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Abstract

This thesis proposes a framework for autonomous robotic mapping, exploration, and planning
that uses Gaussian Processes (GPs) to model high-dimensional dense maps and solve the problem

of infinite-horizon planning with imperfect state information.

Robotic exploration is traditionally implemented using occupancy grid representations and geo-
metric targets known as frontiers. The occupancy grid representation relies on the assumption of
independence between grid cells and ignores structural correlations present in the environment.
We develop an incremental GP occupancy mapping technique that is computationally tractable
for online map building and represents a continuous model of uncertainty over the map spatial
coordinates. The standard way to represent geometric frontiers extracted from occupancy maps
is to assign binary values to each grid cell. We extend this notion to novel probabilistic frontier
maps computed efficiently using the gradient of the GP occupancy map and propose a mutual
information-based greedy exploration technique built on that representation. A primary moti-
vation is the fact that high-dimensional map inference requires fewer observations, leading to a

faster map entropy reduction during exploration for map building scenarios.

The uncertainty from pose estimation is often ignored during current mapping strategies as the

dense belief representation of occupancy maps makes the uncertainty propagation impractical.
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Additionally, when kernel methods are applied, such maps tend to model structural shapes of the
environment with excessive smoothness. We show how the incremental GP occupancy mapping
technique can be extended to accept uncertain robot poses and mitigate the excessive smoothness
problem using Warped Gaussian Processes. This approach can model non-Gaussian noise in the

observation space and capture the possible non-linearity in that space better than standard GPs.

Finally, we develop a sampling-based information gathering planner, with an information-theoretic
convergence, which allows dense belief representations. The planner takes the present uncer-
tainty in state estimation into account and provides a general framework for robotic exploration
in a priori unknown environments with an information-theoretic stopping criterion. The de-
veloped framework relaxes the need for any state or action space discretization and is a fully

information-driven integrated navigation technique.

The developed framework can be applied to a large number of scenarios where the robot is tasked
to perform exploration and information gathering simultaneously. The developed algorithms in
this thesis are implemented and evaluated using simulated and experimental datasets and are

publicly available as open source libraries.

Thesis Supervisors: Jaime Valls Miro and Gamini Dissanayake



Acknowledgements

First and foremost I would like to express my sincere gratitude to my supervisors, Prof. Jaime
Valls Miro and Prof. Gamini Dissanayake, for being enthusiastic in guiding my research, for
the freedom to learn and explore exciting topics, and for their patience. I hope I continue to
collaborate with you in the future. I acknowledge the scholarships to support my research and

make my study possible.

Besides my advisors, I would like to thank Dr. Teresa Vidal Calleja, Prof. Shoudong Huang, Prof.
Juan Andrade Cetto, and Dr. Rafael Valencia for their guidance and friendship. I learned a lot
from our weekly SLAM meetings organized by Shoudong and Teresa. Collaborating with Juan

and Rafael during my first year was prolific.

I am deeply grateful to my external examiners, Professors Geoffrey Hollinger and Jon Kim, for

reviewing this thesis, their comments, suggestions, and explanations.

My sincere thanks also goes to Prof. Kazuhiro Nakadai and Dr. Keisuke Nakamura, who provided
me an opportunity to join their team as an intern at HRI-JP and experience living in Japan. During
my six month visit, | made great friends and memories. I also thank Dr. Mitesh Patel for hosting

me at FXPAL as an intern; I enjoyed working in a friendly environment and living in California.

I would like to thank my friends and colleagues at the Centre for Autonomous Systems for the
numerous stimulating and helpful discussions and their friendship. It has been great living in
beautiful Sydney and spending time with all of them. Special thanks to my dear friend Kasra
Khosoussi who has been like a brother to me during the past five years. I guess we’ve also had
the same number of fights I've had with my brothers back home! Thanks to my labmate Raphael
Falque for always finding a way to be next to me, despite changing my desk two times plus
moving to a new building. Over time, we have developed a non-verbal language that surprises
others. Needless to say, the 2015 IROS together and three weeks traveling in Europe are among

our memorable times.

Thanks to Lakshitha Dantanarayana AKA Lakipedia, for his friendship and vast knowledge on
nearly anything available on the Internet. I thank my friends and labmates Gibson Hu, Andrew

To, Buddhi Wijerathna, Mohammad Norouzi, Daobilige Su, Mahdi Hassan, Phillip Quin, Kanzhi

iv



Acknowledgements v

Wau, Liye Sun, Liang Zhao, Alen Alempijevic, Bradley Skinner, Teng Zhang, Peter Ward, Nalika
Ulapane, Linh Van Nguyen, Asok Aravinda, Julien Collart, Alexander Virgona, Dinuka Abeywar-
dena, Lasitha Piyathilaka, Leo Shi, James Poon, Brendan Emery, Katherine Waldron, Cédric Le

Gentil, Karthick Thiyagarajan, David Valiente Garcia, and many others.

I'would also like to thank my former supervisors, Prof. Morteza Mousakhani, Dr. Ehsan Hashemi,
Prof. Alireza Mohammad Shahri, and Prof. Houman Sadjadian for their guidance and encourag-

ing me to pursue my studies.

I thank my parents and my brothers, Navid and Houtan, for their unconditional love and care. I

would not have made it this far without them.



Contents

Declaration of Authorship iii
Abstract \4
Acknowledgements vii
List of Figures xiii
List of Tables XV
List of Algorithms xvii
Acronyms Xix
Nomenclature xxiii
1 Introduction 1
1.1 Outline of the Problem and Assumptions . . . . . ... ... ... ......... 2

1.2 Contributions . . . . . ... L 3

1.3 ThesisOverview . . . . . . . . . . 4

1.4 Publications . . . . . . . . L 6

2 Related Work 9
2.1 Simultaneous Localization and Mapping . . . . . ... .. ... .. ... ..... 9

2.2 Robotic Exploration and Motion Planning . . . . . . ... ... ... .. ...... 11

2.3 Gaussian Processes Mapping and Exploration . . ... ... ... ... ... ... 16

2.4 Chapter Summary . . . . . . . . .o e 18

3 Background Theory and Techniques 19
3.1 Mathematical Notation . . . . . .. .. ... ... ... ... . ... 19

3.2 Mathematical Preliminary . . . ... ... ... ... ... .. ... ... 20
3.2.1 Probability Theory . . . .. .. ... .. .. . ... 20

3.2.2 Information Theory . . ... ... ... ... ... . . ... .. .. ... 21

3.23 Numerical Integration . . . .. ... ... ... .. .. 24

3.2.4  Submodular Functions . . . . . ... ... L L Lo 24

3.25 Gaussian Processes . . . . . . . . ... L 25

vi



Contents vii
3.2.5.1  Covariance Function . . . ... ... ... .. .......... 27

3252  UsefulKernels . . . ... ... ... .. ... ... ... ... .. 27

3.253 GPlibraries . . ... ... ... . ... 28

3.2.6 SystemDynamics . . . . .. ... L 29

3.3 Basic Techniques . . . .. .. ... .. ... .. L 30
3.3.1  Occupancy Grid Maps . . . . . . .. .. 30

3.3.2 Pose SLAM . . . . 31

3.4 Chapter Summary . . . . . . . . . e 32
4 Gaussian Processes Continuous Occupancy Mapping 33
4.1 Problem Statement and Formulation . . . . . .. ... ... .. ... .. . ... 35
4.2 Gaussian Processes Occupancy Maps . . . . . . . .. .. ... 36
4.2.1  Sensor Model and Training Data . . . ... ... ... ... ........ 37

4.2.2  Model Selection and Learning Hyperparameters . . . . . . . ... ... .. 39

4.23 Regression and Classification . . . . ... ... .. ... ... ....... 41

424 BatchMapping . . . .. . ... . .. 42

4.2.5 Map Management and Incremental Mapping . . . . . . .. ... ... ... 43

42.6 MappingResults . . ... ... .. 45

43 Gaussian Processes Frontier Maps . . . . . . ... ... ... o000 47
44 Chapter Summary . . . . . . . . .. 50
5 Exploration using Gaussian Processes Maps 53
5.1 Decision Making Problem . . . . . . . ... ... . L Lo 55
5.1.1  Sequential Decision Making . . . . ... ... ... ... ... . ... 55

5.1.2  Exploration Policies . . . . . ... ... ... ... ... ... 56
5.1.21  NearestFrontier . . . . . ... ... ... ... .......... 56

5.1.2.2  InformationGain . ... ... ... ... .. ... ... .. ... 57

5.1.2.3  Cost-Utility Trade-off . . . . . ... ... ... ... . ...... 58

5.2 Mutual Information-based Exploration . . . ... ... .. ... ... ... ... 59
5.2.1  Mutual information computation . . . . ... ... ... L. 59

522 Decisionmaking . . .. ... ... L 62

5.2.3 MapRegeneration . . . ... .. ... L 63

53 ExplorationResults . . . . . ... ... 63
5.3.1 Experimentalsetup . . . . . . ... ... .. 64

5.3.2  Exploration results in the Intelmap . . . . . ... .. ... ... ... .. 66

5.3.3  Outdoor scenario: Freiburg Campus . . . . . ... ... .. ... ..... 68

5.3.4  Computational complexity . . . . . ... ... ... .. .. 70

54 Chapter Summary . . . . . . . . .. 71
6 Gaussian Processes Occupancy Mapping Extensions 73
6.1 Mapping Under Pose Uncertainty . . . ... ... ... ... ... ......... 75
6.1.1  Problem Statement and Formulation . . . .. ... ... ... ... .. .. 75

6.1.2 ExpectedKernel. . . . . . . ... .. 77

6.1.3 ExpectedSub-map . ... ... ... 78

6.2 Warped GP Occupancy Mapping . . . . . . . . . . . ... ... .. 80



Contents viil
6.3 Resultsand Discussion . . . . . ... . ... ... 83
6.3.1  First Experiment: Motion Uncertainty Effect . . . . . ... ... ... ... 84

6.3.2 ExperimentalResults . . . . . ... ... ... .. .. ... . L. 87

6.3.3  Discussion and Limitations . . . ... ... ... ... ... ... . ... 89

6.3.4 Computational Complexity . . .. ... ... ... ... ... .. .. 90

6.4 Chapter Summary . . . . . . . . . . 90

7 Sampling-based Incremental Information Gathering 93
7.1 Problem Statement and Preliminaries . . . . ... ... .. ... ... ... ... 95
7.1.1  Incremental Informative Motion Planning . . . . . ... .. .. ... ... 97

7.1.2  RIG Algorithms . . . . . ... . ... 98

7.2 1IG: Incrementally-exploring Information Gathering . . . . . . ... .. ... ... 100

7.3 Information Functions Algorithms . . . . . ... ... ... .. ... ... ... .. 102
7.3.1  Mutual Information . . . . ... ... Lo 103

7.3.2 GP Variance Reduction . . . . . . .. .. ... ... .. L. 107

7.3.3  Uncertain GP Variance Reduction . . . . . . ... ... ... ... .... 108

7.4 Path Extraction and Selection . . . . . ... .. ... .. ... ... ... 110

7.5 Information-theoretic Robotic Exploration . . . . ... ... ... ... ... ... 112

7.6  Resultsand Discussion . . . . . ... . ... ... 114
7.6.1 Experimental Setup . . . . . . .. ... L 115

7.6.2  Comparison of Information Functions . . . ... ... ... ... ..... 116

7.6.3  Robotic Exploration in Unknown Environments . . . . . . ... ... ... 122

7.6.4 Lake Monitoring Experiment . . . . . ... ... ... ... ... ... 124

7.6.5 Limitations and Observations . . . . . .. ... .. .. ... ....... 127

7.7  Chapter Summary . . . . . . . . ... e 129

8 Conclusion and Future Work 131
Appendices 133
A Mutual Information-based Exploration Results 135
A1 Indoor Experiments . . . . . . . . .. ... . ... 136
A.2 Outdoor Experiments . . . . . . . ... ... 138
Bibliography 141



List of Figures

3.1

3.2

3.3
34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

5.2
5.3

5.4
5.5

5.6

5.7

5.8

6.1

An illustrative example of the Gaussian Process prior and predictive posterior

over functions . . . . . ... L L 26
Ilustrative examples of the SE, Matérn (v = 5/2), and Sparse covariance function

as the distance parameter is increased . . . . . ... ... Lo L 29
Corresponding function values from Figure 3.2 in the kernel space. . . . ... .. 29
An illustrative example of the Pose SLAM graph and its associated dense occu-

pancy gridmap . . . . ... 31
Dynamic Bayes network of the SLAM process . . . . ... ... ... ....... 34
Sub-tasks of continuous occupancy mapping using Gaussian process regression . 36
Conceptual illustration of the robot, the environment, and observations . . . . . . 37
A regressed continuous occupancy map of the Cave environment . . . . ... .. 43
Schematic illustration of the Gaussian Process Mapper module . . . . . . ... .. 44

Comparison of the incremental and batch Gaussian Processes Occupancy Mapping 45
Occupancy maps visualization . . . . . . ... ... ... L0 46
An example of the inferred continuous occupancy map and its associated frontier

Schematic illustration of the autonomous mapping and exploration process using

Gaussian Processesmaps . . . . . . . . ... o 54
An example of the MI surface . . . . ... ... ... ... ... .. .. ... 60
The constructed environment for exploration experiments using the binary map

of obstacles from the Intel dataset. . . . . . ... ... ... .. ....... .. .. 64
MlI-based exploration in the Intelmap . . . . . . ... ... ... ... ...... 67

The box plots show comparison of different exploration strategies in the Intel
dataset from 10 independentruns . . . . . . ... ... oL 68
The left picture shows the satellite map of the Freiburg University Campus where
the yellow dashed line indicate the robot trajectory. The middle figure shows . . . 69
The box plots show comparison of different exploration strategies in the Freiburg
campus dataset from 10 independentruns . . . . . ... ... ... L. 70
Mlustrative examples of exploration in the Freiburg Campus map. The top left
and right, and the bottom left and right figures show the results for NF, OGMI,
GPNF, and GPMI, respectively. . . . . . . .. ... ... 71

The pose graph estimation of the robot trajectory from the Intel research lab.
dataset . . . . ... 74

ix



List of Figures X

6.2
6.3
6.4

6.5

6.6
6.7

7.1

7.2

7.3
7.4
7.5
7.6
7.7

Al
A2

The plot shows an example of GP regression with uncertain inputs . . . . .. .. 79
A challenging example of regression using standard and Warped GPs . . . . . . . 82
The synthetic dataset used for comparison of GPOM and WGPOM under various

uncertainty propagation conditions . . . .. ... ... Lo 83
The AUC and runtime for incremental GPOM and WGPOM using the synthetic

dataset and proposed uncertainty propagation methods . . . . . .. .. ... ... 85
Ilustrative examples of the occupancy map from the first experiment (for Q3) . . 86

Occupancy mapping results using the Intel dataset. The top row corresponds to
the GPOM, and the bottom row shows WGPOMresults . . . . . . . ... ... .. 88

Results from running the IIG-tree algorithm using MI information function in the

Cavemap . . . . . . . . 120
Results from running the IIG-tree algorithm using GPVR and UGPVR information

functionsintheCavemap . . .. . .. .. ... . .. . 121
Evolution of the information gain calculation . . . . . .. .. ... ... ...... 122
Comparison of APS and IIG exploration strategies in the Cave dataset . . . . . . . 123
Lake monitoring scenario . . . . . . . .. ... Lo 125

Informative motion planning for WSS monitoring in the lake area using IIG-GPVR 127
Informative motion planning for WSS monitoring in the lake area using [IG-UGPVR 128

MI-based exploration in Cave and Freiburg environments . . . . . ... ... ... 138
MI-based exploration in an outdoor parkingarea . . . . . . .. .. ... ... ... 139



List of Tables

4.1

5.1
5.2

6.1

6.2

7.1

7.2

7.3

7.4

Al

A2

Comparison of the occupancy mapping techniques using the Intel dataset. . . . . 47
The compared exploration methods and their corresponding attributes. . . . . . . 64
Parameters for frontier and MI maps computations. . . . . ... ... ... .... 65

Details of the experiments for the motion uncertainty effect in a synthetic dataset

using the expected kernel and the expected sub-map . . . ... ... ... .... 84
The AUC and runtime for incremental GPOM and WGPOM using the Intel dataset
and proposed uncertainty propagation methods . . . . . ... ... 0L 87

Parameters for IIG-tree experiments. “Online” parameters are only related to the
exploration experiments. . . . . . .. ... ... L 116
Comparison of the information functions in offline IIG-tree experiments by in-
creasing the sensor number of beams . . . . ... ... Lo o 0oL 117
Comparison of the information functions in offline IIG-tree experiments by in-
creasing the sensorrange . . . . . . .. ... Lo 118
Lake monitoring experiments using IIG with GPVR and UGPVR information func-
tions . . . L 124

Comparison of the exploration strategies in the indoor datasets (averaged over

30 experiments, mean + standard error) . . . . ... ... L. 137
Comparison of the GPNF and GPMI in the outdoor dataset (averaged over 10
experiments, mean + standard error) . . . .. .. ... L L L. 139

xi



List of Algorithms

10
11
12
13
14

15

IGPOM2 . . . . e
FusionBCM . . . . . . . .
UpdateMap . . . . . . . .
MergeMap . . . . . . . e
BuildFrontierMap . . . . . . . ...
BuildMIMap . . . . . . .
RIG-tree . . . . . . . . o
IIG-tree . . . . . . o e
InformationMI . . . . . . ...
InformationMI2 . . . . . ...
InformationMIUB . . . . . . . ...
InformationGPVR . . . . . . . ...
InformationUGPVR . . . . . . . . ..

PathSelection . . . . . . . . . . .

xii



Acronyms

2D
APS
ARD
ASV
AUC
BCM
COM
EK
EKF

ESM

GP

GPOM

Two-Dimensional. 2, 36

Active Pose SLAM. 117, 118, 128, 129

Automatic Relevance Determination. 80
Autonomous Surface Vehicle. 110

the Area Under the receiver operating character-

istic Curve. 43, 44, 79

Bayesian Committee Machine. 15, 42-45, 103

Continuous Occupancy Map. 2, 35, 39, 41, 128,
130

Expected Kernel. 79-81, 87
Extended Kalman Filter. 9, 11

Expected Sub-Map. 79-81, 87

Gaussian Process. 2, 3, 5, 15, 16, 24, 26, 27, 32, 33,
35, 37-43, 49, 51,70, 71, 73, 74, 77, 79, 87, 97, 103,
119-121, 125, 126, 129, 130

Gaussian Processes Occupancy Map. 15, 16, 41,

49-52, 56, 60, 68, 72, 73, 79-81, 84, 86, 87, 125

xiii



Acronyms

GPVR

I-GPOM

G

JSD

KLD

MDP

MEU

MI

MIUB
MSE

NF

NLML

OGM

POMDP

PSD

Gaussian Processes Variance Reduction. 98, 103,

104, 111, 112, 114

Incremental Gaussian Processes Occupancy
Map. 39, 41, 49, 72, 110, 117

Incrementally-exploring Information Gathering.
89-91, 94-97, 102, 105, 109, 110, 114, 119, 121,

122, 124

Jensen-Shannon Divergence. 60, 63

Kullback-Leibler Divergence. 21, 22, 60

Markov Decision Process. 52

Maximum Expected Utility. 52

Mutual Information. 50, 51, 67, 97, 98, 101, 102,
111-114

Mutual Information Upper Bound. 102, 111-114

Mean Squared Error. 128

Nearest Frontier. 128, 129
Negative Log of the Marginal Likelihood. 25, 38,

39,78,79

Occupancy Grid Map. 2, 10, 12, 13, 29, 30, 40, 56,
128

Partially Observable Markov Decision Process.
13, 52, 92

Positive Semi-Definite. 26



Acronyms

XV

RIC
RIG

ROS

SE

SLAM

UGPVR

WGP
WGPOM

Relative Information Contribution. 96
Rapidly-exploring Information Gathering. 89-
92, 94-97, 110, 124

Robot Operating System. 27

Squared Exponential. 26, 27, 37, 74, 80, 120
Simultaneous Localization And Mapping. 2-4, 8,

9,12, 13, 29, 30, 69

Uncertain Gaussian Processes Variance Reduc-

tion. 98, 104, 110-114, 124

Warped Gaussian Process. 70, 87
Warped Gaussian Processes Occupancy Map. 72,

73,79-81, 84, 86, 87, 125



Nomenclature

X

(>

Time step

Approximately equal

Distributed according to

Definition

Empty set

Matrix left division

2D special Euclidean group

2D special orthogonal group
Rotation matrix

Absolute value

Action at time step ¢

Belief for the occupied map point
Belief for the unoccupied map point
Big O notation

Bounded information associated with location i
Budget at time step ¢

Budget

XV1



Nomenclature

Characteristic length-scale

Class label for occupied points

Class label for unoccupied points

Cost function

Covariance function of Gaussian processes
Covariance matrix of Gaussian processes
Covariance of random variables/vectors
Determinant of a matrix

Differential entropy of a random variable
Entropy of a random variable

Euclidean norm

Expected value of a random variable
Expected/Modified covariance function
Free workspace

Gamma function

Hermite polynomials

Hypothesis

Identity matrix of size n

Information function

Information gain factor

Latent variable of Gaussian processes

Lebesgue integral



Nomenclature xviii

V4 Logistic regression classifier weight

mli] Map occupancy status at location i

hgge Map saturation entropy

Psat Map saturation probability

Omap Map spatial resolution

X][(k] Matrix of sampled unoccupied points along the k-th sensor beam
max(-) Maximal element of a set

fn(4) Mean function of Gaussian processes

zik] Measurement at time step t by the k-th sensor beam

zy Measurement at time step ¢

aik] Measurement bearing at time step t by the k-th sensor beam

rt[k] Measurement range at time step t by the k-th sensor beam

Z1.4 Measurements up to time step ¢

min(-) Minimal element of a set

K, (") Modified Bessel function of the second kind of order v

() Mutual information approximation between two random variables
I(-) Mutual information between two random variables

log(-) Natural logarithm

n; Number of inducing points

n, Number of map points in the current perception field of the robot
My Number of map points

ng Number of query points



Nomenclature Xix

1, Number of range-finder sensor beams per observation

g Number of samples

ng Number of unoccupied sampled points

h(-,) Observation model

xg,k] Observed occupied point by the k-th sensor beam

xgk’i] Observed occupied point’s i-th dimension by the k-th sensor beam
B Occupied boundaries factor

Po Occupied probability threshold

ay Optimal action at time step t

Pr Optimal trajectory at time step ¢

Iric Penalized relative information contribution

It[k] Perception field of the k-th sensor beam at any robot location at time step ¢
g Planning graph

T Planning horizon

T Planning tree

ox,|z Posterior marginal variance of random variable X; after taking observation Z
ox, Prior marginal variance of random variable X;

p(-) Probability measure

Xy Query point

Zy Random variable for measurement at time step ¢

M Random variable for the occupancy map

S Random variable for the state



Nomenclature

ORIC Relative information contribution threshold
S, Resolution of the numerical integration
Q Robot motion noise covariance

Xy Robot pose at time step ¢

X1 Robot trajectory up to time step ¢

/ Set of integers

N Set of natural numbers

Rso Set of non-negative real numbers
A, Set of possible actions at time step ¢
A Set of possible actions

M Set of possible occupancy maps

Z Set of possible range measurements
) Set of possible states

R Set of real numbers

D Set of training data

I1() Set product

> (4) Set summation

sgn(-) Sign function

o J% Signal variance

1y Size of training data

u(-) Total utility function

tr(-) Trace of a matrix



Nomenclature

xxi

gw()

Trajectory at time step ¢
Trajectory

Transpose of a matrix
Unoccupied probability threshold
Variance of a random variable
Variance of the observation noise
Vector of hyperparameters of a warping function
Vector of hyperparameters
Vector of latent targets

Vector of targets

Warping function

Workspace



	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Nomenclature

