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Controlling the shape and scale of triangular formations using landmarks

and bearing-only sensing

Isaac L. Manuel, Adrian N. Bishop, Brian D.O. Anderson and Changbin Yu

Abstract— This work considers the scenario where three
agents that can sense only bearings use two landmarks to
control their formation shape. We define a method of relating
the known distance separating the landmarks back to the edge
lengths of the triangular formation. The result is used to define
a formation control law that incorporates inter-agent distance
constraints. We prove a strong exponential convergence result
and show how one can extend the controller such that global
stability from any initial position is possible.

I. INTRODUCTION

This work describes a method for controlling the formation

shape1 of three autonomous vehicles equipped only with

passive sensors. The method requires that the autonomous

vehicles (agents) are capable of measuring local bearings2 to

landmarks and to other agents in the formation. By knowing

the location of two landmarks it is possible to calculate

the distance separating two agents and once the inter-agent

distances are known then we can define a control law at each

agent that forces that agent to achieve and then maintain

desired inter-agent distance values. We can also extend this

control law such that each agent maintains the interior angle

subtended at itself by the other agents at some desired value

(consistent with the desired distances). The end result is

an exponentially stable formation control law with a global

region of convergence.

Formation control is important for many real world ap-

plications of cooperative systems [1]; e.g. arranging mobile

sensors for target localisation [2], [3]. The high-level goal of

this research is to control formations in an efficient manner,

as observed in nature, for a useful purpose. In 1987 Reynolds

[4] simulated natural swarming (flocks, herds, and schools)

using a distributed behavioural model. Other early work

included that of Vicsek et al. [5] who modelled biological
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1Throughout this work, formation shape will refer to both the shape and
scale of the formation. Typically agents that sense and control only relative
bearings cannot control the scale of the formation. This paper goes further
by exploiting bearing measurements to landmarks with known positions in
order to control both formation scale and shape.

2Bearing measurements at each agent are taken in a local coordinate
frame; i.e. there is no reference to a common direction known by all agents.

particles that exhibited cooperative behaviour. Both publica-

tions modelled the aggregate motion of a group of agents

that arose as a result of local interactions between individual

animals or particles respectively. In 2003, Jadbabaie et al. [6]

offered a theoretical explanation of the behaviour exhibited

by the simulation of Vicsek et al.

Modern formation control is often achieved through the

use of the global positioning system (GPS). GPS has been

used in formation control by [7] for controlling autonomous

vehicles using GPS equipped surface craft, and by [8]

for navigation in low orbits that will be used in NASA’s

upcoming Magnetospheric Multiscale Mission. Another use

is that of the intended application of this research: control

of unmanned aerial vehicles for the Defence Science &

Technology Organisation (DSTO) of Australia. Flight trials

by the DSTO found that the loss or corruption of GPS

signals is a reality. Similar findings were presented in the

Volpe report [9]. The Volpe report was prepared by the US

Department of Transportation and raised issues regarding

GPS vulnerabilities in the US transportation infrastructure.

GPS disruptions can occur due to a range of signal interfer-

ences, whether intentional such as jamming or spoofing, or

unintentional from everyday use of electronic devices such as

mobile phones, TV, and more. Subsequently, other methods

for controlling formations are required as alternatives to GPS

based control.

A. Contribution

Formation control with bearing-only measurements

(and/or desired inter-agent constraints) has been studied

in [10]–[18]. Formation control with heterogenous sensing

(and/or constraints) has also been considered [19], [20].

Often, with bearing-only sensing (and constraints), the scale

of the desired formation is not controllable; e.g. see [11].

In this paper we develop a control system for triangular

formations where the motion of each agent is governed by an

identical control law and the agents can measure the bearing

to other agents and to two landmarks with known positions.

Unsurprisingly, with measurement of enough angles, the

agents can assemble a picture of the five points, three agents

and two landmarks, which is defined up to scaling. Then,

any agent can calculate the distance separating itself from

another agent by relating this unknown distance to the known

distance separating the landmarks (through the measured

bearings). Once the inter-agent distances are known then we

can define a control law at each agent that forces that agent

to achieve and then maintain desired inter-agent distance

values. We also extend this distributed control law such that
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each agent maintains the interior angles subtended at itself

by the other agents at some desired value (consistent with the

desired distances). The end result is an exponentially stable

formation control law with a global region of convergence.

As we are concerned with the situation where GPS is

unavailable we address the formation shape problem using

passive sensors with the requirement that the sensors are

capable of measure bearings to objects. Vision-based sensors

are a possible platform for implementation. The use of

vision-based sensors is studied in [21], and also in [22] where

the ground-based agents use catadioptric cameras (i.e. with

a wide field of view).

II. FORMAL PROBLEM STATEMENT

The problem can be summarised by the following ques-

tion: how can three bearing-measuring agents control the
shape of their triangular formation using two landmarks? In

this section we expand and formalise this question.

Consider an undirected graph, G with the vertex set

V = {R,L}, where R = {R1, R2, R3}, representing the

n = 3 agents; and L = {L1, L2}, representing the m = 2
landmarks. We suppose the vertices correspond to points in

R
2. In this paper the agents will be referred to using the

subscripts i, j, k , and the landmarks with subscripts s and

t. Note that the agents are treated as point agents.

The agents are equipped with passive sensors capable of

measuring the bearing to other agents and landmarks (in a

local coordinate frame). Consequently, these measurements

are only meaningful in a local sense and are not aligned in

any way with those of other agents.

We initially define a desired triangular formation by

three lengths. These are the desired inter-agent distances,

and are denoted r∗i,j . The current (or instantaneous) inter-

agent distances are denoted by ri,j . We make the following

assumptions concerning the current inter-agent positions.

Assumption 1 (Non-collinear or collocated formation). The
initial agent positions are not collocated or collinear (i.e.
ri,j < (ri,k + rj,k), ri,j = max{ri,j , ri,k, rj,k}).

Assumption 2 (Non-collinearity with landmarks). No agent
lies on the line that intersects both landmarks. Therefore no
agents are collinear with the landmarks.

Assumption 1 will be relaxed later in the paper. The goal

of this paper is therefore to derive a control law that ensures

the convergence of ri,j → r∗i,j as time, t → ∞.

An example scenario is shown in Figure 1. It can be noted

that all of the edges incident on a given agent connect objects

to which the agent is capable of measuring a local bearing.

III. INTER-AGENT DISTANCE CALCULATION

Agent Ri can measure the bearing φR
i,j ∈ [−π, π) in its

own coordinate frame to the neighbouring agent, Rj , taken

from the local xi direction of agent Ri. Agent Ri can also

measure the local bearing φL
i,s ∈ [−π, π) to the landmark,

Ls, taken from the local xi direction of agent Ri. A positive

value indicates a bearing taken in an anticlockwise direction

and a negative value indicates a clockwise direction.

R1

R2

R3

L2

L1

[
x2 y2

]ᵀ

d

[
x1 y1

]ᵀ

r1,2

r1,3

r2,3

Fig. 1. An example G showing the edges that connect each of the vertices
in V . Note that as the locations of the landmarks are known the distance
between them, d, can be calculated. This is discussed in Section III.

Let ϑi denote the difference between any two bearings,

φa and φb, taken by agent Ri:

ϑi(φa, φb) = |φa − φb| ∈ [0, 2π). (1)

Note that this is an angle not a bearing. To use these angles

we must ensure that (1) does not settle on the reflex angle.

We therefore denote the angle (as seen by agent Ri) between

any two given objects as,

θi(φa, φb) =

{
ϑi(φa, φb) if ϑi(φa, φb) ≤ π
2π − ϑi(φa, φb) otherwise,

(2)
From the two types of local bearing measurements – to

landmarks, φL
i,s, and to other agents, φR

i,j – three types of

angles can be calculated.

λi The angle subtended at agent Ri by the two land-

marks, L1 and L2: λi = θ(φL
i,1, φ

L
i,2).

αi The angle subtended at agent Ri by the two neigh-

bouring agents, Rj and Rk: αi = θ(φR
i,j , φ

R
i,k).

ηis,j The angle subtended at agent Ri by landmark, Ls,

and agent, Rj : ηis,j = θ(φL
i,s, φ

R
i,j).

The agents can make distance calculations by relating

the inter-agent distances to d, the distance separating the

landmarks. Letting pLs
=
[
xs ys

]ᵀ ∈ R
2,

d =
∥∥pL1

− pL2

∥∥ . (3)

The length between objects X and Y is denoted by

XY where an object is either a landmark or an agent. For

example, d = L1L2 and ri,j = RiRj .
The law of cosines can be used to describe the triangle

that is formed by the edges connecting the two landmarks

and agent Ri making the measurement:

d2 = L1Ri
2
+ L2Ri

2 − 2 L1Ri L2Ri cos(λi) (4)

The unknown distance L1Ri is related to ri,j through the

law of sines as follows:

L1Ri =
ri,j sin(η

j
1,i)

sin(γ1
i,j)

, (5)
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where γs
i,j is the third interior angle of �RiRjLs. Hence,

γs
i,j = π − ηjs,i − ηjs,i. (6)

Likewise, the other unknown distance L2Ri is related to ri,j
also through the law of sines as follows:

L2Ri =
ri,j sin(η

j
2,i)

sin(γ2
i,j)

. (7)

By substituting (5) and (7), it follows that (4) can be re-

written with only one unknown:

d2 =

(
ri,j sin(η

j
1,i)

sin(γ1
i,j)

)2

+

(
ri,j sin(η

j
2,i)

sin(γ2
i,j)

)2

− 2

(
ri,j sin(η

j
1,i)

sin(γ1
i,j)

)(
ri,j sin(η

j
2,i)

sin(γ2
i,j)

)
cos(λi) (8)

A factor of r2i,j can be extracted from each term on the

right hand side. This can then be rearranged for r2i,j , and by

taking the square root we obtain the relationship

ri,j =

√
d2

ci,j
, (9)

where

ci,j =

(
sin(ηjs,i)

sin(γs
i,j)

)2

+

(
sin(ηjt,i)

sin(γt
i,j)

)2

− 2

(
sin(ηjs,i) sin(η

j
t,i)

sin(γs
i,j) sin(γ

t
i,j)

)2

cos(λi). (10)

If Assumptions 1 and 2 hold it is possible for agent Ri

to calculate the inter-agent distance ri,j using (9) and (10).

This method requires the agents to share information with

neighbours as Ri is incapable of measuring ηj1,i and ηj2,i.
Without such communication, it seems impossible for agent

Ri to otherwise obtain ri,j . The locality of some of the angles

required by this method is shown in Figure 2.

Ri

Rj

Rk

ri,j

L2

L1

[
x2 y2

]ᵀ

d

[
x1 y1

]ᵀ

λ1

ηi2,j

ηi1,j

ηj2,i

ηj1,i

Fig. 2. The angles required by agent Ri to make the ri,j inter-agent
distance calculation using (9) and (10).

IV. DISTANCE-BASED CONTROL

Firstly, note that the desired inter-agent distances r∗i,j must

satisfy the triangular inequality (as in Assumption 1) and we

state this inequality explicitly as

r∗i,j < (r∗i,k + r∗j,k), r∗i,j = max{r∗i,j , r∗i,k, r∗j,k}. (11)

This ensures the existence of a triangle defined by these

desired values and bounds the desired formation shape away

from any collinear triangle.

A. Proposed Control Law

The dynamical model of agent Ri (in its own coordinate

basis) is given by

ṗi = vi

[
cos(βi)

sin(βi)

]
(12)

where pi =
[
xi yi

]ᵀ ∈ R
2, is the agent’s position, and

vi and βi are control inputs to be determined. The control

inputs for agent Ri are defined as,

βi = atan2(ai, bi), (13)

and,

vi =
√
a2i + b2i , (14)

where,

ai = vi,j sin(φi,j) + vi,k sin(φi,k) (15)

capturing the vector components in the agent’s local yi
direction and

bi = vi,j cos(φi,j) + vi,k cos(φi,k), (16)

capturing the vector components in the agent’s local xi

direction, with vi,j defined below3.

The movement is proportional to the error in the distance

separating the neighbouring agents. Hence the definition of,

vi,j = (ri,j
2 − r∗i,j

2)kr, (17)

where kr > 0 is a constant controlling the rate of conver-

gence. Note that the distance measurements are squared to

ensure a continuous first derivative.

An agent’s movement is effectively determined by a su-

perposition of two actions. The first action is the movement

directly towards one neighbouring agent if the desired inter-

agent distance is smaller than the current distance (else

directly away from that neighbour). The second is a similar

movement either directly towards or away from the other

neighbouring agent. Hence, the dynamics of the agent are

practically equivalent to the following mathematical model

ṗi = vi,j

[
cos(φi,j)
sin(φi,j)

]
+ vi,k

[
cos(φi,k)
sin(φi,k)

]
. (18)

3The function atan2(y, x) that is used in (13) computes arctan( y
x
) –

equivalently denoted tan−1( y
x
) – while accounting for the quadrant within

which this angle lies. Thus atan2(y, x) lies in the interval (−π, π] whereas
arctan( y

x
) lies in (−π

2
, π
2
]. By definition atan2(0, 0) = 0. The quadrant

is determined by the signs of both arguments x and y. This function is
commonly provided by programming languages including MATLAB.
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While (18) illustrates the motion of an agent in a more

intuitive manner we must remember that each agent has only

a single-integrator dynamic model with only a single speed

and heading input. Thus, when defining the control inputs we

must do so with (12) in mind as initially indicated above.

B. Dynamics and stability

This section analyses the dynamic system using the state

variables r1,2
2, r1,3

2, and r2,3
2. The state variables are

represented in vector form by

x =
[
r1,2

2 r1,3
2 r2,3

2
]ᵀ

. (19)

In addition we define a similar vector of desired values,

x∗ =
[
r∗1,2

2 r∗1,3
2 r∗2,3

2
]ᵀ

. (20)

From these vectors the system dynamics are governed by

ẋ = A(x− x∗), (21)

where the 3× 3 square matrix A is derived below.

There are four movements that govern the dynamics of

each state variable. These arise from agent Ri’s movement

to control ri.j and ri.k to the desired values, and from Rj’s

movement to control ri.j and rj.k to the desired values. Note

that the movements of agent Rk do not directly affect these

dynamics.

The two components causing a change in ri.j from the

movements of the two neighbouring agents moving directly

towards or away from one another are given by,

ṙi,j = (ri,j
2 − r∗i,j

2)kr. (22)

The other two components are given by agent Ri’s and

agent Rj’s movements directly towards or away from agent

Rk. These components are given respectively below,

ṙi,j = (ri,k
2 − r∗i,k

2)kr cos(αi), and, (23)

ṙi,j = (rj,k
2 − r∗j,k

2)kr cos(αj). (24)

As the state variables are squared values, we must relate

the components derived above to the state variable. As the

time derivative of ri,j
2 is ˙ri,j2 = 2 ri,j ˙ri,j we can write

the above components into the form of (21) and define the

matrix A:

A = 2kr

⎡
⎣ 2 ri,j ri,j cos(α1) ri,j cos(α2)

ri,k cos(α1) 2 ri,k ri,k cos(α3)
rj,k cos(α2) rj,k cos(α3) 2 rj,k

⎤
⎦

(25)

Now define the control error e = x − x∗ such that the

following error system is easily derived

ė = Ae (26)

Then the following result follows.

Theorem 1. Suppose Assumptions 1 and 2 hold and that
αi ∈ (0, π) and ri,j > 0, ∀i, j for some t0. Then solutions
to ė = Ae exist for all t ∈ [t0,∞). Further, the equilibrium
e = 0 of the error system (26) is exponentially stable.

Proof: Consider the Lyapunov function

v = e�e (27)

Then v̇ = e�Ae. Pick a row of A and we conclude that A
is negative-semidefinite via diagonal dominance since αi ∈
[0, π]. Thus, solutions exist for all t ∈ [t0,∞). Further, A is

strictly negative-definite whenever αi ∈ (0, π).
Now note that the dynamics (18) of each agent are qual-

itatively equivalent to the dynamics of those agents driven

by so-called rigidity-based formation control laws; see [23]–

[25]. In [26] it is proven that a formation obeying such

dynamics and initialised at t0 with αi ∈ (0, π), i.e. with

A < 0 will ensure that A retains strict negative-definiteness

A < 0 for all t ∈ [t0,∞). Therefore, exponential stability

follows; see also [27].

We thus have an exponentially stable control law for

formation shape and scale control with agents capable of

bearing-only sensing. The control law thus far permits any

initial formation shape besides those in which the agents are

collinear or collocated and it permits any desired formation

shape besides a collinear formation shape. We will relax this

initialisation restriction later.

V. SIMULATION

We simulated this control law using MATLAB. The initial

and final triangular formations as well as the landmark

locations were randomly generated. One such simulation is

illustrated in Figures 3 and 4.

Fig. 3. The initial and final triangular formation with the proportional gain
kr set to 0.0001. The lines connecting the triangles show the path taken by
each of the agents as they converge upon the desired shape.

VI. EXTENSION TO INCLUDE COLLINEAR FORMATIONS

The control law derived above can be used for triangular

formations where the initial agent positions satisfy Assump-

tions 1 and 2 and the desired formation satisfies

r∗i,j < (r∗i,k + r∗j,k), r∗i,j = max{r∗i,j , r∗i,k, r∗j,k}. (28)

However, it is possible to relax the initial non-collinear

requirement of Assumption 1. In this section we derive
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Fig. 4. Convergence of the inter-agent distances to the desired values.

another control law that can push the agents away from

a collinear formation. Mathematically we have relaxed the

triangular inequality for the initial formation to

ri,j ≤ (ri,k + rj,k), ri,j = max{ri,j , ri,k, rj,k}. (29)

Note that the final formation as specified by the set of desired

inter-agent distances must still satisfy (28).

Using (2) we can calculate the interior angle of the

formation, αi, at agent Ri. This is the angle subtended

at agent Ri by the two neighbouring agents, Rj and Rk:

αi = θ(φR
i,j , φ

R
i,k). We use this to derive a new control law

that directly acts on the errors between the actual and desired

interior angles by moving the agents to reduce the errors.

For this new control law we define three desired interior

angles, α∗
i , α∗

j , and α∗
k, such that,

n∑
i=1

α∗
i = π, where α∗

i ∈ [0, π]. (30)

We require that α∗
i �= 0 for any i. The desired angles capture

the shape but not scale of the desired triangular formation.

They can be calculated from the desired inter-agent distances

using the law of cosines,

α∗
i = arccos

(
r∗i,j

2 + r∗i,k
2 − r∗j,k

2

2 r∗i,j r∗i,k

)
. (31)

and obviously such an equation must be satisfied; i.e. the

desired interior angles must be consistent with the desired

inter-agent distances.

A. An Extension to the Proposed Control Law

The extended control law governing the motion of agent

Ri is given below. It takes the form of a switching controller

that switches between two laws. One of the control laws is

the law defined in Section IV-A. However, as this control law

will not work when the agents are collinear we thus derive a

second law to address this situation. The second law works

on the set of interior angles subtended at each agent by its

neighbours. The extension is based on [10], [11].

In order to use this extension a small angle ε must be

defined where 0 < ε < π. Ideally ε should be closer to 0.

This is used by the agents to decide which law is used at

each moment.

The extended control law is given by

ṗi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vi

[
cos(βi)

sin(βi)

]
if ε < αi < π − ε

vi
′
[
cos(βi

′
)

sin(βi
′
)

]
otherwise,

(32)

with the control inputs to the first case derived in Section IV-

A and the control inputs to the second case derived below.

The direction of the vector ṗi in the second case is

βi
′
=

{
αi

2 + min(φi,j , φi,k) if ϑi(φi,j , φi,k) ≤ π
αi

2 + max(φi,j , φi,k) if ϑi(φi,j , φi,k) > π,
(33)

where ϑi is given by (1). The speed vi
′ is proportional to

the error in the angle αi from its desired value,

vi
′ = −(αi − α∗

i )kα, kα > 0. (34)

If the current formation is collinear then the effect of this

control law is to drive the agents away from collinearity

and then let the original distance-based control law take

over. Once this happens we have it from Theorem 1 that

the control law is exponentially stable. Thus, for all non-

collinear desired triangles there exists an appropriate ε such

that we have an effective global stability result.

B. Simulations

We now provide simulations using this new control law

where the initial agent formation is collinear. The results of

the simulation are illustrated in Figure 5. We note that by

controlling the interior angles of the formation in addition

to controlling the inter-agent distances the agents are able to

move from a collinear formation to a triangular formation.

Fig. 5. The initial and final triangular formations with the kα = 1, kr =
0.001 and ε = 5o. Agents are driven from their collinear starting point.
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Fig. 6. The inter-agent angles tend to their desired values as the agents
converge to the desired formation.

Fig. 7. The inter-agent distances tend to their desired values as the agents
converge to the desired formation.

VII. CONCLUSION

In this work we defined a law for controlling the shape and

scale of triangular formations of agents with (local) bearing-

only sensing and landmarks with known positions.
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