding graph

transformation sequence can be denoted as ts(gi) = 〈op1gi · · · op(m−1)
gi 〉, with ts(g′i) =
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Figure 5.3: A concept view of the proposed time-variant graph classification framework. We first explore univariate
time series from time-variant graphs via a sample kernel method in each graph (step 1©, Section 5.4.1). Then, we
find shapelet patterns from the time series by using shapelet pattern mining (step 2©, Section 5.4.2). Next, we
locate the sub-time-variant graphs that match the shapelet patterns from the original time-variant graphs (step 3©,
Section 5.4.3). Note that each sub-time-variant graph corresponds to a unique graph transformation subsequence
by the proposed time-variant graph representation approach. At the last step, we calculate the graph edit similarity
between graph transformation subsequences and find the most discriminative transformation subsequences as graph-
shapelet patterns (step 4©, 5.5.1). Step 5© shows the process of time-variant graph prediction.
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〈op1g′i · · · op
(m′−1)

g′i
〉 denoting a subsequence of ts(gi). ts(g′i) ⊆ ts(gi),m

′ ≤ m, iff

∀opk′g′i ∈ ts(g′i), 1 ≤ k′ ≤ m′ − 1, ∃opkgi ∈ ts(gi), 1 ≤ k ≤ m− 1; opk
′

g′i
= opkgi holds.

We can use time series subsequences to locate sub-time-variant graphs which

are potential graph-shapelets. To predict a new testing time-variant graph, we

can also convert it to a transformation sequence to compare the distances of time-

variant graphs by calculating the distance of their corresponding transformation

sequences.

In Fig. 5.2, for a time-variant graph gi, when its individual graph g
(1)
i changes

to g
(2)
i , the corresponding transformation sequence is op1gi = 〈e −(1,1)

(1,2) v−(1,2)
1 〉,

where superscripts (1, 1) and (1, 2) represent the first and second graph operations

changing from graph g
(1)
i to g

(2)
i . e− and v− represent the removal of an edge

and a node. The order of the operations subscripts (1, 2) and 1 represent that

we remove an edge from the node of ID 1 to ID 2, and remove a node of ID 1.

Similarly, op2gi = 〈v +(2,1)
5 e+

(2,2)
(2,5) e+

(2,3)
(3,5)〉.

Example 1: A sub-time-variant graph 〈g(1)i g
(2)
i g

(3)
i 〉 generates a graph trans-

formation sequence 〈e−(1,1)
(1,2) v−(1,2)

1 v+
(2,1)
5 e+

(2,2)
(2,5) e+

(2,3)
(3,5)〉 as shown in Fig. 5.2, so

we can also generate its transformation subsequence 〈v−(1,2)
1 e+

(2,2)
(2,5) e+

(2,3)
(3,5)〉 with

e+
(2,3)
(3,5) denoting the edge adding operation between nodes 3 and 5.

Definition 8. (Edit Similarity) For two graph transformation sequences ts(gi)

and ts(gj), we use Sim(ts(gi), ts(gj)) to denote the Edit Similarity for measur-

ing their similarity. ts(gi) = 〈op1gi · · · op(m−1)
gi 〉, 1 ≤ k ≤ m − 1, with opkgi =

〈op(k,1)gi · · · op(k,lk)gi 〉 with lk denoting the length of opkgi.

Sim(ts(gi), ts(gj)) =
∑
k,v

lk∑
p=1

lv∑
q=1

�
(k,p),(v,q)
(i,j)

where �
(k,p),(v,q)
(i,j) = I(op

(k,p)
gi = op

(v,q)
gj ), I(·) is 1 if the condition inside is true;

otherwise, 0.

Example 2: In Fig. 5.2, the graph transformation sequence for the graph-

shapelets of class A is 〈v +
(2,1)
5 e +

(2,2)
(2,5) e+

(2,3)
(3,5)〉, denoted by ts(gi). The graph

transformation sequence of the corresponding sub-time-variant graph in the test-
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ing time-variant graph is 〈v +
(2,1)
5 e +

(2,2)
(1,5) e +

(2,3)
(2,5) e+

(2,4)
(2,8)〉, denoted by ts(gt),

Sim(ts(gi), ts(gt)) = 2 because of the same sequential operations.

When comparing two operations, we ignore their superscripts. For example,

e+
(2,3)
(2,5) = e+

(2,2)
(2,5). We use sliding windows to extract time series subsequences .

Definition 9. (Graph-Shapelet Pattern) Given a time-variant graph dataset G

which consists of two classes, A and B, graph-shapelet pattern is a special graph

transformation subsequence with maximum edit similarity to the time-variant

graphs in different class.

When converting time-variant graphs to transformation sequences, we use the

following strategies to represent the time-variant graphs and make the transfor-

mation sequences between two successive graphs unique.

Strategy 1: (The Admissibility). The transformation strategy between two

successive graphs g(j), g(i) is as follows,

Table 5.2: Symbols and notations

Symbols Descriptions

T time series

ts transformation sequence

op transformation operation

lk the length of opkgi

m,m′ the length of time-variant graph gi
and sub-time-variant graph g′i

A,B class label

V,E node and edge sets

node insertion

v+
(j,k)
u

insert a node of ID u into

g
(j)
i which leads to g

(j+1)
i

node deletion

v−(j,k)
u

delete an isolated node of ID u in

g
(j)
i which leads to g

(j+1)
i

edge insertion

e+
(j,k)
(u1,u2)

insert an edge between two nodes

u1 and u2 into g
(j)
i and obtain g

(j+1)
i

edge deletion

e−(j,k)
u

delete an edge between two nodes

u1 and u2 in g
(j)
i to obtain g

(j+1)
i

∗: k is the index of operation in a transformation sequence.
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v+(j,k)
u1

≺ e+
(j,k′)
(u1,u2)

, e+
(j,k)
(u1,u2)

≺ e−(j,k′)
(u1,u2)

, e−(j,k)
(u1,u2)

≺ v−(j,k′)
u1

where k < k′, and the definitions of v+
(j,k)
u , v−(j,k)

u , e+
(j,k)
(u1,u2)

, e−(j,k)
(u1,u2)

are illus-

trated in Table 5.1.

In terms of the same operation with different IDs, we use a lexicographic order

to generate a unique sequence, e.g., v+
(1,1)
1 ≺ v+

(1,2)
2 .

Strategy 2: (The Representation). Any time-variant graph can be represented

by the four operations in Table 5.1 with a given initial interstate g
(1)
i [44].

Table 5.2 summarizes major notations used in the chapter.

5.3 Overall Framework of Graph-shapelet based

TVG Learning

Fig. 5.3 shows the framework of our method which first explore a univariate time

series from each time-variant graph via a simple kernel method (Section 5.4.1).

We then calculate shapelets from the time series using shapelets mining (Sec-

tion 5.4.2). After that, sub-time-variant graphs that match the shapelets from

the original time-variant graphs are located. Each sub-time-variant graph cor-

responds to a unique graph transformation subsequence by applying the Admis-

sibility strategy and the Representation strategy. In the last step, we calculate

the graph edit similarity between graph transformation subsequences and find

the most discriminative transformation subsequences as graph-shapelets (Sec-

tion 5.4.3).

Although many methods exist to find shapelet for time series classification,

it is very challenging to restore sub-time-variant graph from the time series

shapelets. To address the challenge, we record the locations of time series seg-

ments that have the minimum Euclidean distance, while introducing a transfor-

mation of time-variant graphs to time series.
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Algorithm 5 SubTVG: Generate sub-time-variant graph candidates

Require:
G: A set of time-variant graphs;
l: Length of graph-shapelet patterns;

Ensure:
G′: Graph subsequence candidates;

1: D ← Apply G to obtain corresponding time series D;
2: cSet← ∅; // Time series candidates with length l

//Generate time series candidate with length l
3: for t in D do
4: Sl

t ← Extract time series subsequence with length l from t
5: cSet← cSet

⋃
Sl
t;

6: end for
7: Shapelets ← Apply cSet to D based on shapelet mining[147].
8: Record the Shapelets locations in each time series
9: for each gi in G do

10: g′i ← Apply recoded Shaplelet location to the related sub-time-variant
graphs in gi;

11: G′ = G′⋃ g′i
12: end for
13: return G′

5.4 Graph-shapelet Feature Exploration

5.4.1 Graph Sequences to Time Series

We first design a kernel method to explore time-series information ti = {t(1)i , · · ·
, t

(m)
i } from a time-variant graph gi, K

(j)
ti = Nn(g

(j)
i ) + Ne(g

(j)
i ), where Nn(g

(j)
i )

and Ne(g
(j)
i ) denotes the statistical information of the nodes and edges in an

individual graph g
(j)
i at time j with 1 ≤ j ≤ m. After that, efficient shapelet

pattern mining algorithms can be applied to quickly locate graph changes in

time-variant graphs. The reason why we use the graph statistic method is that

we can find the location of graph-shapelets and return to graphs after discovering

graph-shapelets. By using this method, we can speed up the search time and save

the graph information since we only use a segment of a time-variant graph.

Example 3: In Fig. 5.2, the number of nodes and edges in graphs g
(1)
i , g

(2)
i , · · · , g(m)

i

are 7, 5, · · · , 6 respectively. Thus, we can build a time series {7, 5, · · · , 6}, as
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shown in Fig. 5.2.

5.4.2 Graph-Shapelet Pattern Candidates

All sub-time-variant graphs are potential graph-shapelet candidates. The max-

imum similarity of a candidate to all training sequences can be used for graph

prediction by ranking the similarity of a candidate w.r.t. a testing time-variant

graph. Therefore, in order to find graph-shapelet patterns, the algorithm needs

to generate potential sub-time-variant graphs as candidates and then find the

one, which has maximum similarity w.r.t. other subsequences from the candidate

sub-time-variant graphs, as graph-shapelet patterns.

Algorithm 5 shows the detailed procedures for finding sub-time-variant graph

candidates from time-variant graphs. Given a time-variant graph database G

along with user-defined graph-shapelet length l. Line 1 converts time-variant

graphs G to time series D based on the number of nodes and edges in each graph.

After that, the algorithm generates all candidates within a sliding window (lines

3-6). For each shapelet candidate, the algorithm calculates the Euclidean distance

between the candidate and other time series and records the locations with min-

imum distance in each time series (lines 7-8). Meanwhile, the algorithm updates

the distance threshold and sub-time-variant graph locations, if any candidate has

a smaller distance than the current distance threshold. Finally, the algorithm

returns the sub-time-variant graphs and labels in each time-variant graph based

on the sub-time-variant graph locations (lines 9-12).

5.4.3 Finding Graph-Shapelet Patterns

Graph-shapelet patterns can be found from the generated sub-time-variant graph

candidates. To calculate graph-shapelet patterns from sub-time-variant graphs,

time-variant graphs should be converted to transformation sequences so that we

can use edit similarity as the measure. The transformation sequences between two

graphs in a given time-variant graph can be represented by a series of operations,

e.g., node and edge insertions and deletions based on Strategy 1 and Strategy 2.

According to the time-variant graph representation, an algorithm to compile G =
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Algorithm 6 GraphSequenceCompiler

Require:
G′: time-variant graph candidates;

Ensure:
ts: graph transformation sequences;

1: ts← ∅;
2: for each gi ∈ G′ do
3: for each g

(j)
i ∈ gi do

4: Represent g
(j)
i to Vv+,Vv−, Ee+, Ee− follow Strategies 1, 2 ;

5: k ← 1
6: for each v in Vv+ do

7: ts← ts
⋃

v+
(j,k++)
id(v) ; // Get the insertion nodes set

8: end for
9: for each (v, v′) in Ee+ do

10: ts← ts
⋃

e+
(j,k++)
(id(v),id(v′)); // Get the insertion edges set

11: end for
12: for each (v, v′) in Ee− do

13: ts← ts
⋃

e−(j,k++)
(id(v),id(v′)); // Get the deletion edges set

14: end for
15: for each v in Vv− do

16: ts← ts
⋃

v−(j,k++)
id(v) ; // Get the deletion nodes set

17: end for
18: end for
19: end for
20: return ts

{gi|gi = 〈g(1)i · · · g(m)
i } to a set of transformation sequences ts(G) = {ts(gi)|gi ∈ G}

is summarized in Algorithm 6.

The procedure basically follows Strategies 1, 2 to convert graph sequences

(line 4). Then, the node and edge insertions are appended to the transformation

sequences, as shown on lines 6-8 and 9-11 respectively. After that, node and edge

deletions are carried out on lines 12-14 and 15-17 respectively, with the changes

appended to the transformation sequences.

Example 4: In the graph sequence 〈g(2)i g
(3)
i 〉 given in Fig. 5.2, the insertion

of node ID 5 and edge insertions (2, 5) and (3, 5) from g
(2)
i to g

(3)
i , result in the

transformation sequences, i.e., v+
(2,1)
5 , e+

(2,2)
(2,5), e+

(2,3)
(3,5).

91



Graph-shapelets Feature based TVGLC

Algorithm 7 Graph-shapelet Pattern Classifier

Require:
G: a set of n time-variant graphs;
l: Length of the graph-shapelets;

Ensure:
Lt: The label of a test time-variant graph gt;
// Training Phase:

1: graph shapelt← ∅;
2: candidates← SubTVG(G, l); // Algorithm 5
3: max sim← 0;
4: ts← GraphSequenceCompiler(candidates); // Algorithm 6
5: for each tsi ∈ ts do
6: di ←

∑
j Sim(tsi, tsj), tsj ∈ ts(i �= j);

7: if di > max sim then
8: max sim← di;
9: graph shapelets← tsi;
10: end if
11: end for

// Test Phase:
12: ts(gt)← GraphSequenceCompiler(gt); // Algorithm 6
13: for each graph shapelet in graph shapelets do
14: calculate Sim(graph shapelet, gt);
15: end for
16: Lt is the label with maximum similarity;
17: return Lt

5.5 Graph-shapelet based TVG Classification Al-

gorithm

5.5.1 Classification with Graph-Shapelet Patterns

Fig. 5.3 demonstrates an example of finding two graph-shapelet patterns for a

binary classification problem, and the algorithm details are summarized in Al-

gorithm 7. First, the algorithm calls SubTVG() to generate all graph-shapelet

pattern candidates (line 2) and calls function GraphSequenceCompiler() to gen-

erate graph transformation sequence for each generated sub-time-variant graph

candidates (line 4). Then, it calculates distance between each generated sub-time-
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variant graph and all time-variant graphs in each class (line 6). The sub-time-

variant graph with maximum similarity are selected as graph-shapelet pattern,

and its transformation sequences are used as classification features (lines 7-10).

Whenever a test time-variant graph arrives, the algorithm converts it to trans-

formation sequences and computes the distance between test transformation se-

quences and features selected for different classes, by using Edit Similarity (Def-

inition 5). The output label of the test graph is the same as the label of the

graph-shapelet pattern which has the maximum similarity with respect to the

test time-variant graphs (lines 12-17).

5.5.2 Time Complexity Analysis

The proposed graph-shapelet pattern based time-variant graph classification al-

gorithm includes (1) converting time-variant graphs to graph transformation se-

quences, and (2) finding frequent transformation subsequences as graph-shapelet

patterns for classification. The entire graph classification time complexity is

O(mrl ∗n), while that of graph-shapelet pattern mining is O(ml ∗n), where m is

the length of the query time-variant graphs, l is the length of the graph-shapelet

patterns, r is the average length of transformation sequences between two graphs,

and n is the size of time-variant graph database.

5.6 Experiments

5.6.1 Data sets

5.6.1.1 Synthetic Time-Variant Graph Data

In our experiments, we first create synthetic information propagation graph data,

so we can validate algorithm performance on data with known ground-truth prop-

erties. We use a well-known model, namely Small World [131], to generate syn-

thetic message propagation graphs for testing and comparisons. Small world is

defined as a graph in which the typical distance ζ between two randomly chosen

nodes (the number of steps required) grows proportionally to the logarithm of the

number of nodes N in the graph, that is ζ ∝ logN . We use parameter α to denote
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that each node is connected to α nearest neighbors in topology, and p denotes the

rewiring probability. To better simulate real-world information diffusion, we gen-

erate synthetic graphs under a power-law degree distribution exponent α = 1.5,

which corresponds to the power-law degree exponent of the weibo graph. Syn-

thetic information propagation graphs (i.e., time-variant graphs) are generated

using the following methods on the simulated graphs. First, we randomly select a

root node r with a non-zero out-degree. The node r is then added to the initially

empty list of the infected nodes I and all outgoing edges (r, s) are added to the

initially empty FIFO queue of the infected-susceptible node pairs S. We choose

an edge from the candidate set each time and calculate the time delay for the

edge until the time delay exceeds a given time window (we use [0,1000] as the

time window). We separate each information propagation with time delay 100,

200, 300, 400, 500, 600 and 700, which means the average length is 7. The data

are generated by repeating the above steps to generate 200 graph sequences. If

the number of nodes in a graph sequence is more than 100, we label it as outbreak

class; otherwise, non-outbreak.

5.6.1.2 Real-World Time-Variant Graph Data

We evaluate the performance of the proposed method on two real-world data

sets, including phone call graph obtained from MIT [32] and the information

propagation graph data crawled from Sina Weibo.

The phone call time-variant graph contains dynamics of 75 students/faculty

members in the MIT Media Laboratory, and 25 incoming students at the MIT

Sloan business school adjacent to the Media Laboratory. The experiment was

designed to study community dynamics (classified as personal behavior or in-

terpersonal interactions), by tracking a sufficient amount of people with their

personal mobile phones. In our experiments, a unique ID is assigned to each

person participating the communication and an edge links two persons if they

communicate via phone call in a day. By doing so, we can obtain a daily graph

g(j). According to the daily node degree (threshold is set to 5), each person can

be either hub person or non-hub person. The person having a high degree is

considered to be a hub person in the community. We obtain a set of weekly time-
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variant graph data, i.e., G, and the total numbers of weeks (number of sequences)

are 40. We randomly sampled |V | = (1 ∼ 20) persons, and assign label equals 1

if the weekly phone call contains a hub person (i.e., hub person usually triggers

interpersonal interactions), otherwise 0. The average length of each sequence is

7.

The weibo time-variant graph data set is obtained from a research community

in Weibo. First, we crawl 200 weibo propagations from a research community

within one month. We sample 50 users and assign each of them a node ID (varying

from 1 to 50). The propagation of the information from users follows a temporal

order. At each time point, all nodes reached by the weibo form a graph. For a

new weibo, its forwarding re-forwarding propagation graphs collected in a time

period form a time-variant graph (i.e. a time-variant graph), and our learning

goal is to use time-variant graphs to predict whether the time-variant graph for a

new weibo will outbreak or not. In our experiments, we obtain 200 time-variant

graphs from propagation of 200 weibo at different time periods, and the average

length of each sequence is 15. We define a time-variant graph as an outbreak, if

the total number of nodes is more than 100.

5.6.2 Experimental Settings

5.6.2.1 Baseline Approaches

Because no existing approaches are available for time-variant graph classification,

we compare the proposed graph-shapelet patterns based algorithm (gShapelet for

short) with the following benchmark methods in terms of prediction accuracy and

running time to evaluate the classification performance.

• Frequent subsequences based method. This type of methods convert

all training time-variant graphs to graph transformation sequences and dis-

cover frequent subsequences as features for classification. This method re-

sembles to the work in [44], and the difference is that [44] does not consider

classification problems.

• Frequent subgraph based method. Because we cannot obtain stable

subgraphs from time-variant graphs, for frequent subgraphs based method,
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we mine frequent subgraphs, e.g., gSpan [142], from the last graph in a

time-variant graph as features.

• gShapelet n. When transforming a time-variant graph into a univariate

time series, gShapelet n counts the number of nodes as statistical magni-

tude.

• gShapelet e. In order to transform a time-variant graph into a univariate

time series, gShapelet e counts the number of edges as statistical magnitude.

5.6.2.2 Evaluation Measures

We randomly select 60% time-variant graphs for training, with remaining time-

variant graphs being used for testing. When using frequent subsequences or

subgraphs methods, we need to set the support threshold σ. Given a set of data

G = {gi|gi = 〈g(1)i · · · g(mi)
i 〉}, a support value σ of a transformation subsequence

and subgraph in graph sequence g′ are defined as

σ =
|{gi|gi ∈ G, ts(g′) � ts(gi)}|

|G| for subsequences,

σ =
|{gi|gi ∈ G, g′ � gi}|

|G| for subgraphs.

5.6.3 Experimental Results

The four algorithms are compared under different observation length of the time-

variant graphs, i.e., 20%, 40%, 60%, 80% and 100% in each time-variant graphs.

In Fig. 5.4 and Fig. 5.5, we report the algorithm performance in terms of classi-

fication accuracy and running times, respectively.

5.6.3.1 Effectiveness Results

The results in Fig. 5.4 show that the classification accuracy increases with respect

to the observation times, and the results tend to be stable as the time elapsing.

This is mainly because more nodes are observed which leads to more accurate

shapelet or subsequence or subgraph patterns. Once the percent of participant
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Figure 5.4: Accuracy comparisons with respect to different time stages on both
synthetic and real-world time-variant graph data sets.

length reaches 60%, the algorithms likely find the best graph-shapelet patterns,

so the accuracy tends to become stable. These results imply that graph-shapelet

patterns can be used for early prediction.

As we can observe from Figure 5.4, the graph-shapelet based approaches have

comparable accuracy with subsequence-based method while perform much bet-

ter than subgraph-based method. This is because frequent subsequences based

method mine features from the entire time-variant graphs. This kind of approach

can ensure the classification accuracy but requires more running time. While

the graph-shapelet based methods first find discriminative segments from time-

variant graphs, and then find features from the segments instead of the whole

time-variant graphs. This way is a significant reduction in running time. Con-

97



Graph-shapelets Feature based TVGLC

20 40 60 80 100
0

200

400

600

800

1000

Percents of observed length (%)

R
un

ni
ng

 ti
m

e 
(S

ec
on

ds
) gShapelet_n

Subsequence
Subgraph
gShapelet_e
gShapelet

(a) Synthetic time-variant graph

20 40 60 80 100
0

200

400

600

800

1000

Percents of observed length (%)

R
un

ni
ng

 ti
m

e 
(S

ec
on

ds
) gShapelet_n

Subsequence
Subgraph
gShapelet_e
gShapelet

(b) Phone call time-variant graph

20 40 60 80 100
0

500

1000

1500

2000

Percents of observed length (%)

R
un

ni
ng

 ti
m

e 
(S

ec
on

ds
) gShapelet_n

Subsequence
Subgraph
gShapelet_e
gShapelet

(c) Weibo time-variant graph

Figure 5.5: The average CPU time with respect to different time stages on both
synthetic and real-world time-variant graph data sets.

sequently, the same as on-line and off-line methods, we have to trade off the

accuracy with running time performance, especially on large scale data sets. Our

aim is to make the proposed methods be more efficiency under comparable accu-

racy. The reason why the proposed graph-shapelet methods outperform subgraph

based method is that subgraph based method does not consider the temporal cor-

relations during subgraph mining, and the distance between subgraph patterns

may change irregularly over time.

5.6.3.2 Efficiency Results

Fig. 5.5 shows the running time of the methods, where subgraph based method

has the lowest running time while subsequence based method is the most time-
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Figure 5.6: Comparisons with varying graph-shapelet length on both synthetic
and real-world time-variant graph data sets.

consuming. The reason is that subsequence base method needs search the entire

time-variant graphs to find discriminative substructures whereas subgraph based

method only mine frequent subgraphs from single graph. There is no significantly

difference among gShapelet, gShapelet n and gShapelet e, because the only dif-

ference of these three methods is when transforming a time-variant graph into a

univariate time series.

The classification accuracy and running time results show that the graph-

shapelet based methods have higher accuracy than subgraph based method, and

lower running time than subsequence based method. This is because graph-

shapelet pattern based methods consider transformation relationships between

changing graphs, and graph-shapelet patterns can learn discriminative structures
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of data belonging to different classes. In addition, graph-shapelet patterns are

usually much shorter than the original time-variant graph, which avoid compar-

isons on the entire data set and result in more efficient running time performance.

5.6.3.3 Analysis of gShapelet Algorithm

Fig. 5.6 shows the accuracy with respect to graph-shapelet pattern length when

using nodes and edges as the graph statistics (gShapelet), nodes (gShapelet n),

and edges (gShapelet e) respectively. From Fig. 5.6, we can observe the highest

classification accuracy is achieved when len is 6, 4, 6 for the Synthetic, MIT, and

Weibo time-variant graph data, respectively.

Fig. 5.7 shows a simple yet interesting example extracted from the MIT phone

call time-variant graph data. In the first sequence, the “normal” persons 1 and 2

connect with a hub person 2, which leads to an increase number of participants.

On the other hand, communications generated by “normal” persons have a rel-

atively stable number of users. This implies that the first sequence is likely to

contain interesting information, and the potential graph-shapelet patterns can be

explored from the corresponding graph transformation sequence.

Figure 5.7: Two graph transformation sequences extracted from the MIT phone
call time-variant graph data. The symbol “N” represents normal person and “H”
represents hub person. The first graph sequence shows that a weekly phone call
time-variant graph data contain a hub person, while the second graph sequence
shows that all the participants are normal persons.
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5.7 Discussions

Intuitively, since the outbreak of an information propagation graph is justified

by the number of nodes influenced by the propagation, alert readers may wonder

why do we transfer time variant-graphs as transformation sequence and further

identify graph-shapelet patterns for classification, or why don’t we directly use

the change of number of nodes as features for classification? In short, our hypoth-

esis is that outbreak in information propagation is driven by some special graph

structure, instead of being simply determined by nodes with a large number of de-

grees. Indeed, an information propagation may not be outbreak even if it reaches

some nodes with very high degrees (i.e. popular users). This is consistent with

existing researches [67, 153, 83], which observed that information propagation is

not mainly spread by nodes with a large number of degrees by rather spread by

nodes with a medium number of degrees.

To further validate our hypothesis, we use a real-world case study from weibo

time-variant graph data to demonstrate the discovered graph-shapelet patterns.

Fig. 5.8 is an example of outbreak information propagation, which was crawled

every half an hour. The weibo time-variant graph information propagation is

about a news message propagated in a University community, regarding an in-

teresting documentary of the institute. During different propagation stages, the

propagation of the news forms variant graphs. Therefore, one message diffusion in

different propagation stage constitutes one time-variant graph, and the diffusion

of messages in the community forms time-variant graph dataset. The message

diffusion includes outbreak or non-outbreak time-variant graph, and our aim is to

classify each information propagation graph record into correct classes (outbreak

vs. non-outbreak). A naive method to predict time-variant graph outbreak is to

count the node volumes, however, the time-variant graph is not only influenced

by the nodes but by structures connected the nodes, such as who is sending the

message, who resends the message, when the message was sent or resent etc.,

which is exactly captured by time-variant graphs. The general graph classifica-

tion is to use each graph at a certain period separately to discover features. In

reality, a diffusion graph will influence following graphs. For time-variant graph

classification, we consider variation between different graphs. Because a graph-
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shapelet pattern denotes the transformation of nodes and edges between different

graphs, it can inherently capture the nodes information, structure information,

and temporal variation graphs, for time-variant graph classification.

Fig. 5.8 shows an example of the mined graph-shapelet patterns. This graph-

shapelet pattern example represents the outbreak class, which demonstrate that a

time-variant graph tends to be outbreak if there is a sequence of special node and

edge insertions, such as node PKU and edge (PKU news, PKU) which represents

Peiking Universality.

5.8 Conclusion

In this chapter, we formulated a new time-variant graph classification task and

proposed to use graph-shapelet patterns as features to represent time-variant

graphs for learning and classification. We argued that existing graph classifica-

tion methods are all based on static settings, where training graphs are assumed to

be independent of each other and the structure of each graph remains unchanged.

In reality, many applications involve data with dynamic changing structures. Ac-

cordingly, a time-variant graph can be used to represent a sequence of graphs

and capture dynamic evolution of the underlying object. The inherent structural

dependency and temporal correlations of the time-variant graphs raise significant

challenges, and we advocated a graph-shapelet pattern concept to detect signif-

icant changes in the time-variant graph as features. By using graph-shapelet

patterns to convert a time-variant graph as a tokenized sequence, we can effec-

tively calculate the distance between two time-variant graphs for classification.

Experiments on synthetic and real-world data demonstrated that our method is

much more accurate than traditional subgraph feature based approachers.

The key innovation of the chapter, compared to existing work in the area is

threefold: (1) a new time-variant graph learning task to model dynamic changes

in structure data; (2) a unique graph-shapelet pattern as feature to capture struc-

tural and temporal dependency of the graphs; and (3) a fast time-variant graph

classification model using structure features and edit similarity.
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Chapter 6

Application of Online Diffusion

Provenance Detection from TVG

6.1 Introduction

In recent years, information diffusion in large networks has attracted much at-

tention. The spread of malicious information such as viruses, spams and rumors

has made various networks vulnerable to privacy attacks, viral advertising, etc.

To stop the propagation of malicious information, researchers recently proposed

several models to identify the diffusion provenances in large networks. Online

diffusion provenance discovery is also a significant presence on social networks in

business. No matter how small, medium or large a business is, a brands health

and reputation is often defined by the information diffused in social media. While

fake reviews or deceptive messages, spread by malevolent people, in social media

are inevitable, they may cause damage to brands or corporate reputation. A

recent study (i.e., Spam Trends in Today’s Business World [106]) reported that

the productivity cost of malicious information to European companies was an

estimated US$2.8 billion, while US-based companies reported a loss of US$20

billion. According to The Washington Post 1, on Tuesday, April 24, 2013, a sin-

gle hoax message sent via Twitter erased $200 billion from the US stock market

in 2 minutes. In cases like these, locating and severing the provenances of the

1http://rt.com/business/tweet-hackers-wall-street-us-326/
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Tweets per day: Malaysian Flight 370 has been found

March 22nd — April 21st

Figure 6.1: The rumor “Malaysian Flight 370 has been found” propagated on
Twitter from March 22 to April 21, 2014. The x axis is the time and the y axis
is the total number of tweets including the rumor.

diffusion in a timely manner is critical.

A false rumor (i.e., libelous statement) about the financial performance of a

firm may be spread by market manipulators to influence the price of the firm

stock, resulting in fines from regulators or data protection enforcement agencies.

While legal recourse exists for victims of libel, law enforcement agencies still

need to identify the original source of the rumor and those who spread it. If

the perpetrators are anonymous, tracing the IP address and identities of the

individual profiles carrying or linking to the opinion piece becomes significantly

more difficult and time-consuming.

Existing diffusion provenance identification models can be roughly categorized

into two classes: the snapshot-based provenance identification [96, 75] and the

detector-based identification [77, 93, 53]. The snapshot-based methods are under

the assumption that a snapshot of the entire network can be obtained and the

provenances can be estimated under stochastic propagation models such as the

SI [109] and SIR [157] models. Although these methods have shown promising

results in experiments, fetching a snapshot of the entire network is very expensive,

if not impossible. The detector-based methods assume that only a small subset

of nodes in a network can be monitored, and the provenances can be inferred

from the observations (samples) from these detectors. This group of methods has

recently attracted increasing attention due to its potential usage in real-world

applications.

However, to our best knowledge, most existing work on the diffusion prove-
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nance locating problem falls into the category of offline identification, where the

data are assumed to be static and available all the time. In fact, for time-

critical security monitoring applications, it is necessary to unveil the diffusion

provenances as soon as an observation arrives. This way, it is important to de-

tect diffusion provenances as early as possible to enable early warning, real-time

awareness, and real-time response of malicious information spreading. For ex-

ample, Fig. 6.1 shows the propagation of the rumor of “Malaysian Flight 370

has been found” on Twitter. The rumor was retweeted more than 3, 500 times

in a single day (3/24). It can be seen that the rumor can be propagated to a

large population in a very short time. Hence, it is imperative to detect a rumor

provenance promptly.

Motivated by the urgent demand of real-time and continuous diffusion prove-

nance detection in networks, we propose to use regression learning as the basic

detection model. The regression learning is favorable for real-time applications

due to the freely available prior distribution. Fig. 6.2 shows a network propa-

gation with only one provenance S0. We extract a propagation path with seven

nodes {S0, · · · , S6}. Assume that we have the privilege to observe nodes S2 and

S4 (detectors). The two nodes are activated at time points t∗ + τ and t∗ + 2τ

respectively. The goal is to use the least square regression to minimize the er-

ror rate between the observed time delay and the estimated time delay. Assume

at time ti ∈ T = [t∗, t∗ + 3τ ], the ith node is observed. At any time ti, we

have, min
x

∑
i=2,4 [(t

∗ + i ∗ τ)− aTi x]
2, s.t. : x ≥ 0, where x ∈ R7 is the tar-

get variable with element xi denoting the probability that node i is the diffusion

provenance, ai ∈ R7 is a column vector with element aij denoting the propagation

path length from the detector i to the jth node, e.g., a2 = (1, 2, 0, 1, 3, 4, 2)T and

a4 = (2, 1, 3, 4, 0, 1, 5)T . The objective function is convex and non-negative and

achieves its minimum value 0 when x = (1, 0, 0, 0, 0, 0, 0)T . For offline detection,

since data from both nodes S2 and S4 are known, we can obtain the result as

x = (1, 0, 0, 0, 0, 0, 0)T , which correctly indicates that S0 is the diffusion prove-

nance. However, for online detection, we first estimate x by only observing data

from the detector S2 and the result is (0, 0.8, 0, 0.2, 0, 0, 0)T . When data from S4

arrive, the result of x is updated to (1, 0, 0, 0, 0, 0, 0)T . We can see that an online

algorithm demands dynamic and continuous computation of x, and the result of
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Figure 6.2: An example of twitter diffusion path. At the unknown time t = t∗,
the information provenance S0 initiates the diffusion of a tweet. The propagation
time delay between any two nodes is τ and the time window T = [t∗, t∗ + 3τ ].

online learning is expected to approximate (or equal to) the offline result.

Compared to offline identification methods, online identification models have

the following challenges:

• Challenge 1: how to design an online identification model? The online

identification model needs to address five questions, the unknown number

of diffusion provenance k, both activated and inactivated detectors, the

unknown initial propagation time t∗, the uncertain propagation path, and

the uncertain propagation time delay. The unknown number of diffusion

provenance k expects a sparse solution of x. Both activated and inactivated

detectors lead to partially labeled data and a non-convex objective function.

The uncertain propagation path and propagation time delay demand an

aggregate Gaussian distribution to describe the estimated propagation time

delay.

• Challenge 2: how to design a stochastic learning algorithm to solve the on-

line identification model? Because the detectors are activated sequentially

while a decision needs to be made once a detector is activated, the algo-

rithm needs to digest data in a continuous and converging way. Ideally, the

results of the online algorithm approximate those of the offline algorithms.

• Challenge 3: how to evaluate the performance of the proposed online iden-

tification method? Given the unique characteristics of the problem, various
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data are demanded to evaluate performance.

In this chapter, we propose a new online regression learning model to identify

diffusion provenances in large networks [124, 128]. To solve Challenge 1, we use

an l1 non-convex regression learning model built on top of an aggregate Gaussian

propagation time delay, where the network transmission weights are inferred a

prior from offline collected cascades. To tackle Challenge 2, we present an Online

Stochastic Sub-gradient algorithm (OSS for short) that can converge to local

minima. Also, we evaluate the model using four synthetic network data to address

Challenge 3.

The contributions of the work are twofold:

• We present a new online regression learning model to identify diffusion

provenances in large networks. The proposed model can handle the issues

of the unknown number of diffusion provenances k, the partially activated

detectors, the unknown initial propagation time t∗, the uncertain propaga-

tion path, and the uncertain propagation time delay.

• We present an online stochastic algorithm to solve the proposed online

regression learning model. The algorithm uses a stochastic sub-gradient

decent algorithm to continuously detect the provenances.

The remainder of the chapter is organized as follows. Section 6.2 introduces

the related preliminaries. The regression learning and online algorithm are given

in Sections 6.3 and 6.4 respectively. Section 6.5 empirically evaluates the algo-

rithms. We conclude the chapter in Section 6.6.

6.2 Preliminaries

Consider a network G = {V,E}, where the vertex set V has N nodes, and the

edge set E has L edges. In the network, we have two types of data for model

training:

1) Offline data of cascades : a set C of cascades {c1, · · · , cn}, where each

cascade c is a sequence of activated times {t1, · · · , tN} within a given time window
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T . Each time point ti records the ith activated node. For nodes that are not

activated within window T , the activated time is unknown.

2) Online data collected from detectors. We budget a small subset of detectors,

denoted by D = {di}mi=1, to monitor the network. During the monitoring time

window [t∗, t∗ + T ], where t∗ is the initial propagation time and T is the size

of the window, there are a subset of detectors activated, denoted by Da, and

the remaining inactivated detectors are denoted by Du. We aim to estimate the

locations of provenances, denoted by a random vector s∗ ∈ RN , given the status

of all the detectors D = {(d1, t1−t∗), · · · , (dm, tm−t∗)}, where tm is the activated

time point of detector dm and label tm−t∗ denotes the time delay. Note that time

labels of inactivated nodes are unknown, and their time delay exceeds window T .

We adopt an SI propagation model to describe how the infection spreads in

network G. The reasons for using this kind of propagation model are that most

posts on social networks are usually not removed, i.e., an infected node stays

infected. Thus, SI is an appropriate model for online postings and modeling

opinion dynamics on social networks. In the SI model, each node in a network

has three possible states: susceptible (s), infected (I) and non-susceptible (n).

As the infected nodes are those nodes that possess the infection, and will remain

infected throughout, an infected detector cannot be recovered. Therefore, a de-

tector cannot receive the same information multiple times and will not send the

same information multiple times to the same node.

Now we infer the edge transmission probability matrix W based on the

cascades collected offline. Given a cascade ct ∈ C, we use f(ct|W ) to denote the

likelihood function of observing the cascade ct under an unknown transmission

matrix W . The likelihood function consists of the joint probability of activated

nodes vi ∈ V (ti ≤ T ) and inactivated nodes vm ∈ V (tm > T ). For an activated

node vi ∈ V activated at time ti ≤ T from an adjacent node vj ∈ V and tj < ti,

the probability of observing vi activated by vj at time ti is a joint probability of

vj infecting vi at time ti and vi is not activated by any other neighbors vk which

have been already activated by the time ti, i.e., tk < ti. By summing up all the

possible neighbors vj in the network, i.e., summing up all vj with tj < ti, we can
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achieve the probability f(cti |W ) of a node vi activated at time ti as in Eq. (6.1),

f(cti |W ) =
∑

vj∈g(vi)
tj<ti

[
P (tj → ti|W )

∏
vk∈g(vi)
vk �=vj ,tk<ti

P (tk � ti|W )
]
. (6.1)

where g(vi) denotes the set of neighbors to vi, and P (tj → ti|W ) denotes the

probability of the jth activated node vj activates its neighbor vi at time ti. We can

use three well-known parametric functions for P (tj → ti|W ), such as the widely

used exponential, power-law and Rayleigh models [36]. Without loss of generality,

we use the exponential model, where P (tj → ti|W ) equals wjie
−wji(ti−tj) if tj < ti

and 0 otherwise. The probability P (tj � ti|W ) = 1− P (tj → ti|W ).

Based on Eq. (6.1), the probability of observing all the activated nodes in a

cascade ct is as follows,

f(ct≤T |W ) =
∏

vi:ti≤T
f(cti |W ). (6.2)

Because inactivated nodes also provide information for transmission weight

estimation, the probability of observing an entire cascade ct , f(ct|W ), is a joint

probability of observing all the activated nodes in the cascade ct and unobserving

the remaining inactivated nodes as in Eq. (6.3),

f(ct|W ) = f(ct≤T |W )×
(∏

vm:tm>T

∏
vi∈g(vm)
ti≤T

P (ti � tm|W )

)
. (6.3)

The likelihood function of observing all cascades C is the product of all the

likelihoods of each cascade given in Eq. (6.3),

L(W ) = log
∏
ct∈C

f(ct|W ) =
∑
ct∈C

logf(ct|W ) (6.4)

Then, the edge transmission matrix W can be estimated as follows,

W ∗ = argmax L(W ), s.t.,W ≥ 0. (6.5)

For simplicity, we denote φ(W ; j, i) = P (tj → ti|W ), then Eq. (6.4) can be
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rewritten as in Eq. (6.6),

L(W ) =
∑
ct∈C

(∑
vi
ti≤T

log
∑

vj∈g(vi)
tj<ti

φ(W ; j, i)

1− φ(W ; j, i)
+
∑

vi
ti≤T

∑
vk∈g(vi)
tk<ti

log[1− φ(W ; j, i)]

+
∑

vm:
tm>T

∑
vi∈g(vm)
ti≤T

log[1− φ(W ; i,m)]
)

(6.6)

The likelihood in Eq. (6.6) is convex, and thus the first-order gradient guar-

antees a global optimum. By letting the derivative of Eq. (6.6) to 0, we obtain

φ′(Wji) = 0 for each cascade. That is, Wji = 1
ti−tj

for each observed pair of

neighboring nodes. For each inactivated node tm > T in a cascade, as we don’t

observe the exact time of tm, we approximately let tm = T and Wim = 1
T−ti

.

Moreover, we set the default propagation probability of each edge to be Wji =
1
T

in case that we don’t observe any propagation data between nodes vj and vi in a

cascade. Then, by averaging over |C| cascades, we can obtain the final result as

follows,

W ∗
ji ∝

⎧⎨⎩
1
κ

∑
ct∈C Ict(vi, vj)

1
ti−tj

, ti ≤ T, tj < ti;

1
κ

∑
ct∈C Ict(vi, vj)

1
T−ti

, ti > T, tj ≤ T .
(6.7)

where Ict(vi, vj) is an indicator and equals to 1 if the cascade ct satisfies the time

constraint. κ is the total number of node pairs that meet the constraint. If the

given time constraints are not met, the default weigth Wji is 1/T .

6.3 Regression Model

In this part, we formulate the objective function for diffusion provenances detec-

tion based on online data collected from the detectors. We assume that the prior

distribution of s∗ is uniform over the network, i.e., any node in the network is

equally likely to be the provenance. Thus, the location of the provenances can

be recovered by maximizing the likelihood function of the observed status of the

detectors D given provenances s ∈ G, as shown in Eq. (6.8),

s∗ = argmax
s∈G

P (D|s) = argmax
s∈G

P (Da|s)
[
1− P (Du|s)

]
(6.8)

112



6.3 Regression Model

Figure 6.3: Gaussian time delay and the shortest-path propagation. The propaga-
tion path from the provenance s0 to detector S3 is approximated by the shortest
path P(S0, S3) = {S0 → S2 → S3}. The propagation delay is an aggregate
Gaussian distribution of paths p1 and p2.

where P (Da|s) denotes the probability of observing Da given a set of spread

provenances s, and 1 − P (Du|s) denotes the probability that Du is inactivated

under provenances s. Thus, P (Da|s)
[
1− P (Du|s)

]
denotes the joint probability

of both observing the activated nodes Da and inactivated nodes Du.

Because malicious information such as virus and rumors are often spread

under the snowball phenomenon [85], it is reasonable to approximately use the

shortest-path spread, denoted by P(i, j) between nodes vi, vj ∈ V .

Because the offline obtained edge transmission matrix W may suffer unstable

change when used online, we further use a random variable θi,j to describe de-

lay time along edge ei ∈ E. The random variables are independent identically

distributed with Gaussian distribution θi,j ∼ N(μi,jσ
2
i,j), where the mean μi,j are

from matrix W .

Figure 6.3 shows an example of the Gaussian time delay and the shortest-

path propagation. In the worst case, the search for the shortest path takes time

O(N2).

Thus, the probability P (Da|s) in Eq. (6.8) can be rewritten as follows,

P (Da|s) =
∏ma

i=1

∑
∏a

s

P (
∏a

s
|s)P (da|

∏a

s
) =

∏ma

i=1
P (θs,da), (6.9)

where ma is the number of observers during the time window, and θs,da is the

time delay. Based on the Gaussian distribution θi,j ∼ N(μi,jσ
2
i,j), the mean
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and variance of the random variable θs,da are μT
a x and (σ2

a)
Tx respectively. Let

Λ = (σ2
a)

Tx, the Eq. (6.9) can be converted to Eq. (6.10),

P (Da|s) =
∏ma

i=1
(2πΛ)−1/2e−(ta−t∗−μT

a x)2/(2Λ). (6.10)

Similarly, for unobservers, let Λ′ = (σ2
u)

Tx, we have

P (Du|s) =
∏mu

i=1
(2πΛ′)−1/2e−(tu−t∗−μT

u x)2/(2Λ′). (6.11)

Thus, Eq. (6.8) can be rewritten as

P (D|s) =
∏ma

i=1
(2πΛ)−1/2e−(ta−t∗−μT

a x)2/(2Λ)�
∏mu

i=1
[1− (2πΛ′)−1/2e−(tu−t∗−μT

u x)2/(2Λ′)].

(6.12)

Let all time delays share the same variance σ2, then the log-likelihood function

in Eq. (6.12) is

lnP (D|s) = − 1

2Λ

∑ma

i=1
(ta − t∗ − μT

a x)
2 +

1

2Λ

∑mu

i=1
(tu − t∗ − μT

ux)
2 + C,

(6.13)

where C is a constant, ta(u) − t∗ is the observed (unobserved) time delay.

Then, maximizing the log-likelihood1 in Eq. (6.13) is tantamount to mini-

mizing a quadratic regression function in Eq. (6.14), where the target vector

t ∈ Rma is the observed time delay, i.e., ta − t∗ for detector da, the coefficient

matrix A = (μT
1 , · · · , μT

ma
) ∈ RN∗ma is the shortest path time delay w.r.t. nodes

da ∈ Da. T ∈ Rmu is a vector of value T , which approximates the time delay of

nodes Du, i.e., tu − t∗ ≈ (T + t∗)− t∗ = T . Matrix B = (μT
1 , · · · , μT

mu
) ∈ RN∗mu

denotes the shortest time delay w.r.t. inactivated nodes du ∈ Du. The parameter

λ > 0 controls the weight. The constraints guarantee the optimal solution sparse

and non-negative.

s∗ = argmin
x

1

2
‖t− ATx‖22 − λ‖T − BTx‖22 s.t. : eTx ≤ τ, x ≥ 0. (6.14)

1 the log-likelihood is lnP (D|s) ∝ −1/2∑ma

i=1(ta − t∗ − μT
a x)

2 + λ
∑mu

i=1(tu − t∗ − μT
ux)

2,
where ta− t∗ is the observed time delay, and the same goes to inactivated nodes du. The second
part is obtained because ln(1− ex) ≈ −ex ≈ −x.
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The above formulation relaxes traditional discrete optimization on graphs.

Such a relaxation leads to efficient algorithms. Now we intuitively explain the

above problem from the viewpoint of multi-criteria quadratic programming. The

first objective function, ‖t−ATx‖22, aims to fit time delay of activated detectors

Da, the second objective function ‖T−BTx‖22 aims to fit time delay of inactivated

detectors Du. Because Du are not actually activated during the time window T ,

a negative parameter −λ < 0 is used to avoid the fitting. The trade-off Pareto

solutions can be obtained by varying parameter λ.

6.4 Online Algorithm

In this section, we present an Online Stochastic Sub-gradient algorithm to solve

the regression model in Eq. (6.14). The proposed regression model, compared

to the classical regression learning, has several new challenges: 1) the dependent

variable t is implicit, because the initial propagation time is unknown, 2) the l1

non-convex objective function expects sparse and fast convergent algorithm, and

data collected from detectors arrive continuously. To solve the challenges, we

use the Relative Time Difference of Arrivals and Online Sub-gradient based on

convex approximation as the solutions.

6.4.1 Relative Time Difference

The dependent variable t in Eq. (6.14) is implicit, because the initial propagation

time t∗ is unknown. To solve this challenge, we can use an “anchor node” to

cancel out the initial time t∗. Assume the αth detector dα is the “anchor node”,

its activated time is tα = t∗ +
∑

ei∈P(s∗,dα) θi, where θi is the time delay along

edges ei ∈ P(s∗, dα). Then, the Relative Time Difference of Arrivals (RTDA)

between dα and the kth (k �= α, 1 ≤ k ≤ ma) detector dk is tk := tk − tα =∑
ei∈P(s∗,dk) θi −

∑
ei∈P(s∗,dα) θi.

Based on RTDA, Eq. (6.14) has an elementary column change, i.e.,

A(:, ck) := A(:, ck)− A(:, cα), B(:, ck) := B(:, ck)− B(:, cα). (6.15)

Thus, the dimension of t, A and B are t ∈ Rma−1, A ∈ RN∗(ma−1) and B ∈
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RN∗(mu−1) respectively. Then, Eq. (6.14) can be relaxed to Eq. (6.16),

s∗(x) = argmin
x

1

2
‖t− A

T
x‖22 − λ‖BT

x‖22 + ρ‖x‖11. (6.16)

6.4.2 Convex Approximation

To address the non-convex challenge, we wish to find a sequence of convex pro-

grams, through which the non-convex function can be approximated and converge

to a local minimum. To obtain a convergent sequence, at step k+1, the concave

part −λ‖B Tx‖22 is linearly approximated by using the differential at the previous

iterative point xk, i.e.,

∂

∂x
(−λ‖B T x‖22)|xk

, x ≥ −2λB T B xkx. (6.17)

At step k + 1, we only solve a convex optimization as follows:

xk+1 ←
{
min
x≥0

1

2
‖t− A Tx‖22 − 2λB T B xkx+ ρ‖x‖11

}
. (6.18)

Lemma 4. The non-convex program in Eq. (6.16) converges under iterations

{x1, · · · , xk, · · · } generated by Eq. (6.18).

Proof. Denote Eq. (6.16) as J(x), which is a combination of the convex part

Jvex(x) = 1
2
‖t − A Tx‖22 and the concave part Jcav(x) = −λ‖B Tx‖22. At step

k + 1, we have Jvex(xk+1) + J ′
cav(xk)xk+1 ≤ Jvex(xk) + J ′

cav(xk)xk. Moreover,

due to the definition of concavity, Jcav(xk+1) ≤ Jcav(xk) + J ′
cav(xk)(xk+1 − xk).

Adding both sides of the above two inequalities, we obtain the result J(xk+1) ≤
J(xk). Therefore, Eq. (6.16) under the sequence {x1, · · · , xk, · · · } generated by

Eq. (6.18) is convergent.

6.4.3 Online Sub-gradient

We use the sub-gradient method to solve the l1 regularization problem in Eq.

(6.16). Let J(x) = F (x) + G(x) = 1
2
‖t− A

T
x‖22 − 2λB T B xkx, which is an ap-

proximation of the first two parts in Eq. (6.16) by using the CCCP programming
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Function 1 Online Detecting During the Time Window

Require:
A: Observation matrix;
t: Time delay;
ε: Stop criteria;
ηt: Learning rate;

Ensure:
X∗ = {x1, · · · , xj}: The indicator vector X∗;

1: xk+1 ← a best guess;

2: L(x) = f(x) = 1
2
‖t− A

T
x‖22

3: ŝ∗(x) = argmin
x≥0

L(x) + ρ‖x‖11
4: repeat
5: xk ← xk+1;
6: for i = 1 to ma do
7: �L(x) = (ti − aix)

T (−ai);
8: xk+1 ←

{
xk − ηt(�ŝ∗(x))

}
;

9: end for
10: until ‖xk+1 − xk‖ � ε
11: X∗ ← xk+1 in a descending order;
12: j∗ =argmax

j
|x∗

j − x∗
j−1|;

13: return X∗ = (x1, · · · , xj∗);

[150] at the concave part −λ‖BT
x‖22. The sub-gradient of J is as follows,

�jJ(x) = F ′
j(x) +G′

j(x)

=
1

2
[
ma∑
i=1

(ti − ai
Tx)2]′j + [−2λ

mu∑
i=1

(bi
T bixkx)]

′
j

= −(AT
t− A

T
Ax)j − 2λB

T
Bxk.

Now Eq. (6.16) turns to s∗(x) = argmin
x

J(x) + ρ‖x‖11 and this objective

function is non-differentiable. Assume X = (x1, · · · , xn)T is the global optimal

point. Consider the jth variable xj. The first-order optimality conditions are:⎧⎨⎩�jJ(x) + ρsign(xj) = 0, s.t. |xj| > 0{
�j J(x) + ρe : e ∈ [−1, 1]

}
, s.t. xj = 0

(6.19)
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Function 2 Online Detecting After the Time Window

Require:
A: Observation matrix;
B: Unobservation matrix;
t: Time delay;
ε: Stop criteria;
ηt: Learning rate;

Ensure:
X∗ = {x1, · · · , xj}: The indicator vector X∗;

1: xk+1 ← a best guess;
2: repeat
3: xk ← xk+1;

4: xk+1 ←
{
xk − ηt(�s∗(x))

}
;

5: until ‖xk+1 − xk‖ � ε
6: X∗ ← xk+1 in a descending order;
7: j∗ =argmax

j
|x∗

j − x∗
j−1|;

8: return X∗ = (x1, · · · , xj∗);

where sign(xj) = 1, xj > 0;−1, xj < 0; 0, xj = 0.

These conditions can be used to define a sub-gradient for each xj:

 j s
∗(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�j J(x) + ρsign(xj), |xj| > 0

�j J(x) + ρ, xj = 0,�jJ(x) < ρ

�j J(x)− ρ, xj = 0,�jJ(x) > ρ

0, xj = 0,−ρ ≤�jJ(x) ≤ ρ

. (6.20)

Thus, based on the three solutions, the sub-gradient method uses iterations:

xk+1 = xk − ηt(�s∗(x)), (6.21)

where the parameter ηt > 0 is the learning rate. In our analysis, we only consider

constant learning rate with a fixed ηt > 0.
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Algorithm 8 The Online Detection Algorithm

Require:
G: Network Graph;
D: Detectors {Da ∪Du};
u: The propagation mean parameters μ = (μ1, · · · , μ|E|)T ;
σ: The propagation variance parameters σ2 = (σ2

1, · · · , σ2
|E|)

T ;
ε: Stop criteria;

Ensure:
s∗ = {s1, · · · , sm}: A set of diffusion provenances s∗;

1: dα(β) ← anchor(Da(u)); // randomly pick anchors
2: if t < T then
3: for each di ∈ Da do
4: for each vj ∈ V do
5: P(dj, vj)← BFS (G, di, vj); // breath first
6: Aij =

∑
ek∈P(di,vj) μk; // matrix A

7: Bij =
∑

ek∈P(di,vj) μk; // matrix B
8: if i > α then
9: for each k ≤ ma do
10: A(:, ck)← A(:, ck)− A(:, cα); // matrix A
11: t := tk − tα; // build t
12: end for
13: X∗ ← Function 1(A, t, ε, ηt); // Call Function 1
14: end if
15: end for
16: end for
17: else
18: for each k ≤ mu do
19: B(:, ck)← B(:, ck)− B(:, cβ); // matrix B
20: end for
21: X∗ ← Function 2(A,B, t, ε, ηt); // Call Function 2
22: end if
23: return s∗ ← G(X∗);

6.4.4 The Online Stochastic Sub-gradient (OSS) Algorithm

In this part, we design an Online Stochastic Sub-gradient detection algorithm to

continuously infer the diffusion provenances. Algorithm 8 summarizes the solu-

tion to Eq. (6.16), where the sparse non-convex regression is solved by iteratively

calculating the convex program in Eq. (6.18) and the non-smooth l1 program in
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Figure 6.4: An illustration of the OSS algorithm. Detectors are split into two
sets. The first set is observed (activated) within the time window, and the second
set is unobserved (inactivated) outside the time window. Function 1 is called by
OSS within the time window T , and Function 2 is called after the time window
T .

Eq. (6.19). In terms of online learning, we use stochastic sub-gradient iterations

to calculate �jJ(x) during the time window T , i.e.,

�j J(x) = (ti − aix)
T (−ai). (6.22)

As shown in Algorithm 8, the proposed online algorithm calls two functions for

continuous learning. Function 1 corresponds to the online computation within the

time window T where the detectors are activated one by one. Function 2 corre-

sponds to the one-time computation after the time window T . The corresponding

overall framework can be found in Figure 6.4.

Based on the input of the proposed algorithm and the overall framework in

Figure 6.4, there are some assumptions for the OSS algorithm. 1) At least 1
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detector needs to be activated during the time window. We used the time delay

of both activated detectors (matrix A and Da) and inactivated detectors (matrix

B and Du) in the proposed algorithm. During the time window, Function 1

is only called for activated detectors, and each is activated sequentially. After

the time window, Function 2 is called because data from both the activated and

inactivated detectors are available. Therefore, the proposed algorithm can be

used to infer diffusion provenances when there is at least one activated detector

(i.e., the activated detector set Da is non-null and Function 1 can be called). 2)

The network structure is known prior, i.e., the network graph G, the propagation

mean μ and variance σ.

In the sequel, we introduce the two functions respectively.

Function 1: During the time window T , detectors are activated sequentially.

To conduct continuous detection, once a detector is activated, the regression

learning model is used for provenance estimation. At this stage, data from the

inactivated nodes are unavailable, the parameter λ in Eq. (6.16) equals 0, i.e.,

s∗(x) = argmin
x≥0

1

2
‖t− A

T
x‖22 + ρ‖x‖11. (6.23)

Each row of A and t in Eq. (6.23) denotes the shortest path and time de-

lay from an observed detector to other detectors. By choosing an anchor node,

Eq. (6.15) is used to calculate the matrix A and t in Eq. (6.23). Due to the

increasing of the number of activated detectors, matrix A and t in Eq. (6.23)

increase dynamically.

Function 2: After the time window T , data from both the activated and

inactivated nodes are available. Thus, we can use Eq. (6.16) to locate the diffusion

provenances.

We use Figure 6.4 to show the procedure of the online learning: (1) During

the time window T , the detectors are activated one by one. Once a detector

is activated, we use Function 1 to estimate the provenance; (2) After the time

window, we obtain all the activated detectors and inactivated detectors, and

Function 2 can be used for detection.

Example: Consider a network in Figure 6.5. Assume t∗ = 1, D = 3, and the

time window T is [1, 5]. Also, we assume detectors S1, S3 and S5 are observed at
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Figure 6.5: A network with one provenance S0, and three detectors S1, S3 and
S5. At the unknown time t = t∗, propagation starts from S0. Time delay along
each edge is θi ∼ N(1, 0.01). Monitoring time window T = [t∗, t∗+T ], where T is
the size of the time window. Detector S1 is activated at time point t = t∗ + 1

2
T .

Detectors S3 and S5 are inactivated during time window T . We only consider
eight nodes {S0, · · · , S7}.

time t1 = 1, t3 = 3 and t5 = 5 respectively. Let S1 be the anchor node. At t = 1,

we have A = [1, 0, 1, 2, 4, 4, 2, 4]T . Then, at t = 3, S3 is activated, and we update

the matrix A and t as follows,

A =

[
1 0 1 2 4 4 2 4

1 2 2 0 2 2 2 2

]T
, t =

[
1− t∗

3− t∗

]
.

The A and t are used to calculate A and t by Eq. (12),

A =
[
0 2 1 −2 −2 −2 0 −2

]T
, t = [2].

At the last step, t = 5 and S5 is observed. The variables A and t are contin-

uously updated to

A =

[
0 2 1 −2 −2 −2 0 −2
2 4 3 0 −2 −4 2 −2

]T
, t =

[
2

4

]
,

B =

[
0 2 2 0 0 0 −2 0

2 4 3 0 −3 −2 2 −4

]T
.
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The corresponding online solutions of x approximate the offline optimal so-

lution when the time window T ends. We will leave the competitive boundary

analysis in the future work. We have used Figure 6.5 to show how to calculate

matrix A, B and t in the above example. Figure 6.5 shows the shortest path

from nodes {S0, · · · , S7} to anchor node S1. For example, the elements value in

matrix A are based on calculating shortest path to S1 in Figure 6.5.

6.5 Experiments

In this section, we report experimental results on two synthetic network data sets

and two real-world data sets. The experiments are designed to validate 1) the

optimal parameters for the new model, 2) the superiority of the proposed model

compared with benchmark methods, and 3) the performance of the proposed

methods.

6.5.1 Experimental Data

We use two synthetic data sets (Albert Barabasi [11] and Small world [132])

and two real-world data sets (Twitter and Facebook from SNAP 1) for parameter

study, performance testing and algorithm comparison. The parameter settings

are listed in Table 6.1.

Barabasi-Albert generates random scale-free networks using a preferential at-

tachment mechanism. The network begins with an initial connected network

containing β0 nodes. New nodes are added to the network one at a time. Each

new node is connected to β ≤ β0 existing nodes with a probability proportional

to the number of links that existing nodes already have. Formally, the probability

pi that the new node is connected to node i is pi = ki�
∑

j kj, where ki is the

degree of node i and the sum is made over all pre-existing nodes j. In this model,

we set the parameter n = 4, which denotes the number of edges created by each

new node.

Small World is defined as a network in which the typical distance ζ between

two randomly chosen nodes (the number of steps required) grows proportionally

1http://snap.stanford.edu/data
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Table 6.1: List of the four data sets.

DataSet Nodes Edges Avg. Degree Avg. Path length Avg. Clustering Coefficient Other parameters

Albert-Barabasi 1000 3990 7.98 3.172 0.037 n = 4
Small World 1000 3999 7.99 5.079 0.473 α = 4, p = 0.1
Twitter 10269 36173 30.54 5.702 0.627 μ = 0.01, σ = 0.01
Facebook 3320 10352 19.78 3.892 0.671 μ = 0.01, σ = 0.01
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6.5 Experiments

to the logarithm of the number of nodes N in the network, that is ζ ∝ logN . We

use parameter α to denote that each node is connected to α nearest neighbors

in the topology, and p denotes the rewiring probability. In particular, we set

alpha = 4 and p = 0.1 in our experiments.

The original datasets only contain network structure information without time

propagation labels. We use Gaussian distribution N(1, 0.001) as the time delay

distribution. We simulated the propagation by randomly setting five diffusion

sources.

We used the Independent Cascade Model to generate cascades. When node

u becomes active, it has a single chance of activating each currently inactive

neighbor v. The attempt to activate succeeds independently with a probability

of puv, set to puv = 0.5 as a constant in our experimental setting. Because

the cascades are generated by the Independent Cascade Model, each node has a

single chance of activating each currently inactive neighbor, so this is one-to-one

communication. Thus, the datasets can be considered as half-real data.

6.5.2 Experimental Setup

We assess our methods w.r.t the average distance (hops) between actual locations

of the diffusion provenances and the estimated locations. Smaller hops indicate

that the algorithms have higher accuracy. Let S∗ denote the actual provenance,

and the estimated provenance set as Ŝ. Since the size of S∗ may not be equal to

that of Ŝ, we measure their distance h(S∗, Ŝ) by calculating the average number

of hops between each element si ∈ Ŝ, h(S∗, Ŝ) = 1
|S∗|

|Ŝ|∑
i=1

‖ŝi − f(S∗, ŝi)‖2, where
fi(S

∗, ŝi) selects the node in S∗ that is closest to ŝi, and ‖ŝi−Fi(S
∗, ŝi)‖2 denotes

the hops between nodes ŝi and f(S∗, ŝi).

6.5.3 Experimental Results

Parameter study. We first test the parameters in Eq. (6.16) w.r.t. the number

of diffusion provenances k, the number of detectors m, the length of monitoring

time window T , and the parameters λ and ρ. The default parameters are: the

number of diffusion provenances k = 5, the number of detectors d = 20% ∗ N ,
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Figure 6.6: Parameter study on synthetic and real-world data sets by using the
proposed regression learning model and Online Stochastic Sub-gradient algo-
rithm. The number of hops (error rate) w.r.t : (A) the diffusion provenances
number k; (B) the detector number m; (C) the monitoring time window T ; (D)
the parameter λ; (E) the parameter ρ. (F) the online detection. The average
distance on synthetic/real-world data sets w.r.t propagation time.
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Figure 6.7: Parameter ηt in the proposed Online Stochastic Sub-gradient OSS
algorithm.

the monitoring time window T = 5 minutes. The selection of provenances and

detectors are random. The propagation time delay along each edge follows a

Gaussian θi ∼ N(1, 0.01). Figure 6.6 demonstrates the model performance w.r.t.

different parameters on the synthetic and real-world datasets. Figures 6.6 (A)-(E)

are parameter studies. They are conducted after the time window with Function 2

and Eq. (6.16). Figure 6.6 (F), Figure 6.7 and Figure 6.9 show the results in real-

time manner, and the x-axis is the propagation time. At different propagation

time, we can real-time calculate the matrix A in Eq. (6.23) and call Function

1 to conduct the online estimation of the diffusion sources. Figures 6.7 and 6.9

demonstrate the online applications of the proposed OSS algorithm under various

learning rates ηt on difference data sets. We replicated the algorithms five times
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Figure 6.8: The online detection under the Linear Threshold propagation process.

and used the mean as the evaluation indicator.

The number of diffusion provenances k. From Figure 6.6(A), we can see that

the error rate (hops) decreases w.r.t. the number of diffusion provenances. We

can conclude that the more diffusion provenances, the higher probability to be

found out at least one provenance.

The number of detectors m. Figure 6.6(B) shows the average distance (hops)

w.r.t the number of detectors. The result demonstrates that the accuracy im-

proves w.r.t the number of detectors.

The monitoring time window T . The monitoring time window indicates the

detection time span. Figure 6.6(C) shows that the error hops drop with the time

window.

The parameter λ. The parameter λ controls the preference between the acti-

vated nodes (convex part) and the inactivated nodes (concave part). As shown

in Figure 6.6(D), the parameter λ should weigh the convex part and the concave

part. If λ is selected too large, it overfits the inactivated nodes; otherwise, it

overfits the activated nodes.

The parameter ρ. ρ > 0 is the regularization parameter, and restricts the size

of x. If ρ is too large, the algorithm surfers from time cost, especially on large

scale networks. From Figure 6.6(E), we observe the minimal hops when ρ is 6.

Continuous detection. We test the proposed online algorithm on the synthetic
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Figure 6.9: Running time w.r.t the propagation time on the synthetic and real-
world data sets.

and real-world date sets. Also, we empirically study the learning rate parameter

ηt in the sub-gradient algorithm. Figure 6.6 (F) shows the performance of the

algorithm OSS. The hops reduce along with the propagation time because more

activated detectors lead to better performance. At the end of the time window,

the hops shrink as the inactivated detectors are obtained. Figure 6.7 demonstrates

the OSS algorithm with learning rates ηt. The algorithm reaches the least average

distance when ηt is 0.1.

Compare with benchmark methods. We compare the proposed non-

convex sparse regression model (NSR for short) with three benchmark methods:

1) the convex-based sparse regression method (VEXR for short) [6], which uses

activated nodes for regression and locating; 2) the concave-based sparse regression

method (CAVR for short) [6], which uses inactivated nodes for regression; 3)

Betweenness centrality [12], which measures a node’s centrality in a network. We

use betweenness centrality to measure how often a node appears on the shortest

path. The betweenness centrality of a node v is given by the function: g(v) =∑
s�=v �=t

σst(v)
σst

, where σst is the total number of the shortest paths from node s

to node t and σst(v) is the number of those paths that pass through v; and

4) Bonacich centrality [15], also known as Eigenvector Centrality, measures the

influence of a node in a network. The influence of nodes is based on assigning
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relative scores to all nodes in the network. The centrality score of node v is

defined as: xv =
1
λ

∑
t∈M(v)xt

= 1
λ

∑
t∈G αv,txt, where G is network, A = (αv,t) be

the adjacency matrix, i.e., αv,t = 1 if node v is linked to node t, and αv,t = 0

otherwise, M(v) is a set of the neighbors of v, and λ is a constant (we set it as

1 in our experiment). We use UCINET 6 for Windows to compute the Bonacich

centrality.

We compare the four methods on the two synthetic networks and two real-

world networks. The parameters are set as default. We test two settings, the

number of diffusion provenances k = 5 and k = 10 on the four synthetic datasets.

For each group, we randomly sample different numbers of detectors m. From the

results in Table 6.2, the results can be summarized as follows.

1). the proposed NSR model, by leveraging both activated and inactivated

nodes, performs better than both CVXR and CAVR models on most of the

data sets, achieving the lowest expected hops, especially when m is large.

For example, on the ForestFire data set, NSR achieves the best result of

1.33 hops when k = 10 and m = 0.2 ∗N .

2). The NSR model performs better than the heuristic Betweennes model when

the sample rate m/N is high. This is because the betweenness algorithm

aims to find the central nodes in a network, and it cannot make proper

use of information from detectors. However, when the sample rate is low,

betweenness shows better results than the other three.

3). When the number of detectors increases, the error rates of NSR, CVXR

and CAVR reduce significantly, among which NSR reduces the most. The

performance of the betweeness model is stably poor.

4). The accuracy of centrality increases with an increased the number of sources,

because centrality finds the most influential nodes in a social network. How-

ever, sometimes the source may not be among the most influential nodes.

For example, malicious information may be misforwarded by one user and

then spread by the other influential users. That is, centrality approaches

tend to discover key infrastructure nodes or super-spreaders, but do not

necessarily pinpoint the diffusions source. The accuracy increase is because
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Table 6.2: Comparisons on the four data sets.

K = 5 K = 10

Detectors (m) 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Albert-Barabasi

NSR 3.47±0.64 2.33±0.66 2.21±0.50 1.47±0.24 3.40±0.21 2.19±0.48 2.08±0.45 1.52±0.26

CVXR 3.48±0.25 2.37±0.31 2.38±0.69 2.17±0.34 3.72±0.51 2.38±0.47 2.05±0.58 1.78±0.47

CAVR 3.82±0.66 2.77±0.68 2.99±0.26 2.10±0.43 3.86±0.44 2.98±0.63 2.93±0.57 2.20±0.39

Betweenness 3.48±0.34 3.19±0.26 3.07±0.58 3.25±0.20 3.02±0.41 3.82±0.23 3.92±0.44 3.78±0.30

Bonacich 3.48±0.33 3.30±0.33 3.30±0.25 3.00±0.30 3.00±0.33 3.55±0.30 3.00±0.44 3.44±0.23

Small-World

NSR 4.31±0.56 3.32±0.68 2.30±0.28 2.02±0.65 3.27±0.48 3.05±0.53 2.28±0.30 1.86±0.48

CVXR 4.44±0.48 3.51±0.20 3.35±0.60 2.08±0.30 3.32±0.58 3.14±0.33 2.79±0.55 1.49±0.20

CAVR 4.53±0.41 3.62±0.27 3.47±0.20 2.10±0.68 3.82±0.61 3.17±0.21 2.95±0.47 2.03±0.34

Betweenness 3.27±0.38 3.46±0.48 3.11±0.22 3.09±0.40 3.32±0.60 3.17±0.66 3.26±0.29 3.52±0.25

Bonacich 3.30±0.50 3.45±0.44 3.00±0.33 3.00±0.33 3.30±0.55 3.10±0.50 3.30±0.44 3.50±0.22

Twitter

NSR 4.33±0.51 3.67±0.24 2.50±0.35 2.33±0.47 3.67±0.44 3.33±0.52 2.01±0.52 1.50±0.31

CVXR 3.77±0.69 4.25±0.65 3.0±0.65 2.37±0.35 3.67±0.33 3.67±0.55 2.43±0.40 1.62±0.67

CAVR 4.50±0.43 4.39±0.60 3.09±0.29 2.57±0.65 3.77±0.46 3.75±0.49 2.99±0.46 2.67±0.49

Betweenness 4.40±0.24 3.75±0.27 3.20±0.23 3.73±0.36 3.96±0.20 3.87±0.31 3.56±0.37 3.41±0.63

Bonacich 3.66±0.45 3.66±0.55 3.00±0.33 3.50±0.30 3.66±0.25 3.62±0.40 3.55±0.44 3.33±0.25

Facebook

NSR 3.5±0.31 3.20±0.21 3.21±0.25 2.10±0.33 2.80±0.32 2.67±0.16 1.85±0.51 1.33±0.60

CVXR 3.67±0.33 3.32±0.51 3.09±0.56 2.66±0.43 3.02±0.48 2.87±0.48 1.92±0.32 1.70±0.66

CAVR 3.85±0.27 3.67±0.35 3.24± 0.66 2.52±0.59 3.50±0.31 3.06±0.54 2.12± 0.45 2.03±0.40

Betweenness 3.37±0.59 3.21±0.23 3.02±0.44 3.83±0.21 3.63±0.23 3.26±0.32 3.44±0.46 3.19±0.23

Bonacich 3.50±0.33 3.33±0.25 3.00±0.44 3.00±0.30 3.55±0.50 3.55±0.30 3.30±0.44 2.88±0.30
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more provenances have a higher probability that the influential nodes are

provenances.

5). The NSR model outperforms the other benchmarks in most cases, because

centrality finds the most influential nodes in a social network. However,

sometimes the source may not be among the most influential nodes. For

example, malicious information may be misforwarded by one user from

and then spread by other influential users. That is, centrality approaches

tend to discover key infrastructure nodes or super-spreaders but do not

necessarily pinpoint the diffusions source. By leveraging both activated

and inactivated nodes, NSR can achieve better results than VEXR (only

uses activated nodes) and CAVR (only uses inactivated nodes).

6). The NSR model outperforms the other benchmarks in most cases, because

centrality finds the most influential nodes in a social network. However,

sometimes the source may not be among the most influential nodes. For

example, malicious information may be misforwarded by one user from

and then spread by other influential users. That is, centrality approaches

tend to discover key infrastructure nodes or super-spreaders but do not

necessarily pinpoint the diffusions source. By leveraging both activated

and inactivated nodes, NSR can achieve better results than VEXR (only

uses activated nodes) and CAVR (only uses inactivated nodes).

Online algorithm in the different propagation processes. We evalu-

ate our algorithm in the different propagation processes, i.e., Linear Threshold

propagation process. A node v has threshold θv ∼ U [0, 1], and is influenced

by each neighbor t according to a weight bvt such that:
∑

t neighbor of v

bv,t ≤ 1.

A node v becomes active when at least θv fraction of its neightbors are active∑
t active neighbor of v

bv,t ≥ θv. Compared with Figure 6.6(F), Figure 6.8 shows the

proposed online algorithm can achieve similar results in different propagation

process.

Online algorithm time cost. Figure 6.9 plots the average running time

of the algorithm OSS on the synthetic and real-world datasets. The running

time raises moderately at the beginning due to the increase of activated nodes
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(Function 1), and then increases sharply in the end because all the activated and

inactivated detectors are used for calculation (Function 2).

6.6 Conclusions

This chapter discusses a solution for discovering the diffusion provenances in social

networks in online setting. We proposed a real-time source detection algorithm by

placing detectors randomly across a network. Our approach converts the problem

to a regression problem, and uses an online stochastic sub-gradient algorithm

to solve regression as the information is gathered from detectors in real time.

This work focuses on online detection rather than offline, to meet the practical

needs for early warning, real-time awareness and real-time responses to malicious

information spreading within an online social network. The offline provenances

detection methods assume the data is static and available all the time, resulting in

the identification is made after reaching the whole diffusion snapshot. However,

the proposed method is based on a new online regression learning model, which

can make the identification once a detector is observed at any time. The algorithm

uses a stochastic sub-gradient decent algorithm with Gaussian time delay and

the shortest-path propagation to continuously detect the provenances. This work

can therefore be used in time-critical security monitoring applications, such as

locating false rumors in business areas.

Although our algorithm for detecting the diffusion provenances detection

achieves high accuracy and meets the need for a real-time response, some limi-

tations exist that need improvement in the future work: 1) the simulation study

used real network data but the propagation process was synthetic, dubbed half-

real data, so experiments on real network propagation data need to be undertaken;

and 2) the proposed algorithm, based on sub-gradients, is a straightforward so-

lution for online learning problems, however more state-of-the-art online learning

algorithms could be applied to this online diffusion provenance problem, such as

passive-aggressive (PA), second-order perceptron (SOP) and confidence-weight

learning (CW).

This work inspires some interesting directions for future work: 1) the problem

could be further extended by using popular stochastic epidemic models such as
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the SR and SRI models; 2) previous mobile social network mining techniques

could be used to harness geographical information to identify a culprits physical

location.
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Chapter 7

Conclusions and Future Work

This chapter summarize the whole thesis and provides some further research

directions.

7.1 Summary of This Thesis

Graph classification is an important tool for social network and biological data

analysis, where the objective is to learn and classify objective represented in

graph structure. For example, chemical compounds can be represented in graph

formats, predicting chemical compound activities in bioassay tests is a known

graph classification problem. The main challenge in classifying graph data, com-

pared to classifying data with feature-vector representation, is that graphs do

not have features readily available so existing classification models are inappli-

cable to graphs. Accordingly, many research exists to mine frequent subgraphs

[49, 45] as features and convert a graph into a feature vector by examining the

occurrence of selected subgraphs. In traditional graph classification, graphs are

assumed to be independent where each graph represents an object. In a dynamic

world, it is very often that the underlying object continuously evolves by time.

The change of the graph structure, with respect the temporal order, presents

a new time-variant graph representation, where an object corresponds to a set

of time-variant graphs. In this thesis, we formulated a new time-variant graph

classification task and proposed the use of new features to represent time-variant

graphs for learning and classification.

135



Conclusions and Future Work

This thesis investigated a novel time-variant graph learning and classifica-

tion problem with a variety of applications, e.g., cascade outbreak prediction,

social robots identification and online diffusion provenances detection from time-

variant graphs. However, time-variant graph learning and classification is differ-

ent with traditional graph classification and exposes some new challenges, as the

time-variant graphs change over time, the size of subgraph features may become

infinite (i.e., outbreak cascade) and non-obtainable. To handle this problem,

we develop applicable features and models for effective and efficient time-variant

graph learning in the thesis, including 1) Temporal shapelet feature for networked

time series (Chapter 3), 2) Incremental subgraph based TVGLC (Chapter 4), and

3) Graph-shapelet based TVGLC (Chapter 5). In addition, based on the time-

variant data set (i.e., cascades), we study a real application in social networks to

detect information diffusion provenances timely (Chapter 6).

This thesis handles a number of fundamental problems of the time variant

graph learning, and proposes a number of techniques. In summary, the disserta-

tion solves the four research problems in Section 1.3. The research problems focus

on how to find discriminative features, develop effective algorithms and apply to

real applications. Accordingly, the main contributions of this dissertation are the

proposed features, algorithms and applications for time-variant graph learning

and classification. From the effective features perspectives, we propose a novel

graph-shaplelet feature to improve the classification performance. The graph-

shapelet is compact and discriminative time-variant graph features. It is more

appropriately for time-variant graph than traditional subgraph features since the

time-variant graph changes over time and the search space may infinite. From the

view of models, we first propose a novel network regularized least square feature

selection algorithm (NetRLS) to incorporate network information for shapelet

selection. The NetRLS drops the independent and identically distributed as-

sumption and enables to use rich network structure information to improve the

performance. We further propose a primal-dual incremental subgraph feature se-

lection algorithm to tackle the high-dimensional features on time-variant graphs,

and a new model (ISJF) to join short-pattern subgraphs. The proposed ISF and

ISJF algorithms split feature set and load into memory in a mini-batch man-

ner, which is a significant reduction in memory and running time. From the
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view of applications, we address an interesting problem to locate the provenances

from large social networks. We design a real-time provenances detection algo-

rithm based on an online regression learning model and stochastic sub-gradient

algorithm. The proposed algorithm meets the practical needs for early warning,

real-time awareness and real-time responses to malicious information spreading

within an online social network.

Specifically,in Chapter 3, we have explored a new problem of networked time

series classification, where the data contain both the typical time series data

and network structure data. A network regularized least square feature selection

method (NetRLS) is proposed to incorporate the network structure information

for shapelet selection, accordingly. Our work drops the independent and identi-

cally distributed (i.i.d.). assumption and enables to use rich network structure

information to improve the performance. The experiments and comparisons on

real-world Twitter and DBLP, and validations on medical data analysis, demon-

strate that NetRLS outperforms state-of-the-art time series shapelet learning al-

gorithms and is suitable for a wide range of learning tasks. In this thesis, we only

used the Euclidean distance as the measure. In the future, we will report more

comparisons with other shapelets selection/learning models based on advanced

time series representation and distance measures [29].

In Chapter 4, we study time-variant graph classification with incremental

subgraph features. Based on the observation that subgraph features follow the

downward closure property and long-pattern subgraph features are often buried

underneath short-pattern subgraph features, we propose a primal-dual incremen-

tal subgraph feature selection algorithm (ISF ) for mining incremental subgraph

features, and a subgraph join feature selection algorithm (ISJF ) to exact long-

pattern subgraphs. Experiments on real-world cascade outbreak prediction in

social networks demonstrate the effectiveness of the proposed models.

In Chapter 5, we proposed the use of graph-shapelet patterns as features to

represent time-variant graphs for learning and classification. We argued that

existing graph classification methods are all based on static settings, where train-

ing graphs are assumed to be independent of one another and the structure of

each graph remains unchanged. In reality, many applications involve data with

dynamic changing structures. Accordingly, a time-variant graph can be used to
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represent a sequence of graphs and capture the dynamic evolution of the under-

lying object. The inherent structural dependency and temporal correlations of

the time-variant graphs raise significant challenges, and we advocated a graph-

shapelet pattern concept to detect significant changes in the time-variant graph

as features. By using graph-shapelet patterns to convert a time-variant graph as

a tokenized sequence, we can effectively calculate the distance between two time-

variant graphs for classification. Experiments on synthetic and real-world data

demonstrated that our method is much more accurate than traditional subgraph

feature based approaches.

Finally, we study a case study of time-variant application, which is to real-

time detect the provenances from information diffusion graphs in Chapter 6. This

chapter discusses a solution for discovering the diffusion provenances in social

networks in online setting. We proposed a real-time source detection algorithm by

placing detectors randomly across a network. Our approach converts the problem

to a regression problem, and uses an online stochastic sub-gradient algorithm

to solve regression as the information is gathered from detectors in real time.

This work focuses on online detection rather than offline, to meet the practical

needs for early warning, real-time awareness and real-time responses to malicious

information spreading within an online social network. This work can therefore

be used in time-critical security monitoring applications, such as locating false

rumors in business areas.

7.2 Future Work

As more and more emerged applications involve a sequence of graphs with a strict

temporal order, time-variant graph classification has drawn and will continue to

draw more and more attention in the research communities. Here, we outline

some time-variant graph classification problems that remains unexplored in the

research community, as follows:

• Early Prediction for Time-variant Graph. In traditional time-variant

graph classification, samples are observed in full length before its class is

predicted. In practical scenario, however, providing a timely output is one
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of the important criteria in applications of time-variant classification. For

example, an earlier decision may reduce damage when predicting the class

label (i.e. outbreak or non-outbreak) of a series of cascades (time-variant

graphs), such as prevent malicious information propagation as early as pos-

sible before breaking out. Therefore, an early prediction based on the struc-

ture evolution is needed for the time-variant graph. how to re-examine the

existing classification methods and develop new earliness-aware models for

the time-variant graph in order to achieve early prediction is a challenge in

this field.

• Imbalanced Time-variant Graph Classification. Traditional time-

variant graph classification methods can not deal with imbalanced case

because they evaluate the performance on the whole data and pay less

attention to rare cases in some classes. However, in real applications, the

data are tend to imbalanced, such as cascade outbreak in social networks,

where outburst cascades are rare compared with non-outbreak cascades.

Therefore, how to deal with imbalance data combined with early prediction

models over time-variant graphs is one direction in the future.
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A. The derivation from Eq. (4.1) to Eq. (4.3)

When d is fixed, the inner minimization in Eq. (4.1) degenerates to a standard

SVM model w.r.t. w and ξ.

min
w,ξ,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w
T (xi �

√
d) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m.

(1)

By introducing the Lagrangian multiplier αi ≥ 0 to each constraint yi(w
T (xi�√

d) + b) ≥ 1− ξi, we obtain

L(w, b, ξ, α) =
1

2
||w||2 + C

n∑
i=1

ξi

−
n∑

i=1

αi(yi(w
T (xi �

√
d) + b)− 1 + ξi), αi ≥ 0

(2)

Then by setting the derivatives of the Lagrange function to be 0 with respect to

parameters w, ξ and b, we obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L(w, b, ξ, α)

∂w
= w−

n∑
i=1

αiyi(xi �
√
d) = 0

∂L(w, b, ξ, α)

∂b
= −

n∑
i=1

αiyi = 0

∂L(w, b, ξ, α)

∂ξi
= C − αi = 0

. (3)

That is,

w =
n∑

i=1

αiyi(xi �
√
d),

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C.

Plugging the above results back into Eq.(2), we obtain the dual form of the

original problem as follows,

max
α∈A

− 1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 + eTα (4)

As the objective function −1
2
‖∑n

i=1 αiyi(xi �
√
d)‖2 + eTα in Eq. 4 is linear

in d and convex in α, and both A and D are compact domains, Eq. (4.1) can be

equivalently reformulated as follows,

min
α∈A

max
d∈D

1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 − eTα (5)

As both A and D are convex compact sets, the following equivalence holds by

interchanging the order of mind∈D and maxα∈A in Eq. (4.2) based on the minimax

saddle-point theorem [113],

min
d∈D

max
α∈A

− 1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 + eTα

= max
α∈A

min
d∈D

− 1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 + eTα

⇐⇒ min
α∈A

max
d∈D

1

2
‖

n∑
i=1

αiyi(xi �
√
d)‖2 − eTα

B. Optimization 1 can be solved by quadratic programming with small set of
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Let f(α,d) = 1
2
‖∑n

i=1 αiyi(xi �
√
d)‖2 − eTα. By introducing an additional

variable θ ∈ R, the problem can be reformulated as follows:

min
α∈A,θ∈R

θ s.t. θ ≥ f(α,d), ∀ d ∈ D. (6)

which is a convex quadratic programming problem. Each nonzero d ∈ D defines

a quadratic constraint with respect to α. There are as many as (
∑B

i=0

(
m
i

)
)

quadratic constrains in Eq. (4.4).

Because the scaling vector d is fixed, and we use ‖d‖ ≤ B to encourage

sparsity so that at most B subgraph features are selected. Since B is a small

value, it can be solved with small set of features.

C. Derivation from Eq. 4.8 to Eq. 4.9

By introducing the Lagrangian multiplier pi, qj, rj ≥ 0 to each constraint in

Eq. 4.8, we have

L(d) =
t∑

j=1

[cj(α)]
2dj +

m∑
i=1

pi[(1− ε)
t

m
bi −

t∑
j=1

dj ]

+
t∑

j=1

qjdj +

t∑
j=1

rj(1− dj)

(7)

Then by setting the derivatives of the Lagrange function to be 0 with respect

to parameters d, we obtain

∇dL(d) = [cj(α)]
2 −

m∑
i=1

pi + qj − rj = 0 (8)

That is, [cj(α)]
2 =

∑m
i=1 pi − qj + rj

As rj ≥ 0, we have
∑m

i=1 pi + rj ≥ [cj(α)]
2. By plugging the above result to

Eq. 8, we have the dual problem as follows,
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min
p,r

m∑
i=1

bipi(1− ε)
t

m
+

t∑
j=1

rj

s.t.
m∑
i=1

pi + rj ≥ [cj(α)]
2, j = 1, ..., t

pi, rj ≥ 0, 1 ≤ i ≤ m.

(9)

For simplicity, we use only one Lagrange multiplier and map the space of rj

to the same space of pi, the dual problem can be rewritten as follows,

min
p

m∑
i=1

bipi(1− ε)
t

m
+

m+t∑
i=m+1

pi

s.t.
m∑
i=1

pi + pi+j ≥ [cj(α)]
2, j = 1, ..., t

pi ≥ 0, 1 ≤ i ≤ m.

(10)
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