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Abstract

Imagine a robot which is assigned a complex task that requires it to navigate in an unknown

environment. This situation frequently arises in a wide spectrum of applications; e.g., sur-

gical robots used for diagnosis and treatment operate inside the body, domestic robots

have to operate in people’s houses, and Mars rovers explore Mars. To navigate safely

in such environments, the robot needs to constantly estimate its location and, simultane-

ously, create a consistent representation of the environment by, e.g., building a map. This

problem is known as simultaneous localization and mapping (SLAM). Over the past three

decades, SLAM has always been a central topic in mobile robotics. Tremendous progress

has been made during these years in efficiently solving SLAM using a variety of sensors

in large-scale environments. However, some of the intrinsic structures of SLAM are yet

to be fully understood and utilized. This thesis is devoted to the study of some of these

structures.

This thesis is comprised of two main parts:

In the first part, we examine the specific structure of the standard measurement models

in pose-graph and feature-based SLAM. These standard models are affine with respect to

the position of robot and landmarks. Consequently, given the orientation of the robot, the

conditionally-optimal estimate for the robot’s and landmarks’ positions can be recovered

instantly by solving a sparse linear least squares problem. We propose an algorithm to ex-

ploit this intrinsic property of SLAM, by stripping the problem down to its nonlinear core,

while maintaining its natural sparsity. By taking advantage of the separable structure of

SLAM, we gain a global perspective that guides the conventional local search algorithms

towards a potential solution, and hence achieve a fast and stable convergence.

In the second part of this thesis, we investigate the impact of the graphical structure of

SLAM and several other estimation-over-graph problems, on the estimation error covari-

ance. We establish several connections between various graph-connectivity measures and

estimation-theoretic concepts. For example, we prove that, under certain conditions, the
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determinant of the estimation error covariance matrix of the maximum likelihood esti-

mator can be estimated by counting the weighted number of spanning trees in the cor-

responding graph, without solving the optimization problem or using any information

about the “geometry” of the scene (e.g., numerical values of the measurements). This sur-

prising result shows that the graphical structure of SLAM provides a compact, but rich

representation of the underlying estimation problem, that can be used—e.g., in decision

making and active SLAM—to predict and reason about the resulting estimation error co-

variance. Consequently, we tackle the combinatorial optimization problem of designing

sparse graphs with the maximum weighted number of spanning trees. Characterising

graphs with the maximum number of spanning trees is an open problem in general. To

tackle this problem, we establish several new theoretical results, including the monotone

log-submodularity of the weighted number of spanning trees in connected graphs. By

exploiting these structures, we design a complementary pair of near-optimal efficient ap-

proximation algorithms with provable performance guarantees and near-optimality cer-

tificates. We discuss several applications of our results and apply our algorithms on the

measurement selection problem in SLAM to design sparse near-D-optimal (determinant-

optimal) SLAM problems.
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CHAPTER 1

Introduction

Today, more than at any other time since the advent of the first robotic systems, mobile robots are being

deployed in a wide variety of unknown environments. Autonomous cars, robotic vacuum cleaners,

surgical robots, and Mars rovers are just few examples (Figure 1.1) These robots typically have to

navigate through their environment to perform their tasks. To navigate safely in such challenging

environments, a mobile robot needs to constantly estimate its location and, simultaneously, create

and maintain a consistent representation of its surroundings (e.g., by building a “map”). In robotics,

this problem is known as simultaneous localization and mapping (SLAM). Research on SLAM started

in the 1980’s—although it took another decade for the mobile robotics community to agree on a single

acronym [47]. Since its early days, SLAM has always been central to mobile robotics. Considerable

progress has been made during the last three decades.

Earlier efforts were focused on building a solid foundation for a consistent estimation-theoretic

framework. Soon, it became clear that the “localization” and “mapping” tasks are tightly coupled

to each other in SLAM. As the robot makes more observations, strong correlations begin to emerge

between the landmarks. This insight gave a truly unique character to SLAM, as such correlations

had not been observed in pure mapping. This phenomenon has been referred to as the “correlations

problem”, mainly because maintaining and updating these correlations is computationally costly. At

the time, a commonly accepted workaround was to avoid these correlations altogether by somehow

eliminating the dependencies between the landmarks and robot poses (i.e., decoupling the localiza-

tion and mapping problems). However, soon after this it was realized that the “curse of correlation”

is in fact a blessing when it comes to the convergence: it is through these correlations that the infor-

mation acquired locally is propagated across the entire map [33]. This realization is considered the

first major breakthrough in SLAM that led to a generation of estimation-theoretic SLAM algorithms

1
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(a) Google’s self-driving car (Waymo) (b) Dyson 360 eye vacuum cleaner

(c) Orthopedic Surgical robot (d) NASA’s Curiosity on Mars

Figure 1.1: Four applications of SLAM in different environments. In all of these applications, a
moving robot deployed in an unknown environment has to answer the “where am I?” and “what
does the world look like?” questions.1

based on the Kalman filter (KF).

KF-based algorithms are not scalable due to the curse of correlations. Moreover, the error intro-

duced in the extended Kalman filter as a result of linearization can lead to inconsistency. Addressing

these limitations was the most important goal of SLAM research in the 2000’s. It had been recog-

nised earlier that the graphical representation of SLAM problems tends to be sparse, simply because

the robot normally does not observe all landmarks at every time step. However, the sparse nature

of SLAM is not manifested in the covariance matrix (i.e., correlations problem). Without a doubt,

the second major breakthrough in SLAM was the realization that this sparsity can be manifested us-

ing the canonical representation, preserved by not marginalizing out older robot poses, and exploited

using modern iterative or direct sparse linear solvers. These insights are still the main principles be-

hind today’s state-of-the-art SLAM algorithms. The research on the practical aspects of SLAM (e.g.,

large-scale implementations and the use of various sensor modalities) flourished in the last decade.

During this time, we also witnessed a broad range of contributions focused on various topics such

as reliability against local minima and divergence, robustness against data association errors (outliers

and spurious measurements), and lifelong SLAM.

1Images courtesy of Wikipedia (Grendelkhan), Dyson, OrthoSpineNews, and NASA.
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Figure 1.2: Figure 1.2a shows a typical pose-graph SLAM dataset (City10K [83]). Figure 1.2b shows
the graphical representation of a simple SLAM problem, where the vertices correspond to the robot
poses, the edges correspond to the relative pairwise measurements, and the edge weights represent
the accuracy of the corresponding measurements. Solving SLAM as an estimation-over-graph problem
is equivalent to finding the optimal drawing of this graph in some geometric space (Figure 1.2c).

1.1 Motivation

Three decades of research on SLAM has resulted in scalable batch and incremental solvers that can

utilize a broad range of sensor modalities. By contrast, our understanding of the theoretical aspects

of SLAM has not progressed as far as it was expected. Most of the existing theoretical analyses are

based on oversimplified scenarios, and rely on restrictive and unrealistic assumptions. We are cur-

rently unable to explain why our solvers succeed miraculously in solving some challenging scenarios

[26, 78] while they may fail miserably in some other rather simple cases. Such empirical observations

suggest that perhaps there are some other structures in SLAM waiting to be discovered and under-

stood. This thesis is devoted to the study of such overlooked structures.

This thesis is comprised of two main parts:

1. The first overlooked structure we investigate in this thesis is the nonlinear structure of the

“standard” (i.e., relative pose-pose and pose-point) measurement models used in 2D and 3D,

pose-graph and feature-based SLAM (Chapter 3). Since the early days of SLAM, it has been

well known that SLAM reduces to a linear estimation problem if the orientation of robot θ

is known [44]. Based on this realization, one can design an exact dimensionality-reduction

scheme in which the original problem is separated into two smaller optimization problems. The

first problem aims to find the optimal estimate for robot’s orientation, θ�, while the second

problem recovers the optimal estimate for robot’s and landmarks’ positions p given θ�. Fig-

ure 1.2a shows a synthetic pose-graph SLAM dataset with about 10,000 poses. In this case, the
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state of each pose can be described by three parameters. Hence, to find the optimal estimate of

the robot’s trajectory, we have to search in R2·104 × [−π,π)104
. In recent years, it is not uncom-

mon to deal with large-scale datasets that are even up to an order of magnitude larger than this

case. This is especially the case in feature-based SLAM; e.g., by having � landmarks,2 the search

space grows to R2(104+�) × [−π,π)104
. By exploiting the separable structure of SLAM, we can

reduce the search space significantly down to [−π,π)104
, find the exact solution for θ via local

search, and easily recover the globally conditionally-optimal estimate for the rest of variables

(i.e., p) by solving a sparse convex program.

This idea is recognised in the recent literature and has been used for theoretical analysis [20, 155]

and designing approximate solvers [24]. Furthermore, Zikos and Petridis [159] and Wang et al.

[156] proposed to exploit this structure for solving SLAM. Zikos and Petridis [159] proposed a

Rao-Blackwellised particle filter whose performance degrades over time. Wang et al. [156] pro-

posed a dimensionality-reduction scheme, similar to the one described above. Their technique

relies on a restrictive assumption on the noise covariance matrix. Interestingly, the algorithm

proposed by Wang et al. [156] is a special case of the variable projection algorithm proposed

by Golub and Pereyra [60] in the 1970’s. Unfortunately, none of these algorithms are able to

preserve the sparse structure of SLAM.3 In Chapter 3 of this thesis, we demonstrate how to si-

multaneously benefit from both structures (sparsity and separability) using a modified version

of the original variable projection algorithm. Exploiting sparsity guarantees scalability, while

exploiting the separable structure of SLAM leads to a fast and stable convergence.

2. SLAM can be naturally represented by a graph, whose vertices correspond to robot poses and

landmarks, and its edges represent pairwise measurements between the corresponding ver-

tices. An example is shown in Figure 1.2b in which edge weights represent the accuracy of

the corresponding measurements. As we can see in Figure 1.2c, from this perspective, solving

the SLAM problem is equivalent to finding the optimal embedding (drawing) of this graph in

some geometric space (e.g., SE(d)n where each of the n poses belongs to SE(d)). It is obvious

that the topology of this graph impacts the estimation quality. Intuitively speaking, the more

“connected” this graph is, the more constrained the vertices are, and hence, the smaller4 the

2Note that the value of � depends on how rich the sensory readings are and it can be arbitrarily large (i.e., much larger
than the number of poses).

3Loss of sparsity is not mentioned in [159]. It is important to note that, unlike FastSLAM, the landmarks’ positions are
not conditionally independent given only the orientation of robot. Hence, a more accurate implementation has to employ a
“large” Kalman filter with a dense covariance matrix.

4This is formally defined with respect to the spectrum of the covariance (or information) matrix.
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resulting estimation error covariance will be. However, the exact mechanisms through which

a particular “graph-connectivity measure” influences an aspect of “estimation quality” are not

clear. Understanding these mechanisms enables us to predict the estimation quality to some ex-

tent by assessing the structure of the underlying graph. This knowledge can ultimately be used

as a powerful tool for evaluating decisions and plans (e.g., in the context of active SLAM) based

on the topology of the resulting graphs. The decisions and plans made by such an approach

have the advantage of not being tied to a particular (metric) trajectory.

We investigate this structure in Chapter 4. This aspect of SLAM is mostly overlooked. The mo-

tivation behind our analysis originally comes from the work of Olson and Kaess [123], in which

they insightfully pointed out the importance of graph connectivity. They empirically observed

that as the average degree in pose-graphs increases, the value of the negative log-likelihood

cost function at the maximum likelihood estimate approaches its value at the ground truth.

Motivated by [123], first we provide a theoretical explanation for this observation. We also

note that the graph Laplacian matrix appears in the derivation of the Fisher information matrix

in SLAM. This observation enables us to establish additional links between the graphical and

estimation-theoretic aspects of SLAM. In particular, the weighted number of spanning trees

emerges as a promising connectivity measure. We prove that the weighted number of span-

ning trees in SLAM is closely related to the determinant of the Fisher information matrix (and

consequently, that of the Cramér-Rao bound and the estimation error covariance matrix of the

maximum likelihood estimator).

This result motivates us to address the synthesis problem in Chapter 5. Our goal in this chap-

ter is to design sparse D-optimal (determinant-optimal) SLAM problems by designing sparse

graphs with the maximum weighted number of spanning trees; i.e., without using the real-

ized measurements or any knowledge about the “geometry of the scene” (e.g., true or nominal

trajectory). First, we we establish several new theoretical results in this chapter, including the

monotone log-submodularity of the weighted number of spanning trees. By exploiting these

structures, we design a greedy-convex pair of efficient approximation algorithms with comple-

mentary characters, provable guarantees and near-optimality certificates. Although our results

are originally motivated by the measurement selection problem in SLAM, our near-optimal

network design framework can be readily used in a few other applications across science and

engineering (such as Chemistry, RNA modelling, and the design of reliable communication

networks) where maximizing the weighted number of spanning trees is desired.
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1.2 Main Contributions

The main contributions of this thesis are summarized below:

� Chapter 3 — [91, 93]

• Establishing new links to the rich literature on separable nonlinear least squares (NLS)

problems and conditionally linear-Gaussian state-space models.

• Designing a new family of SLAM back-ends, capable of exploiting separability to achieve

fast convergence while retaining the sparse structure of SLAM.

� Chapter 4 — [90, 92, 94]

• Providing a theoretical explanation for the empirical observations reported in [123] re-

garding the role of average degree.

• Characterizing the impact of algebraic connectivity on the worst-case estimation error

variance in two families of linear-Gaussian estimation problems over graphs.

• Revealing the impact of the weighted number of spanning trees on the determinant of

the Fisher information matrix in SLAM and two families of linear-Gaussian estimation

problems over graphs.

• Introducing the notion of “normalized tree-connectivity”, which is used for comparing the

graphical structure of various SLAM problems with different numbers of variables.

� Chapter 5 — [95, 96]

• A number of new theoretical results, such as:

– Introducing a new log-submodular graph invariant: weighted tree-connectivity in

connected graphs.

– Presenting a closed-form expression for computing the expected value of the deter-

minant of random sum of rank-one matrices. A special case of this result gives the

expected weighted number of spanning trees in anisotropic random graphs.

• Designing a greedy-convex pair of efficient approximation algorithms for designing sparse

graphs with the maximum weighted tree-connectivity, with performance guarantees and

near-optimality certificates.

• Extending our near-t-optimal graph synthesis framework and its analysis to several other

formulations.
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• Providing a novel probabilistic explanation for the proposed convex relaxation graph syn-

thesis algorithm, and its extension to the more general case that had been studied, e.g., by

Joshi and Boyd [81] and in the theory of optimal experimental design.

• Presenting a new probabilistic justification for the deterministic rounding scheme used in

our graph synthesis algorithm, and its extension to the more general case that had been

studied by Joshi and Boyd [81].

• Proposing a novel graph-theoretic near-D-optimal measurement selection framework for

SLAM.

1.3 The Structure of the Thesis

This thesis is organized as follows:

• Chapter 2: In this chapter, we review some of the key contributions made over the last three

decades that have improved the understanding of SLAM or led to significant breakthroughs.

• Chapter 3: In this chapter, we investigate the nonlinear structure of the measurement models

in SLAM and propose a new algorithm that can benefit from exploiting the separable structure

of SLAM while preserving the sparse structure of the problem.

• Chapter 4: In this chapter, we study the impact of several graph connectivity measures on

several estimation-theoretic concepts.

• Chapter 5: In this chapter, we develop a near-optimal graph synthesis framework for designing

graphs with strong weighted tree-connectivity. We apply our framework to the measurement

selection problem in SLAM.

• Chapter 6: Finally, in this chapter we discuss challenges, open directions and our future work.

• Appendix A: In this chapter, we briefly review some preliminaries.

• Appendix B: In this chapter, we present extended proofs for our theoretical results.

1.4 Publications

The contents of this thesis are partially based on the following papers:
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Journal Papers

1. “A Sparse Separable SLAM Back-End” — IEEE Transactions on Robotics (2016)

Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.

2. “Dimensionality Reduction For Point Feature SLAM Problems With Spherical Covariance

Matrices” — Automatica (2015)

Heng Wang, Shoudong Huang, Kasra Khosoussi, Udo Frese, Gamini Dissanayake and Bing-

bing Liu

Conference Papers

1. “Designing Sparse Near-D-Optimal Pose-Graph SLAM Problems: A Graph-Theoretic Ap-

proach” — International Workshop on the Algorithmic Foundations of Robotics (WAFR) 2016

Kasra Khosoussi, Gaurav S. Sukhatme, Shoudong Huang and Gamini Dissanayake.

2. “Tree-Connectivity: Evaluating the Graphical Structure of SLAM” — IEEE International Con-

ference on Robotics and Automation (ICRA) 2016

Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.

3. “Exploiting the Separable Structure of SLAM” — Robotics: Science and Systems (RSS) 2015

Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.

4. “Novel Insights into the Impact of Graph Structure on SLAM” — IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) 2014

Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.

5. “Towards a Reliable SLAM Back-End” — IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2013

Gibson Hu, Kasra Khosoussi and Shoudong Huang.

Referred Workshop Papers

1. “Good, Bad and Ugly Graphs for SLAM” — Robotics: Science and Systems (RSS) 2015 Work-

shop on The Problem of Moving Sensors

Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.
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Preprints

1. “Maximizing the Weighted Number of Spanning Trees: Near-t-Optimal Graphs” — arXiv:1604.01116

Kasra Khosoussi, Gaurav S. Sukhatme, Shoudong Huang and Gamini Dissanayake.

1.5 General Notation

Throughout this thesis, bold lower-case and upper-case letters are reserved for vectors and matrices,

respectively. The standard basis for Rn is denoted by {ei}n
i=1 where n is usually clear from the context.

Sets are shown by upper-case letters. |X| denotes the cardinality of set X. For any finite set W,
(W

k

)
is the set of all k-subsets of W. We often use [n] to denote the set {i ∈ N : i ≤ n}. The eigenvalues

of symmetric matrix M are denoted by λmin(M) = λ1(M) ≤ · · · ≤ λn(M) = λmax(M). 1, I and 0

denote the vector of all ones, the identity and the zero matrices with appropriate sizes, respectively.

S1 � S2 (resp. S1 � S2) means S1 − S2 is positive definite (resp. positive semidefinite). ‖ · ‖
denotes the Euclidean norm, and the weighted Euclidean norm of vector e with respect to matrix

W � 0 is denoted by ‖e‖W �
√

e�W e. Sn
>0 and Sn

≥0 denote the sets of positive definite and positive

semidefinite n × n matrices, respectively. Kronecker product is denoted by ⊗. diag(W1, . . . ,Wk) is

the block-diagonal matrix whose main diagonal blocks are W1, . . . ,Wk. Finally, see Appendix A for

our domain-specific notations.



CHAPTER 2

Simultaneous Localization and Mapping:

A Survey

The journey of SLAM research began with the search for rigorous and consistent estimation-theoretic

formulations. Today, after three decades, we have a deeper understanding of the problem and its in-

trinsic structures, a number of efficient solvers based on several different paradigms, many successful

applications in a wide range of scenarios in and beyond robotics, and several highly-optimized, ro-

bust, free and open source (FOSS) implementations. In this chapter, we look back at the history of

SLAM and highlight some of the key contributions that have been pivotal to the success of SLAM

research. In particular, we describe the existing paradigms and explain the insights that led to their

creation. Our survey mainly focuses on how SLAM has been solved as an estimation/optimization

problem (i.e., SLAM back-end). Hence, we do not cover several other crucial aspects of SLAM re-

search such as data association or sensor-specific solvers; for those aspects of SLAM see the compre-

hensive surveys due to Durrant-Whyte and Bailey [47] [4] and Cadena et al. [17]. In addition to this

chapter, we review more specific related works separately in each chapter.

2.1 Classic Paradigms

Robots observe the environment and interact with it through their sensors and actuators. For obvious

reasons, these sensors and actuators are imperfect and noisy. Moreover, in many real applications,

the environment is often not fully known in advance. Furthermore, to limit the complexity of our

models, they are often incomplete and only capture the most significant aspects of robot motion

and sensing. Such errors are typically unpredictable and exhibit “random” behaviors. Probabilistic

10
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robotics [146] is a well-established robotic paradigm in which perception and control errors are inter-

preted as uncertainty and are captured with probability distributions. An important lesson learned from

the success of probabilistic methods in robotics in the past 30 years is that uncertainty can neither be

ignored nor treated as a secondary issue; it has to be (i) adequately represented, (ii) maintained as

new bits of information arrive or when the state evolves, and (iii) taken into account during reasoning

and decision making (see [146] and the references therein).

This is why, first and foremost, SLAM is a statistical estimation problem, whose goal is to estimate

spatial quantities (e.g., robot pose, landmark position) from noisy sensor measurements and imper-

fect models. Estimation-theoretic approaches to SLAM started with Smith and Cheeseman [138] and

Durrant-Whyte [46] who developed basic frameworks and guidelines for dealing with spatial and

geometric uncertainty that arise when an imperfect mobile sensor (e.g., mounted on a mobile robot)

observes a set of landmarks. Smith et al. [139] later developed one of the first estimation-theoretic

SLAM frameworks by introducing what they called a stochastic map (see also the work by Moutarlier

and Chatila [114]). They employed the extended Kalman filter (EKF) [2] to maintain and incremen-

tally update a Gaussian belief. Their framework ultimately became the basis for the first generation

of SLAM solutions known as EKF-SLAM algorithms [47]. A distinct feature of SLAM—that is not

present in pure mapping (i.e., known robot pose)—is the correlation between the estimates of every

landmark position. These correlations spread through the robot pose every time a landmark is ob-

served. Note that in pure mapping, the robot pose is known and therefore the estimates of the land-

marks remain statistically independent (assuming independence between the measurements’ noise).

Maintaining and updating these inter-dependencies is costly. This is one of the critical limitations of

EKF-SLAM. Therefore, it was widely assumed that the right strategy is to eliminate such undesired

inter-dependencies [47]. Although the existence of such inter-dependencies was recognised in [139],

their key role in the convergence of EKF was not fully understood at the time. For example, Leonard

and Durrant-Whyte [104] addressed the “correlations problem” by proposing a lossy strategy for

decoupling the estimates of the landmarks (or, equivalently, decoupling localization and mapping)

by controlling the spread of correlations. Roughly speaking, they do so by breaking SLAM into a se-

quence of almost-pure localization and almost-pure mapping whenever, respectively, the uncertainty

in the estimates of landmarks and poses is less than some thresholds—otherwise, they discard the

measurement. It was in the late 90’s that Csorba [33] theoretically demonstrated that these correla-

tions are, in fact, essential for the convergence of EKF-SLAM. It is through the correlations between

the estimates of the landmarks that observing any single landmark, leads to the spread of informa-
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tion to the entire map. Subsequently, Dissanayake et al. [38] shed more light on the convergence and

steady-state behaviour of Kalman filter-based simultaneous localization and mapping by proving the

following results—albeit for the linear-Gaussian case (see [38] for the exact model):

1. The determinant of any submatrix of the map covariance matrix decreases monotonically as suc-

cessive observations are made.

2. In the limit, the landmark estimates become fully correlated.

3. In the limit, the lower bound on the covariance matrix associated with any single landmark es-

timate is determined only by the initial covariance in the vehicle estimate at the time of the first

sighting of the first landmark.

The work by Dissanayake et al. [38] is also remarkable for describing a complete EKF-SLAM im-

plementation and addressing important problems such as map management, data association and

landmark initialization.

EKF-SLAM has two majors drawbacks: (i) computational cost, and (ii) inconsistency. The time

and space complexity of EKF-SLAM are both quadratic in the number of landmarks. Hence, a naive

implementation of EKF-SLAM is limited to “small” environments (e.g., 100 landmarks). The vast

majority of the measurement and motion models in SLAM are nonlinear. Linearization errors in EKF

can lead to strange outcomes and inconsistent (overconfident) estimates. This phenomenon was first

observed by Julier and Uhlmann [82] and was further investigated empirically and theoretically in

[5, 75, 76].

Submapping SLAM algorithms address these concerns by using EKF-SLAM in confined local

maps; see, e.g., [14, 49, 105, 145, 157]. These local maps are then fused together—usually with some

approximation—to obtain a global map. By limiting the number of landmarks in any single local

map, building each local map takes O(1) time. The number of local maps grows linearly with the

number of landmarks. Submapping algorithms can also improve local consistency by preventing

large global uncertainties; if the uncertainty in any local map reaches a certain threshold, we simply

start a new local map. Following this paradigm, Guivant and Nebot [66] proposed compressed EKF-

SLAM (CEKF-SLAM). In this method, observations are first used to update the current local map.

The information acquired by observing the landmarks in the local region is ultimately fused into the

global map when the robot leaves the local region [65].

The first Rao-Blackwellised particle filtering SLAM (RBPF-SLAM) algorithm is due to Murphy

[115]. Particle filters—also known as sequential Monte Carlo (SMC) methods [39, 43]—had been
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successfully used before [115] for pure localization in Monte Carlo localization (MCL) [36]. In [115],

the environment is represented by an occupancy grid and the robot lives in a discrete space, i.e., the

grid world. The key insight in [115] is the realization that given the trajectory of robot, map elements

are conditionally independent from each other. As we noted earlier, this is the key difference between

pure mapping and SLAM. In RBPF [42, 115], the state variables (up to time t) are partitioned into two

sets x◦
1:t and x�

1:t. Then, a particle filter—e.g., sequential importance resampling (SIR) filter [39]—

is used to describe the marginal posterior distribution p(x◦
1:t|z1:t), while p(x�

1:t|x◦
1:t,z1:t) is handled

analytically. Note that these two distributions, together, give the full posterior distribution,

p(x�
1:t,x◦

1:t|z1:t) = p(x◦
1:t|z1:t) p(x�

1:t|x◦
1:t,z1:t). (2.1)

Representing distributions by weighted samples can be highly inefficient in high dimensional spaces

(curse of dimensionality) [39, 41, 43]. Hence, in comparison to using a particle filter for handling

the entire posterior p(x�
1:t,x◦

1:t|z1:t), RBPF reduces the dimensionality of the particle filter. More im-

portantly, partitioning the state variables has to be done such that representing p(x�
1:t|x◦

1:t,z1:t) ana-

lytically is “convenient”—e.g., (i) when exact inference is possible, and/or (ii) when p(x�
1:t|x◦

1:t,z1:t)

factorizes based on conditional independence. Therefore, it is crucial to look for structures that may

exist in the problem before partitioning the variables in RBPF. Two classic examples are conditionally

linear-Gaussian state-space models and conditionally finite state-space hidden Markov models (for

discrete variables); see [42, 115]. Subsequently, Montemerlo et al. [113] in FastSLAM applied the idea

of Rao-Blackwellised particle filtering to the conventional formulation of SLAM that had been used

before in EKF-SLAM; i.e., where robot pose takes continuous values and the map is represented by

a set of landmarks in Rd (d ∈ {2,3}). By exploiting the aforementioned conditional independence

property of SLAM, FastSLAM breaks the O(n2) correlations barrier (for maintaining correlations be-

tween the estimates of the landmarks) in EKF-SLAM (here n being the number landmarks). For each

(weighted) particle of the robot’s trajectory, FastSLAM solves a pure mapping problem by maintain-

ing n separate EKF (one for each landmark), each of which can be updated in O(1) time. Montemerlo

et al. [113] described an efficient implementation that requires O(k log n) time and O(k n) space where

k is the number of particles. Another advantage of exploiting the conditional independence in Fast-

SLAM is that, unlike EKF-SLAM, FastSLAM naturally tracks parallel data association hypotheses

(one for each particle). Nevertheless, FastSLAM, like any other particle filtering algorithm, suffers

from two inevitable drawbacks, namely the filter degeneracy and sample impoverishment problems
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[39, 41, 43]. After running the particle filter for a few iterations, we observe that one particle will have

a normalized weight close to one, while the rest of the particles have near-zero normalized weights.

This problem is attributed to the increasing unconditional variance of the importance weights [43].

As a remedy, in SIR the filter is “reset” by resampling particles. However, resampling destroys di-

versity. Lack of diversity is the second major defect in sequential Monte Carlo methods and is often

referred to as the sample impoverishment problem. A sensible strategy for delaying degeneracy

is to choose the proposal distribution at time t such that the conditional variance of the importance

weights is minimized. This distribution is referred to as the optimal proposed distribution. In FastSLAM

2.0, Montemerlo and Thrun [112] improved their earlier work by sampling from the optimal proposal

distribution. For the nonlinear measurement models of SLAM, this distribution and the correspond-

ing weight function cannot be computed in closed form. Consequently, FastSLAM 2.0 approximates

these terms with Gaussian density functions by linearizing the nonlinear measurement model. Later,

Hahnel et al. [69], Eliazar and Parr [48], and Grisetti et al. [62] developed similar RBPF-SLAM algo-

rithms using occupancy grid maps. Despite these and other efforts (see, e.g., [43]), degeneracy and

sample impoverishment are two inevitable drawbacks of SMC methods that, for a fixed number of

particles, sooner or later will occur and, therefore, will affect the performance of the filter [41].

From an estimation-theoretic point of view, EKF-SLAM and its numerous variants [38, 47] are

classified as filtering methods [2]; i.e., at time t, the momentary robot pose at time t and time-invariant

locations of stationary landmarks are estimated using the data collected up to time t. The filtering

methods in SLAM are also known as online SLAM algorithms [146]. Alternatively, in the smoothing

techniques, the entire trajectory is estimated at every time step using the data collected up to that

time [2]. Clearly smoothing methods have the advantage of utilizing future observations to improve

the estimates of older states. Hence, it is sensible to expect that smoothing methods outperform

the corresponding filtering approaches in terms of accuracy (i.e., error covariance matrix). This ad-

vantage, however, usually comes at the cost of increased computational efforts, mainly because the

dimension of the state space grows linearly with time. Estimating the entire robot trajectory and the

time-invariant locations of stationary landmarks in SLAM is referred to as full SLAM [146]. For ex-

ample, FastSLAM [112] is considered a full SLAM algorithm—recall that each particle is a sample of

the entire robot trajectory.

Another family of online SLAM algorithms is based on the extended information filter (EIF). (Ex-

tended) information filter is the dual of (extended) Kalman filter, in which instead of tracking the

(approximately) Gaussian belief with its mean μ and covariance matrix Σ, the same belief is de-
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scribed and tracked by the information vector Σ−1μ and information—or, precision—matrix Σ−1. This

representation is referred to as the canonical representation. There is an elegant duality between the

prediction and update stages in EKF and EIF (see, e.g., [55, 148]). Another interesting property of

this representation is that the sparsity pattern of the information matrix of the (approximately) Gaus-

sian belief captures the conditional independence relations among the variables; i.e., the (i,j) entry

of the information matrix is zero if and only if (iff) the corresponding variables are conditionally in-

dependent given other variables [133]. Note a zero (i,j) entry in the covariance matrix (of a Gaussian

vector) implies that the corresponding variables are independent. As noted in [148], the sparsity pat-

tern encodes the adjacency pattern of the associated Gaussian Markov network (Gaussian Markov

random field) G = (V,E); i.e., for all i,j ∈ V, i and j are adjacent iff the (i,j) entry of the informa-

tion matrix is non-zero. The time complexity of a naive implementation of EIF-SLAM is cubic in the

number of landmarks.

The significance of EIF-SLAM goes beyond being merely a dual of EKF-SLAM. It was first em-

pirically observed and reported by Thrun et al. [148] that the normalized precision matrix in online

SLAM is “almost sparse”; i.e., many off-diagonal entries are significantly smaller than the corre-

sponding diagonal terms. Frese [54] later provided a proof for this phenomenon. Based on this ob-

servation, Thrun et al. [148] proposed an approximation of the EIF algorithm called sparse extended

information filter (SEIF), in which the information matrix is sparsified by systematically zeroing out

some of the small entries (i.e., creating new conditional independence relations that did not exist in

the original SLAM problem). Through this approximation, SEIF can achieve an approximate solution

in constant time [148].

SEIF demonstrated the importance of maintaining (with approximation) and exploiting sparsity.

Moreover, Thrun et al. [148] realized that the fill-in—i.e., new non-zero blocks in the information

matrix—is created in the prediction stage (also known as, motion update) of EIF, where the old robot

pose xt−1 is marginalized out (after augmenting the new robot pose xt). In the SLAM literature,

the connection between marginalization and fill-in in the information matrix had been insightfully

noted earlier by Frese and Hirzinger [55] through the notion of Schur complement. Therefore, it can

be concluded that exact sparsity of the information matrix is a natural consequence of maintaining

robot trajectory in the state vector of SLAM—i.e., taking a smoothing approach to SLAM, or full

SLAM. See [50, 55] for a discussion on this topic. Although smoothing suffers from the aforemen-

tioned computational drawbacks, it brings (exact) sparsity (of the information matrix) which helps

to break the correlation barrier in EKF-SLAM. It is important to note that, as in online SLAM, the
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covariance matrix in full SLAM is generally dense (i.e., estimates of the robot trajectory and the loca-

tions of landmarks are still highly correlated). It is also noteworthy that the computational efficiency

of FastSLAM—as a smoothing approach to SLAM—is also a consequence of this fact (albeit with a

different representation and by directly factorizing the smoothing posterior). As mentioned earlier,

in Gaussian distributions, the (i,j) entry of the information matrix is zero if and only if the corre-

sponding variables are conditionally independent given the rest of variables. Hence, sparsity of the

information matrix in full SLAM can be seen as the consequence of the conditional independence

property that was exploited in FastSLAM; i.e., estimates of landmarks are conditionally independent

given the robot trajectory.

Note that, at a more fundamental level, sparsity in SLAM is mainly due to the “local” nature

of observations and is affected by various factors such as the robot’s sensing field and motion. For

instance, the smoothing approach to SLAM would no longer be sparse if the robot can observe a

substantial fraction of landmarks at any time, or if the measurement noise samples affecting the mea-

surements are not statistically independent. These conditions generally hold in the SLAM problems

that emerge from practical scenarios.

2.2 Modern Paradigms

The smoothing formulation of feature-based SLAM is closely related to the bundle adjustment problem

in photogrammetry and computer vision; see [149] for a comprehensive survey. According to Triggs

et al. [149], this problem has a rich history that dates back to the 1950’s. Many of the techniques and

ideas that originated from bundle adjustment, resurfaced in the SLAM literature (e.g., using sensors

other than camera) in the past 10 years.

Lu and Milios [108] pioneered the smoothing approach to SLAM. They used raw laser scans and

odometry measurements to create pairwise pose relations. In [108], odometry data were transformed

into relative-pose measurements. Moreover, additional pairwise pose relations were created from

laser scans by performing scan matching between the corresponding laser scans. They used a net-

work to represent this problem, whose nodes represented robot poses and edges corresponded to

pairwise pose relations. Lu and Milios [108] solved the estimation problem by formulating a nonlin-

ear least squares problem. Note that, as explained above, due to the smoothing nature of this work

the resulting nonlinear least squares can be solved efficiently by exploiting the sparse structure of

SLAM. The global minimizer of this problem corresponds to the maximum likelihood estimate un-
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der the assumption of additive Gaussian noise. In today’s SLAM literature, this approach is referred

to as pose-graph SLAM or pose-graph optimization; several other names have been used as well, includ-

ing view-based SLAM as opposed to feature-based SLAM, and delayed-state SLAM [51]. This work was

extended by Gutmann and Konolige [68], who used Lu and Milios [108]’s algorithm, made it incre-

mental (i.e., incrementally detecting new pairwise relations) and proposed a more reliable loop closure

detection. Their method successfully built dense maps of indoor environments using raw laser scans.

Gutmann and Konolige [68] also noted that the resulting pose-graph is sparsely connected, and sug-

gested making use of this structure.

Over the past 10 years, numerous solvers have been proposed and applied to the smoothing for-

mulation of—both feature-based and pose-graph—SLAM. Duckett et al. [44] employed Gauss-Seidel

relaxation for solving a linear instance of SLAM with known robot orientation. The original nonlin-

ear problem was considered in [45]. Subsequently, Frese et al. [56] addressed the slow convergence

of Gauss-Seidel [45] (when closing large loops) by proposing a multilevel relaxation scheme inspired

by the multigrid methods used for solving differential equations. Folkesson and Christensen [53]

incorporated data association in the optimization problem and suggested to occasionally prune the

nodes of the graph. Graph sparsification by pruning nodes and edges is critical in large problems

that emerge from lifelong SLAM [19, 74, 99, 110, 152].1 The idea of incorporating data association

in the optimization process was later investigated by Olson and Agarwal [122] and Sunderhauf and

Protzel [144] which led to the development of robust SLAM solvers; see, e.g., [1, 25, 103].

Thrun and Montemerlo [147] proposed a full feature-based SLAM. They noted that the landmarks

can be efficiently marginalized out. Exploiting this structure is especially useful when the number of

landmarks is much greater than the number of robot poses. This technique is known as the Schur-

complement trick and had been known to the computer vision community [149]. They employed the

conjugate gradient descent method for solving the linear system.

Dellaert and Kaess [35] in square root smoothing and mapping (SAM) adopted direct sparse

solvers based on sparse QR and Cholesky decomposition of the Jacobian and information matrix,

respectively. They emphasized employing a good (heuristic) fill-reducing variable ordering. Subse-

quently, Kaess et al. [83] in incremental smoothing and mapping (iSAM) employed an incremental

sparse QR factorization method using the Givens rotations. They demonstrated that periodic vari-

able reordering and relinearization can effectively control fill-in and provide a good convergence to

the optimal estimate. Such periodic reordering and relinearization steps are basically equivalent to

1We survey these works in Chapter 5.
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batch iterations. The need for these inefficient batch iterations is eliminated in iSAM2 [85], in which

variable reordering and relinearization is done incrementally based on insights from graphical mod-

els. Rosen et al. [131] proposed a similar trust-region incremental solver based on Powell’s Dog-Leg

algorithm [127].

Olson et al. [124] proposed a pose-graph optimization algorithm based on the stochastic gradi-

ent descent method with an incremental parameterization xinc
i � xi − xi−1. Their parameterization

provides a simple way for capturing the “cumulative nature” of robot’s motion. Grisetti et al. [63] ex-

tended this work by parameterizing nodes based on a spanning tree (other than the odometry path).

Both works [63, 124] are reported to be robust against bad initial guess, while [63] is computationally

more efficient.

Konolige et al. [98] described an efficient implementation of pose-graph SLAM. They employed a

variant of the Levenberg-Marquardt algorithm and used sparse Cholesky factorization for solving the

damped normal equations. Kuemmerle et al. [102] subsequently proposed another efficient imple-

mentation. Strasdat et al. in [142, 143] compared the computation cost and accuracy of filtering and

smoothing approaches in the context of real-time visual SLAM. Based on their accuracy/cost anal-

ysis, it was concluded that filtering is the right choice only in the case of small processing budgets.

Furthermore, they reported that increasing the number of features is generally more “profitable”

than increasing the number of poses (i.e., camera frames). Strasdat et al. [143] noted that smoothing

approaches can handle a large number of features using the aforementioned Schur-complement trick

and by exploiting the sparse structure of SLAM.

The computational efforts needed when using sparse direct solvers can be prohibitive in “very

large” (i.e., say more than 105 measurements) SLAM problems that arise in lifelong SLAM. Dellaert

et al. [37] explored the idea of combining iterative (preconditioned conjugate gradients) and direct

linear solvers. An alternative approach is to approximate the problem by actively pruning the graph

(e.g., by pruning edges or marginalizing out nodes). This thesis reviews these methods in Chapter 5.

Another class of solutions are based on a modern interpretation of the original filtering submapping

algorithms; see, e.g., [77, 119].

Solving the nonlinear least squares problem in SLAM needs an initialization scheme to provide

an initial guess. The task of finding an initial guess for iterative optimization methods is referred

to as bootstrapping [73]. An ideal bootstrapping method needs to be (i) fast, and (ii) able to find a

reliable initial guess (i.e., “sufficiently close” to the ML/MAP estimate). The simplest bootstrap-

ping technique is dead reckoning (i.e., composing odometry readings). While dead reckoning is fast,



CHAPTER 2: SIMULTANEOUS LOCALIZATION AND MAPPING: A SURVEY 19

the resulting initial guess can be extremely unreliable due to the accumulation of error. Konolige

et al. [98] addressed this drawback by composing pairwise measurements (either odometry or loop

closures) along the shortest-path spanning tree rooted at the anchored node (i.e., origin). Carlone

et al. [23] [24] proposed linear approximation for 2D graph optimization (LAGO). LAGO breaks the

nonlinear least squares into two linear least squares subproblems; one for estimating the orienta-

tions and the other for estimating positions (given an estimate for robot’s orientation). Motivated

by LAGO, the problem of finding the maximum likelihood estimate of robot orientation in 2D pose-

graphs from relative angular measurements was carefully investigated by Carlone and Censi [21].

Hu et al. [73] proposed a sequential bootstrapping framework, in which each bootstrapping block

initialises the next block, until at the end a reliable initial guess for the original problem is obtained.

They demonstrated that this idea can be implemented by using M-estimators with a re-descending

influence function [73]. Liu et al. [106] proposed a convex relaxation approach by formulating the 2D

pose-graph optimization problem as a quadratically constrained quadratic program (QCQP) which

admits a straightforward semidefinite programming (SDP) convex relaxation. They mapped the so-

lution of the convex program into a feasible suboptimal estimate for SLAM, and used that estimate

to initialize conventional nonlinear least squares solvers. More recently, Rosen et al. [132] proposed

a similar approach by using a different convex relaxation for the more general case of M-estimation.

Huang et al. [78] reported surprisingly good convergence results from poor initial values in the

case of spherical (isotropic) noise covariance matrices. Subsequently, Wang et al. [154] [79, 155,

156] analyzed the number of local minima in simple scenarios under isotropic noise. They proved

that the simplified problems have at most two minima, one of which appears only when the data

are extremely noisy. They also developed a dimensionality-reduction scheme by exploiting the

partially-linear structure of standard measurement models. Carlone [20] analyzed the convergence

of Gauss-Newton in 2D pose-graph SLAM with isotropic noise. He concluded that the global conver-

gence is influenced by the graph structure, inter-nodal distances and the covariance of measurement

noise. Carlone and Dellaert [22] derived the Lagrange dual of a modified version of the nonlinear

least squares cost function of 2D pose-graph SLAM. Based on Lagrange duality, solving the dual

problem—in this case, a SDP—gives a lower bound on the minimum of the primal problem. Hence,

the optimal value of the dual problem can be used to assess the quality of any potential solution

found by iterative solvers. Carlone and Dellaert [22] also empirically observed that in many 2D

pose-graph SLAM problems, the duality gap is zero when the orientation noise is “reasonable”. In

such cases, the dual problem can be used to verify whether a potential solution found by iterative
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optimization methods is the true ML estimate. It is worth noting that the SDP relaxation scheme

proposed by Liu et al. [106] coincides with the Lagrange dual of their QCQP problem [15]. Recently,

Carlone et al. [26] extended their earlier work by presenting sufficient conditions to verify whether

strong duality holds in the modified 2D pose-graph SLAM. If this condition holds, they can find the

optimal estimate efficiently (i.e., without solving the dual problem).

2.3 Nonlinear Least Squares Formulation

In this section, we present a general formulation of the nonlinear least squares approach to full

SLAM. A more detailed problem formulation is presented in each of the following chapters. Let

x represent the state vector. In the Bayesian approach, x is modeled as a random vector with a

Gaussian prior p(x) = N(x; μx,Σx). Moreover, the measurement model is assumed to be given by

p(z|x) = N(z; h(x),Σ). The maximum a posteriori (MAP) estimate is the maximizer of the posterior

density,

p(x|z) ∝ p(z|x) p(x). (2.2)

Therefore, the MAP estimate x̂MAP is given by

x̂MAP � arg max
x

p(x|z) (2.3)

= arg min
x

− log p(x|z) (2.4)

= arg min
x

− log p(z|x) − log p(x) (2.5)

= arg min
x

‖z − h(x)‖2
Σ−1 + ‖x − μx‖2

Σ−1
x

. (2.6)

In the absence of an informative prior over x,2 one may seek the maximizer of the likelihood function

p(z|x) in order to obtain the ML estimate x̂ML. Dropping the prior in (2.6) gives x̂ML,

x̂ML � arg max
x

p(z|x) (2.7)

= arg min
x

‖z − h(x)‖2
Σ−1 . (2.8)

It is fairly rare to have an informative prior over x in practice. To simplify our notation, we often use

x� for referring to x̂ML or x̂MAP.

A standard iterative method for solving (2.6) and (2.8) is to use the Gauss-Newton method. First,
2In this case, x is treated as the vector of unknown deterministic parameters in the measurement model.
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we need an initial guess x0 that is “sufficiently close” to x�. Then, in the ith iteration of Gauss-

Newton, the measurement model is linearized by computing the Jacobian matrix Ji � ∂h(x)
∂x evalu-

ated at x = xi. What remains after linearization is a linear least squares problem which can be solved

by solving the so-called normal equations,

J�
i Σ−1Jiδxi = J�

i Σ−1
(
z − h(xi)

)
(2.9)

and updating the current estimate according to xi+1 = xi + αi · δxi where αi is a suitable step size

(e.g., satisfying the Armijo rule or Wolfe conditions; see [120]). This process is repeated until we

converge to a (locally optimal) solution. So far, we implicitly assumed that both x and z belong to the

Euclidean space (where, e.g., vector addition and subtraction are well-defined operations), which

is not an accurate assumption as both are comprised of rotational components. As it will become

clear shortly, this problem can be avoided to some extent in 2D. Nevertheless, this problem has been

investigated recently in the SLAM literature; see, e.g., [6, 70, 141]. A common approach is to rewrite

(2.9) and the update rule such that δxi lives in a tangent space [70, 141] and is mapped back to the

manifold using the exponential map. We discuss this idea in Chapter 3.

2.4 Summary

We presented a survey of some of the key contributions in SLAM during the past 30 years. To sum

up, two fundamental insights that led to significant breakthroughs are the following:

1. The correlations among the elements of the “stochastic map” in SLAM is inevitable. Further-

more, to maintain consistency, these correlations cannot, and should not, be ignored [33, 38].

2. The sparse structure of SLAM emerges from the canonical representation (information matrix)

in full SLAM (smoothing). Exploiting sparsity is crucial for computational efficiency.



Part I

SLAM: Sparse Separable Nonlinear Least

Squares
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CHAPTER 3

A Sparse Separable SLAM Back-End

As we saw in Chapter 2, under fairly standard assumptions, the maximum likelihood (ML) and

maximum a posteriori (MAP) estimation problems in SLAM can be formulated as nonlinear least

squares (NLS) problems. Given a “sufficiently good” initial guess—obtained using, e.g., a reliable

bootstrapping method such as [73]—the NLS problem can be solved using iterative schemes such

as Gauss-Newton (GN) or Levenberg-Marquardt (LM). In these methods, the measurement func-

tion is approximated by its first-order Taylor expansion around the current estimate. Newton-based

solvers treat the measurement function as a generic sufficiently smooth nonlinear function of state vari-

ables. However, the functions associated to the standard relative pose-point and pose-pose measure-

ment models (in 2D and 3D) has a noticeable structure: these functions are affine with respect to the

x, y (and z) coordinates of robot’s and landmark’s positions. Hence, given the robot orientation’s

throughout its trajectory, θ, the optimal choice in the ML/MAP sense for positions p can be obtained

by solving a sparse linear least squares problem.

Our goal in this chapter is to investigate this overlooked structure of SLAM. Exploiting this

structure—known as separability—will help to speed up the optimization process by reducing the

number of iterations needed for converging to a locally optimal solution. Unfortunately, naively ex-

ploiting separability will significantly increase the computational cost of each iteration due to the loss

of sparsity. In this chapter, we propose an algorithm that combines the advantages of exploiting both

structures (i.e., cheap iterations and fast convergence) by exploiting separability and sparsity at the

same time.

23
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Outline

Section 3.1 introduces several related works. In Section 3.2 we provide a mathematical formulation

of SLAM. Section 3.3 describes how the variable projection algorithm can be applied to exploit the

separable structure of SLAM. We propose a new algorithm in Section 3.4 to exploit both separability

and sparsity. Results obtained using both synthetic and real datasets are presented in Section 3.8.

This is followed by a discussion and a summary in Section 3.9 and Section 3.10, respectively.

3.1 Related Works

In the least squares literature, NLS problems with partially linear residuals are called separable [10, 61].

Golub and Pereyra developed the original Variable Projection (VP) algorithm to solve general separa-

ble NLS problems [60]. The main idea behind VP is to explicitly eliminate the linear variables and

solve the reduced NLS problem. This technique has been applied to a wide range of applications.

Both theoretically [134] and empirically it has been shown that, compared to solving the full NLS

problem, variable projection techniques exhibit faster or equal convergence rates (see [61] and refer-

ences therein). An extensive survey of VP applications can be found in [61]. A theoretical analysis

on the convergence properties of variable projection methods is due to Ruhe and Wedin [134, 135].

The high-dimensional state space of SLAM is one of its distinctive features in comparison with many

other applications of VP. This is why retaining and exploiting sparsity is vital to the scalability of

SLAM solvers.

In statistical terms, state-space models that exhibit “separable” structures are called condition-

ally linear-Gaussian state-space models [40] since estimating the linear variables, given the nonlin-

ear ones and measurements corrupted by Gaussian noise, corresponds to a linear-Gaussian sys-

tem. A common way of approaching conditionally linear-Gaussian state-space models is to use

Rao-Blackwellised particle filters (RBPF), see e.g., [40, 42]. Let θ denote the orientation of the robot

throughout its trajectory, p be the stacked vector of robot (and landmark) positions, and finally z be

the stacked vector of measurements—i.e., pairwise pose relations such as odometry and loop clo-

sures, as well as landmark observations. RBPF typically uses the standard sequential importance

resampling (SIR) filter to represent p(θ|z) using N weighted samples {θ[i]}N
i=1 drawn independently

from a proposal distribution; i.e.,

p(θ|z) ≈
N∑

i=1
wi · δ(θ − θ[i]), (3.1)
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in which δ is the Dirac delta function. Then, for each sample, the conditionally-optimal estimate for p

is recovered analytically by computing the mean of p(p|θ[i],z) using the Kalman filter (i.e., recursive

linear least squares).1 It is worth noting that this approach naturally leads to the minimum mean-

square error point estimate (MMSE)—i.e., mean of the joint posterior distribution; not its mode. Zikos

and Petridis [159] in L-SLAM [160] apply this idea to exploit the separable structure of feature-based

SLAM. In their RBPF, rather than partitioning the variables into landmarks and poses which was

used in FastSLAM [113], they divide the variables into θ and p. L-SLAM has two major drawbacks.

First and foremost, any sequential Monte Carlo method employed on a high-dimensional state space

will eventually suffer from degeneracy and, subsequently, sample impoverishment [41]. Sample

impoverishment has a negative impact on estimating θ due to the loss of sample diversity; after some

time t 
 t0, eventually all of the particles will share the same estimate for {θi}t−t0
i=1 for any t0 (i.e.,

effectively only one sample is drawn from the corresponding region of state-space). Furthermore,

by dividing variables into p and θ, the conditional independence property exploited in FastSLAM

to gain computational efficiency will be lost. Hence, L-SLAM has to maintain a Kalman filter with a

“large” dense covariance matrix.

In our previous work [156] linear variables of 2D feature-based problems with spherical noise are

explicitly eliminated to obtain a smaller optimization problem over θ. This approach is similar to

Golub and Pereyra’s VP [60], but with numerical differentiation and Newton iterations. This method

is computationally beneficial only in extremely noisy problems with dense graphs. LAGO [23, 24]

uses the separable structure of 2D pose-graph SLAM to bootstrap GN. First a refined estimate for θ is

computed by only considering relative measurements of robot heading. Based on this initial estimate,

LAGO then recovers the conditionally-optimal estimate for p. The final outcome is used to bootstrap

GN. From this perspective, our algorithm can be roughly interpreted as a constant use of LAGO’s

bootstrapping approach, without the initial phase of approximating θ (which makes our algorithm

robust to strong correlations between the noise components [24, 73]). Unlike our algorithm, LAGO

is limited to 2D pose-graphs.

The equivalence between the minima of the original optimization problem and those of the re-

duced problem allows researchers to study various properties of SLAM by looking at the reduced

problem. For instance, in [154, 155] we analyze the number of local minima in some small special

cases based on this idea. Similarly, Carlone [20] used the reduced problem to analyze the convergence

of GN in 2D pose-graphs with spherical noise covariance.

1It will become clear shortly that the latter stage is equivalent to (3.36) in our approach.
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3.2 Problem Formulation

3.2.1 Graphical Representation of SLAM

Let G = (V,E) be the graphical representation of SLAM.2 Vertices of G correspond to state variables

(e.g,., robot’s pose, landmark’s positions) and its edges represent the corresponding relative pairwise

measurements. It is easy to see that the SLAM problem will be an ill-posed problem if G is not

weakly connected. Any SLAM problem with c ≥ 1 connected components is essentially equivalent

to c independent SLAM problem with respect to c independent reference frames. Obviously, for

c ≥ 2, the relative transformation between the frames will be unobservable. Moreover, in practice,

the odometry spanning tree usually guarantees the connectivity of the graph. Therefore, without loss

of generality we can assume G is weakly connected. The reduced incidence matrix of G after anchoring

x0 to the origin (i.e., deleting the corresponding row from the original incidence matrix) is denoted

by A.3 Let Aodo denote the reduced incidence matrix of the spanning tree of G consisting only of

robot poses and odometry measurements. Note that the structure of Aodo is uniquely determined by

the number of poses np. Finally, the �-expansion of A is defined as A� � A ⊗ I� for � ∈ Z≥2.

3.2.2 Measurement Model

The conventional state vector is usually defined as [x�
1 x�

2 . . . x�
n ]�. As it will become clear shortly, it

is more convenient to permute the standard state vector and define our state vector as x � [p� θ�]�.

In 2D SLAM, p ∈ R2n is the vector of x and y coordinates of robot poses and landmark positions, and

θ ∈ [−π, π)np−1 is the vector of robot orientations. Each relative pairwise observation zij (from node

i to node j) is corrupted by an independently drawn additive Gaussian noise εij ∼ N(0,Σij),

zij = hij(xi,xj) + εij . (3.2)

Let P and L are the disjoint sets of indices of robot poses and landmarks, respectively. The measure-

ment function hij(·,·) for any (i,j) ∈ E has the following form. If j ∈ L,

hij(xi,xj) = R(θi)�(pj − pi) , (3.3)

2Here we treat G as a directed graph. Nevertheless, as we see in the next chapters, some important properties of SLAM
are somewhat insensitive to the orientation of the edges.

3See Appendix A.4.



CHAPTER 3: A SPARSE SEPARABLE SLAM BACK-END 27

and if j ∈ P,

hij(xi,xj) =

⎡⎢⎢⎣R(θi)�(pj − pi)

wrap (θj − θi)

⎤⎥⎥⎦ , (3.4)

where R(θi) ∈ SO(2)4 is the rotation matrix corresponding to θi, wrap : R → [−π,π) maps its argu-

ment to the equivalent angle in [−π,π). Define,

Rθ � diag
(
R(θk1), . . . ,R(θkm)

)
. (3.5)

Here ki is the index of robot pose making the ith observation. Let zp and zθ denote the stacked

vector of translational and rotational measurements, respectively. We permute the measurement

vector accordingly to obtain z � [z�
p z�

θ ]�. Similarly, the stacked vector of noise variables and its

covariance matrix are denoted by ε � [ε�
p ε�

θ ]� and Σ, respectively. Thus the measurement model

can be expressed as,5

z = h(x) + ε, where ε ∼ N(0, Σ), (3.6)

p(z|x) = N(z; h(x),Σ). (3.7)

Remark 1. Note that (3.3) and (3.4) admit both pose-graph and feature-based SLAM problems as special cases.

In pose-graph SLAM L = ∅, and in feature-based SLAM, pairwise pose measurements are limited to odometry

measurements.

Remark 2. As the title suggests, in this chapter we focus on developing a new SLAM back-end to exploit

the separable structure of SLAM. Consequently, we generally assume the data association is given. Solving

the data association problem can be challenging and needs to be dealt with separately in the SLAM front-end

[64, 98]. It is also common to make the back-end robust in order to deal with any remaining false positive asso-

ciations; see, e.g., [1, 144]. Fortunately, the separable structure of SLAM is preserved under such formulations.

4Special orthogonal group.
5To simplify our notation, we denote random variables (e.g., z) and their realisation in the same way.
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According to (3.3) and (3.4), the stacked measurement function of 2D SLAM is given by

h(x) = H(θ) x �

⎡⎢⎣R�
θ A�

2 0

0 Λ�

⎤⎥⎦x,

Λ =

⎧⎪⎪⎨⎪⎪⎩
A pose-graph,

Aodo feature-based,
(3.8)

in which A2 � A⊗ I2. We assume the correct regularization terms are applied to the measurements

[23, 24]. Rather than distinguishing between feature-based and pose graph scenarios, for conve-

nience we use the unified measurement function (3.8) throughout this chapter. Note that (3.8) can be

rewritten as h(x) = H1(θ)p + H2θ in which,

H1(θ) �

⎡⎢⎣R�
θ A�

2

0

⎤⎥⎦ , H2 �

⎡⎢⎣ 0

Λ�

⎤⎥⎦ . (3.9)

It is important to note that unlike H2, H1(θ) depends on θ. Nevertheless, with a slight abuse of

notation, we drop the argument of H1 for the sake of simplicity of our notation.

Remark 3. The standard relative pose-pose and pose-point measurement models in 3D SLAM are also affine

with respect to robot’s and landmarks’ positions. The stacked vector of noise-free translational measurements

in 3D SLAM can be written as R�
θ A�

3 p where p is the stacked vector of positions, A3 � A⊗ I3, and Rθ is a

block-diagonal matrix similar to (3.5) but with 3 × 3 rotation matrices. Note that rotational measurements do

not depend on p. To simplify our notation and without loss of generality, we mainly focus on the 2D SLAM

measurement model in the following sections. We will revisit the case of 3D SLAM in Remark 5 and explain

how our algorithm can be generalized to 3D pose-graph and feature-based SLAM. Although in this chapter we

do not consider a specific choice of sensors, the use of inertial sensors in 3D SLAM is quite common [109].

Therefore, it is worth noting that inertial measurements do not violate the separable structure of SLAM as such

measurements are affine in p (see e.g., [109]).

Remark 4. This chapter investigates SLAM problems with the standard 2D and 3D relative pairwise pose-pose

measurements for pose-graphs, and pose-point measurements for feature-based problems. Such measurements

can be obtained from range-bearing sensors after a reparameterization of original measurements (e.g., after

performing scan-matching). These models have become standard choices in the past 10 years (see, e.g., [64]).

However, such reparameterizations often involve nonlinear transformation of the original measurements. Due
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to such transformations, small errors may appear in the covariance matrices. These errors are typically in-

significant if the original covariance is “fairly small”. In the context of our work, such transformations can be

thought of as reparameterization performed to introduce separability. Note that directly using range-bearing

measurements does not lead to a separable NLS.

3.2.3 Point Estimation Criterion

In this chapter, we mainly focus on x̂ML (2.8) as it is fairly rare to have an informative prior over x in

real applications. Nevertheless, our approach can be straightforwardly generalized to the Bayesian

formulation (2.6) as well. For convenience, we denote the optimal estimate for any variable like c

with c�. Here c� is either ĉML or ĉMAP. Similarly, we denote the (full) NLS cost function by f(p,θ),

where f could be either (2.6) or (2.8).

3.3 Exploiting Separability in SLAM

Recall that the MAP and ML estimation problems in SLAM can be expressed as nonlinear least squares

problems. By further inspection of (3.9) one can see that the nonlinearity is caused by the rotation

matrices. Therefore, given the robot orientations θ, measurements are affine in robot and feature

positions p. Thus, given θ, the ML and MAP estimates for p can be computed by solving linear least

squares problems. NLS problems whose residuals are affine with respect to a subset of variables are

often called separable NLS [61]. This remarkable structure distinguishes SLAM from the general NLS.

In the rest of this chapter, we show how this structure can be exploited to speed up the estimation

process.

3.3.1 Variable Projection

Variable projection (VP) is an algorithm proposed by Golub and Pereyra to exploit this structure [60].

Golub and Pereyra [60] proved that, under some regularity conditions, the solution of the original

separable NLS problem can be obtained using the following procedure (see [60, Theorem 2.1]). Below,

we describe how their approach can be applied to SLAM.

Phase I. Find p�(θ), the conditionally-optimal estimate for p as a function of θ by minimizing

the original cost function in p.

Phase II. Replace p with p�(θ) in the original problem and minimize the new objective function
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in θ to obtain θ�. After solving this problem using, e.g., Newton-based solvers, the

optimal p� = p�(θ�) can be recovered instantly by solving a single linear least squares

problem.

Phase I – p�(θ): We begin with the positive-definite square root of the noise precision matrix

Σ− 1
2 � 0. To simplify our notation, we express the weighted �2 norm minimization in (2.8) as the

following unweighted least squares,

x� = arg min
x

‖z̃ − H̃1p − H̃2θ‖2, (3.10)

in which z̃ � Σ− 1
2 z, H̃1 � Σ− 1

2 H1 and H̃2 � Σ− 1
2 H2. The fact that the reduced incidence matrix is

full rank in weakly connected graphs results in the following lemma.

Lemma 3.3.1. For the measurement models defined in Section 3.2 (including 2D/3D feature-based or pose-

graph), if the corresponding graph is weakly connected, H̃1 is full column rank regardless of θ.

Proof. First note that Σ− 1
2 is full rank. Then, using the rank-nullity theorem it is easy to verify that

H̃1 = Σ− 1
2 H1 is full column rank if and only if H1 is full column rank. According to (3.9), H1 is full

column rank if and only if R�
θ A�

2 and R�
θ A�

3 are full column rank. Obviously, Rθ is not singular

(R�
θ Rθ = I). The reduced incidence matrix A is full row rank if and only if the corresponding graph

is weakly connected [27], which is the case in any well-defined SLAM problem (see the discussion in

Section 3.2.1). Consequently, H1 is full column rank, regardless of the value of θ.

As mentioned before, given θ, (3.10) is a linear least squares problem in p. Lemma 3.3.1 assures

us that, for any given θ, the optimal choice for p as a function of θ is uniquely given by,

p�(θ) � arg min
p

‖z̃ − H̃1p − H̃2θ‖2 (3.11)

= H̃†
1(z̃ − H̃2θ), (3.12)

in which H̃†
1 � (H̃�

1 H̃1)−1H̃�
1 is the Moore-Penrose pseudoinverse of H̃1 (see, e.g., [10]).

Phase II – Reduced NLS: By substituting p in the original objective function (3.10) with p�(θ) in

(3.12) and solving the resulting optimization problem we obtain θ� � arg minθ g(θ) where

g(θ) � ‖(I − H̃1H̃†
1)(z̃ − H̃2θ)‖2. (3.13)

Note that g(·) is a function of only robot headings θ, while the original optimization problem (3.10)
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was over both p and θ. Hence, we have reduced the parameter space from R2n × [−π,π)np−1 to

[−π,π)np−1. Pθ � H̃1H̃†
1 is the orthogonal projection onto range(H̃1), while P⊥

θ � I − H̃1H̃†
1 is its

orthogonal complement. Let us define rvp � P⊥
θ (z̃ − H̃2θ). In order to solve (3.13) using Newton-

based NLS solvers we need to compute the Jacobian matrix of rvp, i.e., Jvp � ∂
∂θ rvp. Computing

Jvp requires differentiating pseudoinverses (H̃†
1), and therefore is more complex than computing the

Jacobian matrix of the original full problem, i.e., J � ∂
∂xr in which r � z − h(x). Although it is

possible to approximate Jvp using finite differences (see [61] and the references therein), here we

employ the exact analytical expression for Jvp which is based on the seminal work of Golub and

Pereyra [60].

Computing Jvp: First note that (3.13) has a more general form compared to the case which was

originally considered by Golub and Pereyra [60], in that we have an additional term, linear with

respect to θ in our residual, i.e., −H̃2 θ.

Theorem 3.3.1. The jth column of Jvp is given by,

[Jvp]·,j = −
(

(P⊥
θ

∂H̃1
∂θj

H̃†
1) + (P⊥

θ

∂H̃1
∂θj

H̃†
1)�

)
(z̃ − H̃2 θ)

− P⊥
θ [H̃2]·,j . (3.14)

After finding θ� � arg min g(θ) using an iterative NLS solver such as GN, we can recover the op-

timal p� according to (3.12); i.e., by solving (H̃�
1 H̃1)p� = H̃�

1 (z̃− H̃2θ�). In general, VP iterations are

computationally more expensive than GN iterations on the full problem. Furthermore, the reduced

Jacobian (3.14) unlike the original Jacobian is generally dense. Therefore, directly applying VP to

SLAM is impractical and will not lead to an efficient solver.

3.3.2 Kaufman’s Algorithm

Kaufman [86] proposed to approximate the jth column of Jvp according to

[JK
vp]·,j �−

(
P⊥

θ

∂H̃1
∂θj

H̃†
1

)
(z̃ − H̃2 θ) − P⊥

θ [H̃2]·,j . (3.15)

In small-residual problems, the impact of the term neglected in JK
vp on the convergence rate of the

algorithm will be negligible as shown in [86]. The consequences of this approximation is rigorously
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Algorithm 1 SLAM solver based on [86]
1: repeat

2: Compute the full QR factorization of H̃1 (3.16)

3: Recover p� by solving R1 p�(θ(i)) = Q�
1 (z̃ − H̃2θ(i))

4: Compute the modified residual and Jacobian (3.19)

5: Construct the normal equations for the reduced problem

6: Solve the normal equations to obtain δθ(i)

7: θ(i+1) ← θ(i) + δθ(i)

8: until convergence

9: p� ← p�(θ�) according to (3.12)

investigated in [134] and has been verified numerically in various domains [60]. In SLAM, the resid-

uals will be small if the measurements are sufficiently consistent with each other, or equivalently,

when the realized noise is sufficiently small. It is worth noting that even GN, as an approximation

of Newton’s method, relies on an explicit small-residual assumption [10]. Therefore, it is sensible to

conclude that large residuals will have a negative impact on the convergence rate of both VP and

GN. Kaufman’s simplification reduces the time per iteration of VP up to 25% [134]. Because of this

reduced complexity, Kaufman’s method has become the preferred algorithm for solving separable

NLS problems [61]. As we will see shortly, in sparse separable NLS problems (such as SLAM), Kauf-

man’s modification, in a slightly different form, plays an even more crucial role by enabling us to

maintain the sparsity.

Algorithm 1 summarizes a SLAM solver based on an efficient implementation of VP using Kauf-

man’s modification. In the rest of this section we discuss some important details about implementing

an efficient version of VP with Kaufman’s modification using the QR decomposition of H̃1. First we

need to compute the full QR factorization of H̃1,

H̃1 = QR =
[
Q1 Q2

] ⎡⎢⎣R1

0

⎤⎥⎦ . (3.16)

The sparse structure of H̃1 can be exploited in this stage by using optimized software packages

such as SuiteSparseQR [34]. Define dz � dim(z) and dp � dim(p). Then Q1 ∈ Rdz×dp and

Q2 ∈ Rdz×(dz−dp) are orthogonal matrices, and R1 ∈ Rdp×dp is an upper triangular matrix. The

columns of Q1 and Q2 form orthonormal bases for range(H̃1) and null(H̃�
1 ), respectively. Conse-

quently Pθ = Q1Q�
1 and P⊥

θ = Q2Q�
2 . The residual vector of VP functional can be simplified using
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(3.16),

rvp = P⊥
θ (z̃ − H̃2θ) = Q2Q�

2 (z̃ − H̃2θ). (3.17)

To evaluate the reduced NLS cost function g(·) we can use the QR decomposition of H̃1 in (3.16) and

the fact that the Euclidean norm is invariant under orthogonal transformations. Therefore we have

g(θ) = ‖Q�
2 (z̃ − H̃2θ)‖2. According to (3.15), the jth column of JK

vp is given by

[JK
vp]·,j = −Q2Q�

2

(
∂H̃1
∂θj

p�(θ) + [H̃2]·,j

)
. (3.18)

Note that for a given θ, p�(θ) can be easily computed by solving R1 p�(θ) = Q�
1 (z̃ − H̃2θ) by back-

substitution. It can be easily verified that multiplying both the residual vector and Jacobian matrix

from the left by an orthogonal matrix does not change the GN direction. Hence, using this invariance

property we can eliminate Q2 by multiplying (3.17) and (3.18) by Q�
2 from the left.

Q�
2 rvp = Q�

2 (z̃ − H̃2θ)

[Q�
2 JK

vp]·,j = −Q�
2

(
∂H̃1
∂θj

p�(θ) + [H̃2]·,j

)
. (3.19)

Note that Q2 could not be “eliminated” without using Kaufman’s simplification.

3.4 Sparse Variable Projection

In the previous section we explained how Algorithm 1 exploits the separable structure of SLAM. At

first glance, applying this algorithm to SLAM may appear to be computationally advantageous as it

reduces the size of the normal equations from (2n + np) to only np. However, the normal equations

of the reduced problem in SLAM is dense in general. Hence VP, as implemented in Algorithm 1,

does not lead to a scalable algorithm as we would need at least O(n2
p) space and O(n3

p) time per

iteration to solve the resulting dense linear system. Therefore it is sensible to ask whether we can

exploit separability without giving up the intrinsic sparse structure of SLAM.

Barham and Drane [7] proposed an intuitive algorithm to solve separable NLS problems. Unlike

the variable projection algorithm, in their approach the linear variables are not entirely eliminated

from the optimization problem. They use the Schur complement in each iteration to solve the normal

equations of the original full NLS only for the nonlinear variables. Then, instead of back-substituting

the resulting estimate into the normal equations, they exploit the separable structure of the problem
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by computing the conditionally-optimal estimate for the linear variables. This process is repeated

until convergence. At first glance this intuitive algorithm may seem like a simple heuristic. However,

it has been shown that this procedure leads to the same iterations as the Kaufman’s algorithm [125].

It is well known that although the original system of normal equations is sparse, the Schur com-

plement in general—and particularly in our case—is dense. However, the original algorithm can be

simply amended to maintain sparsity. Instead of computing the Schur complement, we can simply

solve the normal equations for both linear and nonlinear variables, and then replace the resulting

estimate for the linear ones with the conditionally-optimal values (3.12). By doing so, the sparse

structure of the problem is preserved in the process of exploiting separability. In what follows, we

explain how this idea can be applied to SLAM.

Retaining Sparsity

Consider the normal equations of the original problem,

J̃�J̃ δx(i) = −J̃�r̃. (3.20)

Here δx(i) � [δp�
(i) δθ�

(i)]� denotes the ith GN direction, r̃ is the normalized residual vector r̃ � Σ− 1
2 r

and J̃ � ∂
∂x r̃, both evaluated at x(i). Let I � J̃�J̃ be the approximated Hessian. Note that J̃ can be

divided into two blocks, J̃ = [J̃p J̃θ] in which J̃p � ∂
∂p r̃ and J̃θ � ∂

∂θ r̃. Hence, (3.20) can be expressed

as,

⎡⎢⎢⎣ Ip Ip,θ

I�
p,θ Iθ

⎤⎥⎥⎦
⎡⎢⎢⎣δp(i)

δθ(i)

⎤⎥⎥⎦ =

⎡⎢⎢⎣−J̃�
p r̃

−J̃�
θ r̃

⎤⎥⎥⎦ . (3.21)

Barham and Drane [7] proposed to eliminate δp(i) from (3.21) using the Schur complement of I with

respect to Ip, often written as I/Ip:

I/Ip � Iθ − I�
p,θI−1

p Ip,θ. (3.22)

Define

dθ � −J̃�
θ r̃ + I�

p,θI−1
p J̃�

p r̃. (3.23)
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After eliminating δp(i), (3.21) reduces into,

(I/Ip) δθ(i) = dθ. (3.24)

Solving (3.24) results in δθ(i). Back-substituting this solution into (3.21) and recovering δp(i) leads

to the standard GN direction for the original cost function. Instead, Barham and Drane [7] pro-

posed to pair θ(i+1) = θ(i) + δθ(i) with the conditionally-optimal estimate p(i+1) using (3.12) [7]. The

conditionally-optimal estimate for p(i+1) is p�(θ(i+1)). It can be computed by solving the following

sparse linear system,

(H̃�
1 H̃1) p(i+1) = H̃�

1
(
z̃ − H̃2θ(i+1)

)
. (3.25)

Note that here H̃1 is evaluated at θ(i+1). Repeating this procedure until convergence leads to a se-

quence of steps along which the cost function (2.8) has zero gradient with respect to p. This algorithm

is summarized in Algorithm 2.

As mentioned earlier, the Schur complement in the reduced linear system (3.24) is generally dense.

Note that in each iteration of Algorithm 2, the solution of the reduced system (3.24) is identical to

the δθ(i) obtained by solving the full system (3.21). Unlike the Schur complement, the full system of

normal equations is sparse. Thus instead of eliminating linear variables using the Schur complement,

the same outcome can be achieved by solving the sparse full system (3.21), discarding the obtained

δp(i) and instead computing the conditionally-optimal p(i+1) according to (3.25). This algorithm is

summarized in Algorithm 3.

It is of utmost importance to note that our proposed algorithm produces (mathematically) identi-

cal steps to those of Algorithm 1 and Algorithm 2 (see [125] for the equivalence between Kaufman’s

method and the algorithm proposed by Barham and Drane [7]). However, unlike those algorithms,

Algorithm 3 only requires solving two sparse linear systems in each iteration which leads to a crucial

computational benefit:

1. The first sparse linear system is the normal equations of the original full NLS problem (3.21).

Solving this system results in δθ(i) and θ(i+1) consequently.

2. In the second sparse linear system, we recover the conditionally-optimal estimate p(i+1) by

solving (3.25). This is where we exploit the separable structure of SLAM.

Our algorithm combines the advantages of both Algorithm 1 and Algorithm 2. On the one hand,

the equivalence between Algorithm 3 and Algorithm 1 (through their equivalence to Algorithm 2
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[125]) provides a rigorous justification for our approach and connects us to the rich literature on

variable projection and the performance of Kaufman’s algorithm. On the other hand, the equivalence

between Algorithm 3 and Algorithm 2, besides providing an intuitive interpretation for Kaufman’s

approximation, enables us to preserve the sparse structure of the problem. Algorithm 3 can be

easily implemented by a simple modification of existing state-of-the-art back-ends: we only need an

additional step to solve (3.25) using e.g., a sparse Cholesky solver. Table 3.1 provides a summarized

comparison between these algorithms, sorted by their cost per iteration in descending order. An

efficient implementation of our algorithm is discussed in Section 3.7. Figure 3.1 illustrates how our

proposed algorithm works.

Remark 5. As mentioned in Remark 3, our approach can be easily extended to 3D pose-graph and feature-based

SLAM with the standard relative pose-pose and pose-point measurement models. Without loss of generality, let

us assume the translational and rotational noise components are uncorrelated. With a little abuse of notation,

the cost function in these problems can be expressed as,

f(p,θ) = fp(p,θ) + fθ(θ), (3.26)

in which fp(p,θ) � ‖zp − R�
θ A�

3 p‖2
Σ−1

p
and,

fθ(θ) �
∑

(i,j)∈Ep

‖Log(R�
zij

R�
i Rj)‖2

Σ−1
θij

(3.27)

where Log : SO(3) → R3 maps a 3 × 3 rotation matrix to the corresponding rotation vector (i.e., axis-angle

representation), Ep ⊆ E is the subset of edges that correspond to pose-pose measurements, Rzij is the observed

rotational measurement (corrupted by noise), Σθij
is the corresponding covariance matrix, and Ri ∈ SO(3) is

the rotation matrix of the ith robot pose. The state-of-the-art sparse back-ends use a minimal parametrization

(e.g., rotation vector) for θ in each iteration of the standard iterative schemes such as GN. Let θ(k+1) be the

estimate obtained at the (k + 1)th iteration of GN using the update rule θ(k+1) = θ(k) � δθ(k). Here �

generalizes + and can be defined based on, for example, the exponential map for SO(3) [71]. Now given

θ(k+1), the conditionally-optimal estimate for p that minimizes (3.26) is the solution of,

H̃◦�
1 H̃◦

1 p(k+1) = H̃◦�
1 zp (3.28)

where H̃◦
1 � Σ− 1

2
p R�

θ A�
3 in which Rθ is evaluated at θ(k+1). The proof of Lemma 3.3.1 can be easily extended

to show that H̃◦
1 is always full rank if the underlying graph is weakly connected.
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Algorithm 2 SLAM solver based on [7]
1: repeat

2: Construct the normal equations (3.21)

3: Eliminate δp(i) using the Schur complement (3.24)

4: Solve (3.24) to obtain δθ(i)

5: θ(i+1) ← θ(i) + δθ(i)

6: p(i+1) ← p�(θ(i+1)) according to (3.25)

7: until convergence

Algorithm 3 Sparse Variable Projection
1: repeat

2: Construct the normal equations (3.21)

3: Use the sparse Cholesky solver to solve (3.21)

4: θ(i+1) ← θ(i) + δθ(i)

5: p(i+1) ← p�(θ(i+1)) according to (3.25) using the sparse Cholesky solver

6: until convergence

Table 3.1: A summary of related algorithms sorted by their cost per iteration in descending order.

Algorithm Separability Sparsity
Algorithm 1 [86] � �

Algorithm 2 [7] � �

Algorithm 3 � �
Full Least Squares � �

3.5 Projection Gain

Algorithm 3 and the conventional approach can be seen as the two ends of a spectrum of solvers.

On one end, conventional methods provide cheap sparse iterations without exploiting the separable

structure of the problem. On the other end of this spectrum, Algorithm 3 performs an extra projec-

tion step at the end of every iteration, which increases the effectiveness of each iteration at the cost

of solving an extra (but smaller) sparse linear system (3.25) per iteration. In the middle of this spec-

trum we have solvers that benefit from both iterations based on a cost-benefit analysis. Such solvers

would benefit simultaneously from the low cost of f -iterations and the extra effectiveness brought

by performing a projection step. Our empirical observations indicate that performing projection is

crucial in the first few iterations where it also exhibits a bootstrapping effect [73]. After only few

iterations and upon getting sufficiently close to a local minimizer, the effectiveness of f -iterations

become similar to that of VP iterations. This is where allocating resources to the projection step is not
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justified anymore, and one can safely switch back to cheap f -iterations.

To design a switching scheme, first it is necessary to quantify the concept of projection gain. At

the ith iteration we have

f�
i � f(p�(θ(i)),θ(i)) = min

p
f(p,θ(i)) ≤ f(p(i),θ(i)) � f◦

i . (3.29)

Here p(i) and θ(i) specify the solution obtained after performing a GN iteration at iteration i on the

full cost function (see the black point connected to e.g., xVP
0 via the red dashed vector in Figure 3.1)

and f◦
i is the value of (the original) cost function at this point. Similarly, p�(θ(i)) and θ(i) specify the

solution obtained after performing the projection step (see xVP
1 in Figure 3.1) whose cost is denoted

by f�
i . To quantify the projection gain, we define the relative gain as

γi � (f◦
i − f�

i )/f◦
i . (3.30)

By definition we have 0 ≤ γi ≤ 1. Note that computing the projection gain only requires an extra

evaluation of the cost function f before performing the projection step. At i = 0, γi is usually close

to one (which indicates a high projection gain) unless the initial guess is already close to a (local)

solution. Generally speaking, γi exhibits a decreasing (but not necessarily monotonic) trend. Upon

convergence to a solution, the gain will diminish and therefore γi = 0 (see Figure 3.2). Therefore, a

sensible switching heuristic is to perform projections only while γi is larger than a threshold, γT .

3.6 Maximum A Posteriori Estimation

First note that (2.6) is also a separable NLS problem. Therefore, Algorithm 3 can be easily modified to

find the MAP estimate assuming a Gaussian prior over x is available. Nevertheless, here we address

the Bayesian formulation from a slightly different perspective that gives us new insights into the

structure of SLAM. The posterior density p(p,θ|z) can be factored according to

p(p,θ|z) = p(θ|z) p(p|θ, z). (3.31)

Using the Bayes rule as shown in Appendix B.1 we have p(p|θ, z) ∝ p(z|x) p(p|θ). From the fact that

the measurement function is affine in p it readily follows that a Gaussian prior over x results in a

Gaussian p(p|θ,z) = N(p; μ◦
θ,Σ◦

θ). To simplify our notation and without losing any generality let us
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p = p�(θ)

xGN
0 xGN

1 xGN
2

xGN
3

xVP
0

xVP
1 xVP

2

θ

p
p�(θ)

Gauss-Newton

Variable Projection

Figure 3.1: This figure illustrates the contour lines of a simplified version of SLAM cost function.
The green points show the local minima. The magenta curve is p�(θ); a function that maps any
given θ to the corresponding conditionally optimal estimate for p. The blue vector shows the ith
step of Algorithm 1—which is identical to the ith step of Algorithm 2 and Algorithm 3. The red
vector is the GN step obtained by starting from xGN

i . The dashed red vectors are the intermediate
GN steps obtained by starting from xVP

i . Algorithm 3 corrects this intermediate step by projecting
the obtained solution back on p�(θ) (dashed line). Note that Algorithm 1 computes the blue vector
directly by performing a GN iteration on the reduced problem (3.13) with quadratic space and cubic
time complexity. However our indirect approach in Algorithm 3 enables us to retain the sparse
structure of the original problem.

assume p(p|θ) = p(p). As mentioned earlier, this prior is assumed to be Gaussian with mean μp and

covariance Σp. Then we have,

μ◦
θ = Σ◦

θ

(
H�

1 Σ−1(z − H2θ) + Σ−1
p μp

)
(3.32)

= μp + ΣpH�
1 S−1

(
z − H2θ − H1μp

)
(3.33)
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Figure 3.2: Evolution of the projection gain γi � (f◦
i −f�

i )/f◦
i in 10 simulated datasets. The projection

gain is maximum when γ is close to one. At the 6th iteration γ = 0 upon convergence to the optimal
estimate.

in which we have used the matrix inversion lemma, S � H1ΣpH�
1 + Σ is the so-called innovation

covariance, and

Σ◦
θ =

(
H�

1 Σ−1H1 + Σ−1
p

)−1
. (3.34)

Although in general the original posterior distribution p(p,θ|z) may be far from being Gaussian

(e.g., multi-modal, skewed, etc), recovering the optimal p given θ reduces to a simple linear-Gaussian

estimation problem. Such problems are often called conditionally linear-Gaussian. The MAP estimate—

by definition—is the maximizer of the posterior distribution (3.31),

x� = arg max
p,θ

p(θ|z) p(p|θ,z). (3.35)

Since p only appears in the second term, maximizing the above product implies maximizing p(p|θ,z)

with respect to p; i.e.,

p�(θ) = arg max
p

p(p|θ,z) = μ◦
θ. (3.36)

As in any Gaussian density, the mean of p(p|θ,z) is equal to its mode, and therefore μ◦
θ is the solution

of (3.36). Maximizing p(p,θ|z) subject to p = μ◦
θ is equivalent to a NLS problem that can be solved
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as before. After obtaining the MAP estimate for θ, we can instantly recover p� by evaluating (3.36) at

θ�. Nevertheless, in practice we should use the approach taken in Algorithm 3 in order to retain the

sparsity of SLAM.

3.7 Implementation

In this section we outline an efficient implementation of sparse VP that requires minor modification

of existing SLAM solvers such as g2o [102]. In each iteration of sparse VP, we need to construct and

solve the sparse linear system in (3.25). First, note that there is a close relation between the coefficient

matrix in the left hand side of (3.25) and the position-position block (Ip) in the full Hessian (3.21). It

can be easily verified that these two terms are the same expression evaluated at different points. The

former is evaluated at θ(i+1), whereas the latter is computed at θ(i). In other words,

H̃�
1 H̃1 =

|E|∑
k=1

∂rk

∂p
�

Σ−1
k

∂rk

∂p . (3.37)

The Jacobians appearing in (3.37) are already available in any conventional Newton-based SLAM

solver. Our implementation benefits from this insight by relying on g2o for computing the coeffi-

cient matrix of (3.25). Similar to g2o, we exploit the block structure of the coefficient matrix which

enables us to process the information terms for edges in parallel. The right-hand side of (3.25) can

also be computed using the existing routines for computing the right-hand side of the full normal

equations (3.21). Finally, we can use any of the existing sparse linear solvers to solve (3.25) efficiently

(CHOLMOD [28] in our case).

Although we do not require any special structure in Σ, here we point out an interesting property

of spherical noise covariance matrices. Let Σpi denote the covariance matrix of the translational com-

ponent of the ith measurement. An interesting special case emerges when Σpi is spherical (isotropic),

i.e., Σpi = σ2
pi

I2. Noting that Rθ is orthogonal, it is easy to show that in such SLAM problems,

H̃�
1 H̃1 = Lw ⊗ I2 in which Lw is the reduced weighted Laplacian matrix of graph G with the weight

function w : E → R>0 defined as w : ei �→ σ−2
pi

. A similar structure exists in 3D SLAM problems

with spherical noise covariance matrices. Consequently, in such cases the coefficient matrix of (3.25)

remains constant and therefore it needs to be factorized only once at the first iteration. After comput-

ing the sparse Cholesky factor once, the following VP iterations only need to solve sparse triangular

linear systems with different right-hand sides using backward and forward substitutions. As shown

in Section 3.8, exploiting this structure significantly reduces the extra cost of VP.
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3.8 Experimental Results

We performed experiments on both real and synthetic situations, including six publicly available

datasets, in order to evaluate the performance of the proposed algorithm. We have used g2o’s imple-

mentation of GN [102]. CHOLMOD [28] is used as the linear solver with the approximate minimum

degree (AMD) ordering. Our Algorithm 3 (VP)6 is implemented in C++ as a g2o solver. Our fully

integrated code is available at github.com/kasra/vp-g2o.7 An Intel Core i5-2400 CPU operating at

3.1GHz is used for all of the experiments in this chapter. We verified the equivalence between the

iterations of Algorithm 1, Algorithm 2 and Algorithm 3 numerically.

We used g2o’s 2D simulator to create Manhattan-like pose-graph datasets. This simulator creates

a random walk in R2 × [−π,π) with either 1 meter forward motion or 90◦ rotation per step. The

valid sensor range for scan matching is between 1 and 5 meters within the 135◦ field of view. In

reality, scan matching is an expensive operation. Therefore extracting each and every (potential)

loop closure is practically intractable. We imitate this practical limitation by imposing an upper

bound on the degree of each vertex in the simulator. For our Monte Carlo analysis we created Atlas,

a collection of 500 simulated datasets available at http://github.com/kasra/atlas. Atlas consists of

five test suites, each of which is composed of 100 randomly generated pose-graph datasets with 104

poses per dataset. Each test suite corresponds to a fixed noise level α ∈ {1, . . . ,5}. Noise covariance

for each suite is Σα = (0.01α)2I.

3.8.1 Convergence

For each dataset, we computed 50 iterations of different solvers. Solvers are initialized using odom-

etry data. The outcome of each run is one of the following.

(i) Global Min: The global minimizer is found within 50 iterations.

(ii) Local Min: A local minimizer (other than the global minimizer) is found within 50 iterations.

(iii) Not Converged: The solver failed to converge before 50 iterations.

We treat the solution of GN initialized with the ground truth as the global minimizer. We verify

if an obtained solution is the global minimizer by comparing it to the solution of Gauss-Newton

initialized with the ground truth. If the absolute difference between the cost of the last two iterations

is larger than a small threshold, we categorize that case as an instance of Not Converged. Similarly, if
6In this section VP refers to our proposed algorithm, not to be confused with the original or Kaufman’s VP algorithms.
7Refer to our project’s page on GitHub for instructions.
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Figure 3.3: Average number of iterations performed to converge to the global minimum (ML esti-
mate) under different noise levels (α) in the Atlas datasets. For each noise level, 100 random datasets
with 10,000 poses has been generated. The error bars show the 95% confidence interval. The increas-
ing length of error bars is partly due to the decreasing number of successful samples (see Table 3.2).
Note that there is a one-to-one correspondence between iterations of Algorithm 3 and those of Algo-
rithm 1 performed on the reduced problem (3.13).

the absolute difference between the final cost and minimum of the NLS cost function is larger than a

small threshold, we consider it as an instance of Local Min.

Table 3.2 summarizes the outcome under different noise levels. Although in some instances VP

outperforms GN, in general the two algorithms exhibit comparable performances in terms of con-

verging to the optimal solution. As expected, both algorithms tend to converge to local minima

as α increases; a “good” initial guess is crucial for converging to the optimal solution. Neverthe-

less, according to Table 3.2 our algorithm significantly outperforms GN in avoiding divergence or

extremely slow convergence. Therefore, as reported by other researchers in various fields [61], VP

iterations lead to a faster and more reliable convergence than solving the full NLS problem. As any

other iterative solver, using VP can lead to a local minimizer other than MLE. This can be avoided

by using a “sufficiently good” initial guess [73]. It is worth noting that in the case of converging to

local minima, the results obtained by both solvers were generally inaccurate and far from the optimal

estimate. Out of the 500 Atlas synthetic datasets used in Table 3.2, there are 89 cases for which both

GN and VP converge to local minima. In 38 of those instances, GN and VP converge to the same local
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Table 3.2: Outcome (%) of GN and VP after 50 iterations under different noise levels.

Noise Level Solver Global Min Local Min Not Converged

α = 1 GN 100 0 0
VP 100 0 0

α = 2 GN 91 8 1
VP 94 6 0

α = 3 GN 76 16 8
VP 78 19 3

α = 4 GN 56 36 8
VP 57 41 2

α = 5 GN 37 50 13
VP 39 60 1

Table 3.3: Outcome (%) of LM and VP-LM after 50 & 100 iterations under different noise levels.

Noise Level Solver
Global Min Local Min Not Converged
50 iter. 100 iter. 50 iter. 100 iter. 50 iter. 100 iter.

α = 1 LM 53 79 10 7 37 14
VP-LM 97 97 3 3 0 0

α = 2 LM 17 41 22 13 61 46
VP-LM 90 90 10 10 0 0

α = 3 LM 9 18 18 25 73 57
VP-LM 72 73 27 27 1 0

α = 4 LM 1 8 15 24 84 68
VP-LM 48 48 49 52 3 0

α = 5 LM 2 6 16 24 82 0
VP-LM 32 33 63 66 5 1

Table 3.4: Total run time for 10 random walks with 105 poses and non-spherical noise with marginal
variances of α = 1 noise level. See also Figure 3.5.

# |E| GN VPγT =0.2 Saving vs. GN VP Saving vs. GN
(sec) (sec) (%) (sec) (%)

1 344,364 15.14 14.99 1.01 15.53 −2.58
2 343,436 15.99 12.60 21.17 13.00 18.70
3 346,019 31.52 25.93 17.73 26.85 14.82
4 345,249 24.63 20.41 17.15 20.33 17.44
5 343,864 − 91.53 − 95.41 −
6 345,842 29.45 24.35 17.32 24.56 16.59
7 345,864 22.41 22.74 −1.51 23.51 −4.94
8 343,642 18.52 16.68 9.95 17.19 7.21
9 344,730 24.84 18.45 25.72 19.15 22.92
10 343,685 18.31 16.93 7.51 17.76 3.00

minimum. Furthermore, in 74 of those (89) cases, the local minima found by GN and VP are both at

least 10% larger than the true minimum. In addition to the results shown in Table 3.2, we performed



CHAPTER 3: A SPARSE SEPARABLE SLAM BACK-END 45

another experiment by generating random initial guesses in a neighbourhood of MLE. Random ini-

tial guesses were generated by sampling uniformly from the surface of hyper spheres centered at the

global minimum with varying radii. As in Table 3.2, we did not observe a statistically significant

difference in the tendency of VP and GN for converging to local minima.

Table 3.3 shows the results obtained by Levenberg-Marquardt (LM) and a trust-region version of

Algorithm 3 using LM (VP-LM). Note that VP-LM is equivalent to performing LM on the reduced

cost function under Kaufman’s approximation. For both solvers we use g2o’s default settings (e.g.,

strategy to update the damping parameter). Due to the slow progress of LM, here we report the

results after both 50 and 100 iterations. According to Table 3.3, LM exhibits extremely slow conver-

gence while the performance of VP-LM within 50 iterations is comparable to that of GN and VP.

Nevertheless, the success rates of GN and VP are slightly higher than VP-LM. It is also remarkable

how VP-LM, due to its trust-region strategy, avoids divergence after a sufficient number of iterations.

Figure 3.3 shows the average number of iterations performed to converge to the optimal solution

under different noise levels. It clearly indicates that the proposed algorithm can converge to the

optimal solution in less number of iterations than GN. To correctly interpret this result, it is crucial

to note that there is a one-to-one correspondence between iterations of Algorithm 3 and those of

Algorithm 1 performed on the reduced problem (3.13). This observation is consistent with numerous

reports from other researchers who apply variable projection to separable NLS problems in other

contexts [61].

3.8.2 Run Time

Reducing the number of iterations does not necessarily reduce the total computation time since each

VP iteration is more costly than that of GN. In fact for SLAM, original VP [60], Kaufman’s approach

[86] (Algorithm 1) and Barham and Drane’s method [7] (Algorithm 2) are all significantly slower

than the state-of-the-art SLAM solvers since they are all incapable of exploiting sparsity. Unlike these

algorithms, Algorithm 3 is designed to retain the sparse structure of SLAM. Nevertheless, recall that

in each iteration of our algorithm, compared to GN, we have an additional (but smaller) sparse linear

system to solve. Therefore each iteration of our algorithm is still slightly more expensive than that of

GN. Informally speaking, Figure 3.3 suggests that by exploiting the separable structure of SLAM we

can achieve more effective iterations at the cost of solving an additional sparse linear system in each

iteration.

To compare the overall run times, we generated 10 large-scale Manhattan-like random walks,
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each with 105 poses. Relative measurements are corrupted by additive Gaussian noise with a non-

spherical covariance matrix. The marginal variances are equal to those of α = 1 noise level.8 Each of

these datasets were solved iteratively using GN, VP and VP with the relative projection gain thresh-

old γT = 0.2 (see Section 3.5). The average run times are listed in Table 3.4 and illustrated in Fig-

ure 3.5. In all but one of the datasets, all algorithms converged to the optimal solution. In all of

the datasets, except two cases, VP with γT exhibits the fastest performance, while vanilla VP outper-

forms GN in 8 datasets. VP with γT outperforms GN because of its more effective iterations on the

nonlinear core of SLAM (i.e., projection steps). On the other hand, as expected, it outperforms vanilla

VP by avoiding unnecessary costly projection steps when the gain is insignificant.

We conducted another experiment to compare the overall run time of VP and GN under varying

edge density. For this purpose, first we created a Manhattan-like random walk with 105 poses. Two

pose-graph datasets were created based on this random walk by simulating noisy measurements

for the following noise models: (i) α = 1, (ii) non-spherical noise covariance matrix with marginal

variances similar to α = 1. To study the effect of edge density on the overall run time we created 100

scenarios based on each simulated dataset. The ith scenario contains odometry edges plus i percent

of the loop closures of the original simulation (including the ones that were included in the (i − 1)th

scenario). Note that the original simulation is a realistic sparse SLAM problem with a density similar

to commonly used benchmarks. Loop closures are selected randomly (i.e., with no particular order)

to achieve realistic and balanced scenarios. Figure 3.4 shows the overall run time as a function of

loop closure density for each noise model. According to Figure 3.4, in the vast majority of cases, VP

has been faster than GN. This shows that in those cases, reducing the number of iterations has paid

off the additional cost paid for each iteration. There are few cases where GN is slightly faster than VP.

This situation occurs mainly in extremely trivial (sparse) scenarios, in which the initial guess based

on odometry is already close to MLE and thus GN can find the solution immediately. Such scenarios

are often too sparse to be considered as realistic cases. Once again our results indicate that taking

the (expected) projection gain into account is generally beneficial as it helps to avoid unnecessary

projection steps.

Datasets with spherical noise covariance matrices possess an additional structure that can be

exploited to significantly reduce the cost per iteration of Algorithm 3. Recall that in each iteration

of our algorithm we need to solve an additional linear system to recover the conditionally-optimal

estimate of linear variables. The cost of this extra step is dominated by the Cholesky factorization

8Given the large number of poses, higher noise levels lead to convergence failure (for both GN and VP) and hence are
not considered here.
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Figure 3.4: Overall run time for converging to MLE as a function of edge density under different
noise models. In Figure 3.4b, GN failed to converge to MLE in one scenario (40). Note that the “100%
loop closure density” refers to the 100th scenario in which all of the loop closures of a realistic sparse
SLAM problem with |V| = 105 and |E| ≈ 342,000 are included—not the complete graph.
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of H̃�
1 H̃1 in (3.25). According to Section 3.7, this term is constant (i.e., independent of the current

estimate) when the noise covariance matrix is spherical. Thus, the Cholesky factorization needs to be

done only once in such problems (i.e., for the first iteration). In the rest of iterations we only need to

solve sparse triangular linear systems by forward and backward substitutions in order to recover the

conditionally-optimal p. As illustrated in Figure 3.4, this trick can reduce the cost per iteration and

overall run time of our algorithm.

We also used a number of publicly available datasets to evaluate the performance of the proposed

algorithm. Table 3.5 provides the number of iterations performed to find the optimal solution, as

well as the average of total computation time over 10 runs. The datasets listed in Table 3.5 span

the most common forms of SLAM (2D/3D real/synthetic pose-graphs). As expected, VP converges

to the optimal estimate in less number of iterations than GN (up to 50%). In most cases VP also

outperforms GN in terms of the total computation time (up to 30%). Small datasets and accurate

measurements make the SLAM problem less challenging in terms of convergence [20]. In such cases,

the computational benefits of exploiting the separable structure of SLAM can be less than some more

challenging scenarios. This conclusion is consistent with what we saw earlier in Figure 3.4.

For the datasets listed in Table 3.5, both algorithms are able to converge to MLE starting from

the odometry initial guess. This is true for most of the existing real datasets, although as seen in

Table 3.2 for synthetic datasets, a bad initial guess can cause VP and GN to converge to (different)

local minimizers of the cost function. For example this is the case for the Victoria Park dataset.

Starting from the same initial guess and after 30 iterations, VP and GN achieve fVP = 13,659 and

fGN = 30,611, respectively. Similar to what we observed before in our Monte Carlo simulations,

even without using a line search, the objective value resulting from VP directions follows a stable

decreasing trend, while in the first few iterations, GN steps cause the cost function to increase.

3.9 Discussion

In this chapter, we mainly considered batch solvers. Incrementally solving SLAM [84, 85, 131] is

more suitable for online applications. The separable structure of SLAM is preserved in incremental

formulation of SLAM and can be exploited by the same principles and techniques introduced in

this chapter. As seen earlier, our results indicate that exploiting separability, through increasing the

convergence rate, is mostly beneficial if the initial guess is not already “too close” to the solution.

One advantage of incrementally solving SLAM is that one can use the ML estimate using the data
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Table 3.5: Summary of results for some of the publicly available real and synthetic datasets. In all
cases both algorithms converge to the maximum likelihood estimate.

Dataset |V| |E| Solver # Iter. Time (s)

City10K 10,000 20,678 GN 7 0.41068
VP 4 0.31617

Manhattan 3,500 5,598 GN 6 0.07907
VP 4 0.07200

Intel 943 1,837 GN 3 0.01463
VP 2 0.01607

UTM Downtown 14,549 16,365 GN 10 0.24754
VP 4 0.17719

Sphere2500 2,500 9,799 GN 5 0.96145
VP 4 0.82080

New College 52,480 52,577 GN 8 2.19560
VP 6 2.00967

collected up to time t− 1 for finding the ML estimate at time t. This initial guess is usually good and

therefore exploiting separability may not be useful in such cases. An important exception is when the

most recent measurements (measurements collected at time t) lead to a significant update of robot

trajectory. For instance, this situation could arise if, for a period of time, the robot has only access

to noisy odometry data (dead reckoning) and small loop-closures, and then suddenly closes a larger

loop. Incremental solvers that are capable of exploiting separability (using the solver proposed in this

chapter) can therefore benefit from its faster convergence in such scenarios. Recall that if the initial

guess is already close to the solution, the projection gain γ will be small. Therefore, immediately after

the first projection step and by computing the projection gain, the proposed switching scheme in

Section 3.5 can automatically detect whether or not exploiting separability is beneficial. In the worst

case, after performing a single projection step, our algorithm may decide not to exploit separability

by switching to Gauss-Newton steps. However, if the projection gain happens to be significant (e.g.,

in the case of closing larger loops), an incremental solver that is capable of exploiting separability

will exhibit faster convergence.

3.10 Summary

In this chapter, we proposed a scalable and efficient algorithm to take advantage of the separable

structure of SLAM. It was shown that by exploiting this structure, we can achieve faster and more

reliable convergence than the state-of-the-art solvers. A key contribution of this work comes from

establishing the link to the rich literature on separable NLS problems. In particular, recognizing the
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equivalence between Algorithm 1 and Algorithm 2 was the missing link that enabled us to retain

sparsity while exploiting the separable structure through Algorithm 3. This link also provides a firm

theoretical justification for the proposed algorithm. Moreover, we demonstrated how one can avoid

performing insignificant projections by taking the projection gain into consideration.

The proposed algorithm can be applied to the most common forms of SLAM (2D/3D feature-

based and pose-graphs) without any restrictive assumption on the structure of the noise covariance

matrix. Our algorithm is not limited to a particular type of NLS solver and the benefits it brings along

are orthogonal to those of other possible improvements such as a more efficient implementation (of

e.g., GN) or using different Newton-based solvers, trust-region or line search techniques. As an

advantage, our final algorithm can be easily adopted by the existing back-ends (e.g., LM, Powell’s

Dog-leg [131], etc) without any major modification. By stripping down SLAM to its nonlinear core

and recovering the conditionally-optimal estimate for linear variables, our approach yields more

effective and reliable iterations than solving the full NLS problem. The number of iterations required

for solving the reduced problem (3.13) was shown to be less than that of the full NLS problem.

Exploiting separability is especially beneficial when GN (or other Newton-based solver) iterations

are relatively costly and/or when it takes more than a few iterations to solve the full NLS problem.

Datasets with relatively high measurement noise and bad initial guess are among those cases.
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Figure 3.5: An illustration of the run times listed in Table 3.4.
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CHAPTER 4

Estimation over Graphs

Parameter estimation problems are often characterized by their measurement models. In robotics, a

measurement model usually corresponds to a probabilistic model for a specific sensor. These models

are normally described by (i) a nominal noise-free measurement function, and (ii) a probability dis-

tribution according to which random noise corrupts the nominal measurement. As we saw earlier,

any instance of SLAM can be represented by a graph that encodes “who’s observing whom”. The

topology of the graphical representation of SLAM is another axis along which a particular instance

of SLAM can be characterized.

The graphical structure of SLAM influences the estimation error covariance of the maximum

likelihood estimator. This fact is illustrated in Figure 4.1. This figure shows the maximum likelihood

estimates for two synthetic pose-graph SLAM datasets. These datasets are regenerated with identical

measurement functions and noise models. In both datasets, the robot performs a random walk in

R2 × [−π,π) with either forward motion or 90◦ rotation per step. It is evident that the final estimation

errors in Figure 4.1b are smaller than the estimation errors in Figure 4.1a. To be more precise, the

estimation error covariance in the City10K is “smaller” than that of Manhattan. Intuitively, we can

conclude that the graphical structure of City10K makes it more resilient to noise than Manhattan.

Graphical representation of SLAM, despite its simplicity, can be highly informative. Our goal in this

chapter is to reveal and analyze the impact of the topology of the graphical representation of SLAM

and similar problems on the estimation error covariance of the maximum likelihood estimator.

Outline

In Section 4.1, we mathematically formulate several estimation-over-graph (EoG) problems. In Sec-

tion 4.2, we present our main results on the influence of different notions of graph connectivity on
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Figure 4.1: Maximum likelihood estimates for two datasets with identical noise models. The bridges
highlighted in the Manhattan dataset are good examples of its weak connectivity.

the quality of estimation. In particular, we consider average degree, algebraic connectivity and tree

connectivity. Finally, in Section 4.3, we empirically validate our theoretical results using real and

synthetic datasets.

4.1 Estimation-over-Graph Problems

In this section, we mathematically formulate several classes of EoG problems.

4.1.1 Diff-Net

Diff-Net (difference-network) is one of the simplest classes of linear-Gaussian EoG problems. Diff-Net

is motivated by the time-synchronization problem in sensor networks [8]. Let {xi}n
i=1 represent the

unknown states and {zi}m
i=1 represent the pairwise noisy measurements. In Diff-Net, the pairwise

measurement between xu and xv (in Rd for d ∈ N) is generated according to zuv = xu − xv + εuv in

which εuv is a zero-mean Gaussian noise.

Assumption 4.1.1 (Diff-Net Noise). Let εi be the noise corrupting the ith measurement. We assume that,

1. Cov[εi,εj ] = 0d×d if and only if i �= j.

2. εi ∼ N(0,σ2
i Id).

A Diff-Net with n variables can be naturally represented by the graph G = ([n],E):

• Variable xi is represented by the vertex i ∈ [n].
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• Relative measurement zij is represented by the edge {i,j} ∈ E.

• Edges are weighted by the precision (inverse of variance) of the corresponding measurements;

i.e.,

w : E → R>0 (4.1)

ek �→ σ−2
k . (4.2)

As we saw earlier in Chapter 3, due to the relative nature of measurements, we need to anchor a

vertex. Let A be the reduced incidence matrix of G. Let x and z denote the stacked vector of states

(after anchoring an arbitrary vertex) and measurements, respectively. The measurement model can

be written as,

z = (A ⊗ Id)�x + ε, (4.3)

in which ε ∼ N(0,Σ) is the stacked vector of measurement noise. It is easy to verify that Σ−1 = W⊗Id

where W � diag
(
w(e1), . . . ,w(em)

)
.

Proposition 4.1.1. The Fisher information matrix in Diff-Net is given by I = Lw ⊗ Id in which Lw is the

reduced weighted Laplacian matrix of G.

Proof. Let H � (A⊗Id)� denote the measurement function in Diff-Net. Plugging p(z; x) = N(z; Hx,Σ)

into the definition of the Fisher information matrix (A.7) results in

I = H�Σ−1H (4.4)

= (A ⊗ Id)(W ⊗ Id)(A ⊗ Id)� (4.5)

= (AWA�) ⊗ Id (4.6)

= Lw ⊗ Id. (4.7)

Remark 6. The maximum likelihood estimator in Diff-Net, as a linear-Gaussian estimation problem, is unbi-

ased and efficient.
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4.1.2 Compass-SLAM

Compass-SLAM is a simplified SLAM problem in which the robot orientation is assumed to be

known—e.g., using a “compass”. Duckett et al. [44][45] proposed one of the early SLAM algorithms

based on this model. The goal in Compass-SLAM is to estimate the robot positions in Rd (d ∈ {2,3}),

{pi}n
i=1 using noisy translational measurements {zi}m

i=1. This simplification reduces the ML estima-

tion in SLAM to a linear-Gaussian estimation problem, for which the globally-optimal solution can

be computed easily by solving a linear least squares problem.

Remark 7. The maximum likelihood estimator in Compass-SLAM, as a linear-Gaussian estimation problem,

is unbiased and efficient.

The underlying structure of Compass-SLAM can be represented by a graph similar to Diff-Nets.

Let R be a block-diagonal matrix, consisting of {Ri}m
i=1 in which Ri ∈ SO(d) is the rotation matrix

corresponding to the robot orientation making the ith observation; i.e.,

R � diag
(
R1, . . . ,Rm

)
. (4.8)

Let p and z be the stacked vector of robot positions and translational measurements. After anchoring

an arbitrary vertex, the measurement model in Compass-SLAM can be expressed as,

z = R�(A ⊗ Id)�p + ε (4.9)

in which A is the reduced incidence matrix of G and ε ∼ N(0,Σ) is the measurement noise.

Assumption 4.1.2 (Compass-SLAM Noise). Let εi be the noise affecting the ith measurement. We assume

that,

1. Cov[εi,εj ] = 0d×d if and only if i �= j.

2. εi ∼ N(0,σ2
i Id).

Proposition 4.1.2. The Fisher information matrix in Compass-SLAM is given by I = Lw ⊗ Id in which Lw

is the reduced weighted Laplacian matrix of G.

Proof. The proof is similar to that of Proposition 4.1.1. Define H � R�(A ⊗ Id)�. Plugging p(z; x) =
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N(z; Hx,Σ) into the definition of the Fisher information matrix (A.7) results in

I = H�Σ−1H (4.10)

= (A ⊗ Id)RΣ−1R�(A ⊗ Id)� (4.11)

= (A ⊗ Id)(W ⊗ Id)(A ⊗ Id)� (4.12)

=
(
AWA�)⊗ Id (4.13)

= Lw ⊗ Id. (4.14)

Note that the ith d × d diagonal block of R (i.e., Ri for which we have R�
i Ri = Id) commutes with

that of Σ−1, i.e., σ−2
i Id.

4.1.3 SLAM

This section is concerned mainly with the 2D pose-graph SLAM problem with relative-pose measure-

ments.1 Similar to Chapter 3, the state vector is x � [p� θ�]�, and z = [z�
p z�

θ ]� is the stacked vector

of translational and rotational measurements. The measurement model is defined in Section 3.2.2.

According to this model,

z = h(x) + ε, (4.15)

in which ε ∼ N(0,Σ). The measurement function h is given by,

h(x) �

⎡⎢⎣hp(x)

hθ(θ)

⎤⎥⎦ (4.16)

where hp(x) � R�(A ⊗ I2)�p and hθ(θ) � A�θ. In this section, we make an extra assumption

regarding the structure of the noise covariance matrix.

Assumption 4.1.3 (Block-Isotropic Noise). We assume the noise covariance matrix Σ can be written as

Σ = diag(Σp,Σθ), where

Σp = diag
(

σ2
p1I2, . . . ,σ2

pm
I2

)
(4.17)

Σθ = diag
(

σ2
θ1 , . . . ,σ2

θm

)
. (4.18)

1Extending our models/results to 2D feature-based SLAM is straightforward as noted in Chapter 3.
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According to (A.7), for p(z; x) = N(z; h(x),Σ) the Fisher information matrix is given by

I(x) = J(x)�Σ−1J(x), (4.19)

where J(x) � ∂h(x)/∂x. The Jacobian matrix J(x) can be easily computed:

J(x) � ∂h(x)
∂x =

⎡⎢⎣ Jp
p Jp

θ

Jθ
p Jθ

θ

⎤⎥⎦ (4.20)

Jp
p � ∂hp

∂p = R�(A ⊗ I2)� (4.21)

Jp
θ � ∂hp

∂θ
= R̃Δ (4.22)

Jθ
p � ∂hθ

∂p = 0 (4.23)

Jθ
θ � ∂hθ

∂θ
= A�. (4.24)

The only new terms are R̃ and Δ:

• R̃ is defined as R̃ � ΓR� in which Γ is given by,

Γ � Im ⊗
⎡⎢⎣ 0 1

−1 0

⎤⎥⎦ . (4.25)

It is easy to verify that Γ�Γ = R�R = R̃�R̃ = I.

• Δ ∈ R2m×n has the following structure. Suppose in the kth measurement, the ikth node has

observed the jkth node. Then, for each ek ∈ E, there is a 2 × 1 block in Δ that contains

(
Δ
)

2k−1:2k,ik
= pjk

− pik
. (4.26)

The remaining elements in Δ are all zero. As noted in [20], Δ�Δ is a diagonal matrix with an

interesting structure. (Δ�Δ)i,i is equal to the sum of squared distances between the ith robot

pose, and every node observed by it,

(Δ�Δ)i,i =
∑

j∈S(i)
‖pi − pj‖2. (4.27)

Here S(v) is the set of nodes observed by v ∈ V.
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Now we can compute the Fisher information matrix I(x):

I(x) =

⎡⎢⎢⎣Lwp ⊗ I2 (Awp ⊗ I2)ΓΔwp

∗� Lwθ
+ Δ�

wp
Δwp

⎤⎥⎥⎦ , (4.28)

in which,

• ∗ denotes the top-right block.

• Lwp and Lwθ
are the reduced weighted Laplacian matrices of G when edges are weighted ac-

cording to wp : ek �→ σ−2
pk

and wθ : ek �→ σ−2
θk

, respectively.

• Wp is the diagonal matrix of edge weights based on wp.

• Awp � AW
1
2
p is the reduced weighted incidence matrix of G when edges are weighted by wp

defined above.

• Δwp � W
1
2
p Δ. Similar to (4.27), Δ�

wp
Δwp is a diagonal matrix and we have,

(Δ�
wp

Δwp)i,i =
∑

j∈S(i)
wp(i,j)‖pi − pj‖2. (4.29)

4.2 Main Results

4.2.1 Average Degree ↔ Log-Likelihood Ratio

In this section, we will demonstrate that the ratio between the value of log-likelihood cost function

evaluated at the ground truth and the maximum likelihood estimate can be accurately approximated

by a simple function that only depends on the structure of the underlying graph. To simplify our

notation, let x� and x◦ be the maximum likelihood estimate and the true value of x, respectively.

Olson and Kaess [123] looked at the ratio between the minimum of the log-likelihood objective func-

tion f� � f(x�), and its value at the true x, f◦ � f(x◦). Figure 4.2 illustrates these values in a toy

example. Define γ � f�/f◦. It is easy to see that,

1. 0 ≤ γ ≤ 1, and

2. γ → 1− as x� → x◦.

Hence, γ ≈ 1 (γ ≈ 0, respectively), indicates that the estimation error is relatively small (large,

respectively), and therefore x� is (is not, respectively) a reliable estimate. Using Monte Carlo simu-
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x� x◦

f◦

f�

x

f
(x

)

Figure 4.2: A toy example. The function drawn in black represents the negative log-likelihood objective
function. The maximum likelihood estimate x� and the ground truth x◦, together with their objective values,
are specified in the figure.

lations, Olson and Kaess [123] empirically observed that as the average node degree of graph, i.e.,

d̄ � 1
n

∑n
i=1 deg(i) increases, γ on average approaches 1 (see Figure 5 in [123]). According to their in-

terpretation, γ is a “coarse measure of overfitting” [123]. We repeated their experiment and observed

the same behavior. The blue points in Figure 4.3 correspond to the average of γ in a series of Monte

Carlo simulations over a large number of randomly generated SLAM problems with different aver-

age degrees (similar to Figure 5 in [123]). For each random pose-graph, we generated 50 independent

and identically distributed realizations of measurement noise. We then computed γ for each realiza-

tion of noise, and averaged it over the 50 Monte Carlo simulations. In what follows we provide a

theoretical explanation for this empirical observation.

Assumption 4.2.1 (Additive Gaussin Noise). We assume that measurements are corrupted by an additive

Gaussian noise, i.e., z = h(x◦) + ε in which z is the measurement, h is the measurement function and

ε ∼ N(0,Σ) is the noise.2

The negative log-likelihood cost function for the model given in Assumption 4.2.1 can be written

as f(x) = ‖z − h(x)‖2
Σ−1 . To compute γ, we need to compute both f� and f◦. Let us begin with

f◦. According to the definition, f◦ is the value of the negative log-likelihood at x = x◦. Note that

f◦ � f(x◦) is a random variable as it depends on z, and consequently ε. The following proposition

gives the distribution of f◦.

Proposition 4.2.1. Under the Assumption 4.2.1, f◦ ∼ χ2
ν◦ in which ν◦ � dim(z).

Proof. Note that f◦ � f(x◦) = ‖ε‖2
Σ−1 = ‖ε̄‖2 in which ε̄ � Σ−1/2ε ∼ N(0,I). This concludes the

proof as ‖ε̄‖2, by definition, is distributed according to χ2
dim(z).

2Without loss of generality we can assume the noise is zero-mean. Note that here we do not make any other assumptions
regarding the structure of the noise covariance matrix Σ.
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According to Proposition 4.2.1, f◦ follows a χ2
ν◦ distribution with dim(z) degrees of freedom.

Now let us examine the behaviour of f� � f(x�). Note that x� depends on z and therefore is a

random variable. Consequently, f�, as a function of x� and z, is also a random variable. The following

proposition provides the distribution of f� when the measurement function is affine in x.

Proposition 4.2.2. Under the assumptions below, f� ∼ χ2
ν� where ν� � dim(z) − dim(x).

1. Assumption 4.2.1.

2. Affine measurement function h(x) = Hx + c where H is full column rank.

Proof. Define H̃ � Σ− 1
2 H, z̃ � Σ− 1

2 z, c̃ � Σ− 1
2 c and ε̃ � Σ− 1

2 ε ∼ N(0,I). The maximum likelihood

estimate is given by,

x� = (H̃�H̃)−1H̃�︸ ︷︷ ︸
H̃†

(z̃ − c̃), (4.30)

in which H̃† � (H̃�H̃)−1H̃� is the Moore-Penrose pseudoinverse of H̃. Now we evaluate f(x) at

x = x�,

f(x�) = ‖z − Hx� − c‖2
Σ−1 (4.31)

= ‖z̃ − H̃x� − c̃‖2 (4.32)

= ‖z − c̃ − H̃H̃† (z − c̃)‖2 (4.33)

= ‖(I − H̃H̃†) (z̃ − c̃)‖2 (4.34)

= ‖(I − H̃H̃†) (H̃x◦ + c̃ + ε̃ − c̃)‖2 (4.35)

= ‖(I − H̃H̃†) (H̃x◦ + ε̃)‖2 (4.36)

= ‖(I − H̃H̃†) ε̃‖2. (4.37)

Now note that I − H̃H̃† is the orthogonal projection onto the nullspace of H̃� with dimension r �

dim(z) − dim(x). Let u1, . . . ,ur be an orthonormal basis for the nullspace of H̃�. Therefore (I −
H̃H̃†) ε̃ =

∑r
i=1(u�

i ε̃) ui. Now note that,

‖(I − H̃H̃†) ε̃‖2 = ε̃�(I − H̃H̃†)ε̃ (4.38)

= ε̃�
r∑

i=1
(u�

i ε̃) ui (4.39)

=
r∑

i=1
(u�

i ε̃)2. (4.40)
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This concludes the proof since (u�
i ε̃) ∼ N(0,1) and moreover, (u�

i ε̃) and (u�
j ε̃) are independent for

i �= j.

Proposition 4.2.2 describes the distribution of f� for affine measurement functions corrupted by

additive Gaussian noise (Assumption 4.2.1). Unfortunately, it is impossible to analytically character-

ize the distribution of f� for general (nonlinear) measurement functions. However, we can always

linearize sufficiently smooth nonlinear measurement functions using the first-order Taylor expansion

around x = x◦, i.e.,

h(x) ≈ h(x◦) + H◦(x − x◦) (4.41)

= H◦x + h(x◦) − H◦x◦︸ ︷︷ ︸
c◦

(4.42)

in which H◦ is the Jacobian matrix of h(x) evaluated at the true value of x, i.e.,

H◦ � ∂h(x)
∂x

∣∣∣
x=x◦

. (4.43)

Therefore, if the linearization error ‖h(x�) − H◦x� − c◦‖ is negligible, we can still rely on Proposi-

tion 4.2.2 (as an approximation) for nonlinear measurement functions. Note that this linearization

error depends on the estimation error ‖x� − x◦‖. Estimation error will be small when the measure-

ments are precise (e.g., when diag(Σ) is “small”) and/or when there are a sufficiently large number

of measurements (m 
 n). Thus in such cases, it is reasonable to use Proposition 4.2.2 with caution

even for nonlinear measurement functions. According to Proposition 4.2.1 and Proposition 4.2.2, the

distribution of f◦ and f� ultimately depends on the size of z and x. For example, in 2D pose-graphs

we have ν◦ = 3m and ν� = 3(m − n). Eε∼N(0,Σ)[γ] can be approximated by,

Eε∼N(0,Σ)[γ] ≈ Eε∼N(0,Σ)[f�]
Eε∼N(0,Σ)[f◦]

(4.44)

≈ ν�

ν◦ (4.45)

= 1 − n

m
. (4.46)

This naive approximation in (4.44) can be justified by the first-order Taylor expansion of γ (i.e., ratio)

at f� = Eε∼N(0,Σ)[f�] ≈ ν� and f◦ = Eε∼(0,Σ)[f◦] = ν◦. Note that in general, approximating the

expected value of a ratio by the ratio of expected values does not result in a reasonable estimate.

Nevertheless, as we will see shortly in Figure 4.3, this approximation is good enough for explaining
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Figure 4.3: Average of γ in 50 Monte Carlo simulations for different average node degrees (blue).
Estimated value of E[γ] ≈ 1 − 2

d̄
(red).

the aforementioned empirical observations.

Using the handshaking lemma (Lemma A.4.1) we can express (4.46) in terms of the average de-

gree of graph; i.e.,

Eε∼N(0,Σ)[γ] ≈ 1 − 2/d̄ . (4.47)

Equation (4.47) reveals the relation between the expected value of γ, as a measure of estimation ac-

curacy, and the average node degree d̄, as the simplest measure of graph connectivity. According to

(4.47), as the average degree increases, γ in expectation approaches 1, which indicates an accurate

maximum likelihood estimate. The red points in Figure 4.3 are drawn according to (4.47). Accord-

ing to this figure, (4.47) is consistent with our and Olson and Kaess [123]’s empirical observations

regarding the average value of γ (blue points in Figure 4.3).

As noted before, according to Lemma A.4.1 the average degree is proportional to the ratio be-

tween the number of (vector-valued) measurements (e.g., odometry and loop closure measurements)

and the number of (vector-valued) variables (e.g., robot poses). Therefore, for a fixed number of vari-

ables (e.g., fixed number of poses), maximizing the average degree is equivalent to merely gathering

as many measurements as possible. In other words, the average degree, as a connectivity measure, is

insensitive to subtle topological differences between graphs with the same number of edges (per ver-

tices). Hence, although (4.47) is consistent with the empirical results, d̄ is not sophisticated enough

to capture and reflect the differences between graph structures with the same number of measure-
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ments (or even different measurement precisions). Nevertheless, (4.47) is still an interesting result as

it provides insights into how making new observations ultimately leads to a more precise estimate.

4.2.2 Algebraic Connectivity ↔ Worst-Case Error Variance

Now we present another result on how in Diff-Nets and Compass-SLAM, a “well-connected” graph

is necessary for achieving reliable estimates. The following remark sets the stage for our main result.

Remark 8. Let Cov[e] � 0 be a n × n estimation error covariance matrix in which e ∈ Rn denotes the

estimation error. Let λmax � λn(Cov[e]) be the largest eigenvalue of Cov[e]. The following statements hold

regarding λmax.

1. λmax specifies the worst-case variance among all unit directions u ∈ Rn:

λmax � λn(Cov[e]) (4.48)

= max
‖u‖=1

u�Cov[e] u (4.49)

= max
‖u‖=1

u�E
[
e e�]u (4.50)

= max
‖u‖=1

E
[
(u�e)2]. (4.51)

Note that (4.51) is the worst case variance of error among all unit directions.

2. Geometrically speaking, if Cov[e] is the covariance matrix of a Gaussian distribution, the “hyper-

diameter” of the uncertainty hyper-ellipsoid is specified by
√

λmax.

In the optimal experimental design literature, the design that minimizes λmax of the estimation

error covariance matrix is known as the E-optimal (extreme or eigenvalue) design [130]. As intro-

duced in Section A.4, for any simple connected undirected graph G, the second-largest eigenvalue of

the (weighted) Laplacian matrix L◦, i.e., λ2(L◦) > 0, is known as the algebraic connectivity of G. The-

orem 4.2.3 reveals the connection between the algebraic connectivity of a graph and the worst case

estimation error variance—as a measure of estimation reliability—in Diff-Net and Compass-SLAM.

Theorem 4.2.3 (Algebraic Connectivity and Worst Case Error Variance). Let Cov[x�] be the estimation

error covariance matrix of the maximum likelihood estimator in Diff-Net and Compass-SLAM. Let L◦w be the

corresponding weighted Laplacian matrix. Then we have,

λmax(Cov[x�]) ≥ λ−1
2 (L◦w). (4.52)
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Proof. Recall that the Fisher information matrix in the d-dimensional Diff-Net and Compass-SLAM is

given by I = Lw ⊗ Id in which Lw is the reduced weighted Laplacian matrix of the graph. According

to Cauchy’s interlace theorem [59, Theorem 9.1.1], 0 < λ1(L) ≤ λ2(L◦w). Now note that,

λmax(Cov[x�]) = λ1(I)−1 (4.53)

= λ1(Lw ⊗ Id)−1 (4.54)

= λ1(Lw)−1 (4.55)

≥ λ2(L◦w)−1. (4.56)

According to Theorem 4.2.3, a necessary condition for having a sufficiently small worst-case es-

timation error variance in Diff-Net and Compass-SLAM is to have a sufficiently large algebraic con-

nectivity. Note that Lw also depends on the edge weights. Therefore, as expected, scaling the infor-

mation content (precision) of every edge by a factor of α, scales the (weighted) algebraic connectivity

by the same factor (e.g., αλ2 where λ2 is the original algebraic connectivity). Finally, recall that in

linear-Gaussian problems, the Cramér-Rao bound is achievable. Hence, (4.52) can also be interpreted

as a bound on the achievable E-criterion.

4.2.3 Tree Connectivity ↔ Volume of Uncertainty Ellipsoids

In this section, we demonstrate that the weighted number of spanning trees—as a measure of graph

connectivity, see Section A.4—has a significant impact on the determinant of the estimation error

covariance of the maximum likelihood estimator in several EoG problems, including SLAM. The

D-optimality criterion [130] (D-criterion for short) can be interpreted as a scalar measure of the

uncertainty encoded in a covariance matrix. For instance, in multivariate Gaussian distributions,

the square root of the determinant of the covariance matrix is proportional to the hyper-volume

of the confidence hyper-ellipsoids. Moreover, from an information-theoretic standpoint, the log-

determinant of the covariance matrix of a Gaussian distribution is proportional to its differential

entropy up to an additive constant.

Before presenting our main results, we point out few numerical tricks that are essential for han-

dling large problems. First, note that minimizing detCov[x�] is equivalent to minimizing log detCov[x�];
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however, we directly compute the latter in order to avoid overflow and underflow. Similarly, instead

of directly working with the weighted number of spanning trees t(G) = det Lw (Theorem A.4.6), we

often use the weighted tree-connectivity as defined below.

Definition 4.2.1 (Tree-Connectivity). The tree-connectivity of graph G is formally defined as

τ(G) �

⎧⎪⎪⎨⎪⎪⎩
log t(G) if G is connected,

0 otherwise.
(4.57)

Similarly, for weighted graphs weighted by a positive weight function w : E(G) → R>0, the weighted

tree-connectivity is defined as

τw(G) �

⎧⎪⎪⎨⎪⎪⎩
log tw(G) if G is connected,

0 otherwise.
(4.58)

In SLAM and many other real-world EoGs, the Laplacian matrix and, consequently, the Fisher

information matrix are sparse. Algorithm 4 outlines an efficient procedure for computing the log-

determinant of any sparse positive-definite matrix. It is important to note that, unlike the Fisher

information matrix, the covariance matrix in SLAM is generally dense. Therefore, to exploit the

sparse structure of the problem, we always compute log detCov[x�] indirectly via log det I(x):

log detCov[x�] ≈ log det I(x�)−1 (4.59)

= − log det I(x�). (4.60)

For dense graphs and in the worst case, computing the log det requires O(n3) time—where n is the

number of vertices—while in many practical sparse scenarios that arise in the context of robotics and

sensor networks, Algorithm 4 performs much faster given a sufficiently good fill-reducing permuta-

tion. Now we are ready to present our main results.

Theorem 4.2.4 (D-optimal Diff-Net and Compass-SLAM). In the d-dimensional Diff-Net and Compass-
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Algorithm 4 log det(S) for a sparse symmetric S � 0
1: function LogDet(S)
2: // Choose a fill-reducing permutation heuristic P
3: P ← COLAMD(S) � e.g., column approximate minimum degree
4: // Compute the sparse Cholesky factor C s.t. S = CC�

5: C ← SparseCholesky(PSP�)
6: return 2

∑
i log Ci,i

7: end function

SLAM (i.e., xi ∈ Rd) we have,

log det(Cov[x�]) = −d τw(G). (4.61)

Here the weights are equal to the precision of the corresponding measurements (see Section 4.1).

Proof. Based on Propositions 4.1.1 and 4.1.2 and the weighted matrix-tree theorem (Theorem A.4.6)

we have,

log det(Cov[x�]) = − log det(I) (4.62)

= − log det(Lw ⊗ Id) (4.63)

= −d τw(G). (4.64)

Theorem 4.2.4 ensures that in Diff-Net and Compass-SLAM, under the specified assumptions, the

following (equivalent) objectives are all achieved by maximizing the weighted number of spanning

trees in the underlying graph:

1. Minimizing the differential entropy of x�.

2. Minimizing the hyper-volume of uncertainty hyper-ellipsoid.

3. Maximizing the D-criterion.

The graph with the maximum (weighted) number of spanning trees among a family of graphs has

been referred to as t-optimal. Theorem 4.2.4 states that D-optimality and t-optimality are equiva-

lent under the aforementioned assumptions. Now we extend Theorem 4.2.4 to the SLAM problem

defined in Section 4.1.3. The following lemma readily follows from applying Schur’s determinant

formula (Lemma A.1.1) and matrix-tree theorem (Theorem A.4.6) on (4.28).
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Lemma 4.2.1. For the SLAM problem defined in Section 4.1.3 we have,

log det I(x) = 2 · τwp(G) + log det
(

Lwθ
+ Δ�

wp
P⊥

wp
Δwp

)
, (4.65)

in which P⊥
wp

is defined as,

P⊥
wp

� I − Γ�
(

A�
wp

L−1
wp

Awp ⊗ I2

)
Γ. (4.66)

Now we use Lemma 4.66 to bound log det I(x).

Proposition 4.2.5. For the SLAM problem defined in Section 4.1.3 we have

L ≤ log det I(x) ≤ U, (4.67)

in which L and U are defined below,

L � 2 · τwp(G) + τwθ
(G) (4.68)

U � 2 · τwp(G) +
n∑

i=1
log
(
λi(Lwθ

) + ‖Δ�
wp

Δwp‖∞
)
. (4.69)

Finally, Theorem 4.2.6 shows that when ‖Δ�
wp

Δwp‖∞ → 0, the value of log det I(x) only depends

on the weighted tree-connectivity of the underlying graph.

Theorem 4.2.6. Define δ � ‖Δ�
wp

Δwp‖∞. For the SLAM problem defined in Section 4.1.3 we have,

lim
δ→0+

log det I(x) = 2 · τwp(G) + τwθ
(G). (4.70)

From (4.29) we have,

δ = max
{

di : di =
∑

j∈S(i)
wp(i,j)‖pi − pj‖2 ∀i ∈ [n]

}
. (4.71)

This parameter depends on the outdegree of the nodes through |S(i)|, the sensing range through ‖pi−
pj‖2, and the precision of the translational measurements through wp. In the following corollary, we

consider a special case in which rotational and translation measurements are corrupted by isotropic

noise.

Corollary 4.2.7. Suppose the covariance matrix for rotational and translational measurements is isotropic,
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i.e., Σp = σ2
p · I and Σθ = σ2

θ · I. Let I(x|T) be the Fisher information matrix associated to an arbitrary

spanning tree, e.g., the odometry subgraph. Then,

lim
δ→0

log det I(x) − log det I(x|T) = 3 · τ(G). (4.72)

A natural choice for T is the odometry spanning tree Todo. In this case, Δinf(G) � log det I(x) −
log det I(x|Todo) can be interpreted as the information gained by closing loops as compared with

the dead reckoning scenario. According to Corollary 4.2.7, Δinf(G) will be proportional to the tree-

connectivity of graph when δ is sufficiently small. The following corollary directly follows from

Corollary 4.2.7 and Cayley’s formula (see Theorem A.4.5).

Corollary 4.2.8. In the SLAM problem defined in Section 4.1.3 with isotropic noise we have,

lim
δ→0+

Δinf(Kn) = 3 · (n − 2) · log(n). (4.73)

Theorems 4.2.4 and 4.2.6 establish a basis for comparing the graphical structure of different in-

stances of EoG problems based on their number of spanning trees. It is important to note that two

graphs are comparable based on tree-connectivity only if they have the same number of vertices. One

way of comparing the tree-connectivity of graphs with a different number of vertices is to somehow

normalize the absolute tree-connectivity by the number of spanning trees.

Definition 4.2.2 (Normalized Tree-Connectivity). Suppose G is a graph with n vertices and K is the

complete graph over n vertices. We define the normalized tree-connectivity of G, denoted by τ̄(G), as

τ̄(G) � τ(G)/τ(K).

According to this approach, the tree-connectivity of each graph is normalized by the tree-connectivity

of the complete graph with the same number of vertices. In other words, to any simple connected

graph G, τ̄(G) assigns a score that reflects the tree-connectivity of G relative to the tree-connectivity of

the complete graph with the same number of vertices. The following corollary directly follows from

the above definition and Cayley’s formula (see Theorem A.4.5).

Corollary 4.2.9. Let G be a simple undirected graph with n vertices. The following statements hold regarding

the normalized tree-connectivity of G.
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(i)

τ̄(G) =
τ(G)

(n − 2) log(n)
. (4.74)

(ii) 0 ≤ τ̄(G) ≤ 1.

(iii) τ̄(G) = 0 if and only if G is not connected.

(iv) τ̄(G) = 1 if and only if G is the complete graph.

Corollary 4.2.10 follows from Corollary 4.2.7.

Corollary 4.2.10. In the SLAM problem defined in Section 4.1.3 with isotropic noise we have,

lim
δ→0+

Δinf(G)
Δinf(K)

= τ̄(G). (4.75)

Hence, under the assumption of isotropic noise, the normalized tree-connectivity can be inter-

preted as the ratio of the information gained relative to dead reckoning, between the realized graph

G and the complete graph K. Finally, we note that a similar normalization scheme can be designed for

weighted graphs. However, this would require making explicit assumptions regarding the weights

of the missing edges.

4.3 Experimental Results

We conducted several experiments on both real and synthetic SLAM datasets. These experiments are

specifically designed to:

1. Evaluate the tree-connectivity of some of the publicly available real and synthetic SLAM bench-

marks.

2. Empirically validate Theorem 4.2.6.

3. Assess the sensitivity of the asymptotic result provided by Theorem 4.2.6 with respect to the

value of δ.

To test Theorem 4.2.6 numerically, we use the relative error (RE) defined as

RE �
∣∣∣∣∣ log det I(x) − L

log det I(x)

∣∣∣∣∣ , (4.76)
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Table 4.1: A list of publicly available 2D pose-graph datasets, sorted according to τ̄(G).

Dataset τ̄(G) Average Degree RE (%)
M10K 0.22 12.86 0.07

Intel 0.13 3.89 0.06

City10K 0.12 4.13 0.51

Lincoln 0.11 3.90 58.00

Manhattan 0.09 3.11 1.00

RingCity 0.05 2.76 1.08

Freiburg 0.04 2.46 0.04

CSAIL 0.02 2.24 0.12

where

L = lim
δ→0+

log det I(x) � 2τwp(G) + τwθ
(G). (4.77)

The datasets used in this section are all 2D pose-graph SLAM datasets. The non-diagonal noise

covariance matrices have been modified to satisfy our assumptions about the noise covariance matrix

(e.g., block-isotropic for Theorem 4.2.6 and isotropic for Corollary 4.2.7). Note that RE, through the

Fisher information matrix, depends on x. The inverse of the Fisher information matrix evaluated at

the ground truth results in the Cramér-Rao lower bound (see Appendix A). Moreover, the covariance

matrix of the maximum likelihood estimator is usually approximated by computing the inverse of

the Fisher information matrix at the maximum likelihood estimate. Among the datasets used in this

section, Manhattan [121] (a synthetic 2D pose-graph dataset) is the only one for which the ground

truth is publicly available. Therefore, RE in other datasets is inevitably evaluated at the solution

obtained by minimizing the negative log-likelihood cost function using Gauss-Newton initialized by

the popular bootstrapping technique proposed in Konolige et al. [98].

Results

The normalized tree-connectivity for several publicly available datasets is shown in Table 4.1. The

entries in Table 4.1 are sorted (in descending order) based on the normalized tree-connectivity τ̄(G).

First, note that the relative error (RE) is typically small, except in the case of Lincoln dataset. A small

RE indicates that log det I(x) is already close to its asymptotic value predicted by Theorem 4.2.6.

Hence, this empirical observation suggests that in these datasets, Theorem 4.2.6 is not sensitive to

the value of δ (e.g., in Manhattan δ ≈ 1296.91). In such cases, the log-determinant of the Fisher
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Figure 4.4: RE evaluated at the ground truth as a function of the scale parameter β for Manhattan.
Here δ = βδorig in which δorig ≈ 1296.91 is the value of δ in Manhattan dataset (see Table 4.1). This
can be done by scaling either σ2

p or p. Note the logarithmic scale of the horizontal axis.
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Figure 4.5: RE evaluated at the ground truth as a function of scale parameter β for Manhattan. Here
δ = βδ0 in which δ0 ≈ 6.21 × 104. In this experiment, the edges have different noise variances. Note
the logarithmic scale of the horizontal axis.
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Figure 4.6: log det I(x) as a function of τ(G) for over 44×103 randomly generated spanning subgraphs
of the Intel Research Lab dataset. Here log det I(x) is evaluated at the maximum likelihood estimate
of the original dataset. The prediction is based on the limit value provided by Theorem 4.2.6.

information matrix is almost entirely characterized by the tree-connectivity of the underlying graph.

It is important to note that evaluating log det I(x) at the solution returned by Gauss-Newton is

subject to local minima. The large RE in the case of Lincoln dataset (highlighted in red) is partially
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due to the fact that Gauss-Newton has failed to converge to the true maximum likelihood estimate.

By contrast, estimating the D-criterion based on Theorem 4.2.6 is naturally robust to such conver-

gence errors.

Notice that in Table 4.1, the ranking based on the number of spanning trees is not consistent

with the ranking based on the average degree of the graph (see the entries highlighted in green).

As mentioned earlier, this is because the average degree—as a graph connectivity measure [123]—

is too simple to capture the structural differences between two graphs with the same number of

measurements per variables; see Lemma A.4.1.

Our next experiment is based on the Manhattan dataset. The Fisher information matrix in this

case is computed at the ground truth. Figure 4.4 depicts how RE evolves with respect to scaling δ

when the noise is isotropic. Scaling δ can be done by scaling either σ2
p or p. Figure 4.4 is obtained

by scaling δ according to βδorig in which δorig ≈ 1296.91 is the original value of δ in the Manhattan

dataset (see Table 4.1). As illustrated in Figure 4.4, the log-determinant of the Fisher information

matrix approaches the limit value predicted by Theorem 4.2.6 as δ → 0+ (see also the special case in

Corollary 4.2.7).

We repeated this experiment for the case of block-isotropic noise. To make the original isotropic

noise of Manhattan compatible with the assumption of block-isotropic noise, we added random per-

turbations to the original noise variances. In Figure 4.5, we scale δ according to βδorig (this time

δorig ≈ 6.21 × 104 due to random perturbations). It is clear based on our results that when δ is rel-

atively small, Theorem 4.2.6 provides a reasonable estimate for the log-determinant of the Fisher

information matrix.

Finally, Figure 4.6 shows log det I(x) as a function of τ(G) for more than 44×103 random spanning

subgraphs of the Intel Research Lab dataset. Each subgraph contains a random subset of loop-closure

edges of the original dataset. For each possible number of loop-closures, we generated 50 random

spanning subgraphs. The predicted value is L. Figure 4.6 indicates that in this case, tree-connectivity

almost entirely characterizes the D-criterion as predicted by our theoretical results.

4.4 Summary

In this chapter, we studied the impact of several graph-connectivity measures in Diff-Nets, Compass-

SLAM and 2D pose-graph SLAM on the estimation error covariance matrix associated to the max-

imum likelihood estimator. In particular, we presented a theoretical justification for the empirical
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observations made in [123] about the average degree in the graph. We established a connection be-

tween the E-optimality criterion in Diff-Nets and Compass-SLAM and the algebraic connectivity of

the underlying graph. Finally, we proved that the weighted number of spanning trees is closely

related to the D-optimality criterion. Our work demonstrates that the graphical representation of

SLAM offers a compact, yet rich representation that can be used to predict the quality of estimation

without knowing specific details about the geometry of the scene (i.e., without the need for solving

the original optimization problem).



CHAPTER 5

Synthesis of Near-Tree-Optimal Graphs

In Chapter 4, we demonstrated that the graphical structure of SLAM can be used to reason about

the estimation error covariance without a detailed knowledge about the geometry of the scene (i.e.,

without solving the underlying estimation/optimization problem). In particular, we proved that the

weighted number of spanning trees is closely related to the determinant of the Fisher information

matrix in several EoG problems, including SLAM. This result suggests that, under certain condi-

tions, D-optimal SLAM problems can be constructed by designing SLAM problems whose graphical

representations are t-optimal. In this chapter, we tackle the combinatorial optimization problem of

designing graphs with the maximum weighted number of spanning trees under several types of con-

straints. The problem of designing sparse graphs with the maximum weighted number of spanning

trees also arises in several other contexts across different domains in science and engineering. We

investigate some of these applications in Section 5.7.

Outline

In the next section, we point out a few basic results needed for formulating the problem of t-optimal

graph synthesis. Section 5.2 presents a formal definition of this problem, motivated by the mea-

surement selection problem in SLAM. In Section 5.3, we develop our approximation algorithms and

provide an analysis. In Section 5.4, we extend our algorithms and their analyses to the dual problem.

Matroid constraints are discussed in Section 5.5. In Section 5.6, we extend our original problem defi-

nition to the case of disconnected base graphs. Section 5.7 shows how our graph synthesis framework

can be used in several applications, including the measurement selection problem in SLAM. Finally,

in Section 5.8, we evaluate the performance of our algorithms on both synthetic and real graphs.

76
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5.1 Maximizing Tree-Connectivity

We begin by simplifying our notation. Weighted tree-connectivity induces a partial ordering on the

set of undirected graphs with positive edge weights: two graphs G and H are comparable if and only

if |V(G)| = |V(H)|. Now suppose G ⊆ Gn and a positive weight function w : E(Kn) → R>0 are given.

In the most general case, we are interested in finding t-optimal graphs with respect to G and w, i.e.,

maximize
G∈G⊆Gn

tw(G). (5.1)

When all edges have equal weights,

w(u,v) = w(p,q), ∀u,v,p,q ∈ [n], (5.2)

tw(G) in (5.1) can be replaced by the number of spanning trees t(G) without affecting the set of op-

timal solutions. Let G� ∈ G be an optimal design. Note that the number of vertices and the edge

weights in (5.1) are assumed to be given. Hence, the decision variables are in fact the graph edges.

To emphasize on this point, let E � {E(G) : G ∈ G} be the collection of the edge sets of the graphs in

G. With a slight abuse of notation, (5.1) can be rewritten as,

maximize
E∈E

tw([n],E). (5.3)

Lemma 5.1.1. The set of optimal solutions of (5.1) is invariant under scaling w by any constant α > 0.

Proof. Let wα : e �→ α w(e) be the scaled weight function. It is easy to show that twα(G) = αn−1tw(G).

Therefore, tw(G) ≥ tw(H) ⇔ twα(G) ≥ twα(H) for any G and H with n vertices.

Define w⊥ � min w(u,v). If w⊥ < 1, according to Lemma 5.1.1 we can scale every weight by any

α ≥ w−1
⊥ without affecting the t-optimal topologies in (5.1). Therefore, without losing any generality

we can assume the following.

Assumption 5.1.1. w(u,v) ≥ 1 for all vertices u and v.

For clarity, let us define the weighted number of spanning trees and weighted tree-connectivity

as functions of the edge set of graph.
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Definition 5.1.1. For any n ≥ 2 and w : E(Kn) → R≥1 define,

tn,w : E(Kn) → R≥0

E �→ tw([n],E). (5.4)

Similarly, we define

τn,w : E(Kn) → R≥0

E �→ τw([n],E). (5.5)

Consequently, (5.3) can be rewritten as,

maximize
E∈E

tn,w(E), (5.6)

or, equivalently, since log is monotonic,

maximize
E∈E

τn,w(E). (5.7)

It will become clear soon why using τn,w is preferred over tn,w. Notice that (5.3)-(5.7) represent the

most general case of finding t-optimal graphs. A natural special case is when G = Gn,m, i.e., the set

of all simple undirected graphs with n vertices and m edges. This special case can be expressed as,

maximize
E⊆E(Kn)

τn,w(E)

subject to |E| = m.

(5.8)

The cardinality constraint enforces the desired level of sparsity. In many cases, sparsity of the graph

is often a crucial factor in determining the amount of resources needed for solving the problems that

arise over graph structures and networks. Particularly in EoG problems such as SLAM, sparsity of

the graph determines the computational cost of solving the resulting inference problem associated

with ML/MAP estimation.

5.1.1 Characterizing t-Optimal Graphs in Gn,m

The problem of characterizing graphs in Gn,m with the maximum number of spanning trees has

remained open, and is solved only for special cases; e.g., for specific ranges of m (with respect to n),



CHAPTER 5: SYNTHESIS OF NEAR-TREE-OPTIMAL GRAPHS 79

such as when n − 1 ≤ m ≤ n + 3 (almost-tree graphs) and
(n

2
) − n/2 ≤ m ≤ (n

2
)

(almost-complete

graphs). Another major result is due to Cheng [29] who proved that the family of regular complete

multipartite graphs are t-optimal among all graphs with the same number of vertices and edges.

These results can be found in [29, 89, 126, 137, 153]. See also [13] for a recent survey of known results.

Unfortunately the span of these special cases is too narrow for the types of graphs that typically

arise in SLAM and many other problems. Furthermore, in many problems, the Gn,m constraint alone

is insufficient for characterizing the true set of “feasible” graphs and cannot capture implicit practical

constraints. Finally, these results do not cover the case of weighted graphs or parallel edges which

are essential for representing, e.g., EoG problems such as SLAM.

5.2 The Edge Selection Problem

Due to the drawbacks of the Gn,m constraint, in this section we study several special scenarios of

(5.3) that emerge from designing reliable (i.e., near-D-optimal) EoG problems such as SLAM. An

important special case of (5.3) is the following. Suppose a connected base graph and a positive weight

function over the set of all possible edges are given. Informally speaking, the edge selection problem

(ESP) is a combinatorial optimization problem whose goal is to find a t-optimal graph with respect

to the set of graphs whose edge sets are at most k elements different from that of the base graph. A

precise definition of ESP is given below.

Problem 5.2.1 (k-ESP). Any instance of k-ESP is specified by the following:

• A set of n ≥ 2 vertices V = [n],

• A planning horizon: k ∈ N,

• A base graph: a connected graph Ginit = (V,Einit),

• A weight function: w : E(Kn) → R≥1,

• A candidate set, i.e., a set of c ≥ k candidate edges that can be either C+ ⊆ E(Kn) \ Einit or

C- ⊆ Einit.

Two variants of k-ESP are defined below.
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Figure 5.1: Examples of k-ESP. The candidate edges are drawn with the dashed lines.

1. k-ESP+:
maximize

E⊆C+
τn,w(Einit ∪ E)

subject to |E| = k.

(5.9)

2. k-ESP-:
maximize

E⊆C-
τn,w(Einit \ E)

subject to |E| = k.

(5.10)

Example 5.2.1 (k-ESP). Figure 5.1 illustrates instances of k-ESP+ and k-ESP-. The set of candi-

date edges C+ =
{
{1,3},{3,5},{1,5}

}
and C- =

{
{2,3},{3,4},{4,5}

}
⊆ Einit are shown with the

dashed edges. The number written on each edge is the weight assigned to that edge.

The notion of “base graph” (Ginit) in the definition of k-ESP can be seen as a design constraint:

in k-ESP+, the base graph must be a spanning subgraph of the optimal graph, and conversely in

k-ESP-, the optimal graph has to be a spanning subgraph of the base graph. At first glance, the Gn,m

may seem as a special case of k-ESP+ with Einit = ∅ and C+ =
([n]

2
)
. However, strictly speaking,

any problem with Einit = ∅ is not a valid k-ESP+ since in the definition of k-ESP+ it is explicitly

assumed that Ginit has to be connected. In some applications, Ginit is naturally connected and therefore

we do not lose any practical generality by having this assumption; e.g., in pose-graph SLAM, the

odometry subgraph (i.e., the path graph with n vertices and weighted edges) is a natural choice for

Ginit. Nevertheless, for technical reasons, the algorithms designed in this chapter explicitly assume

that Ginit is connected. We will revisit this assumption in Section 5.6 and discuss how it can be relaxed

in practice.

In general, any instance of k-ESP+ can be posed as an instance of k′-ESP- (with different pa-
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Algorithm 5 Optimal Edge (1-ESP+)

1: function NextBestEdge(C+,C) � C+: Candidate Set, C: Cholesky factor of Linit
2: m ← 0 � Maximum value
3: for all e ∈ C+ do � Parallelizable loop
4: we ← w(e)
5: Δe ← Reff(e,C)
6: if weΔe > m then
7: e� ← e
8: m ← weΔe

9: end if
10: end for
11: return e�

12: end function

Algorithm 6 Effective Resistance

1: function Reff(euv,C) � Effective Resistance
2: // column of the reduced incidence matrix
3: auv ← eu − ev

4: // solve Cxuv = auv

5: xuv ← ForwardSolver(C,auv) � Lower triangular
6: Δuv ← ‖xuv‖2

7: return Δuv

8: end function

rameters), and vice versa. For instance, selecting k edges among c new candidates can be done by (i)

adding all c candidates to the graph, and (ii) pruning the k′ � c−k unwanted edges—i.e., an instance

of k′-ESP-. Hence, in the rest of this chapter we focus mainly on the k-ESP+ problem.

5.2.1 1-ESP+

In this section, we discuss 1-ESP+ as the simplest instance of k-ESP+. As it will become clear shortly,

the solution of 1-ESP+ can be used as a building block for finding near-optimal solutions for the

general k-ESP+ problem.

The optimal edge in 1-ESP+ can be found by examining every available candidate edge in C+,

and choosing the one that maximizes the weighted number of spanning trees of the resulting graph

([n],Einit ∪{e}). Hence, finding the optimal design using this brute force strategy requires computing

the tree-connectivity of c graphs (one for each candidate edge). If the base graph is dense, computing

tree-connectivity can be done in O(n3) operations using the Cholesky decomposition of the reduced

weighted Laplacian matrix (similar to Algorithm 4). Hence, the total time complexity in this case is

O(c n3).

1-ESP+ can be solved in O(n3+c n2) using Theorem A.4.7. According to this theorem, the solution
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of 1-ESP+ is given by,

e� = arg max
e∈C+

w(e)Δe, (5.11)

where Δe � a�
e L−1

init ae.

Remark 9 (Effective Resistance). It is worth noting that Δe is the so-called effective resistance between

the two endpoints of e in the base graph Ginit. The effective resistance gives a metric on graphs; i.e., among

other properties, it satisfies the triangle inequality. Therefore, we can interpret Δe as the distance between the

two endpoints of e in the base graph (resistance distance). The effective resistance between u and v is equal

to the resistance measured between these two vertices when the edges of the graph (electrical circuit) represent

resistors with conductances equal to their weights (hence the name). This metric arises also in a few other

applications; see [58].

From this perspective, (5.11) can be interpreted as follows.

Corollary 5.2.1. In the special case of unit edge weights, the optimal candidate edge for maximizing the tree-

connectivity of the graph in 1-ESP+ is the one that connects the vertices that are furthest (as measured by the

resistance distance) from each other in the base graph.

Note that if the Cholesky decomposition of Linit is available, we can compute w(e) Δe for all can-

didate edges in O(c n2) time. Therefore, the Cholesky decomposition of Linit needs to be computed

only once, which takes O(n3) operations. Hence, as mentioned earlier, the total time in this case will

be O(n3 + c n2). Solving the 1-ESP+ using this procedure will therefore be somewhat faster than the

brute force algorithm outlined above, especially when c is large. This algorithm is summarized in

Algorithm 5.

5.2.2 Exhaustive Search

Solving the general case of k-ESP+ by exhaustive search requires examining
(c

k

)
graphs which is

usually impractical. For example, for c = 30 and k = 10, exhaustive search has to compute more

than 3 × 107 Cholesky decompositions. To the best of our knowledge, there is no known efficient

algorithm for finding t-optimal graphs or solving the k-ESP+ problem in polynomial time. Hence, in

the following section we design efficient near-optimal approximation algorithms for this problem.
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5.3 Approximation Algorithms for k-ESP+

5.3.1 Greedy Algorithm

Algorithm and Complexity Analysis

The greedy algorithm finds an approximate solution for k-ESP+ by decomposing it into a sequence

of k 1-ESP+ subproblems, each of which can be solved using the procedure described above. After

solving each subproblem, the optimal edge is moved from the candidate set C+ to the base graph.

The next 1-ESP+ subproblem then is defined using the updated candidate set and base graph. If Ginit

is densely connected, a naive implementation of the greedy algorithm requires less than O(k c n3)

operations.

As mentioned in Section 5.2.1, we can do better than O(k c n3) by using the result of Theo-

rem A.4.7. However, in this case we need to recompute the Cholesky factor of the updated base

graph after solving each 1-ESP+. Note that the Cholesky factor of the updated base graph can be

computed by performing a rank-one update on the Cholesky factor of the base graph in the previous

round. This operation can be done in O(n2) time. Therefore, in total we need O(n3 + k c n2) time to

run the greedy algorithm on an instance of k-ESP+. This procedure is described in Algorithm 7.

Performance Analysis

In this section, we analyze the performance of the greedy algorithm described in Algorithm 7.

Definition 5.3.1 (Tree-Connectivity Gain). Suppose an instance of k-ESP+ is given with some Ginit,

C+ and w. The tree-connectivity gain is defined as,

Φw : E �→ τn,w(Einit ∪ E) − τn,w(Einit). (5.12)

The domain of Φw is restricted to 2C+
.

Φw is a set function that takes as input a subset of the candidate edges E ⊆ C+, and returns

the marginal increase in weighted tree-connectivity after adding the edges in E to the base graph

Ginit. Recall that in k-ESP+, it is assumed that Ginit is connected and w(e) ≥ 1 for all e ∈ ([n]
2
)
.

Strictly speaking, according to the above definition, Φw is parametrised by Ginit = ([n],Einit) and w.

Nonetheless, to simplify our notation, we may write Φw(E) instead of Φw(E ;Ginit,w) whenever Ginit
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Algorithm 7 Greedy Edge Selection

1: function GreedyESP(Linit,C
+,k)

2: E ← ∅
3: L ← Linit
4: C ←Cholesky(L)
5: while |E| < k do
6: e�

uv ← NextBestEdge(C+ \ E,C)
7: E ← E ∪ {e�

uv}
8: // column of the reduced incidence matrix
9: auv ← eu − ev

10: L ← L + w(e�
uv)auva�

uv

11: C ← CholeskyUpdate(C,
√

w(e�
uv)auv) � Rank-one update

12: end while
13: return E

14: end function

and w are clear from the context. Since τn,w(Einit) is constant, k-ESP+ (5.9) can be expressed as

maximize
E⊆C+

Φw(E)

subject to |E| = k.

(5.13)

Theorem 5.3.1. tn,w is normalized monotone supermodular for any n ≥ 2 and positive weight function w.

Theorem 5.3.2. Φw is normalized monotone submodular for any n ≥ 2, positive weight function w and

connected base graph.

Maximizing an arbitrary monotone submodular function subject to a cardinality constraint can

be NP-hard in general (see e.g., the Maximum Coverage problem [72]). A classic result is due to

Nemhauser et al. [118] who have shown that the greedy algorithm is a constant-factor approximation

algorithm with a factor of η � (1−1/e) ≈ 0.63 for maximizing any normalized monotone submodular

function subject to a cardinality constraint (see Theorem A.3.1).

Let OPT be the optimum value of (5.9), Egreedy be the edges chosen by the greedy algorithm

(Algorithm 7), τgreedy � τn,w(Egreedy ∪ Einit) and τinit � τn,w(Einit). Corollary 5.3.3 follows directly

from Theorem 5.3.2 and Theorem A.3.1.

Corollary 5.3.3.

τgreedy ≥ η · OPT + 1/e · τinit. (5.14)
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Figure 5.2: Convex relaxation for k-ESP

5.3.2 Convex Relaxation

Relaxation

In this section, we design a second approximation algorithm for k-ESP+ through convex relaxation.

Let us begin by assigning an auxiliary variable 0 ≤ πi ≤ 1 to each candidate edge ei ∈ C+. The idea

is to reformulate the problem such that finding the optimal set of candidate edges is equivalent to

finding the optimal value for πi’s. Let π � [π1 π2 · · · πc]� be the stacked vector of auxiliary variables.

Let Linit denote the reduced weighted Laplacian matrix of Ginit. Define,

Lw(π) � Linit +
∑

ei∈C+

πiw(ei)Lei = AWπA�, (5.15)

where Lei is the reduced elementary Laplacian, A is the reduced incidence matrix of GT � ([n],Einit ∪
C+), and Wπ is the diagonal matrix of edge weights assigned by the following weight function,

wπ(ei) =

⎧⎪⎪⎨⎪⎪⎩
πiw(ei) ei ∈ C+,

w(ei) ei /∈ C+.

(5.16)

Lemma 5.3.1. If Ginit is connected, Lw(π) is positive definite for any π ∈ [0,1]c.

Proof. The proof follows directly from Corollary A.4.3.

As before, for convenience we assume Ginit is connected. Consider the following optimization
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problem over π.

maximize
π

log det Lw(π)

subject to ‖π‖0 = k,

0 ≤ πi ≤ 1, ∀i ∈ [c].

(P1)

P1 is equivalent to the definition of k-ESP+ in (5.9). First note that from the generalized matrix-

tree theorem (Theorem A.4.6) we know that the objective function is equal to the weighted tree-

connectivity of GT = ([n],Einit ∪ C+) whose edges are weighted by wπ. The auxiliary variables act as

selectors: the ith candidate edge is selected iff πi = 1. The combinatorial difficulty of k-ESP+ here is

embodied in the non-convex �0-norm constraint. It is easy to see that in P1, at the optimal solution,

auxiliary variables take binary values. Hence, it is more natural to assume πi’s belong to {0,1}. This

is why the following non-convex program is equivalent to P1.

maximize
π

log det Lw(π)

subject to ‖π‖1 = k,

πi ∈ {0,1}, ∀i ∈ [c].

(P′
1)

A natural choice for relaxing P′
1 is to replace πi ∈ {0,1} with 0 ≤ pi ≤ 1; i.e.,

maximize
p

log det Lw(p)

subject to ‖p‖1 = k,

0 ≤ pi ≤ 1, ∀i ∈ [c].

(P2)

where p is the stacked vector of pi’s. The feasible set of P2 contains that of P′
1, and therefore the

optimum value of P2 is an upper bound for the optimum of P1 (or, equivalently, P′
1). Note that here,

the �1-norm constraint ‖p‖1 = k is identical to
∑c

i=1 pi = k. P2 is a convex optimization problem since

the objective function (log det) is concave and the constraints are linear and affine in p. In fact, P2 is

an instance of the MAXDET problem [151] subject to additional affine constraints on p. It is worth

noting that P2 can be reached also by relaxing the non-convex �0-norm constraint in P1 ‖π‖0 = k into

the convex �1-norm constraint ‖p‖1 = k. Furthermore, P2 is also closely related to a �1-regularised

variant of MAXDET,

maximize
p

log det Lw(p) − λ ‖p‖1

subject to 0 ≤ pi ≤ 1, ∀i ∈ [c].
(P3)
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This problem is a penalized form of P2; these two problems are equivalent for some positive value of

λ. Problem P3 is also a convex optimization problem for non-negative λ. The �1-norm in P3 penalizes

the loss of sparsity, while the log-determinant rewards stronger tree-connectivity. The penalty coef-

ficient λ is a parameter that specifies the desired degree of sparsity; i.e., a larger λ yields a sparser p.

P3 is closely related to graphical lasso [57].

Rounding

P2 (and P3) can be solved globally in polynomial time using interior-point methods [15, 81]. After

finding a globally optimal solution p� for the relaxed problem P2, we ultimately need to map it into

a feasible π for P′
1; i.e., choosing k edges from the candidate set C+.

Lemma 5.3.2. p� is an optimal solution for k-ESP+ iff p� ∈ {0,1}c.

Proof. Note that p� ∈ {0,1}c is a feasible solution for k-ESP+ and it maximizes the objective function

in k-ESP+ over p ∈ [0,1]c.

In the more likely case of p� containing fractional values, we need a rounding procedure to set k

auxiliary variables to one and others to zero. The most intuitive heuristic choice is to pick the k edges

with the largest p�
i ’s. We call this strategy the deterministic rounding heuristic. It will become clear

shortly why this heuristic performs well in practice.

The idea behind the convex relaxation technique described so far can be seen as a graph-theoretic

special case of the algorithm proposed in [81]. However, it is not clear yet how the solution of the

relaxed convex problem P2 is related to the original non-convex k-ESP+ in the integer program P′
1.

To answer this question, consider a randomized strategy in which one attempts to find a suboptimal

solution for k-ESP+ by randomly sampling candidates. In this case, for the ith candidate edge, we

flip a coin whose probability of heads is pi (independent of other candidates). The ith candidate is

selected (πi = 1) if the coin lands on head (πi = 0 otherwise). To analyze this randomized strategy,

we first need to compute the expected weighted number of spanning trees in anisotropic random

graphs.

Definition 5.3.2 (Anisotropic Random Graphs). Let G be an arbitrary anisotropic random simple

undirected edge-weighted graph, in which the ith edge is operational with probability pi (and fails

with probability 1− pi) independently. Let G• be the graph when every edge is operational, and p be

the stacked vector of pi’s. Then we write, G ∼ G(G•,p).
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The naive procedure for computing the expected weighted number of spanning trees in such ran-

dom graphs involves a summation over exponentially many terms. Theorem 5.3.4 offers an efficient

and intuitive way of computing this expectation in terms of G• and p.

Theorem 5.3.4 (Expected Weighted Number of Spanning Trees). For G ∼ G(G•,p) we have, E
[
tw(G)

]
=

tw̄(G•) where w̄ : ei �→ piw(ei).

Cohen [31] presents a different proof for this theorem for the case of unweighted graphs. Our

result, however, concerns the case of weighted graphs. We also generalize this theorem to the case of

random sum of arbitrary rank-one matrices in Theorem 5.3.10. The following theorem follows from

Theorem 5.3.4.

Theorem 5.3.5. Let the random variables k∗ �∑c
i=1 πi and t∗

w � det Lw(π) denote, respectively, the number

of chosen candidate edges and the corresponding weighted number of spanning trees achieved by the above

randomized algorithm. Then,

E [k∗] =
c∑

i=1
pi, (5.17)

E [t∗
w] = det Lw(p). (5.18)

According to Theorem 5.3.5, the randomized algorithm described above, on average, selects∑c
i=1 pi candidate edges and achieves det Lw(p) weighted number of spanning trees in expectation.

Note that these two terms appear in the constraints and the objective of the relaxed problem P2,

respectively. Hence, the relaxed problem can be interpreted as the problem of finding the optimal

sampling probabilities p for the randomized algorithm described above. This offers a new narrative:

Corollary 5.3.6. The objective in P2 is to find the optimal probabilities p� for sampling edges from C+ such

that the weighted number of spanning trees is maximized in expectation, while the expected number of newly

selected edges is equal to k.

In other words, P2 can be seen as a convex relaxation of P1 at the expense of maximizing the
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objective and satisfying the constraint, both in expectation. Similarly, e.g., (P3) is equivalent to,

maximize
p

logE
[
det Lw(π)

]− λE
[ c∑

i=1
πi
]

subject to 0 ≤ pi ≤ 1, ∀i ∈ [c].

(P′
3)

where πi ∼ Bern(pi) and πi⊥πj for all i,j ∈ [c] (i �= j).

This new interpretation can be used as a basis for designing randomized rounding procedures

based on the randomized technique described above. If one uses p� (the fractional solution of the

relaxed problem P2) in the aforementioned randomized rounding scheme, Theorem 5.3.5 ensures

that, on average, such a method attains det L(p�) by picking k new edges in expectation.

Note that merely randomly sampling candidate edges with the probabilities in p� is not sufficient

to guarantee (e.g., with high probability) a feasible solution (i.e., we may select more/less than exactly

k candidates). The following theorems provide a probabilistic bound on how much k∗ can deviate

from its expected value k.

Theorem 5.3.7 (Chernoff Bound). Let k∗ � ∑c
i=1 πi be the number of candidates selected by randomly

selecting candidates with probabilities in p�. For any 0 < δ < 1,

P
[
|k∗ − k| > δk

]
< 2 · exp

(
−δ2k/3

)
. (5.19)

Theorem 5.3.8. |k∗ − k| = O(
√

k log(k) ) with high probability.1

Proof. This theorem directly follows from Theorem 5.3.7 for δ = O(
√

log(k)/k).

Remark 10. Note that in (P′
1), t∗ � ∑c

i=1 πi has to be equal to k with probability one. Intuitively speaking,

Theorem 5.3.8 suggests that in the relaxed convex program, almost the entire probability mass for t∗ is centered

around k with a width of O(
√

k log(k)).

We wrap up this section by revisiting our original deterministic rounding heuristic (i.e., selecting

the k candidates with the largest p�
i ’s). We call this strategy the sorting rounding. Let

(C+

k

)
denote the

set of all k-subsets of C+. For any S ⊆ C+, let pk(S) denote the conditional probability of the event

in which the above randomized algorithm (i.e., selecting candidates via independent coin flips with

1Here, “with high probability” means with probability p = 1 − 1/P (k) where P (k) is a polynomial in k.
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probabilities in p�) chooses S, given that k∗ = k candidates have been selected; i.e.,

pk(S) � P
[
S is selected

∣∣∣ k∗ = k
]
. (5.20)

Now note that pk(S) ∝ P
[
S is selected ∧ |S| = k

]
, where

P
[
S is selected ∧ |S| = k

]
=

⎧⎪⎪⎨⎪⎪⎩
∏

ei∈S p�
i

∏
ej∈C+\S(1 − p�

j ) |S| = k,

0 otherwise.
(5.21)

Theorem 5.3.9. Let Ssort be the edges selected by the deterministic heuristic. We have,

Ssort = arg max
S⊆C+

pk(S). (5.22)

Proof. Suppose p∗
1 ≤ p∗

2 ≤ · · · ≤ p∗
c is the sorted version of {p�

i }c
i=1. Now for all i ∈ [c], define

q∗
i � 1 − p∗

i . Hence, we have q∗
1 ≥ q∗

2 ≥ · · · ≥ q∗
c . Now (5.22) can be expressed as,

maximize
A⊆[c],|A|=k

∏
i∈A

p∗
i

∏
j∈[c]\A

q∗
j . (5.23)

It is easy to see that this expression is maximized by picking A� = {c − i}k−1
i=0 , which corresponds to

the set selected by the deterministic rounding procedure.

According to Theorem 5.3.9, our deterministic rounding heuristic described earlier is equivalent

to selecting the most probable feasible set of k candidates, when candidates are selected with the

probabilities in p�.

Remark 11. Theorem 5.3.5 (and the analysis we presented afterwards that ultimately led to Theorem 5.3.9)

can be extended to the more general case of D-optimal sensor selection (see, e.g., [81]). The only nontrivial part

of this extension is (5.18) in Theorem 5.3.5. This part was proved in Theorem 5.3.4. Therefore, in the following

theorem we extend Theorem 5.3.4.

Theorem 5.3.10 (Determinant of Random Sum of Rank-One Matrices). Suppose we are given a pair of m

real n-vectors, {ui}m
i=1 and {vi}m

i=1. Let {πi}m
i=1 be m independent Bernoulli random variables distributed
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as,

πi ∼ Bern(pi) i ∈ [m] (5.24)

πi ⊥ πj i,j ∈ [m], i �= j (5.25)

where {pi}m
i=1 are given. We have,

E
π1,...,πm

[
det

( m∑
i=1

πiuiv�
i

)]
= det

( m∑
i=1

piuiv�
i

)
. (5.26)

Note that Theorem 5.3.4 is a special case of Theorem 5.3.10 in which ui and vi are equal to the ith

column of the reduced (weighted) incidence matrix of graph G•.

5.3.3 Certifying Near-Optimality

In “large” instances of k-ESP+, it is impractical to compute OPT through exhaustive search. Fortu-

nately, the approximation algorithms developed in this chapter yield lower and upper bounds for

OPT that can be quite tight in practice. Let τ�
cvx be the optimum value of P2. Moreover, let τcvx be

the suboptimal value obtained after rounding the fractional solution of P2 (e.g., picking the k largest

p�
i ’s). Corollary 5.3.11 follows from the analysis presented for our greedy and convex approximation

algorithms.

Corollary 5.3.11.

max
{

τgreedy,τcvx

}
≤ OPT ≤ min

{
Ugreedy,τ�

cvx

}
(5.27)

where Ugreedy � ζτgreedy + (1 − ζ)τinit in which ζ � η−1 ≈ 1.58.

The lower bounds in Corollary 5.3.11 correspond to the suboptimal solutions of the proposed ap-

proximation algorithms. Ugreedy can be obtained by a straightforward manipulation of Theorem A.3.1

and Theorem 5.3.2. Furthermore, τ�
cvx is an upper bound for OPT because the feasible set of P2 con-

tains that of P′
1 (i.e., k-ESP+).

These bounds can be computed by running the greedy and convex relaxation algorithms. In the

instances of k-ESP+ where OPT is beyond our reach, these bounds can be used to asses the quality

of any feasible design. Let E′ be an arbitrary k-subset of C+ and τ ′ � τn,w(E′ ∪ Einit). E′ can be, e.g.,

(i) solution of the greedy algorithm, (ii) solution of P2 after rounding, (iii) an existing design (e.g., an
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existing pose-graph problem), or (iv) a heuristic suboptimal solution proposed by, for example, an

expert. Let L and U denote the lower and upper bounds in (5.27), respectively. From Corollary 5.3.11

we have,

max
{
0,L− τ ′} ≤ OPT − τ ′︸ ︷︷ ︸

approximation gap

≤ U− τ ′, (5.28)

max
{
1,L/τ ′} ≤ OPT/τ ′︸ ︷︷ ︸

approximation ratio

≤ U/τ ′. (5.29)

Thus, U− τ ′ and U/τ ′ can be used as near-optimality certificates for any arbitrary design.

5.4 Dual Problem: δ-ESP∗

The main purpose of this chapter is to design sparse graphs with strong tree-connectivity. We

pursued this objective in k-ESP+ by searching for the graph with the maximum weighted tree-

connectivity among a class of graphs with a specified degree of sparsity. Alternatively, we may ask

ourselves: “what is the sparsest graph that achieves a desired level of weighted tree-connectivity?”.

Let us first formalize the dual problem.

Problem 5.4.1 (δ-ESP∗). δ-ESP∗ aims to select as few edges as possible from a given set of candidate

edges C+, such that adding those edges to a given connected base graph Ginit = ([n],Einit) results in a

tree-connectivity gain of at least 0 ≤ δ ≤ Φw(C+); i.e.,

minimize
E⊆C+

|E|

subject to Φw(E) ≥ δ.

(5.30)

In the rest of this section, we explain how our approximation algorithms designed for k-ESP+

and their analyses can be adapted to the dual problem δ-ESP∗.

5.4.1 Greedy Algorithm

Algorithm

The greedy algorithm designed for k-ESP+ in Algorithm 7 solves k instances of 1-ESP+. The very

same algorithm can be applied to the dual problem, δ-ESP∗, after a minor modification of the stop-

ping criterion: instead of solving exactly k instances of 1-ESP+, we keep solving 1-ESP+ subproblems

until the resulting tree-connectivity gain is at least δ (or, alternatively, when there are no more edges
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left in C+, which indicates an empty feasible set). The greedy algorithm for approximating the solu-

tion of (5.30) is described by Algorithm 8.

Analysis

Our analysis of the greedy algorithm in k-ESP+ was based on the seminal work of Nemhauser et al.

[118] and our Theorem 5.3.2 which established the monotone log-submodularity of τn,w. Motivated

by the Set Cover problem, Wolsey [158, Problem (Q)] has analyzed the performance of the greedy

algorithm for solving the following general class of problems,

minimize
A⊆W

∑
ai∈A

fi

subject to z(A) = z(W),

(5.31)

in which fi > 0 for all ai ∈ W and z : 2W → R is any monotone submodular function. Now note that

the dual problem, (5.30), is a special case of (5.31), in which W = C+, fi = 1 for all ai ∈ A, and finally

z is A �→ min {δ,Φw(A)}. Note that this function is monotone submodular since,

1. Φw is monotone submodular according to Theorem 5.3.2, and

2. constant truncation preserves both monotonicity and submodularity according to Theorem A.3.2

as noted by Wolsey [158].

Let fgreedy and OPT be the value of the greedy algorithm and the optimum value for (5.31). For

the general case of (5.31)—where z does not need to be an integer-valued function—Wolsey [158,

Theorem 1] has established three a posteriori bounds of the form,

fgreedy ≤ (1 + log γ)OPT, (5.32)

for different values of γ. These bounds are a posteriori in the sense that the value of γ can be deter-

mined only after running the greedy heuristic. The following corollary states one of these bounds for

the performance of the greedy algorithm (Algorithm 8) in δ-ESP∗.

Corollary 5.4.1. Let kopt and kgreedy be the optimum value of (5.30) and the value achieved by Algorithm 8,

respectively. Also, let Φ̃greedy be the tree-connectivity gain achieved by the greedy algorithm one step before

termination. Define s � δ/(δ − Φ̃greedy). Then we have

kgreedy ≤ (1 + log s)kopt. (5.33)
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Algorithm 8 Greedy Dual Edge Selection

1: function GreedyDualESP(Linit,C
+,δ)

2: E ← ∅
3: L ← Linit
4: C ←Cholesky(L)
5: while (log det L − log det Linit < δ) ∧ (E �= C+) do
6: e�

uv ← NextBestEdge(C+ \ E,C)
7: E ← E ∪ {e�

uv}
8: auv ← eu − ev

9: L ← L + w(e�
uv)auva�

uv

10: C ← CholeskyUpdate(C,
√

w(e�
uv)auv) � Rank-one update

11: end while
12: return E

13: end function

5.4.2 Convex Relaxation

Relaxation

In this section, we demonstrate how the dual problem, δ-ESP∗, can be formulated as an integer

program similar to what we did in P′
1. We then study a convex relaxation of δ-ESP∗ and discuss

rounding strategies for mapping the fractional solution of the convex program back to a feasible

suboptimal design for δ-ESP∗.

As before, let τinit � log det L(0). The dual problem can be expressed as

minimize
π

c∑
i=1

πi

subject to log det L(π) ≥ δ + τinit,

πi ∈ {0,1}, ∀i ∈ [c].

(D1)

The combinatorial difficulty of δ-ESP∗ is manifested in the integral constraints of D1. Relaxing the

integral constraints on π (and like before, replacing binary πi’s with probabilities pi’s) yields the

following convex optimization problem,

minimize
p

c∑
i=1

pi

subject to log det L(p) ≥ δ + τinit,

0 ≤ pi ≤ 1, ∀i ∈ [c].

(D2)
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Algorithm 9 Deterministic rounding for δ-ESP∗

1: function RoundDualESP(p�)
2: π ← 0
3: i ← 0
4: // returns the indices of the sorted p�

5: s ←SortDescending(p�) � Such that p�
s1 ≥ p�

s2 ≥ · · · ≥ p�
sc

6: while (log det L(π) − log det Linit < δ) ∧ (π �= 1) do
7: πsi ← 1
8: i ← i + 1
9: end while

10: return πsort = π
11: end function

D2 is a convex optimization problem since the objective is linear and log-determinant is concave for

positive definite matrices—here L(π) is guaranteed to be positive definite, e.g., if the base graph Ginit

is connected, see Lemma 5.3.1. D2 can be solved efficiently using interior-point methods. Let p� be

the minimizer of D2. Note that �∑c
i=1 p�

i � is a lower bound for kopt, the optimum value of δ-ESP∗,

since the feasible set of D1 is a subset of the feasible set of D2.

Rounding

Lemma 5.4.1. p� is an optimal solution for δ-ESP∗ iff p� ∈ {0,1}c.

Proof. Similar to the proof of Lemma 5.3.2.

In general, p� may contain fractional values, and thus a rounding scheme is necessary to map

p� into a feasible suboptimal solution for D1. A natural deterministic rounding scheme is outlined

in Algorithm 9. As we saw before, the fractional values p can be interpreted as the probability of

independently selecting candidate edges. Hence, similar to Corollary 5.3.6, the following corollary

readily follows from Theorem 5.3.5.

Corollary 5.4.2. The objective in D2 is to find the optimal probabilities p� for sampling edges from C+ such

that the expected value of the number of selected edges is minimized while the expected value of the weighted

number of spanning trees is at least eτinit+δ; i.e.,

minimize
p

E
[ c∑

i=1
πi

]

subject to logE [det L(π)] ≥ δ + τinit,

0 ≤ pi ≤ 1, ∀i ∈ [c].

(D′
2)

where πi ∼ Bern(pi) and πi⊥πj for all i,j ∈ [c] (i �= j).
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This narrative suggests a randomized rounding scheme in which ei ∈ C+ is selected with proba-

bility p�
i . The expected number of selected edges by this procedure is

E
[ c∑

i=1
πi

]
=

c∑
i=1

p�
i ,

while on average the δ-constraint is satisfied. Needless to say, this is insufficient for guaranteeing

a feasible solution (e.g., with high probability). However, this new narrative explains why the de-

terministic rounding procedure in Algorithm 9 performs well in practice. Recall that in (5.20), pk(S)

was defined to be the conditional probability of sampling exactly the set S ⊆ C+, given that exactly

k candidates have been selected. This probability was computed in (5.21) up to a constant factor.

Theorem 5.4.3 readily follows from Theorem 5.3.9 and Algorithm 9.

Theorem 5.4.3. For any k ∈ [c] define S�
k � arg maxS⊆C+ pk(S). S�

k is the most probable outcome when k

edges have been selected after flipping coins with probabilities in p�. The output of Algorithm 9 corresponds to

S�
kmin

where kmin is the smallest k ∈ [c] such that Φw(S�
k) ≥ δ.

5.4.3 Certifying Near-Optimality

Computing the optimal solution of δ-ESP∗ by brute force is impractical in large instances of the dual

problem, and thus kopt is generally beyond our reach in such scenarios. That being said, as we saw

in the case of k-ESP+, our approximation algorithms can provide lower and upper bounds for kopt.

Corollary 5.4.4. Define ζ∗ � 1/(1 + log s) where s is the parameter defined in Theorem 5.4.1. Let kcvx be the

number of new edges selected by the deterministic rounding procedure in Algorithm 9. Then,

max
{⌈

ζ∗kgreedy

⌉
,
⌈ c∑

i=1
p�

i

⌉}
≤ kopt ≤ min

{
kgreedy,kcvx

}
. (5.34)

The bounds provided by Corollary 5.4.4 can be used to bound the gap between kopt and any

suboptimal design E′ with a value of k′. Let kL and kU denote the lower and upper bounds in Corol-

lary 5.4.4. These bounds can be computed by running the corresponding approximation algorithms.

Now we have,

max {0,k′ − kU} ≤ k′ − kopt︸ ︷︷ ︸
approximation gap

≤ k′ − kL, (5.35)

max {1,k′/kU} ≤ k′/kopt︸ ︷︷ ︸
approximation ratio

≤ k′/kL. (5.36)
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Figure 5.3: Partition matroid constraints.

5.5 k-ESP+ Over a Partition Matroid

In this section, we extend k-ESP+ by imposing a partition matroid constraint.2

Lemma 5.5.1. Replacing the cardinality constraint |E| = k with |E| ≤ k in k-ESP+ does not change the

optimal solutions.

Proof. Recall that Φw is monotone, and therefore picking additional candidates cannot reduce the

tree-connectivity. Hence, the tree-connectivity of any design with |E| < k edges can be improved by

picking k − |E| additional candidates.

Therefore, according to Lemma 5.5.1, the cardinality constraint in k-ESP+ is equivalent to impos-

ing E ∈ Iu, where Iu represents the uniform matroid (C+,Iu) and is defined as

Iu �
{
A ⊆ C+ : |A| ≤ k

}
. (5.37)

Now let {C+
i }r

i=1 be a partition for C+. We call each C+
i a block. Furthermore, suppose for each C+

i ,

there is an integer ki such that ki ≤ ci � |C+
i |.3 Define

Ip �
{
A ⊆ C+ : |A ∩ C+

i | ≤ ki ∀i ∈ [r]
}

. (5.38)

(C+,Ip) is a partition matroid that generalizes the uniform matroid (C+,Iu). Consequently, k-ESP+ can

be generalized as,

maximize
E⊆C+

Φw(E)

subject to E ∈ Ip.

(5.39)

2See Section A.3 for the definition of uniform and partition matroids.
3As it will become clear shortly, the case of ki = 0 is equivalent to excluding C+

i from the candidate set.
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Intuitively speaking, (5.39) generalizes k-ESP+ by enforcing local cardinality constraints (i.e., ki’s) on

disjoint subsets of the candidate set C+. Note that k-ESP+ is a special case of (5.39) with r = 1 and

k1 = k.

Example 5.5.1. A simple instance of (5.39) is depicted in Figure 5.3, where the candidate set is

partitioned into two subsets (shown by the green and red edges) with k1 = 2 and k2 = 1.

By choosing different partitions for C+ and enforcing different local budgets, we can model a

wide variety of graph synthesis problems as instances of (5.39). For example, one may design a

partitioning-budgeting scheme in which partitions represent a hierarchy among the candidate edges

(e.g., based on costs, significance, etc).

Example 5.5.2. An interesting scenario is when the partitions are chosen to enforce an upper

bound on the degree of a subset of vertices {vi}r
i=1 ⊆ V such that {vi,vj} /∈ C+ for all i,j ∈ [r]:

maximize
E⊆C+

Φw(E)

subject to |E| = k,

deg(vi) = di, ∀i ∈ [r].

(5.40)

In the following, we explain why (5.40) is a valid instance of (5.39). We do so by constructing an

instance of (5.39) that has the same solution as (5.40). First, note that in the equality constraints

in (5.40), = can be replaced by ≤ since Φw is monotone (see Lemma 5.5.1). Then,

ki = di i ∈ [r] (5.41)

C+
i =

{
e ∈ C+ : vi ∈ e

}
i ∈ [r] (5.42)

C+
r+1 = C+ \

r⋃
i=1

C+
i (5.43)

kr+1 = k −
r∑

i=1
di. (5.44)

It is easy to verify that, under the aforementioned assumptions, the above construction partitions

C+ and hence is a valid instance of (5.39) with the same optimal solutions as (5.40).
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5.5.1 Greedy Algorithm

Algorithm and Complexity Analysis

The greedy algorithm for solving the edge selection problem under a partition matroid constraint

(5.39) is summarized in Algorithm 10. The only difference between Algorithm 7 and this algorithm is

that Algorithm 10 abides by the partition matroid constraint and selects the next available candidate

edge only if adding it to the graph does not violate the corresponding local cardinality constraint.

This is done efficiently in Algorithm 10 by removing each block from the set of remaining candidates

immediately after we reach the corresponding cardinality constraint. Define ktotal � ∑r
i=1 ki. The

time complexity of Algorithm 10 is bounded by O(n3 + ktotalcn2).4

Performance Analysis

Fisher et al. [52] have proved that the greedy strategy yields a 1/2-approximation for the general

case of maximizing a monotone submodular function subject to a matroid constraint.5 The following

corollary is a direct result of [52] and Theorem 5.3.2.

4See the complexity analysis presented for Algorithm 7 in Section 5.3.1.
5As noted earlier, for the special case of uniform matroids, the greedy heuristic is guaranteed to provide a η-

approximation, where η � 1 − 1/e ≈ 0.63.

Algorithm 10 Greedy Algorithm for the Generalized k-ESP+

1: function GreedyPartitionESP(Linit,{C+
i }r

i=1,{ki}r
i=1)

2: E ← ∅
3: L ← Linit
4: C ←Cholesky(L)
5: C+ ← ⋃r

i=1 C
+
i

6: while C+ �= ∅ do
7: e�

uv ← NextBestEdge(C+,C)
8: E ← E ∪ {e�

uv}
9: auv ← eu − ev

10: L ← L + w(e�
uv)auva�

uv

11: C ← CholeskyUpdate(C,
√

w(e�
uv)auv) � Rank-one update

12: // returns the index of the block that contains e�
uv

13: iuv ← BlockIndex(e�
uv)

14: kiuv ← kiuv − 1
15: C+ ← C+ \ {e�

uv}
16: if kiuv = 0 then
17: C+ ← C+ \ C+

iuv

18: end if
19: end while
20: return E

21: end function
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Corollary 5.5.1. Let τgreedy and OPT be the tree-connectivity achieved by Algorithm 10 and the optimum

value of an instance of (5.39), respectively. We have,

τgreedy ≥ 1/2
(
OPT + τinit

)
. (5.45)

It is worth mentioning that the 1/2 approximation factor for maximizing any monotone submod-

ular function over a matroid has been improved recently by a randomized algorithm. This result is

due to Calinescu et al. [18], who have shown that there exists a randomized algorithm that yields a

(1 − 1/e)-approximation.

5.5.2 Convex Relaxation

Relaxation

In this section, we present a convex relaxation approximation algorithm for the generalized k-ESP+

over a partition matroid as defined in (5.39). First, note that using the indicator variables π, we can

express (5.39) as

maximize
π

log det L(π)

subject to
∑

ei∈C+
j

πi ≤ kj , ∀j ∈ [r]

πi ∈ {0,1}, ∀i ∈ [c].

(P4)

Since log det L(π) is non-decreasing in every πi’s, the optimal solution of P4 is also the optimal solu-

tion of,

maximize
π

log det L(π)

subject to
∑

ei∈C+
j

πi = kj , ∀j ∈ [r]

πi ∈ {0,1}, ∀i ∈ [c].

(P̄4)

Next, we relax the integral constraint on π (and, as we did before, replace it with p),

maximize
p

log det L(p)

subject to
∑

ei∈C+
j

pi = kj , ∀j ∈ [r]

0 ≤ pi ≤ 1, ∀i ∈ [c].

(P5)

P5 is a convex optimization problem and can be solved in polynomial time using the interior-point

methods.
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Rounding

Let p� be the optimal solution of P5.

Lemma 5.5.2. p� is an optimal solution for P̄4 iff p� ∈ {0,1}c.

Proof. Similar to the proof of Lemma 5.3.2.

Once again, p� generally contains fractional values that need to be mapped into a feasible integral

suboptimal solution for (5.39) by a rounding scheme. A simple deterministic rounding strategy for

the solution of P5 is to pick the ki candidates in C+
i that have the largest fractional p�

j ’s for each C+
i

(i ∈ [r]).

Now let us revisit the idea of randomly sampling candidate edges with probabilities in p� (inde-

pendently). Theorem 5.3.5 can be generalized as follows.

Theorem 5.5.2. Let the random variables k∗
1,k∗

2, . . . ,k∗
p and t∗

w denote, respectively, the number of chosen

candidate edges from the ith block C+
i (i ∈ [r]) and the corresponding weighted number of spanning trees

achieved by the above randomized algorithm. Then,

E [k∗
i ] =

c∑
ej∈C+

i

pj , ∀i ∈ [r] (5.46)

E [t∗
w] = det Lw(p). (5.47)

Proof. The proof is similar to the proof of Theorem 5.3.5.

Corollary 5.5.3 follows from Theorem 5.5.2.

Corollary 5.5.3. The objective in P5 is to find the optimal probabilities p� for sampling edges from C+ such

that the weighted number of spanning trees is maximized in expectation, while the expected number of newly

selected edges in the ith block is equal to ki for all i ∈ [r]. In other words, the following optimization problem

is equivalent to (P5).

maximize
p

logE
[
det L(π)

]
subject to E

[∑
ei∈C+

j

πi
]

= kj , ∀j ∈ [r]

0 ≤ pi ≤ 1, ∀i ∈ [c]

(P′
5)

where πi ∼ Bern(pi) and πi⊥πj for all i,j ∈ [c] (i �= j).
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Finally, Theorem 5.3.9 can also be generalized to the case of partition matroids. For any S ⊆ C+

define,

pk1:r (S) � P
[
S is selected

∣∣∣ ∧
i∈[r]

|S ∩ C+
i | = ki

]
. (5.48)

This conditional probability can be computed up to a constant factor:

pk1:r (S) ∝ P
[
S is selected

∧
i∈[r]

|S ∩ C+
i | = ki

]
(5.49)

=

⎧⎪⎪⎨⎪⎪⎩
∏

ei∈S p�
i

∏
ej∈C+\S(1 − p�

j ) if ∀i ∈ [r] : |S ∩ C+
i | = ki,

0 otherwise.
(5.50)

The following theorem extends Theorem 5.3.9 and provides a justification for the deterministic round-

ing scheme described earlier.

Theorem 5.5.4. Let Ssort be the edges selected by the deterministic heuristic described above applied to P5. We

have,

Ssort = arg max
S⊆C+

pk1:r (S). (5.51)

Proof. The proof follows closely that of Theorem 5.3.9.

5.5.3 Certifying Near-Optimality

As we have seen multiple times, the approximation algorithms yield the following bounds on OPT

(i.e., maximum tree-connectivity in P4). Define τ�
cvx � log det L(p�). Moreover, let τcvx be the value of

P4 after rounding the fractional solution p�.

Corollary 5.5.5.

max
{

τgreedy,τcvx

}
≤ OPT ≤ min

{
Ugreedy,τ�

cvx

}
(5.52)

where Ugreedy � 2 τgreedy − τinit.

As we saw in k-ESP+, the bounds provided by the approximation algorithms can be used to

assess the quality of any suboptimal design whenever it is impractical to compute OPT. Let L and
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Figure 5.4: A counterexample: tree-connectivity τn,w is not submodular if the underlying graph is
disconnected.

U denote the lower and upper bounds in (5.52), respectively. Then, according to Corollary 5.5.5, for

any arbitrary (feasible) design E′ we have,

max
{
0,L− τ ′} ≤ OPT − τ ′︸ ︷︷ ︸

approximation gap

≤ U− τ ′, (5.53)

max
{
1,L/τ ′} ≤ OPT/τ ′︸ ︷︷ ︸

approximation ratio

≤ U/τ ′. (5.54)

The above bounds on the approximation ratio/gap can be computed easily by running the proposed

approximation algorithms.

5.6 Improper k-ESP+

An assumption that was made in the definition of k-ESP+ and its variants is that the base graph

Ginit has to be connected. By an improper instance of k-ESP+, here we refer to a scenario in which

this assumption does not hold. Note that our convex relaxation algorithm works fine for improper

k-ESP+ as long as ([n],Einit ∪ C+) is connected.6 At first glance, the importance of this assumption

may not be clear. However, as the following counterexample demonstrates, this assumption turns

out to be essential for guaranteeing the performance of the greedy algorithm (Algorithm 7).

6If this condition is not met, any feasible design is an optimal solution and OPT = 0.
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Example 5.6.1 (Counterexample). Figure 5.4 illustrates two graphs, GA and GB, both over the

same set of vertices V = {v1,v2, . . . ,v5}. The edges in both graphs are shown with black solid

lines. The edge set of graph GA is a subset of the edges in GB, i.e., EA ⊂ EB. For simplicity, we

assume unit weights for all edges. Now consider the case in which a new edge, e = {v2,v3} /∈ EB

(drawn with the red dashed line) is added to both graphs. From the definition of sumodularity

(Definition A.3.2) we know that for τn,w to be submodular, we must have

τn,w(EA ∪ {e}) − τn,w(EA)
?≥ τn,w(EB ∪ {e}) − τn,w(EB). (5.55)

Note that,

τn,w(EA) = τn,w(EB) = 0, (5.56)

since both graphs are initially disconnected. Similarly, note that GA remains disconnected even

after adding e; thus τn,w(EA ∪ {e}) = 0. Therefore, the LHS of (5.55) is equal to zero, while the

RHS in this example is equal to log(3) � 0.

As illustrated by Example 5.6.1, tree-connectivity τn,w can be non-submodular if the graph is not

connected. This is why we defined the tree-connectivity gain function Φw with respect to a base

graph Ginit = ([n],Einit) (see Definition 5.3.1).

It is important to note that the analysis and performance guarantees provided earlier for the

greedy algorithm in k-ESP+ hold only in the proper instances of the problem where Ginit is connected.

As we see shortly in the following sections, this assumption naturally holds in the standard SLAM

graphs, since the odometry spanning tree always guarantees connectivity. That being said, there are

also important scenarios in which Ginit is not necessarily connected. Take for example the classic

problem of finding t-optimal graphs in Gn,m in which Einit = ∅. In the rest of this section, we show

how the greedy algorithm can be adapted to such improper instances of k-ESP+.

5.6.1 Most Valuable Spanning Tree

In this section, we study an improper instance of improper k-ESP+ with Ginit = ([n],∅) and k = n−1.

As it will become clear shortly, the optimal design in this case is the most valuable spanning tree

(MVST). This special case is significant due to multiple reasons:

1. Any improper k-ESP+ with Ginit = ([n],∅) and k < n−1 is a degenerate problem with OPT = 0.
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2. We use this special case as a tool for tackling the more general improper instances of k-ESP+.

3. This problem emerges from SLAM and other applications (see Section 5.7).

4. A greedy algorithm can find the MVST in polynomial time.

Unweighted Graphs: Let us begin by considering unweighted graphs (or, equivalently, when all

edges have the same weight). Let E ⊆ C+ be a feasible set of edges; i.e., |E| = n − 1. Then,

tn,w(E) =

⎧⎪⎪⎨⎪⎪⎩
1 if ([n],E) is a tree,

0 otherwise.
(5.57)

Therefore, any E for which ([n],E) is a spanning tree of ([n],C+) will be an optimal design.

Weighted Graphs: If the edges are weighted by some w :
([n]

2
)→ R≥1, we have

tn,w(E) =

⎧⎪⎪⎨⎪⎪⎩
Vw([n],E) if ([n],E) is a tree,

0 otherwise.
(5.58)

Here Vw is the value function defined in Definition A.4.1 as,

Vw([n],E) =
∏
e∈E

w(e). (5.59)

Hence, in this case the optimal choice for E is the spanning tree of ([n],C+) which has the maximum

“value”, i.e., the MVST. The following theorem transforms the problem of finding the MVST to the

classic problem of finding the minimum spanning tree (MST).

Theorem 5.6.1. Define G � ([n],C+). The following sets are identical:

1. The set of t-optimal subgraphs of G with n − 1 edges weighted by w.

2. The set of MVSTs of G when edges are weighted by w.

3. The set of MSTs of G when edges are weighted by w∗ : e �→ − log w(e).

Proof. The equivalence between 1 and 2 was shown above. T is an MST of G iff the sum of its edge
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weights
∑

e∈E(T) w∗(e) is minimum among all spanning trees of G. This can be written as,

∑
e∈E(T)

w∗(e) = −
∑

e∈E(T)
log w(e) (5.60)

= − log
∏

e∈E(T)
w(e) (5.61)

= − logVw(T). (5.62)

Therefore, every MST must have maximum value among all spanning trees of G (with respect to

w).

According to Theorem 5.6.1, (n−1)-ESP+ with Ginit = ([n],∅) can be solved (exactly) by finding an

MST of ([n],C+) under a different weight function w∗. The classic problem of finding an MST is a well-

studied problem in combinatorial optimization [32]. Two standard greedy algorithms for finding

MST are due to Kruskal [101] and Prim [128]. Both algorithms find an exact solution in polynomial

time. When G is sparse, Kruskal’s algorithm is the preferred algorithm with a time complexity of

O(c log n) [32].

5.6.2 Greedy Heuristics for Improper k-ESP+

As demonstrated by Example 5.6.1, the performance guarantee provided for the greedy algorithm in

Corollary 5.3.3 does not necessarily hold in improper instances of k-ESP+. In what follows, we will

describe two heuristic adaptations of the greedy algorithm (Algorithm 7) for dealing with improper

instances of k-ESP+.

Greedy-Greedy

The main idea behind this approach is to first, transform the given improper instance of k-ESP+

into the “closest” proper instance of ESP+, and then use the greedy algorithm in Algorithm 7 on the

resulting proper ESP+ for selecting the remaining number of candidates. Therefore, in the first stage

of this method, our goal is to select the minimal set of edges for converting the disconnected base

graph into a connected base graph. Hence, if the original base graph has nc connected components,

we need to select nc − 1 edges from the candidates in the first stage. We select these edges such

that the resulting graph has the maximum weighted number of spanning trees. This procedure is

illustrated in Figure 5.5.
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Improper k-ESP+

Add the optimal nc − 1 candidates to Ginit

Proper (k − nc + 1)-ESP+

Algorithm 7

Figure 5.5: Illustration of the Greedy-Greedy algorithm.

Algorithm: Suppose an improper instance of k-ESP+ with Ginit = ([n],Einit) is given. Let nc be the

number of connected components if Ginit. Any instance falls into one of the following categories:

1. k < nc − 1 : Since at least nc − 1 edges is needed to have a connected graph, this case is a

degenerate instance of ESP+ in which every design is optimal and OPT = 0.

2. k = nc − 1 : If nc = n, this case is an instance of MVST, for which exact solutions can be com-

puted in polynomial time using the greedy MST algorithms (see Section 5.6.1). This technique

can be extended to find an exact solution for arbitrary nc. Let ti be the weighted number of

spanning trees in the ith connected component of Ginit (i ∈ [nc]). Consider the scenario in

which we connect the components of the graph to each other via exactly nc − 1 bridges. Note

that choosing any other design would result in a disconnected graph. Hence, we just need to

find the optimal choice for the nc−1 bridges (each bridge connects exactly one pair of connected

components). Let wj be the weight of the jth bridge (j ∈ [nc − 1]). Then, the weighted number

of spanning trees of the resulting graph can be computed as
∏

i∈[nc] ti
∏

j∈[nc−1] wj . Since ti’s

are not affected by the choice of bridges (i ∈ [nc]), this term can be maximized by maximizing∏
j∈[nc−1] wj . In what follows, we show that this problem can be solved by finding a MVST. Let

G be the graph whose vertices correspond to the connected components of Ginit. More precisely,

vi ∈ V(G) represents {j ∈ [n] : j ∈ Vi} in which Vi ⊆ [n] is the vertices in the ith connected

component of Ginit. For each {r,s} ∈ C+ where r ∈ Vi and s ∈ Vj (i �= j), there is an edge

between vi and vj in G (we may have parallel edges). First, we can eliminate parallel edges by

keeping only the one with the largest weight and discarding the rest (for the parallel edges be-
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tween vi and vj). Then, the tree-connectivity can be maximized by finding the MSVT in G (see

Section 5.6.1). Adding the edges in MSVT to the base graph Ginit results in a connected graph

with the maximum tree-connectivity achievable.

3. k > nc − 1 : A greedy approach would be:

(a) Solve an (nc − 1)-ESP+ problem using the procedure described above for the case of k =

nc − 1.

(b) Add the edges selected by following the procedure above to the base graph Ginit, and solve

a proper (k − nc + 1)-ESP+ with the remaining set of candidate edges using the greedy

algorithm (Algorithm 7).

Example 5.6.2. An example is shown in Figure 5.6. Figure 5.6a illustrates an improper instance

of 6-ESP+ with Ginit = (V,∅). The dashed edges here correspond to the candidate edges. The

greedy-greedy method described above tackles this problem by first constructing the MVST as

illustrated in Figure 5.6b. After finding the MVST, we use it as the base graph for selecting the

remaining number of candidates using the greedy algorithm (Algorithm 7).

Corollary 5.6.2 follows from Corollary 5.3.3 and the fact that the Greedy-Greedy approach initiates

the greedy algorithm (Algorithm 7) from the MVST.

Corollary 5.6.2. Let OPTmvst be the maximum tree-connectivity achievable by starting from the MVST (as

described above) and selecting k−nc +1 edges using the greedy algorithm (Algorithm 7). Let τ�
mvst be the tree-

connectivity of the MVST. And finally, let τg-g be the tree-connectivity achieved by the above Greedy-Greedy

algorithm. Then,

η · OPTmvst + 1/e · τ�
mvst ≤ τg-g ≤ OPTmvst ≤ OPT, (5.63)

where η � 1 − 1/e ≈ 0.63.

The ε-trick

Another simple heuristic technique for dealing with an improper instance of k-ESP+ is to convert it

into a proper instance of ESP+ by borrowing extra “ε-edges”. This approach is inspired by a similar

idea proposed by Shamaiah et al. [136] in a non-graphical context. These edges are weighted by ε

for some small value of ε. The ε-edges are chosen such that adding them to the base graph results
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(a) An improper 6-ESP+ with Einit = ∅
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(b) A proper 2-ESP+ using the MVST as Ginit

Figure 5.6: Greedy-Greedy.

in a connected base graph. Therefore, upon adding the ε-edges to Ginit, we can apply the greedy

algorithm (Algorithm 7) to chose k edges. The intuitive principle behind this technique is that when

ε is sufficiently small, the impact of ε-edges on the decisions made by the greedy algorithm will be

negligible. However, we also note that Algorithm 7 may become numerically unstable when ε is too

small. After finding a suboptimal solution, we then remove the ε-edges from the graph. This process

is illustrated in Figure 5.7.

The only remaining question is how the ε edges are selected? One option is to choose the min-

imal number of ε-edges (i.e., nc − 1 if Ginit has nc connected components). Hence, in this case the

ε-edges depend on Ginit. Alternatively, we can always add an ε-spanning tree to Ginit to guarantee the

connectivity of the resulting base graph. Several examples are shown in Figure 5.8.

5.7 Applications

The results presented in Chapter 4 demonstrate that the problem of designing D-optimal SLAM prob-

lems boils down to designing graphs with the maximum weighted number of spanning trees. This

led to the study of the t-optimal graph synthesis problem in this chapter. Finally in this section, we

discuss how our near-optimal graph synthesis frameworks can be used in several robotic applica-

tions, including SLAM.

5.7.1 Near-D-Optimal Measurement Selection

We begin by investigating the measurement selection problem in SLAM. As discussed in Chapter 4,

maintaining sparsity is critical in SLAM as it determines the computational efforts required for solv-

ing the inference problem. If the underlying graph is dense, finding the maximum likelihood esti-
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Proper k-ESP+

Algorithm 7

Remove ε-edges

Figure 5.7: Illustration of the ε-trick.

mate in SLAM requires O(n3) time and space. This cost can be significantly reduced if the underly-

ing graph is sparse. Maintaining sparsity is especially crucial in “long-term” missions, where n (i.e.,

number of robot poses) can easily be as large as 104 − 105. Sparsity can be preserved by designing

a measurement selection process to asses the significance of new or existing measurements. Such a

vetting process can be implemented by:

(i) Assessing the quality any new measurement before adding it to the graph, and/or

(ii) Discarding a subset of the existing measurements if their contribution is deemed to be insuffi-

cient.

Many measurement selection and sparsification schemes have been proposed in the literature. For

example, Joshi and Boyd [81] through convex relaxation, and Shamaiah et al. [136] through the

greedy algorithm, have designed approximation algorithms for the problem of selecting sensors in

linear-Gaussian systems. In the context of SLAM, Ila et al. [80] designed a vetting scheme based on

the mutual information between a loop-closure measurement and the state. They demonstrated that

this term can be computed in compact form, and noted that their proposed method can be used to

avoid unnecessary costly scan-matching operations. Kretzschmar et al. [99, 100] designed a process

for discarding laser scans based on approximating the mutual information between the scans and a

grid map. Marginalizing out poses creates fill-in and therefore reduces the sparsity of the information
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Figure 5.8: The ε-trick: augmenting a spanning tree.

matrix. Kretzschmar and Stachniss [99] maintain sparsity by marginalizing out the poses correspond-

ing to the discarded laser scans using the Chow-Liu tree-based approximation [30]. This approach

was later extended by Carlevaris-Bianco et al. [19]. Vial et al. [152] proposed a conservative sparsi-

fication method based on minimizing the Kullback-Leibler divergence between the original and the

sparsified marginal distribution. Their method is designed to eliminate the fill-in created by pose

marginalization and to achieve the desired sparsity pattern in a “consistent” manner. In a closely-
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related work, Huang et al. [74] used lasso-like �1-regularized minimization to promote sparsity while

minimizing the Kullback-Leibler divergence by a conservative approximation. More recently, Mazu-

ran et al. [110] proposed a method in which a convex optimization problem is solved for approxi-

mating the dense marginal distribution by recovering nonlinear factors that are optimal with respect

to the Kullback-Leibler divergence. Pose-graph sparsification based on our graph synthesis frame-

work would be orthogonal to [19, 74, 110, 152], since we eliminate the edges (measurements) of the

actual pose-graph, while such methods operate on the underlying Markov random field and prune,

e.g., the fill-in created after marginalizing out a subset of nodes. Moreover, unlike [80, 81, 136], our

approach does not rely on the linearization of the nonlinear measurement models. Finally, similar to

[99, 100], we can discard loop-closure measurements by assessing their significance (ESP). However,

note that we do so by examining the graph topology, while Kretzschmar et al. [99, 100] approximate

the mutual information and conditional entropy for a specific setup (i.e., occupancy grid maps and

laser scans).

The measurement selection problem is captured by our k-ESP+ and k-ESP- t-optimal graph syn-

thesis problems—as a result of Theorem 4.2.6. There is only one subtle difference between the two

problems. In the synthesis problems studied so far, it was implicitly assumed that each edge is

weighted by a single weight function. However, this is not necessarily the case in SLAM, where each

relative pose measurement is comprised of two components (i.e., translational and rotational), each

of which has its own precision, i.e., wp and wθ in Theorem 4.2.6. Thus we need to revisit the synthesis

problem in a more general setting, where multiple weight functions assign weights, simultaneously,

to a single edge.7 Fortunately, our near-t-optimal graph synthesis framework and its analysis can be

easily generalized to handle the expression that appears in Theorem 4.2.6 (i.e., log-determinant of the

Fisher information matrix) with multiple weight functions.

1. Greedy Algorithm : For the greedy algorithm, we just need to replace Φw with

Ψ � 2 · Φwp + Φwθ
(5.64)

which appears in Theorem 4.2.6. Note that Ψ is a linear combination of normalized monotone

submodular functions with positive weights, and therefore is also normalized, monotone and

submodular.
7It is important to note that this case (the expression in Theorem 4.2.6) is different from the case in which there are

multiple (parallel) edges (with different weights) between two vertices.
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2. Convex Relaxation : The convex relaxation algorithm can also be generalized by replacing the

concave objective function log det Lw(π) with the following concave function,

2 · log det Lwp(π) + log det Lwθ
(π) (5.65)

which appears in Theorem 4.2.6.

5.7.2 D-Optimal Bootstrapping for SLAM

Under the additive Gaussian noise assumption, finding the ML (and MAP, with Gaussian priors)

estimate requires solving a nonlinear least squares problem using an iterative solver. Iterative solvers

need a reliable initial guess. Ideally, the initial guess should be:

(i) sufficiently close to the global minimum (ML/MAP estimate), and

(ii) easy to compute.

The process of finding a reliable initial guess for SLAM is called bootstrapping; see [73] for a survey of

bootstrapping algorithms in SLAM. One of the most popular and effective bootstrapping techniques

is due to Konolige et al. [98]. In [98], an initial guess is constructed by concatenating measurements

along a spanning tree of the pose-graph. Fusing measurements along a spanning tree can be done

efficiently, and therefore this method satisfies (ii). In order to satisfy (i) (i.e., reliability), Konolige et

al. insightfully noted that the spanning tree should be chosen such that the accumulated uncertainty

(i.e., error) is minimum. They proposed to use the shortest-path spanning tree rooted at the first

pose (i.e., origin of the global frame). In [98], the graph is assumed to be unweighted; hence, the

shortest-path spanning tree can be constructed by running a Breadth-first search (BFS) [32].

However, this is clearly not the best choice for the bootstrapping spanning tree, especially when

measurements (edges) have different precisions (inverse of covariance). As a simple example, note

that propagating measurements along a longer chain of precise measurements may result in a more

reliable initial guess in comparison with the shortest chain whose components are relatively impre-

cise. To formalize this intuition, we can use Theorem 4.2.6 and find the D-optimal bootstrapping tree

by finding the spanning tree with maximum weighted number of spanning trees—which in this case

is equivalent to the most valuable spanning tree (MVST). In Section 5.6.1 we demonstrated how the

exact MVST can be computed efficiently using the MST algorithms (e.g., Kruskal’s algorithm needs

O(m log(n)) time). This procedure is summarized in Algorithm 11.
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Algorithm 11 D-Optimal Spanning Tree Bootstrapping

1: Use the Kruskal’s algorithm (see Section 5.6.1) to find T�
θ , i.e., the MVST when edge weights are

assigned by wθ.

2: Estimate θ̂init by propagating rotational measurements along T�
θ .

3: Use the Kruskal’s algorithm (see Section 5.6.1) to find T�
p , i.e., the MVST when edge weights are

assigned by wp.

4: Estimate p̂init by propagating translational measurements along T�
p and by using θ̂init.

5: Return x̂init = (p̂init,θ̂init).

5.7.3 Network Reliability

We often need to design reliable networks that are made out of unreliable links. Designing reliable

network topologies that remain connected under random link failure is one of the oldest applica-

tions of t-optimal graph synthesis. Network reliability theory has a rich history; see [11, 13, 116] for

comprehensive surveys of some of the key results discovered in the last three decades. Some of the

key results in characterizing t-optimal graphs among Gn,m are due to the network reliability theory

community (see Section 5.1.1). Intuitively speaking, this should not be surprising, since by definition

a network is connected if and only if it has at least one operational spanning tree; hence, it is rea-

sonable to expect that maximizing the number of spanning trees, in some instances, could somehow

increase the probability of the network remaining connected.

In this section, we only consider a special model of network reliability. All-terminal network reliabil-

ity is formally defined as the probability of a network being connected when edges fail independently

with probability p. This widely-used model of reliability has obvious applications across different

domains, including communication, sensor, power and robotic networks. For any undirected graph

G ∈ Gn,m and 0 ≤ p ≤ 1, we use Rel(G,p) to denote this value. Let ci denote the number of connected

subgraphs of G with i edges. Then, all-terminal reliability can be written as,

Rel(G,p) � P [ random graph remains connected ] (5.66)

=
m∑

i=1
ci · (1 − p)ipm−i. (5.67)

Since the minimal number of edges needed for having a connected subgraph is n − 1, ci = 0 for
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i ∈ [n − 2]. Hence, (5.67) is equal to,

Rel(G,p) =
m∑

i=n−1
ci · (1 − p)ipm−i. (5.68)

By definition cn−1 = t(G). An important negative result is due to Provan and Ball [129] who showed

that computing Rel(G,p) is NP-hard (more accurately, #P-complete). Consequently, it is sensible to re-

sort to approximation (e.g., through Monte Carlo sampling) and/or search for reasonable lower and

upper bounds. An easy observation is that when p ≈ 1 (i.e., when links are sufficiently unreliable)

we have,

Rel(G,p) ≈ cn−1 · (1 − p)n−1pm−n+1 (p → 1) (5.69)

= t(G) · (1 − p)n−1pm−n+1. (5.70)

When p, m and n are fixed, (5.70) is proportional to the number of spanning trees in G. Hence, in case

of (a fixed) p ≈ 1, t-optimal graphs with respect to Gn,m are also the most reliable graphs. A similar

analysis can be done for the case of p → 0 (i.e., very reliable links); however, we do not discuss it here

as it is not directly related to the number of spanning trees (see [9, 13, 116]).

For any fixed p, since Gn,m is finite, there exists a graph G whose reliability is greater than (or

equal to) any other graph. A rather unintuitive discovery due to Kelmans [87] is that there exists

G1,G2 ∈ Gn,m and p,q ∈ [0,1] such that Re(G1,p) > Re(G2,p) while Re(G1,q) < Re(G2,q). A simple

example of this phenomenon in G6,8 is discovered by Boesch [12, Figure 2]. This naturally leads

to the following question: is there always a topology G ∈ Gn,m whose reliability is greater than or

equal to any other graph in Gn,m for any p? Such graphs are called uniformly-most reliable (or uniformly

optimally reliable) with respect to Gn,m. As we noted earlier, when p → 1, t-optimal graphs give the

most-reliable topologies. Hence, it immediately follows that a necessary condition for a graph to

be uniformly-most reliable is to be t-optimal. Uniformly-most reliable graphs have been identified

for several special cases; see [13] for a recent survey. Interestingly, it has been shown by Kelmans

[88]—and later independently by Myrvold et al. [117]—that uniformly-most reliable graphs do not

always exist. This phenomenon was demonstrated using an infinite family of counterexamples in

which there exists a graph that is most reliable for p ≈ 0 without being t-optimal.

So far we showed that the number of spanning trees plays a key role in maximizing reliability

according to the (G,p)-model (for p → 1 and in uniformly-most reliable networks). Hence, our near-

t-optimal graph synthesis framework can be readily used for designing reliable network topologies.
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Unfortunately, it is less clear how the (G,p)-model can be extended to multigraphs or the case in

which edges may fail with different probabilities. Now suppose each edge e fails independently

with probability pe (and survives with probability qe � 1 − pe). The following scenarios show how

our framework could be useful in this case.

• Consider the set of all spanning trees of G, T(G). The probability of spanning tree T ∈ T(G)

being operational can be easily computed,

P [ T is connected ] =
∏

e∈E(T)
qe. (5.71)

Therefore, the most reliable spanning tree T� = arg maxT ∈T(G) P [ T is connected ] can be ob-

tained by finding the MVST of G when edge e is weighted by qe. In Section 5.6.1, we showed that

an exact solution to this problem can be obtained using the Kruskal’s algorithm in O(m log(n))

time.

• As we proved in Theorem 5.3.4, the expected number of spanning trees of G is equal to the

weighted number of spanning trees when edges are weighted by the survival probabilities (i.e.,

qe’s). Hence, our synthesis framework can be used to design networks whose expected number

of spanning trees is near-optimal.

5.7.4 Applications in Other Domains

The number of spanning trees also arises in several other domains. For instance, in Statistics, Cheng

[29] noted that D-optimal incomplete block designs are associated to t-optimal concurrence graphs—

see [3] for a survey. See also [16, 67] and [97] (and the references therein) for applications in, respec-

tively, Chemistry and RNA modelling.

5.8 Experimental Results

In this section, we present numerical results on random graphs and a real pose-graph SLAM dataset.

These experiments are designed to evaluate the proposed near-t-optimal graph synthesis framework

developed for k-ESP+ and the measurement selection problem in SLAM. We implemented our algo-

rithms in MATLAB. Problem P2 is modelled using YALMIP [107] and solved using SDPT3 [150]. We

have used the deterministic rounding algorithm (i.e., via sorting) for rounding the fractional solution

of the convex program.
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5.8.1 Random Graphs

Figure 5.9 illustrates the performance of our approximate solutions to k-ESP+ in randomly generated

graphs. The set of candidates in these experiments is C+ =
([n]

2
) \ Einit. Figures 5.9a and 5.9b depict

the resulting tree-connectivity as a function of the number of randomly generated edges for a fixed

k = 5 and, respectively, n = 20 and n = 50. The results indicate that our approximation algorithms

exhibit comparable near-optimal performances for k = 5. Note that computing OPT by exhaustive

search is only practical in small instances such as Figure 5.9a. Nevertheless, computing the exact OPT

is not crucial for evaluating our approximate algorithms, as Corollary 5.3.11 guarantees that OPT ∈
[τ�

greedy,τ�
cvx]; i.e., the space between each black · and the corresponding green ×. Figure 5.9c shows

the results obtained for a varying k. The optimality gap for τcvx gradually grows as the planning

horizon k increases. It is evident from Figure 5.9c that the greedy algorithm outperforms the convex

relaxation in longer horizons (say, k ≥ 20) and attains near-t-optimal designs.

5.8.2 Real Pose-Graph SLAM Dataset

We evaluated the proposed algorithms on the Intel Research Lab dataset as a popular pose-graph

SLAM benchmark.8 In this scenario, Einit and C+ are the sets of odometry and loop-closure edges,

respectively. The parameters in this graph are n = 943, |Einit| = 942 and |C+| = 895. Obviously

computing the true OPT via exhaustive search is intractable; e.g., for k = 100, there are more than

10134 possible graphs. For the edge weights, we are using the original information (precision) ma-

trices provided in the dataset. Since the translational and rotational measurements have different

precisions, two weight functions—wp and wθ—assign weights to each edge of the graph, and the

objective is to maximize limγ→0+ − log detCov[x�] = 2 · τwp(G) + τwθ
(G). Figure 5.10 depicts the re-

sulting objective values for the greedy and convex relaxation approximation algorithms, as well as

the upper bounds (U) in Corollary 5.3.11. According to Figure 5.10, both algorithms have attained

near-t-optimal (near-D-optimal) designs. Once again, the greedy algorithm outperforms the convex

relaxation (with deterministic rounding). For small values of k, the upper bound U on OPT is given

by Ugreedy (blue curve). However, for k ≥ 60, the convex relaxation provides a significantly tighter

upper bound on OPT (green curve). Figure 5.11 illustrates the evolution of the greedy design for

six different values of k. Figure 5.11f shows the original dataset with 895 loop closures. A video is

8We would like to thank the community for collecting, preprocessing and publishing this dataset. The original dataset
is collected by Dirk Hähnel. We extracted the graph from the preprocessed version provided by the g2o team [102] at the
University of Freiburg.
https://svn.openslam.org/data/svn/g2o/trunk/data/2d/intel/intel.g2o
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available at https://youtu.be/5JZF2QiRbDE.

5.9 Summary

We studied the problem of designing near-t-optimal graphs under several types of constraints and

formulations. Several new structures were revealed and exploited to design efficient approximation

algorithms. In particular, we proved that the weighted number of spanning trees in connected graphs

can be posed as a monotone log-submodular function of the edge set. Our approximation algorithms

can find near-optimal solutions with performance guarantees. They also provide a posteriori near-

optimality certificates for arbitrary designs.
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CHAPTER 6

Conclusion

In this thesis, we investigated two overlooked aspects SLAM, namely the separable structure of the

negative log-likelihood cost function, and the impact of graph topology on the estimation error co-

variance of the maximum likelihood estimator. In this chapter, we briefly review our achievements

and discuss future work.

6.1 SLAM: Sparse Separable Nonlinear Least Squares

In Chapter 3, we demonstrated that exploiting the separable structure of SLAM can improve the

convergence speed of the state-of-the-art fast Newton-based solvers. Sparsity and separability are

two structures that distinguish SLAM from other generic nonlinear least squares problems. Our

algorithm exploits both structures simultaneously by computing the conditionally-optimal estimate

for the “linear variables”, while preserving the sparse structure of the normal equations. Intuitively,

by taking advantage of the separable structure of SLAM, we gain a global perspective that can be used

to guide the conventional local search techniques towards a local minimum of the problem.

Concluding Remarks

• Establishing a link to the rich literature on separable nonlinear least squares [61] is one of our

key contributions. In particular, recognizing the equivalence between Algorithm 1 and Algo-

rithm 2 was the missing link that enabled us to retain sparsity while exploiting the separable

structure via Algorithm 3. This link also provides a solid theoretical justification for the pro-

posed algorithm.

• The proposed algorithm can be applied to some of the most common forms of SLAM (i.e.,

122
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2D/3D feature-based and pose-graphs) without any restrictive assumption on the structure of

the noise covariance matrix. Furthermore, our approach is compatible with any nonlinear least

squares solver and the benefits it brings along are orthogonal to those of other potential im-

provements such as using a more efficient implementation, alternative Newton-based solvers,

trust-region methods or line search techniques.

• Exploiting separability is especially beneficial when Gauss-Newton iterations are relatively

costly, or when it takes more than a few iterations to solve the full nonlinear least squares prob-

lem. High noise regimes and poorly initialized problems are likely to be among such cases.

• Through the projection gain (Section 3.5), we quantify the impact of exploiting the separable

structure of the problem. As we demonstrated in Chapter 3, the relative gain is typically maxi-

mum at the beginning, and gradually decays as we approach a local minimum. Incorporating

this gain into our sparse variable algorithm makes it computationally “fail-safe” by preventing

further unnecessary projection steps.

• Chapter 3 mainly focused on the batch solvers. Incrementally solving SLAM [84, 85] is more

suitable for online applications. The separable structure of SLAM is preserved in incremental

formulation of SLAM and can be exploited by the same principles and techniques introduced

in Chapter 3. As we mentioned earlier, our results indicate that exploiting separability is mostly

beneficial if the initial guess is not already “too close” to the solution. An important advantage

of incrementally solving SLAM is that we can initialize the solver at time t using the ML esti-

mate at time t − 1. This initial guess is usually quite good, and hence, exploiting separability

may not be useful in such scenarios. Nevertheless, this is not the case if the information ac-

quired at time t leads to a substantial “correction” of the whole trajectory. This is the case, for

example, when the robot closes a large loop after a fairly long period of exploration (i.e., mostly

dead reckoning). Incremental solvers that are capable of exploiting separability can therefore

benefit from its fast convergence in such scenarios.

Recall that the projection gain γ will be “small” whenever we are “close” to the solution. There-

fore, by incorporating the projection gain into the proposed algorithm, we can naturally iden-

tify such scenarios and benefit from exploiting separability, while avoiding pointless (costly)

projections in other cases.
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Future Work

- Our current implementation (integrated with g2o [102]) is still under development. As part of

our future work, we plan to reach full compatibility and integration with g2o for every (sepa-

rable) measurement model, linear solver and iterative optimization algorithms currently sup-

ported by g2o.

6.2 SLAM: Estimation over Graphs

Any instance of SLAM is uniquely characterized by the true “geometry of the scene” (e.g., actual tra-

jectory in pose-graph SLAM), one or more probabilistic observation model(s) (e.g., a noise-free mea-

surement function corrupted by an additive Gaussian noise), realized measurements, and a graph

(i.e., an adjacency list) that encodes “who observed whom”. Our goal in Chapter 4 was to under-

stand the exact mechanisms through which graph connectivity influences the estimation quality in

maximum likelihood estimation. As our first contribution in this part, we provided a theoretical ex-

planation for Olson and Kaess [123]’s empirical observation regarding the impact of average degree.

We then noted that the Fisher information matrix in SLAM, Compass-SLAM and Diff-Nets can

be expressed in terms of the weighted Laplacian matrix of the graph.1 These two matrices represent

the two facets of SLAM; i.e., estimation-theoretic and graph-theoretic. We then established two links

between these two matrices. First, we showed that in Compass-SLAM and Diff-Nets, the inverse

of algebraic connectivity is a lower bound for the worst-case estimation error variance (i.e., “hyper-

diameter” of the confidence hyper-ellipsoid). Subsequently, we proved that the determinant of Fisher

information matrix (and consequently, that of the estimation error covariance of the maximum likeli-

hood estimator and Cramér-Rao lower bound) is closely related to the weighted number of spanning

trees in the graph. This quantity is known as the D-criterion (determinant-criterion) [130]. This rela-

tion was exact in Compass-SLAM and Diff-Nets. For SLAM, this relation was characterized in two

ways:

1. a pair of lower/upper bounds (that depend on the weighted number of spanning trees) in

Proposition 4.2.5, and

2. an asymptotic result in Theorem 4.2.6 that followed from Proposition 4.2.5.

Through extensive numerical evaluation on various real and synthetic datasets we showed that The-

1This result is due to Barooah and Hespanha [8] and Carlone [20].
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orem 4.2.6 approximately holds even in the non-asymptotic regime. It is important to note that,

under mild assumptions, this result enables us to accurately predict the D-criterion only by assessing

the structure of the weighted graph (i.e., without using any information about the geometry of the scene

or the realized measurements).2

Our analysis in Chapter 4 allows us to design near-D-optimal pose-graph SLAM problems through

designing weighted graphs with the maximum weighted number of spanning trees (also known as

t-optimal graphs). Consequently, in Chapter 5, we tackled the combinatorial optimization problem

of designing sparse t-optimal graphs. To the best of our knowledge, there is no known efficient algo-

rithm for solving this problem in the general case. So we did the next best thing by designing a com-

plementary pair of efficient approximation algorithms with provable guarantees and near-optimality

certificates. In order to analyze the proposed algorithms, we established several new theoretical re-

sults. In particular, we proved that the weighted number of spanning trees, under mild conditions,

is monotone log-submodular. To the best of our knowledge, this is a new result in graph theory.

Our analysis exploited this structure to prove that the greedy algorithm is near-optimal based on the

seminal work of Nemhauser et al. [118]. The second approximation algorithm proposed in Chap-

ter 5 is inspired by the convex relaxation approach due to Joshi and Boyd [81]. We expressed the

original combinatorial optimization problem as an integer program, and then relaxed the integrality

constraints to obtain a convex relaxation. An approximate solution is then obtained by mapping the

globally-optimal solution of the convex program into a feasible (integral) solution using a rounding

procedure. Our analysis extends that of [81] by shedding light on the connection between the original

and the relaxed problems. This was made possible by our newly established result on the expected

weighted number of spanning trees in random graphs (and its extension to the generalized linear

model used in [81], Theorem 5.3.10). We also briefly discussed randomized rounding procedures

and provided a justification for the deterministic rounding procedure proposed by Joshi and Boyd

[81]. Our approximation algorithms and their analyses were extended to two additional problem

formulations. Finally, we evaluated the performance of the proposed approximation algorithms us-

ing random graphs and a real pose-graph SLAM dataset. Our results suggest that the approximate

design achieved by the greedy algorithm often dominates that of our convex relaxation, while the

near-optimality certificate provided by our convex relaxation is normally tighter.

2The weight assigned to each edge is the precision (inverse of variance) of the corresponding pairwise measurement.
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Concluding Remarks

• By (4.46) and (4.47), we showed that a simple approximation can provide an explanation for

the empirical observations made by Olson and Kaess [123]. As we noted earlier, the average

degree only reflects minimal information about the connectivity of the graph (i.e., ratio between

the number of edges and vertices), and thus is not useful for decision making or planning.

That being said, (4.46) has a nice interpretation. Consider the negative log-likelihood objective

function in pose-graph SLAM. According to (4.46), the relative gap between the objective value

of the ground truth and the value of the maximum likelihood estimate (i.e., (f◦ − f�)/f�), in

expectation, evolves approximately according to n/m where m is the number of measurements

and n is the number of robot poses. This result suggests that in order to tighten this relative

gap by some constant factor, one has to increase the number of measurements roughly by the

same factor.

• Theorem 4.2.6 has a nice connection to one of the classic results in SLAM. Dissanayake et al.

[38] in their seminal work proved that the determinant of the covariance matrix of Kalman filter

reduces as the robot makes new observations. This result can be extended to cover the specific

formulation studied in this thesis. From this perspective, Theorem 4.2.6 and Proposition 4.2.5

explain how fast this phenomenon occurs in terms of the weighted number of spanning trees

in the graph.3

• It is important to note that there is a one-to-many relationship between the set of all weighted

graphs and the set of all possible pose-graphs. Theorem 4.2.6 and Proposition 4.2.5 show that

the D-criterion is almost entirely characterized by the weighted number of spanning trees in

the underlying graph. Therefore, instead of searching for the D-optimal pose-graph among the

infinite set of all feasible pose-graphs, we can efficiently search for near-t-optimal topologies in

the finite set of all feasible topologies (assuming the edge weights are fixed).

• In Chapter 5, we implicitly assumed that the graphical representation of SLAM is perfectly

known. Clearly, this is not always the case in practice. For example, in pose-graph SLAM,

front-end may express its confidence by returning a probability with each new potential loop-

closure edge. Another type of structural uncertainty arises in planning, where we may expect a

loop-closure edge between two future poses with some probability (e.g., based on the topology

3It is easy to see that parallel edges (i.e., multiple measurements between two landmarks) can be replaced by a single
edge whose weight is equal to the sum of the weights of the parallel edges.
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of the environment). These uncertainties can be naturally incorporated in our framework by

simply multiplying the weight of each edge by the corresponding probability. We already know

through Theorem 5.3.4 that this results in the expected weighted number of spanning trees.

• As we saw in Table 4.1, computing the D-criterion through computing the weighted number of

spanning trees in the graph is robust to convergence failures (e.g., local minima) and lineariza-

tion errors.

Future Work

- There is an intriguing overlap between the parameters that emerge from our analysis of the

impact of graph topology on the estimation error covariance, and those of [20]. In particular,

λ1(Lw) and δ (defined in Theorem 4.2.6) have also appeared in the convergence analysis due to

Carlone [20]. We plan to investigate this connection in our future work.

- Theorem 4.2.6 can be straightforwardly generalized to 2D feature-based SLAM problems. Ex-

tensive empirical observations suggest that our analysis can also be extended to 3D SLAM with

SE(3) relative-pose measurements. We will consider this extension in our future work.

- Searching for new loop closures via scan matching is a costly operation. The front-end can

benefit from our work by prioritizing scan matching with potential candidates based on the

impact of the resulting edge on the weighted number of spanning trees. We plan to investigate

this idea in our future work.

- Our near-t-optimal graph synthesis framework can be readily used in any context where de-

signing sparse networks with strong tree-connectivity is desired. Several applications were

mentioned in Section 5.7. In particular, we plan to investigate the potential applications of our

results in network reliability theory [13].

- We plan to extend our analysis of the convex relaxation algorithm proposed in Chapter 5. In

particular, it is not clear whether there are other deterministic/randomized rounding proce-

dures that can outperform the deterministic rounding we used in this thesis or lead to a stronger

analysis (e.g., a constant approximation factor).

- The results presented in Chapters 4 and 5 are only the first steps towards the use of graph

topology in areas such as active SLAM and decision making. We believe that designing reliable
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graph topologies has the potential to be incorporated into the planning process. We aim to

thoroughly investigate this idea in our future work.
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Preliminaries

A.1 Linear Algebra

Lemma A.1.1 (Schur’s Determinant Formula). If A−1 exists,

det

⎡⎢⎣ A B

C D

⎤⎥⎦ = det A · det(D − CA−1B). (A.1)

Proof. See, e.g., [111].

Lemma A.1.2. For any M ∈ Sn
>0 and N ∈ Sn

>0, M � N iff N−1 � M−1.

Proof. Due to symmetry it suffices to prove that M � N ⇒ N−1 � M−1. Multiplying both sides

of M � N by N− 1
2 from left and right results in N− 1

2 MN− 1
2 − I � 0. Therefore the eigenvalues

of N− 1
2 MN− 1

2 , which are the same as the eigenvalues of M 1
2 N−1M 1

2 ,1 are at least 1. Therefore

M 1
2 N−1M 1

2 − I � 0. Multiplying both sides by M− 1
2 from left and right proves the lemma.

Lemma A.1.3 (Matrix Determinant Lemma). For any non-singular M ∈ Rn×n and c,d ∈ Rn,

det(M + cd�) = (1 + d�M−1c) det M. (A.2)

Proof. See e.g., [111].
1Recall that MN and NM have the same spectrum.
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Lemma A.1.4. For any two N,M ∈ Sn
≥0 we have

det(M + N) ≥ det(M). (A.3)

Proof. It is trivial to verify the lemma when M is singular. For M � 0, we can decompose M as

M = M 1
2 M 1

2 in which M 1
2 ∈ Sn

>0. Then we have

det(M + N) = det(M) det(I + M− 1
2 NM− 1

2 )) (A.4)

= det(M)
n∏

i=1
(1 + λi

(
M− 1

2 NM− 1
2 )︸ ︷︷ ︸

≥ 0

)
(A.5)

≥ det(M). (A.6)

A.2 Estimation Theory

Definition A.2.1 (Unbiased Estimator). An estimator x̂ of parameter x is called an unbiased estimator

iff E[x̂] = x.

Theorem A.2.1 (Cramér-Rao Lower Bound (CRLB)). Under some regularity conditions [140], the covari-

ance matrix of any unbiased estimator of x, such as x̂, satisfies Cov [x̂] � I−1(x), where I(x) is the Fisher

information matrix (FIM),

I(x) � Ez [
∂

∂x log p(z; x)
∂�

∂x log p(z; x)]. (A.7)

Here the expectation is over z and with respect to p(z; x). Note that FIM depends only on the true value of x

and p(z; x), and does not depend on any particular realization of z.

Definition A.2.2 (Efficient Estimator). An unbiased estimator that achieves CRLB is called an efficient

estimator.

Corollary A.2.2. The following statements are true:

1. The diagonal elements of CRLB are lower bounds for the variance of any unbiased estimator for each

parameter.
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2. The determinant of CRLB is a lower bound for the determinant of the covariance matrix of any unbiased

estimator.

A.3 Discrete Optimization

Suppose W is a finite ground set. Let ξ : 2W → R be a real set function defined over the power set

of W. Finally, let F ⊆ 2W be the set of feasible subsets of W. Then our goal is to solve the following

optimization problem,

maximize
A⊆W

ξ(A)

subject to A ∈ F.

(A.8)

• Cardinality constraint: The feasible set in this case is defined as

Fcard �
{
M ⊆ W : |M| ≤ k

}
(A.9)

for some k ∈ N.

• Matroid constraint: The cardinality constraint is a special case of a more general class of con-

straints known as matroid constraints. More specifically, (W,Fcard) is a uniform matroid of rank k.

Uniform matroids are the simplest kind of matroids. A more interesting example is the partition

matroid.

Definition A.3.1 (Partition Matroid). Let W1, . . . ,W� be a partition for W. Assign an integer (budget)

0 ≤ ki ≤ |Wi| to each Wi. Define

Ip �
{
M ⊆ W : |M ∩Wi| ≤ ki for i ∈ [�]

}
.

The pair (W,Ip) is called a partition matroid.

Definition A.3.2 (Set Function Properties). Suppose W is a finite ground set. For any set function

ξ : 2W → R,

1. ξ is called normalized if and only if ξ(∅) = 0.

2. ξ is called monotone if ξ(B) ≥ ξ(A) for every A and B s.t. A ⊆ B ⊆ W.
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3. ξ is called submodular if and only if for every A and B s.t. A ⊆ B ⊆ W and ∀s ∈ W \B we have,

ξ(A ∪ {s}) − ξ(A) ≥ ξ(B ∪ {s}) − ξ(B). (A.10)

4. ξ is called supermodular if and only if −ξ is submodular.

5. ξ is called modular if and only if it is both submodular and supermodular

6. ξ is called log-submodular if and only if ξ is positive and log ξ is submodular.

An equivalent condition for submodularity is as follows. ξ is submodular if and only if for every

A,B ⊆ W,

ξ(A ∪B) + ξ(A ∩B) ≤ ξ(A) + ξ(B). (A.11)

Furthermore, it is easy to show that if ξ is a normalized modular function, then we must have ξ(A) =∑
e∈A w(e) for some (weight) function w : W → R.

Theorem A.3.1 (Nemhauser et al. [118]). The greedy algorithm is a (1− 1/e)-approximation algorithm for

maximizing any normalized monotone submodular function subject to a cardinality constraint.

Theorem A.3.2 introduces several operations under which both monotonicity and submodularity

are preserved. Hence given any monotone submodular function, one can construct new monotone

submodular functions by performing such operations.

Theorem A.3.2. Both monotonicity and submodularity are preserved under the following operations.

• Constant Addition: For any constant c ∈ R, g : 2W → R : A �→ f(A) + c is monotone submodular if

and only if f : 2W → R is monotone submodular.

• Constant Truncation: For any constant c ∈ R, g : 2W → R : A �→ min
{
f(A),c

}
is monotone

submodular if and only if f : 2W → R is monotone submodular.

• Non-negative linear combination: If fi : 2W → R for all i ∈ [n] are monotone submodular and wi

for all i ∈ [n] are non-negative, then g : A �→∑n
i=1 wifi(A) is monotone submodular.

• Restriction: If f : 2W → R is monotone submodular, then for any M ⊆ W, g : A �→ f(A ∩ M) is

monotone submodular.

• Conditioning: If f : 2W → R is monotone submodular, then for any M ⊆ W, g : A �→ f(A ∪M) is

monotone submodular.
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A.4 Graph Theory

Definitions

Consider a simple undirected graph G = (V,E). V is the set of vertices and E ⊆ (V
2
)

is the edge set of

G. With a little abuse of notation, for any graph G, V(G) and E(G) refer to, respectively, the vertex set

and edge set of graph G. Similarly, we define n(G) � |V(G)| and m(G) � |E(G)|. Vertex u is adjacent

to vertex v (u ∼ v) if and only if there is an edge connecting u to v. For any vertex v ∈ V, N(v) ⊆ V

denotes the set of all vertices adjacent to v. We generally assume the vertices are labeled according

to V = [n] for an integer n. Let w : E → R be a weight function that assigns a real weight to any edge

of G. Then (V,E,w) is an edge-weighted graph (or simply, a weighted graph). In directed graphs, each

edge has an orientation and thus is represented by an ordered pair; i.e., �G = (V,�E) where �E ⊆ V × V.

An undirected graph is connected if and only if there is a path between any two vertices. A directed

graph is strongly connected if and only if there is a directed path between any two vertices. Similarly, a

directed graph is weakly connected if there is a path between any two vertices after ignoring the edge

orientations. H = (S,F) is a subgraph of G = (V,E) if and only if S ⊆ V and F ⊆ E. H is a spanning

subgraph of G if and only if and S = V. Moreover, H is an induced subgraph of G if and only if

F =
{
{u,v} : u,v ∈ S, {u,v} ∈ E

}
. (A.12)

A connected component of an undirected graph G is a connected induced subgraph of G whose set

of vertices is not adjacent to the other vertices of G. The number of connected components of G is

shown by nc(G). The degree of vertex v ∈ V, deg(v), is defined as the number of edges connected

to v, i.e., deg(v) � |N(v)|. In weighted graphs, the weighted degree of vertex v ∈ V is defined as

degw(v) � ∑
u∈N(v) w({u,v}). An undirected tree is a graph that is (i) connected, and (ii) does not

have a cycle. Removing any edge from a tree results in a disconnected graph; thus trees are minimally

connected graphs. We generally use T for referring to trees. The complete graph K (or Kn when

|V| = n) is the graph in which any two vertices are connected with an edge; i.e., E(K) =
(V

2
)
. A

spanning tree of G is a spanning subgraph of G that is a tree.

Lemma A.4.1 (Handshaking Lemma). For any simple undirected graph G = (V,E),

∑
v∈V

deg(v) = 2 |E|. (A.13)



APPENDIX A: PRELIMINARIES 135

Proof. Note that in
∑

v∈V deg(v), the edge {u,v} ∈ E is counted twice; once in deg(v) and once in

deg(u).

Graph Matrices

Any graph can be naturally represented by several matrices. These matrices play a key role in the

algebraic and spectral graph theory where graphs are studied through such matrices and their spectra

[59]. In this section, we briefly review some of these matrices. To simply our notation, we assume

n(G) = n and m(G) = m.

1. Degree matrix: The degree matrix D ∈ Rn×n is defined as D � diag
(
deg(v1), . . . , deg(vn)

)
where V(G) = {v1, . . . ,vn}.

2. Adjacency matrix: The adjacency matrix Adj ∈ {0,1}n×n is defined as follows:

Adj u,v =

⎧⎪⎪⎨⎪⎪⎩
1 if u ∼ v,

0 otherwise.

3. Incidence matrix: The incidence matrix A◦ ∈ {−1,0,1}n×m is defined for directed graphs. Let

E = {e1, . . . ,em} where ei � (ui,vi). Then we have,

A◦u,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+1 if ∃v ∈ V : ei = (v,u) ∈ E,

−1 if ∃v ∈ V : ei = (u,v) ∈ E,

0 otherwise.

Sometimes we refer to the incidence matrix of undirected graphs. In such cases, we have implic-

itly assumed an arbitrary orientation is assigned to the edges of the graph.

4. Laplacian matrix: The (graph) Laplacian (or, Kirchhoff) matrix L◦ ∈ Rn×n is defined as L◦ � A◦A�◦ = D − A

Deleting a row/column from the incidence and Laplacian matrices results in the following matrices:

• Reduced incidence matrix: The reduced incidence matrix A is the matrix obtained by deleting

the row associated to a vertex from the incidence matrix. The vertex associated to the deleted

row is usually referred to as the anchored or grounded vertex. In general, it is possible to have

multiple anchors.



APPENDIX A: PRELIMINARIES 136

• Reduced Laplacian matrix: The reduced Laplacian (also known as the Dirichlet or grounded

Laplacian) matrix L is the matrix obtained by deleting the column and row associated to a

vertex from the Laplacian matrix. As mentioned above, the vertex associated to the deleted

column and row is usually referred to as the anchored or grounded vertex. Note that it is possible

to have multiple anchors. Similar to what we saw earlier regarding the relation between A◦

and L◦, L = AA� for the same anchor(s).

Theorem A.4.1. Let λ1(L◦) ≤ λ2(L◦) ≤ · · · ≤ λn(L◦) be the spectrum of the Laplacian matrix L◦ of an

arbitrary graph. The following statements hold.

1. The Laplacian matrix is positive semidefinite; i.e., λi(L◦) ≥ 0 for all i ∈ [n].

2. The Laplacian matrix has at least one zero eigenvalue associated to the 1n eigenvector; i.e., L◦1n = 0.

3. The multiplicity of the zero eigenvalue is equal to the number of connected components of graph nc(G);

i.e., λi(L◦) = 0 for all i ∈ [nc(G)] and λnc(G)+1(L◦) > 0.

Theorem A.4.2. The reduced incidence matrix A is full row rank if and only if the corresponding graph is

weakly connected.

The following theorem directly follows Theorem A.4.2 and the fact that L = AA�.

Corollary A.4.3. The reduced Laplacian matrix L is positive definite if and only if the corresponding graph

is connected.

Theorem A.4.4 (Kirchhoff’s Matrix-Tree Theorem). Let L and L◦ be, respectively, the reduced Laplacian

and the Laplacian matrix of any simple undirected graph G after anchoring an arbitrary vertex out of its n

vertices. The following statements are true.

1. t(G) = det(L),

2. t(G) = 1
n

∏n
i=2 λi(L◦).2

Theorem A.4.5 (Cayley’s Formula). The number of spanning trees in Kn is given by t(Kn) = nn−2.

Definition A.4.1 (Tree Value Function). Suppose G = (V,E,w) is a weighted graph with a non-

negative weight function. Let TG be the set of all spanning trees of G. The value of each spanning

2Recall that the Laplacian matrix of any connected graph has a zero eigenvalue with multiplicity one (see, e.g., [59]).
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tree of G is measured by the following function,

Vw : TG → R≥0 (A.14)

T �→
∏

e∈E(T)
w(e). (A.15)

Furthermore, we define the weighted number of trees as tw(G) �∑
T∈TG

Vw(T).

Theorem A.4.6 (Weighted Matrix-Tree Theorem). For every simple weighted graph G = (V,E,w) with

w : E → R>0 we have tw(G) = det AWA� where W � diag(w(e1), . . . ,w(em)).

Theorem A.4.7. Let G+ be the graph obtained by adding {u,v} /∈ E with weight wuv to G = (V,E,w). Let

L be the reduced Laplacian matrix and auv be the corresponding column of the reduced incidence matrix of G

after anchoring an arbitrary vertex. If G is connected,

tw(G+) = tw(G) · (1 + wuvΔG
uv), (A.16)

where ΔG
uv � a�

uvL−1auv is the effective resistance between u and v [58].

Proof. The reduced Laplacian matrix of G+ can be written as L+ = L + wuv auvauv
�. Taking the

determinant and applying Lemma A.1.3 concludes the proof.

Remark 12. In practice, we compute the effective resistance in sparse graphs using Algorithm 12.

Lemma A.4.2. Let G1 be a spanning subgraph of G2. For any w : E(K) → R≥0, Lw
G2

� Lw
G1

in which Lw
G is

the reduced weighted Laplacian matrix of G when its edges are weighted by w.

Proof. From the definition of the reduced weighted Laplacian matrix we have,

Lw
G2 − Lw

G1 =
∑

{u,v}∈E(G2)\E(G1)
wuv auva�

uv � 0. (A.17)
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Algorithm 12 Effective Resistance Between u and v

1: function Reff(u,v,L) � u,v ∈ V = {0,1, . . . ,n − 1}, L: reduced Laplacian
2: // Column of the reduced incidence matrix
3: auv ← eu − ev

4: // Choose a fill-reducing permutation heuristic P
5: P ← COLAMD(L) � e.g., column approximate minimum degree
6: // Compute the sparse Cholesky factor C s.t. PLP� = CC�

7: C ← SparseCholesky(PLP�)
8: // solve Cxuv = Pauv

9: xuv ← ForwardSolver(C,Pauv) � Lower Triangular
10: Δuv ← ‖xuv‖2

11: return Δuv

12: end function
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Proofs

B.1 Chapter 3

Proof of Theorem 3.3.1. The jth column of Jvp is given by

[Jvp]·,j =
∂rvp
∂θj

=
∂

∂θj
[P⊥

θ (z̃ − H̃2θ)]

=
∂P⊥

θ

∂θj
(z̃ − H̃2θ) + P⊥

θ

∂(z̃ − H̃2θ)
∂θj

=
∂P⊥

θ

∂θj
(z̃ − H̃2θ) − P⊥

θ [H̃2]·,j

= −∂Pθ

∂θj
(z̃ − H̃2θ) − P⊥

θ [H̃2]·,j (B.1)

Now we only need to compute ∂Pθ/∂θj . This term was first computed by Golub and Pereyra. We

briefly mention their proof as stated in [135]. First note that Pθ is (i) idempotent, i.e., (Pθ)2 = Pθ,

and (ii) symmetric. Also note that PθH̃1 = H̃1. Therefore we have

∂PθH̃1
∂θj

=
∂H̃1
∂θj

=
∂Pθ

∂θj
H̃1 + Pθ

∂H̃1
∂θj

(B.2)

Therefore,

∂Pθ

∂θj
H̃1 = (I − Pθ)

∂H̃1
∂θj

= P⊥
θ

∂H̃1
∂θj

(B.3)

Multiplying both sides by H̃†
1 from right we get

∂Pθ

∂θj
Pθ = P⊥

θ

∂H̃1
∂θj

H̃†
1. (B.4)

139
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Also note that

(Pθ
∂Pθ

∂θj
)� =

∂Pθ

∂θj
Pθ. (B.5)

Now we use the properties of Pθ as an orthogonal projection.

∂Pθ

∂θj
=

∂P2
θ

∂θj
=

∂Pθ

∂θj
Pθ + Pθ

∂Pθ

∂θj
, (B.6)

which can be simplified using (B.4) and (B.5),

∂Pθ

∂θj
= P⊥

θ

∂H̃1
∂θj

H̃†
1 + (P⊥

θ

∂H̃1
∂θj

H̃†
1)� (B.7)

Plugging (B.7) into (B.1) completes the proof, i.e.,

[Jvp]·,j = −
[
P⊥

θ

∂H̃1
∂θj

H̃†
1 + (P⊥

θ

∂H̃1
∂θj

H̃†
1)�

]
(z̃ − H̃2θ)

− P⊥
θ [H̃2]·,j . (B.8)

Derivation of p(p|θ,z).

p(p|θ, z) =
p(p,θ,z)
p(θ,z)

=
p(z|x) p(x)

p(θ,z)

=
p(z|x) p(p|θ) p(θ)

p(z|θ) p(θ)

=
p(z|x) p(p|θ)

p(z|θ)
(B.9)
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B.2 Chapter 4

Proof of Lemma 4.2.1. Applying Schur’s determinant formula (Lemma A.1.1) on the top-left block

of (4.28) and using

log det(Lwp ⊗ I2) = 2 · log det Lwp (B.10)

= 2 · τwp(G) (B.11)

concludes the proof.

Proof of Proposition 4.2.5. First note that Pwp � I−P⊥
wp

� 0 and P⊥
wp

� 0 since they are orthogonal

projection matrices and therefore their spectra consist of zeros and ones. For the lower bound we

start from (4.65) and apply Lemma A.1.4,

log det I(x) = 2 · τwp(G) + log det(Lwθ
+ E) (B.12)

≥ 2 · τwp(G) + log det Lwθ
(B.13)

= 2 · τwp(G) + τwθ
(G) (B.14)

where E � Δ�
wp

P⊥
wp

Δwp . Define δ � ‖Δ�
wp

Δwp‖∞. The upper bound also results from Lemma A.1.4

as shown below.

log det I(x) = 2 · τwp(G) + log det(Lwθ
+ E)

≤ 2 · τwp(G) + log det(Lwθ
+ Δ�

wp
Δwp)

≤ 2 · τwp(G) + log det(Lwθ
+ δI)

= 2 · τwp(G) +
n∑

i=1
log(λi(Lwθ

) + δ).

The second and third lines above follow from applying Lemma A.1.4 on

log det(Lwθ
+ Δ�

wp
P⊥

wp
Δwp︸ ︷︷ ︸

�0

+ Δ�
wp

PwpΔwp︸ ︷︷ ︸
�0

) (B.15)

and

log det(Lwθ
+ Δ�

wp
Δwp︸ ︷︷ ︸

�0

+ δI − Δ�
wp

Δwp︸ ︷︷ ︸
�0

), (B.16)
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respectively; see (4.29).

Proof of Theorem 4.2.6. This result follows from Proposition 4.2.5 and the Squeeze Theorem, since:

lim
δ→0+

U = L. (B.17)

where U and L are the upper and lower bounds defined in Proposition 4.2.5.

B.3 Chapter 5

Proof of Theorem 5.3.1. First note that Vw(T) is positive for any T (Definition A.4.1).

1. Normalized: tn,w(∅) = 0 by definition.

2. Monotone: Let G � (V,E ∪ {e}). Denote by Te
G the set of spanning trees of G that contain e.

tn,w(E ∪ {e}) =
∑
T∈TG

Vw(T) =
∑
T∈Te

G

Vw(T) +
∑
T/∈Te

G

Vw(T) (B.18)

=
∑
T∈Te

G

Vw(T) + tn,w(E) ≥ tn,w(E). (B.19)

3. Supermodular: tn,w is supermodular iff for all E1 ⊆ E2 ⊆ E(Kn) and all e ∈ E(Kn) \ E2,

tn,w(E2 ∪ {e}) − tn,w(E2) ≥ tn,w(E1 ∪ {e}) − tn,w(E1). (B.20)

Define G1 � (V,E1) and G2 � (V,E2). As we showed in (B.19),

tn,w(E1 ∪ {e}) − tn,w(E1) =
∑

T∈Te
G1

Vw(T), (B.21)

tn,w(E2 ∪ {e}) − tn,w(E2) =
∑

T∈Te
G2

Vw(T). (B.22)

Now it suffices to show that
∑

T∈Te
G2

Vw(T) ≥∑
T∈Te

G1
Vw(T). This inequality holds since Te

G1
⊆

Te
G2

.

Proof of Theorem 5.3.2.
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1. Normalized: By definition Φw(∅) = τn,w(Einit) − τn,w(Einit) = 0.

2. Monotone: We need to show that Φw(E ∪ {e}) ≥ Φw(E). This is equivalent to showing that,

τn,w(Einit ∪ E ∪ {e}) ≥ τn,w(Einit ∪ E). (B.23)

Now note that (V,Einit ∪E) is connected since (V,Einit) was assumed to be connected. Therefore,

we can apply Theorem A.4.7 on the LHS of (B.23); i.e.,

τn,w(Einit ∪ E ∪ {e}) = τn,w(Einit ∪ E) + log(1 + weΔe). (B.24)

Therefore it suffices to show that log(1 + weΔe) is non-negative. Since (V,Einit) is connected, L

is positive definite. Consequently weΔe = wea�
e L−1ae > 0 and hence log(1 + weΔe) > 0.

3. Submodular: Φw is submodular iff for all E1 ⊆ E2 ⊆ E(Kn) and all e ∈ E(Kn) \ E2,

Φw(E1 ∪ {e}) − Φw(E1) ≥ Φw(E2 ∪ {e}) − Φw(E2). (B.25)

After canceling out τn,w(Einit) we need to show that,

τn,w(E1 ∪ Einit ∪ {e}) − τn,w(E1 ∪ Einit) ≥ τn,w(E2 ∪ Einit ∪ {e}) − τn,w(E2 ∪ Einit). (B.26)

If e ∈ Einit, both sides of (B.26) become zero. Hence, we can safely assume that e /∈ Einit. For

convenience let us define E∗
i � Ei ∪ Einit for i = 1,2. Therefore (B.26) can be rewritten as,

τn,w(E∗
1 ∪ {e}) − τn,w(E∗

1) ≥ τn,w(E∗
2 ∪ {e}) − τn,w(E∗

2). (B.27)

Recall that we assumed that (V,Einit) is connected. Thus (V,E∗
i ) is connected for i = 1,2, and we

can apply Theorem A.4.7 on both sides of (B.27). After doing so we have to show that

log(1 + weΔG1
e ) ≥ log(1 + weΔG2

e ) (B.28)

where Gi � (V,Ei ∪ Einit,w) for i = 1,2. It is easy to see that (B.28) holds iff ΔG1
e ≥ ΔG2

e . Now
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note that

ΔG1
e − ΔG2

e = a�
e (L−1

G1
− L−1

G2
) ae ≥ 0 (B.29)

since LG2 � LG1 (G1 is a spanning subgraph of G2), and therefore according to Lemma A.1.2,

L−1
G1

� L−1
G2

.

Proof of Theorem 5.3.4. Define the following indicator function,

�TG
(T) �

⎧⎪⎪⎨⎪⎪⎩
1 T ∈ TG,

0 T /∈ TG,

(B.30)

in which TG denotes the set of spanning trees of G. Now note that,

EG∼G(G•,p)
[
tw(G)

]
= EG∼G(G•,p)

[ ∑
T∈TG•

�TG
(T)Vw(T)

]
(B.31)

=
∑

T∈TG•

EG∼G(G•,p)
[
�TG

(T)Vw(T)
]

(B.32)

=
∑

T∈TG•

P
[
T ∈ TG

]
Vw(T ) (B.33)

=
∑

T∈TG•

Vp(T)Vw(T) (B.34)

=
∑

T∈TG•

Vw̄(T) (B.35)

= tw̄(G•). (B.36)

Here we have used the fact the P[T ∈ TG] is equal to the probability of existence of every edge of T

in G, which is equal to Vp(T).

Proof of Theorem 5.3.5. First, note that (5.18) readily follows from Theorem 5.3.4. To see why (5.17)
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holds note that πi ∼ Bern(pi). Therefore,

E [k∗] = E
[ c∑

i=1
πi
]

(B.37)

=
c∑

i=1
E [πi] (B.38)

=
c∑

i=1
pi. (B.39)

Proof of Theorem 5.3.7. This theorem is a direct application of Chernoff bounds for Poisson trials of

independently sampling edges from C+ with probabilities specified by π�.

Proof of Theorem 5.3.10. The proof outline is as follows:

Step 1. First, the Cauchy-Binet formula is used to expand the determinant as a sum over
(m

n

)
terms.

Step 2. The expected value of each of the
(m

n

)
terms can be easily computed.

Step 3. Finally, the Cauchy-Binet formula is applied again to shrink the sum.

Now we present the proof. We begin by applying the Cauchy-Binet formula:

Eπ

[
det

( m∑
i=1

πiuiv�
i

)]
= Eπ

[ ∑
Q∈([m]

n )
det

(∑
k∈Q

πkukv�
k

)]
(B.40)

=
∑

Q∈([m]
n )

Eπ

[
det

(∑
k∈Q

πkukv�
k

)]
. (B.41)

Since |Q| = n we have

rank
(∑

k∈Q

πkukv�
k

)
=

⎧⎪⎪⎨⎪⎪⎩
n iff πk = 1 for all k ∈ Q,

γ < n otherwise.
(B.42)

Hence, the determinant can be non-zero only when πk = 1 for all k ∈ Q. Therefore,

det
(∑

k∈Q

πkukv�
k

)
=

⎧⎪⎪⎨⎪⎪⎩
det

(∑
k∈Q ukv�

k

)
iff πk = 1 for all k ∈ Q,

0 otherwise.
(B.43)
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But from the independence assumption we know that,

P
[ ∧

k∈Q

πk = 1
]

=
∏
k∈Q

pk. (B.44)

Each individual expectation in (B.41) can be computed as follows.

Eπ

[
det

(∑
k∈Q

πkukv�
k

)]
= det

(∑
k∈Q

ukv�
k

) ∏
k∈Q

pk (B.45)

= det
(∑

k∈Q

pkukv�
k

)
. (B.46)

Plugging (B.46) back into (B.41) yields,

Eπ

[
det

( m∑
i=1

πiuiv�
i

)]
=

∑
Q∈([m]

n )
det

(∑
k∈Q

pkukv�
k

)
. (B.47)

Note that (B.47) is nothing but the Cauchy-Binet expansion of det
(∑m

i=1 piuiv�
i

)
. This concludes the

proof.
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