

 “© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.”

Gradual Structuring: Evolving the Spreadsheet
Paradigm for Expressiveness and Learnability

Gary Miller
School of Computing
and Communications

University of Technology Sydney
Email: gary.miller@student.uts.edu.au

Felienne Hermans
Software Engineering Research Group

Delft University of Technology
Email: f.f.j.hermans@tudelft.nl

Robin Braun
School of Computing
and Communications

University of Technology Sydney
Email: Robin.Braun@uts.edu.au

Abstract—Spreadsheets are arguably the most used form of
programming and are frequently used in higher education to
teach fundamental concepts about computation. Their success
has shown that they are simple enough for a huge number of end
users to learn and use. This is in contrast to traditional program-
ming languages and the high dropout rate from introductory
programming and computer science. However in comparison to
traditional programming languages and structured modelling,
spreadsheets are not expressive, placing a limit on the levels of
computational thinking that can be taught using the spreadsheet
paradigm. This limitation is imposed by the lack of programming
language features and abstractions in the paradigm. Further-
more, more advanced spreadsheet features (e.g. array formulae,
lookup formulae, R1C1 syntax) can be difficult to learn and use.

This paper discusses the idea of adding language features
to spreadsheets, enabling the gradual structuring of free-form
spreadsheets to more structured models. We propose that this
concept is termed Gradual Structuring, and is analogous to the
programming language concept of gradual typing. In this anal-
ogy, spreadsheets take the place of dynamic programming and
structured modelling of static programming. In programming
languages, gradual typing allows dynamic programming to be
mixed with static programming. It is our contention that dynamic
programming is more learnable while static programming is more
expressive and abstract. Gradual typing could be used to mitigate
the issues in the teaching of traditional programming. Likewise
Gradual Structuring can mitigate the conceptual limits that can
be taught using current spreadsheets.

The key language feature required to enable Gradual Struc-
turing is the ability to logically group cells together so that a
single formula can be applied to the grouped cells. This concept,
termed cell grouping diminishes and can even eliminate the
need for the ubiquitous and error-prone use of copy-pasted
in spreadsheets. Moreover, it makes the structure present in
spreadsheet models explicit. Cell grouping requires a cascade
of other new languages features. Namely a more expressive
referencing style, which in turned requires enabling labels to
be moved to the row and column headers, and the hierarchical
structuring of these headers. Respectively these language features
are termed enhanced referencing and semantic axes.

The ongoing research focusses on the usability and learnability
of these language features. Spreadsheet applications exist that
contain aspects of the features mentioned. However these ap-
plications do not enable Gradual Structuring and have taken a
mainly technical, not human behavioural, approach to evolving
the spreadsheet.

I. INTRODUCTION

The basic features of Spreadsheets as they exist today
arguably make a better introductory programming environ-

Fig. 1: Explanatory Diagram - Relationship Between Gradual
Typing, Gradual Structuring, Expressiveness and Learnabilty

ment for higher education than conventional programming
languages [1]. This applies to a broad rage of domains, not just
science and engineering. However this does not extend much
past introductory programming as the spreadsheet paradigm
does not contain the necessary abstractions to comfortably
support complex programs.

It is increasingly necessary for students to take program-
ming subjects. Unfortunately concepts currently learnt from
spreadsheets do not transfer to general programming. It is our
contention that the spreadsheet paradigm could be evolved
to support more complex problems. This would extend the
useful domain of the paradigm and hopefully increase the
transferability of concepts when learning programming.

Abstractions can be added to the spreadsheet paradigm to
increase its expressiveness. It is our contention that these
language features can be designed to maintain and improve
the learnability of the paradigm. The key concept is to allow
people to use the features they find intuitive and provide the
scaffolding for them to access the more abstract and expressive
features. This is a concept we term Gradual Structuring.

This paper is laid out as follows. Section II draws an analogy
between Gradual Structuring and gradual typing, and is a back-
ground to issues in spreadsheets and general programming.
In section III a motiving example highlighting expressive

issues in currently spreadsheet modelling is provided. Sec-
tion IV proposes requirements for Gradual Structuring, puts
forward some language features to enable these and shows
how these features can be used to create more structured
versions of the motivating example. Section V is a discussion
of Gradual Structuring from an expressiveness and learnability
perspective. Section VI is on related work, and section VII are
concluding remarks.

II. BACKGROUND

Spreadsheets are outstandingly successful. However there
are many obvious issues with spreadsheets. The most visible
of which are errors in spreadsheet models. Spreadsheet errors
make the general news on a regular basis (e.g. [2]), and
research into understanding spreadsheet errors is well ad-
vanced [3]. In large part the analogous errors in programming
are mitigated by capabilities not present in spreadsheets (e.g.
unit tests and compiler errors). These capabilities are enabled
by abstractions in these systems (e.g. functions and types).

Spreadsheets do not allow for even the most basic forms
of abstractions that exist in most programming systems (e.g.
functional decomposition [4]). The trend has been to create
trap doors to other environments to gained increased expres-
siveness. A good example of these trap doors are Microsoft
Excel’s VBA based macros, Power Query and Power Pivot,
which are respectively based on imperative, functional and
relational programming paradigms. Learnings in the declara-
tive spreadsheet paradigm does not readily transfer to abilities
in these more traditional paradigms. Users are therefore left
having to learn multiple programming paradigms rather than
continually build on their existing knowledge and skills.

Mastering spreadsheet modelling is also difficult. There are
technical gaps between similar pieces of functionality. For
example a lookup formula is similar to a plain reference, but
is accessed by the use of functions. Mastering cell referencing
does not aid in understanding formula based lookup function-
ality. More importantly model design is difficult. There are
only a few weak features that aim in directing and constraining
design choices.

One of the most common concepts across programming
languages is the idea of variables. A memory location that’s
contents can be changed. From a cognitive perspective this is a
counter intuitive abstraction [5] analogous to the philosophical
separation of a name from the object that it represents [6].
Ambler [7] noted that the concept of a variable does not exist
in the spreadsheet paradigm.

The use of static verses dynamic typing is much more con-
troversial [8] than variables. Gradual typing seeks to balance
the trade-offs presented by the two different approaches [9].
Here languages are extended to support both dynamic and
static programming, allowing incremental adding of types to
programs. Industry has embraced gradual typing to help solve
some of the endemic issues, with large scale systems written
in dynamic languages [10], [11].

In this paper we draw and analogy between gradual typing
and a concept we have termed Gradual Structuring. Here

(a) Repeated Columns

(b) Addition of a day

(c) Logic Groups - Equivalent Formulae

Est Total
=SUM(B2:B4)
Task Totals
=SUM(G2:G4)
Carry Block
=IF(ISBLANK(C2),IF(ISBLANK(F2),$B2,F2),C2)

Fig. 2: Repetition Problem - Scrum Burndown - Heavy bor-
dered areas indicate logical groups of cells.

structured modelling, for example relational databased, is
analogous to statically typed programming and spreadsheet
modelling to dynamically typed systems.

Gradual Structuring proposes a solution that supports the
seamless coexistence of free-form and structured modelling.
This is achieved by adding language based features to the
spreadsheet paradigm. These are carefully selected abstrac-
tions that increase expressiveness and maintain usability. In
the vein of linguistic abstraction [12], these features are the
modelling design patterns of experts.

III. MOTIVATING EXAMPLE

Copy-paste repetition of formulae is ubiquitous in spread-
sheet modelling. Repeated structure in models, e.g. multiple
blocks of the same dimensions surrounded by the same labels,
are also common in spreadsheets, depending on the problem
being modelled. Both of these forms of repetition are sources
of error.

The motivating example described in this paper is the
use of a Scrum Burndown spreadsheet to address an Agile,
processing problem (see Figure 2a). Two forms of redundancy
are demonstrated; the copy-paste repetition of formulae, and
the repetition of headers in intermediate calculations blocks.

This spreadsheet enables users to estimate and enter the
remaining time for a task that they worked on on a particular
day as opposed to carrying across estimates for tasks that were

not worked on. This requirement mandates an intermediate
block to calculate and carry forward the estimates from the
last day that the task was worked on. The carry block exhibits
repeated headers (see Figure 2a) which are identical to the
headers in the input block. Adding an extra day requires the
insertion of a new column in both the input block and the
carry block and these formulae need to be copy-pasted into
the newly created cells (see Figure 2b). Note the repeated
column headers.

There are three copy equivalent [13] formulae in this model.
The formula in the first cell of each of these is shown in
Figure 2c.

As demonstrated in this example, copy-paste appears to have
some abstraction properties, as the references differ between
the source and destination cells. This is a compensation for
the lack of abstraction in the spreadsheet paradigm [14].

IV. GRADUAL STRUCTURING

A. Requirements

This section consists of the requirements for Gradual Struc-
turing taken from the perspectives of both free-form mod-
elling and structured modelling. Following this the features
that enable these requirements are investigated. Using these
features the motivating example is refactored into a partially
structured model, and then a fully structured model. Finally
the consequences of Gradual Structuring are discussed from
the perspectives of expressiveness and learnability.

The requirements for Gradual Structuring come from both
the spreadsheet paradigm and structured modelling. From
the world of spreadsheets comes methodologies, standards,
best practise, modelling design patterns and other informal
conventions. More formal requirements come from OLAP,
multi-dimensional modelling tools (typified by Lotus Improv),
relational databases and other programming paradigms.

Spreadsheet Modelling Conventions

The evidence for the desirability for a cell grouping feature
comes from a number of sources. Many spreadsheet audit-
ing tools contain a maps report (e.g. Operis Analysis Kit
& Spreadsheet Innovations) or distinct formula view (e.g.
Spreadsheet Detective) that show the cells that contain the
same formula, which in effect should be grouped. Spreadsheet
design literature [15] explicitly advocates for the grouping
of cells. Academic work on spreadsheet smell detection [16]
infers that clusters of cells and uses this in the detection of
errors.

The level of structure and grouping used by expert modellers
can also be seen in the ModelOff [17] solutions. Observational
studies of expert spreadsheet modellers has identified an
interesting pattern, which is the extent to which they structure
their models. This structuring consists of two parts: that of
the layout of their models so that cells having the same
formula are contiguous; and the labelling of these blocks
to provide information about the blocks. Such structuring
enables modellers to operate at the level of groups of cells
and using the application of a single formula to the group

(e.g. via entering a formula using Ctrl+Enter on selected cells
which is equivalent to copy and then paste special formulae).
Stronger evidence for this behaviour is the restructuring of
formulae to apply to a broader set of cells (e.g. IF(first
column,initial formula,formula)).

Formal Requirements from Structured Modelling

An appropriate set of requirements for structured modelling
can be taken from OLAP [18]. These are:

1) Rich dimensional structuring with hierarchical referenc-
ing.

2) Efficient specification of dimensions and calculations.
3) Flexibility.
4) Separation of structure and representation.
OLAP is only one possible source of formal requirements.

Traditional relational databases can be considered to be even
more structured than OLAP. Multi-dimensional modelling is
less structured, but closer to the flexibility of spreadsheets.
OLAP is chosen as there is already overlap with structured
modelling functionality in spreadsheets (e.g. pivot tables).
Although OLAP is a flexible database technology, it does not
have the flexibility of spreadsheet modelling as separation of
structure and representation is enforced (i.e. formulae cannot
be put into arbitrary cells.).

Similar requirements can be found in multi-dimensional
modelling applications [19], [20]. Lotus Improv’s core require-
ments were the separation of data, formulae and view.

B. Enabling Features

In this subsection the features that enable Gradual Structur-
ing are defined and discussed.

Cell Grouping

Cell grouping is a feature that allows a single formula
to be applied to a group of cells. This abrogates the copy-
paste repetition and redundancy described previously. A more
expressive enhanced referencing semantic, discussed below,
is required to facilitate cell grouping. Enhanced referencing is
required for both specifying the cell groups and the references
in the formulae. An implementation and concrete example
of cell grouping can be found in the Sumwise spreadsheet
application [21].

Enhanced Referencing

The key abstraction needed to enable cell grouping and
thereby Gradual Structuring is an enhanced referencing seman-
tic. It is designed to be readable as with A1 referencing, yet
have the invariant quality of R1C1 referencing, which enables
a reference to remain the same when applied to another cell.

Current spreadsheets use A1 referencing whereby the
columns are specified by letters and the rows by a number.
This is important as there is an alternate and more expressive
form of referencing. The R1C1 syntax is available in most
spreadsheet applications. Here both columns and rows are
specified using numbers. With R1C1 referencing the text
representation does not change when copy-pasted.

Before giving some enhanced referencing examples seman-
tic axes are discusses, as enhanced referencing depends on
them.

Semantic Axes

Enhanced referencing is based on more expressive row and
column dimensions, called axes. Axes are made up of cell-like
locations, called nodes. We use the terms axes and nodes, to
enrich the spreadsheet paradigm’s nomenclature. Each node
can have a primary name and any number of alternate names,
called tags. Nodes can be indented to form a tree structure, and
can be referenced via their path. Path queries can use names
and structural keywords (e.g. Children, Siblings).

Enhanced Referencing Examples

By way of example, the following row references could be
used to achieve the selections in Figure 3a.

1) Rows named Revenue or tagged Heading
2) Children of Revenue or Heading
3) Rows tagged Other
4) Rows that are siblings of Total
The shortest unambiguous reference can be used. Two

examples (see Figure 3b) of this are 1) if only a column is
specified, the current row is assumed 2) if a column name
does not appear in the row axis, the axis (C[] for column)
specifier is optional.

Intersections: Ranges are specified as the intersection of
rows and columns (e.g. [Total][Jan:Apr]). These ref-
erences have a more natural language feeling definition (as
noted in [22]) than the corner to corner ranges in current
spreadsheets. This is superior to named ranges [23] as there
is no indirection with enhanced referencing, whereas a named
range is not much more then an alias for a reference.

(a) Highlighted cells in each column represent a group

(b) Defaults and Disambiguation

Fig. 3: Enhanced Referencing Examples

Dynamic Nodes

Dynamic nodes refers to the concept that row and column
headers can contain an expression rather than being a literal
value. When an expression results in an array value, the
axis expands so that from the users’ perspective it only
contains literals. This is equivalent to a user creating multiple
nodes. Cell groupings that include the newly created cells set
formulae according to the modeller’s intention.

C. Example Applications of Gradual Structuring

Partially Structured Example

In Figure 4 the Scrum Burndown model is refactored. First
(fig. 4b) the rows are turned into a semantic axis. Row 1
is renamed to Tasks and the three tasks rows are indented
under it. Row 5 is renamed Total. Next, the column axes are
refactored (fig. 4c). Finally (fig. 4d) the day columns in the
carry block are replaced with a dynamic node that references
the days under Input. Two cell groupings (fig. 4e) are created
setting the formulae for the cells in the carry and total blocks.
The estimate total formula remains unchanged (fig. 2c).

Adding a day in the input block, will automatically get
included in the carry block. Cell grouping will ensure that
the newly created cells get the prescribed formulae.

Example Summary

The refactoring examples demonstrate the expressiveness of
the Gradual Structuring features. Enhanced references, enabled
by semantic axes, allow for the creation of cell groupings with
one formula applicable to all the cells in a group. These groups
remove the copy-paste redundancies, and at the same time are
flexible enough to direct changes as the model is modified.
Other redundancies, in this case duplicate column headers, are
eliminated by imbuing the node of a semantic axis with cell
like properties. In fact dynamic nodes are more expressive than
cells as they cleverly deal with array values. Unlike pivot tables
or spreadsheet cells, these features allow for partial structuring.

V. DISCUSSION

This section considers the consequences of Gradual Struc-
turing from two perspectives; expressiveness and learnability.
The conciseness conjecture is used [24] as the definition of
expressiveness. In summary

“less expressive languages exhibit repeated oc-
currences of programming patterns, and that this
pattern-oriented style is detrimental to the program-
ming process”.

Expressiveness

Structured modelling is more expressive, has more abstrac-
tions, but is generally less flexible and less usable. Gradual
Structuring by definition makes free-form modelling more
expressive, as it enables moving between free-form and struc-
tured modelling. The examples have shown that the repetition
of a formula via copy-paste can be replaced by a cell group
and a single reference, and that a single dynamic node can be
substituted for a block of repeated headers.

(a) Original Spreadsheet Model

(b) Refactored Rows - Named and Hierarchically Structured
(c) Refactoring Columns - Named and Hierarchically Structured

(d) Change Carry Columns to a Dynamic Node

(e) Cell Group Definitions, G1 and G2.

G1 [Carry.@Children][Tasks.@Children] =
"=IF(ISBLANK([Input.@This]),)"

G2 [Input.@Children][Total] =
"=Sum([Carry.@This][Tasks.@Children])"

Fig. 4: Refactoring Scrum Burndown to a Partially Structured Model

Four language based abstractions have been presented that
increase the expressiveness of spreadsheets, with no detri-
mental effects on liveliness and minimal interference with
directness. These features are orthogonal, in that the primary
functionality of one cannot be created using any of the others,
and when used in combination their behaviour is clear.

None of these features, on there own, are required to
perform computation (i.e. be Turing-complete). However the
design of these features needs to take into account that power
facilitates abuse. For example cell grouping (when considering
overlapping cells) or enhanced referencing (conditionals in
references) could become Turing-complete. We conjecture that
usable expressiveness generally correlates with a decrease in
computational power, and goes against the golden hammer
rule [25]. Turing-completeness of features does not necessarily
need to be avoided, but it should be acknowledged. Overuse
of the powerful aspects of features makes a good candidate
for code smell detection [26] (e.g. nested IFs).

Learnability

This section discusses the learnability of Gradual Structur-
ing from two perspectives. First from a holistic perspective
and second from the perspective of the individual features.

Holistic Perspective

Gradual Structuring as a concept should improve learnabil-
ity as it makes less accessible but more expressive structured
modelling available via stepwise refinement. There are a
number of routes a learner might take in adopting structured
modelling. For instance, as in the worked partially structured
example, the rows and columns could be refactored (fig 4d)
without using any of the other features. This on its own is of
value as a display feature, the nesting enables collapsing and
hiding of nested nodes (see Figure 5). Also as a standalone
feature enhanced referencing should make formulae easier to
read. Similar benefits exist for cell groupings as a standalone
feature.

Dynamic nodes possibly has no standalone benefit, as it
is strongly dependant on semantic axes and cell grouping
before generating any value. Therefore the first three can be
considered as anchor concepts [27] for Gradual Structuring.

Fig. 5: Refactoring Model - Collapsed Nodes

Dynamic nodes would be future down the an anchor graph.

Reductionist Perspective

We do not believe there are causal links between features
of Gradual Structuring and learnability. Some of the features
are naturally intuitive, others potentially counter intuitive or
neutral.

Abstractions do not necessarily have learnability penalties,
particularly if they are derived to capture common patterns
of use [12]. Cell grouping and semantic axes emerged from
the design patterns of expert modellers. They are therefore
expected to be innately usable features.

However enhanced referencing, does not emerge from pat-
tern capture. There are innate human cognitive abilities that
can be used to guide the design of enhanced referencing.
For example across all natural languages, subject verb object
(SVO) is the most common dominant grammatical form. From
[28] (page 373) SOV is the most dominant form (44 percent)
across all natural languages, whereas OVS and OSV are not
the dominant form in any. We would therefore expect certain
enhanced referencing syntaxes to be more usable. For example
[@ChildrenOf Input] (SVO) should be more usable
than [Input.@Children] (OVS). Enhanced referencing is
therefore a good candidate for empirical studies. Programming
languages in general would benefit by investigating the learn-
ability of their features using tools from cognitive psychology.

Dynamic nodes is possibly neutral on learnability. It did
not emerge from pattern capture, and is not a modification of
an existing feature. It has the ability to provide a directness
quality to the use of arrays. Current array formulae are not
particularly usable and lack directness. The potential of it
becoming a feature with high learnability is promising, but
it would need to be taught as it is unlike to be intuitive to
most people.

VI. RELATED WORK

Structured modelling research often involves basing the
spreadsheet paradigm on familiar formal specifications (e.g.
calculus [29], object-oriented specification [30], and functional
programming [31]). This line of work has a long history [32],
[33]. More recently there is research into manipulating and
visualizing hierarchical data in spreadsheets [34] and using
spreadsheets as an application development platform [35].

Bidirectional transformation of model-driven spreadsheets
[36] is an approach to bring structured modelling to spread-
sheets. This work is part of the larger SSaaPP project which
considered spreadsheet as a programming paradigm [37].

The intersection of spreadsheets and software engineering
is an active research area. Of particular note, in relation to
this paper is research in refactoring for spreadsheets [38]–
[41]. Gradual Structuring would benefit greatly if combined
with refactoring.

There is also an overlap between research into spreadsheets
and cognitive implications of computational language [42],
[43]. Spreadsheets are one of the few programming envi-
ronments that appear to align with innate human cognitive

abilities, as can be inferred from [7]. They therefore hold
great promise as a tool for research into usable computational
languages. Programming language research should look at the
seminal work of Newell and Card [44], which successfully
advocated for the application of cognitive psychology to
human computer interaction.

Abstractions enabling function decomposition are com-
monly proposed for the spreadsheet paradigm. A seminal paper
in this area is [4]. More recently [45] termed these features as
sheet defined functions and has research on the performance
of these. One of the issues raised with sheet defined functions
is ensuring they have the same power as built-in functions,
with first class array values proposed as a possible solution.
Dynamic nodes offers another solution, which is possibly
easier to integrate and is more usable.

Programming languages are the essential tool for software
engineering. There is substantial research into spreadsheets as
the most prominent end-user software engineering environ-
ment [46]–[48]. It is be beneficial to think of spreadsheets
as programming languages [49], and how they can co-evolve
with end-user software engineering, in a similar way [50] treats
more traditional programming languages.

Gradual Structuring exists to a small extent in current
spreadsheet applications. Tables and their associated structured
references were added to Excel in the 2007 version. Similar
features exist in a Apple Numbers. These are weak forms of
Gradual Structuring. This paper advocates that stronger forms
should be researched.

VII. CONCLUDING REMARKS

Gradual Structuring is the ability to develop models using
unstructured and structured modelling features simultaneously.
It is important that the same results can be generated using
either type of feature. Refactoring can be used to change
between them. In an analogy to gradual typing, free-form mod-
elling is programming in a dynamically typed programming
language and structured modelling a static typed one.

The features facilitating Gradual Structuring are all abstrac-
tions added to the spreadsheet paradigm. A minimal set of
requirements for structured modelling are taken from multi-
dimensional modelling applications. A more complete list of
four requirements are from OLAP systems.

Modern spreadsheets contain some structured features, most
notably pivot tables. However they are not considered to be
environments that support Gradual Structuring as it is not
possible to refactor between them.

Cell grouping facilitated by enhanced referencing allows
more structured models than using copy-paste. Using cell
grouping to create fully structured models achieves the ‘sepa-
ration of structure and representation’ required from structured
modelling.

Enhanced references facilitated by semantic axes are the key
technical requirement needed for cell grouping and thereby
Gradual Structuring. This is a small feature that can seman-
tically be well defined, but with a lot of syntactic options,
as such it is likely to benefit from empirical studies into

learnability. Focusing on this area could help generate a design
science of programmer experience.

Dynamic nodes solve the problem of header repetition. It
suggests the possibility of adding dimensional structuring to
the spreadsheet paradigm. This would provide the spreadsheet
paradigm with rich dimensional structuring, which is part of
the first requirement specified in structured modelling. The
hierarchical referencing requirement of structured modelling
is provided by path referencing of enhanced references.

Gradual Structuring has the potential to unify the free-form
nature of spreadsheets with the expressiveness of structured
modelling, whilst retaining liveliness and directness. Liveliness
and directness are sought after qualities of programming sys-
tems. Making the spreadsheet paradigm simultaneously more
expressive, with the same or greater degree of usability.

Spreadsheets can be regarded as a tool for early stage
problem formulation. With gradual structuring, early stage
modelling can be done in a free form way and structure can
be incrementally added as the model matures. In this way
Gradual Structuring has the potential to extend the domain
of spreadsheets as both a product for expressing complex
computation and a learning environment.

REFERENCES

[1] P. Warren, “Learning to Program: Spreadsheets, Scripting and HCI,”
in Proceedings of the Sixth Australasian Conference on Computing
Education - Volume 30, ser. ACE ’04. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2004, pp. 327–333.
[Online]. Available: http://dl.acm.org/citation.cfm?id=979968.980012

[2] J. Cassidy, “The Reinhart and Rogoff controversy: A summing up,” The
New Yorker, no. April, 2013.

[3] R. Panko, “What We Dont Know About Spreadsheet Errors Today,” in
EuSpRIG, 2015.

[4] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred
approach to functions in Excel,” in ACM SIGPLAN Notices,
vol. 38, no. 9. ACM, 2003, pp. 165–176. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944721

[5] R. Samurcay, “The concept of variable in programming: Its meaning and
use in problem-solving by novice programmers,” Studying the novice
programmer, vol. 9, pp. 161–178, 1989.

[6] W. V. O. Quine, “Word & Object,” 1960.
[7] A. Ambler, “Generalizing the sheet language paradigm,” in Visual

Languages and Applications, 1990.
[8] A. Stefik and S. Hanenberg, “The programming language wars: Ques-

tions and responsibilities for the programming language community,” in
Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software. ACM,
2014, pp. 283–299.

[9] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and
M. Felleisen, “Is sound gradual typing dead?” in Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 2016, pp. 456–468.

[10] Facebook, “Hack.” [Online]. Available: http://hacklang.org/
[11] Google, “Closure Compiler.” [Online]. Available:

https://developers.google.com/closure/compiler/
[12] E. Visser, “Understanding Software through Linguistic Abstraction,”

Science of Computer Programming, 2013.
[13] J. Sajaniemi, “Modeling spreadsheet audit: A rigorous approach to

automatic visualization,” Journal of Visual Languages & Computing,
vol. 11, no. 1, pp. 49–82, 2000.

[14] F. Hermans and T. V. D. Storm, “Copy-Paste Tracking : Fixing Spread-
sheets Without Breaking Them Copy-Paste Tracking in Action,” 2013.

[15] J. F. Raffensperger, “The Art of the Spread-
sheet - Organize blocks with care.” 2008. [Online].
Available: http://john.raffensperger.org/ArtOfTheSpreadsheet/ Chap-
ter05 BeConciseWithBlocks.html

[16] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu, “CUSTODES: Automatic
Spreadsheet Cell Clustering and Smell Detection using Strong and Weak
Features,” 2016.

[17] “ModelOff Questions.” [Online]. Available:
http://www.modeloff.com/questions/

[18] E. Thomsen, OLAP solutions: building multidimensional information
systems. John Wiley & Sons, 2002.

[19] Lotus, “Lotus Improv.” [Online]. Available:
https://en.wikipedia.org/wiki/Lotus Improv

[20] Quantrix, “Quantrix R© Modeler Version 4.0 User Guide.” [Online].
Available: https://www.quantrix.com/quantrix/userfiles/file/quantrix
modeler user guide.pdf

[21] D. Miller, G. Miller, and L. M. Parrondo, “Sumwise :
A Smarter Spreadsheet,” in EuSpRiG, 2010. [Online]. Avail-
able: http://www.sumwise.com/wordpress/wp-content/uploads/Sumwise-
A-Smarter-Spreadsheet.pdf

[22] E. Aivaloglou, D. Hoepelman, and F. Hermans, “A Grammar for
Spreadsheet Formulas Evaluated on Two Large Datasets,” 2015.

[23] R. McKeever and K. McDaid, “How do range names hinder novice
spreadsheet debugging performance?” in EuSpRIG, 2010.

[24] M. Felleisen, “On the expressive power of programming languages,” in
ESOP’90. Springer, 1990, pp. 134–151.

[25] W. H. Brown, R. C. Malveau, and T. J. Mowbray, “AntiPatterns:
refactoring software, architectures, and projects in crisis,” 1998.

[26] F. Hermans, M. Pinzger, and A. V. Deursen, “Detecting Code Smells in
Spreadsheet Formulas,” Proceedings of the International Conference on
Software Maintenance (ICSM), 2012.

[27] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S.
Clair, and L. Thomas, “A Cognitive Approach to Identifying
Measurable Milestones for Programming Skill Acquisition,” in
Working Group Reports on ITiCSE on Innovation and Technology
in Computer Science Education, ser. ITiCSE-WGR ’06. New
York, NY, USA: ACM, 2006, pp. 182–194. [Online]. Available:
http://doi.acm.org/10.1145/1189215.1189185

[28] J. R. Anderson, Cognitive psychology and its implications ., fifth edit ed.
WH Freeman/Times Books/Henry Holt & Co, 2000.

[29] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein, “Gencel:
a program generator for correct spreadsheets,” Journal of Functional
Programming, vol. 16, no. 03, p. 293, 2006.

[30] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[31] F. o. I. Csernoch, Maria (University of Debrecen and F. o. I. Biró,
Piroska (University of Debrecen, “Sprego Programming,” Spreadsheets
in Education (eJSiE), vol. 8, no. 1, 2015.

[32] A. Ambler, “Forms: Expanding the visualness of sheet languages,” 1987
Workshop on Visual Languages, pp. 105–117, 1987.

[33] K. Hassinen, J. Sajaniemi, and J. Vaisanan, “Structured spreadsheet
calculation,” [Proceedings] 1988 IEEE Workshop on Languages for
Automation@m Symbiotic and Intelligent Robotics, 1988.

[34] K. S.-P. Chang and B. A. Myers, “Using and Exploring Hierarchical
Data in Spreadsheets,” ACM CHI, 2016.

[35] R. M. Mccutchen, S. Itzhaky, D. Jackson, R. M. Mccutchen, and
S. Itzhaky, “Initial report on Object Spreadsheets,” 2016.

[36] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional Transformation of Model-Driven Spreadsheets.” ICMT,
vol. 12, pp. 105–120, 2012.

[37] R. Abreu, T. Alves, O. Belo, J. C. Campos, J. P. Fernandes, P. Martins,
J. Mendes, H. Pacheco, C. Peixoto, R. Pereira, H. Ribeiro, A. Riboira,
J. Saraiva, J. C. Silva, and J. Visser, “SSaaPP: SpreadSheets as a
Programming Paradigm,” Tech. Rep. August, 2014.

[38] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on. IEEE, 2012, pp. 399–409.

[39] J. Cunha, J. Mendes, J. Saraiva, and J. Visser, “Model-based program-
ming environments for spreadsheets,” Science of Computer Program-
ming, vol. 96, pp. 254–275, 2014.

[40] D. J. Hoepelman, “Tool-assisted Spreadsheet Refactoring and Parsing
Spreadsheet Formulas,” Ph.D. dissertation, TU Delft, Delft University
of Technology, 2015.

[41] F. Hermans, E. Aivaloglou, and B. Jansen, “Detecting problematic
lookup functions in spreadsheets,” in Visual Languages and Human-

Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 2015,
pp. 153–157.

[42] B. Kankuzi and J. Sajaniemi, “A mental model perspective for tool
development and paradigm shift in spreadsheets,” International Journal
of Human-Computer Studies, vol. 86, pp. 149–163, 2015.

[43] P. Saariluoma and J. Sajaniemi, “Visual information chunking in
spreadsheet calculation,” International Journal of Man-Machine Studies,
vol. 30, no. 5, pp. 475–488, 1989.

[44] A. Newell and S. Card, “The Prospects for Psychological Science in
Human-Computer Interaction,” Human-Computer Interaction, vol. 1,
no. 3, pp. 209–242, 1985.

[45] P. Sestoft, J. D. Rask, and S. Eikeland, “End-user development via sheet-
defined functions,” Software Engineering Methods in Spreadsheets, p. 8,
2014.

[46] A. J. Ko, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw, S. Wieden-
beck, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, and H. Lieberman, “The state of the art in end-
user software engineering,” ACM Computing Surveys, vol. 43, no. 3, pp.
1–44, 2011.

[47] R. Abraham, “End-User Software Engineering in the Spreadsheet
Paradigm,” Ph.D. dissertation, 2007.

[48] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Spreadsheet
engineering,” in Central European Functional Programming School.
Springer, 2015, pp. 246–299.

[49] F. Hermans, “Analyzing and Visualizing Spreadsheets,” Ph.D. disserta-
tion, 2012.

[50] E. Murphy-Hill and D. Grossman, “How Programming Languages Will
Co-evolve with Software Engineering: A Bright Decade Ahead,” in
Proceedings of the on Future of Software Engineering, ser. FOSE 2014.
New York, NY, USA: ACM, 2014, pp. 145–154. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593898

