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Abstract

This thesis proposes a framework for autonomous robotic mapping, exploration, and planning

that uses Gaussian Processes (GPs) to model high-dimensional dense maps and solve the problem

of infinite-horizon planning with imperfect state information.

Robotic exploration is traditionally implemented using occupancy grid representations and geo-

metric targets known as frontiers. The occupancy grid representation relies on the assumption of

independence between grid cells and ignores structural correlations present in the environment.

We develop an incremental GP occupancy mapping technique that is computationally tractable

for online map building and represents a continuous model of uncertainty over the map spatial

coordinates. The standard way to represent geometric frontiers extracted from occupancy maps

is to assign binary values to each grid cell. We extend this notion to novel probabilistic frontier

maps computed efficiently using the gradient of the GP occupancy map and propose a mutual

information-based greedy exploration technique built on that representation. A primary moti-

vation is the fact that high-dimensional map inference requires fewer observations, leading to a

faster map entropy reduction during exploration for map building scenarios.

The uncertainty from pose estimation is often ignored during current mapping strategies as the

dense belief representation of occupancy maps makes the uncertainty propagation impractical.
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Additionally, when kernel methods are applied, such maps tend to model structural shapes of the

environment with excessive smoothness. We show how the incremental GP occupancy mapping

technique can be extended to accept uncertain robot poses andmitigate the excessive smoothness

problem using Warped Gaussian Processes. This approach can model non-Gaussian noise in the

observation space and capture the possible non-linearity in that space better than standard GPs.

Finally, we develop a sampling-based information gathering planner, with an information-theoretic

convergence, which allows dense belief representations. The planner takes the present uncer-

tainty in state estimation into account and provides a general framework for robotic exploration

in a priori unknown environments with an information-theoretic stopping criterion. The de-

veloped framework relaxes the need for any state or action space discretization and is a fully

information-driven integrated navigation technique.

The developed framework can be applied to a large number of scenarios where the robot is tasked

to perform exploration and information gathering simultaneously. The developed algorithms in

this thesis are implemented and evaluated using simulated and experimental datasets and are

publicly available as open source libraries.

Thesis Supervisors: Jaime Valls Miro and Gamini Dissanayake
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Chapter 1

Introduction

The problem of a mobile robot navigating in an unknown environment unsupervised is the

basic yet non-trivial goal of autonomous robotic research. Perception, localization, map

building, planning and decision making are all challenging steps towards building a successful

autonomous system. In addition to these steps, large-scale environments, long-term autonomy,

adaptive decision making and system reliability are other concerns. The environment represen-

tation can also be a major challenge. Working on, for example, continuous, dense and discrete

belief representations can restrict possible ways to approach the problem, both from theoretical

and practical points of view.

Exploration in unknown environments is among the major challenges for an autonomous robot.

Its numerous applications from search and rescue operations to space exploration programs high-

light the importance of the problem. Exploratory problems mean both future state and measure-

ments are unknown; consequently, in such problems it is non-trivial to say what is the optimal

action. Exploring an unknown environment without any prior knowledge give rise to difficulties

for the robot to make sequential decisions that maximize the long-term expected reward or “in-

formation gain”. Among these difficulties, available information in the current state of the robot

is limited to its perception field and the partially known state of its trajectory and the map as

a priori. Therefore, there is always a contrary concept about the best possible decision at each

sequence of time, i.e. exploration vs. exploitation. A choice which seems to be the best in the

known part of a map may lead to an inefficient exploration policy in the global sense. This leads

1
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the problem towards the sequential decision making under imperfect state information which is

known to be NP-hard (Singh et al. 2009). The main motivation of this thesis is to find a practical

non-myopic solution for the explained problems that delegates a higher level of autonomy for

robotic systems.

1.1 Outline of the Problem and Assumptions

In this thesis, using continuous occupancy mapping and sampling-based robotic information

gathering concepts, a framework for incremental robotic mapping and exploration of unknown

environments where the robot pose and the environment are partially observable is presented.

Gaussian Processes (GPs) (Rasmussen and Williams 2006) are a modern mathematical tool for

high-dimensional regression which can learn the affinity of observations through their pro-

vided covariance and mean functions. The method is known as continuous occupancy map-

ping (O’Callaghan et al. 2009; T O’Callaghan and Ramos 2012) in the literature as it places a joint

normal distribution over query points and resulting maps are smooth surfaces, as opposed to

classical Occupancy Grid Maps (OGMs) (Moravec and Elfes 1985; Elfes 1987). The continuous

occupancy mapping technique is adopted for robotic exploratory purposes. This aim has been

achieved by extension of the method to a computationally tractable incremental map building

and computing frontier and information gain surfaces from an inferred Continuous Occupancy

Map (COM).

Robotic information gathering uses a sampling-based planning strategy to calculate the cost and

information gain while searching for traversable paths in the entire state space. This approach

offers a solely information-driven robot control without specifying targets which distinguishes

the approach from those in the literature. Furthermore, two major drawbacks of many previous

works in the literature such as discretization of the action space and the maximum likelihood

observations assumption are mitigated.

While the Simultaneous Localization And Mapping (SLAM) module can accept diverse types

of sensor modalities, in this work, range-finder sensors which are the most common form of

measurements in the literature are adopted. The environment is assumed to be Two-Dimensional

(2D) with no specular effect. The robot operates on an even terrain and is equipped with laser
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range-finder and odometric sensors. The environment is initially unknown to the robot, i.e. there

is no prior information available. All the observations are locally made by the robot and there

is no communication with any external source of information. It is assumed the sensor model

is unbiased which, in the limit, guarantees convergence to the true values for the developed

algorithms. However, perceived sensor data includes uncertainty which needs to be dealt with.

SLAM as the first stage of a navigation module receives measurements and produces required

robot poses. Therefore, dense map building and planning processes which use localization data

are subject to inputs with uncertainties.

Initially, this study develops the incremental continuous occupancy mapping technique with

known poses. We extend the method to frontier-based and information gain-based greedy ex-

ploration techniques. Afterward, we establish the required basis for occupancy mapping under

pose uncertainty which is demonstrated using GPs with uncertain inputs. Eventually, we de-

velop a sampling-based information gathering technique that provides a solution to the problem

of robotic exploration in unknown environments with the partially observable state. The solu-

tion for the problem of robotic information gathering is also suitable for applications such as

environmental monitoring tasks.

The evaluation of the proposed methods is demonstrated through simulation and experimental

results in indoor and outdoor environments, together with publicly available datasets. Where

possible, exhaustive comparisons have been made with state-of-the-art methods to study advan-

tages and disadvantages of different algorithms.

1.2 Contributions

The main contributions of this thesis are as follows:

− A framework for Gaussian processes occupancy mapping using range-finder sensors is

developed. The method is incremental and runs in nearly constant time for each update

with an accuracy close to batch computation.
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− A novel probabilistic geometric frontier representations by exploiting continuous occu-

pancy mapping and using L1-norm of the gradient of continuous occupancy maps is de-

veloped.

− A tractable technique for greedy information gain-based exploration is developed that

takes into account all possible future observations and is based on the computation of

the mutual information surface. The technique can deal with sparse measurements and

uses a forward sensor model for map predictions.

− At this point, the robot pose uncertainty is incorporated into our incremental mapping

framework. Gaussian processes occupancy mapping under uncertain robot poses is stud-

ied. We develop approaches which rely on uncertainty propagation through numerical

integration over kernels. We also develop the expected sub-map fusion technique, a novel

method for our incremental mapping framework. The proposed method uses local obser-

vations formap building and fuses the local and global maps by sampling from themarginal

posterior distribution of the robot pose.

− A sampling-based planning algorithm for incremental robotic information gathering with

an information-theoretic convergence criterion using the notion of penalized relative in-

formation contribution is developed. We formulate the problem in the form of an informa-

tion maximization problem subject to a budget and the current state estimate constraints.

We also prove an information-theoretic automatic stopping criterion for the entire mission

based on the least upper bound of the average map entropy.

− The results from indoor and outdoor publicly available datasets are provided and compared

with relevant methods.

− Open source implementation of the proposed algorithms is provided; this is available on:

https://github.com/MaaniGhaffari/gp_occ_mapping

https://github.com/MaaniGhaffari/sampling_based_planners

1.3 Thesis Overview

This thesis is organized in 8 chapters and structured as follows:
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− In Chapter 2, the autonomous robotic navigation concept and its terminology are ex-

plained. The chapter includes reviews of the substantial research areas and the state of

the art. We start with SLAM as the first step and continue with the literature review of ex-

ploration and planning problems. Active SLAM is also discussed as an important research

branch and then the chapter is concluded with locating this thesis within the current state

of autonomous robotic navigation research.

− In Chapter 3, we make clear the mathematical notation throughout this thesis. The re-

quired background knowledge about probability theory, information theory, numerical in-

tegration, Gaussian processes, and useful kernels are briefly explained. The chapter also

includes basic techniques such as occupancy grid mapping and Pose SLAM. These tech-

niques are employed in the development of the proposed algorithms or are part of the

compared state-of-the-art techniques.

− In Chapter 4, the notion of continuous occupancymapping is discussed and developed. The

problem formulation of high-dimensional mapping is presented and is solved using Gaus-

sian processes with batch and incremental approaches. We develop a Gaussian processes

occupancy mapping method that allows for employing the map in practice and performing

exploratory experiments.

− In Chapter 5, the geometric frontier concept is expanded through a continuous occupancy

mapping method to a probabilistic frontier map representation. We develop a frontier-

based exploration method capable of handling sparse observations and dense map entropy

reduction exploiting continuous occupancy maps and numerical calculation of the mutual

information of the map and future measurements. We present the comparison of classical

and information gain-based exploration methods in diverse environments and scenarios.

− In Chapter 6, we study GP occupancymapping problem extensions. The first problem is re-

lated to mapping with pose uncertainty and how to propagate pose estimation uncertainty

into the map inference. In the second extension, we develop warped Gaussian processes

continuous occupancy maps which can model the complexity in the structural shape of

an environment with more accuracy by allowing non-Gaussian noise in the observation

space.
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− In Chapter 7, based on the concept of robotic information gathering, we develop a sampling-

based incremental information gathering with, in overall, five information functions with

the possibility to incorporate the robot pose and map uncertainty in the planning pro-

cess. We also prove an information-theoretic termination condition for the entire explo-

ration mission. Furthermore, we provide the demonstration of the developed algorithms

in robotic explorations and environmental monitoring scenarios.

− In the last chapter, Chapter 8, we summarize and conclude this thesis by reviewing the

proposed techniques, encountered challenges, and ideas for future work.

1.4 Publications

The work on the Gaussian processes mapping and exploration method was presented first in an

RSS workshop (Ghaffari Jadidi et al. 2013a) and partially published in the 2013 Australasian Con-

ference on Robotics and Automation (Ghaffari Jadidi et al. 2013b) and the 2014 IEEE International

Conference on Robotics and Automation (Ghaffari Jadidi et al. 2014). The development of the mu-

tual information-based exploration is presented in the 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (Ghaffari Jadidi et al. 2015). The work on warped Gaussian

processes mapping with uncertain inputs is published in the IEEE Robotics and Automation Let-

ters (Ghaffari Jadidi et al. 2017) and accepted for presentation in 2017 IEEE International Confer-

ence on Robotics and Automation. The development of the Gaussian processes probability maps

from visual features contributed to the publication in Valiente et al. (2015). The list of publications

are as follows:

Journal Papers

1. M. Ghaffari Jadidi, J. Valls Miro, G. Dissanayake. Sampling-based Incremental Information Gath-

ering with Applications to Robotic Exploration and Environmental Monitoring. Under review, The

International Journal of Robotics Research.

2. M. Ghaffari Jadidi, J. Valls Miro, G. Dissanayake. Warped Gaussian Processes Occupancy Mapping

with Uncertain Inputs. IEEE Robotics and Automation Letters. doi:10.1109/LRA.2017.2651154.
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3. M. Ghaffari Jadidi, J. Valls Miro, G. Dissanayake. Gaussian Process Autonomous Mapping and

Exploration for Range Sensing Mobile Robots. Conditionally accepted, Autonomous Robots.

4. D. Valiente, M. Ghaffari Jadidi, J. Valls Miro, A. Gil, O. Reinoso. Information-based View Initial-

ization in Visual SLAM with a Single Omnidirectional Camera. Robotics and Autonomous Systems,

Volume 72, 2015, pp. 93-104.

Conference Papers

5. M. Ghaffari Jadidi, J. Valls Miro, G. Dissanayake. Mutual Information-based Exploration on Con-

tinuous Occupancy Maps. In Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2015, pp. 6086-6092.

6. M.Ghaffari Jadidi, J. VallsMiro, R. Valencia, J. Andrade-Cetto. Exploration on Continuous Gaussian

Process Frontier Maps. In Proc. IEEE International Conference on Robotics and Automation (ICRA),

2014, pp. 6077-6082.

7. M. Ghaffari Jadidi, J. Valls Miro, R. Valencia, J. Andrade-Cetto, and G. Dissanayake. Exploration

using Information-based Reaction-diffusion Process. In Australasian Conference on Robotics and Au-

tomation (ACRA), 2013.

8. M. Ghaffari Jadidi, J. Valls Miro, R. Valencia, J. Andrade-Cetto and G. Dissanayake. Exploration in

Information Distribution Maps. Robotics: Science and Systems Workshop on Robotic Exploration,

Monitoring, and Information Content, Berlin, Germany, 2013.



Chapter 2

Related Work

In this chapter, an introduction to autonomous robotic navigation and its related work is given.

The problem is broken down into the major research areas at the present time. We review

current work related to this thesis and locate this research within the state of the art.

2.1 Simultaneous Localization and Mapping

The problem in which a robot simultaneously builds a representation (map) of an unknown en-

vironment and estimates its pose in that map using relative measurements is known as SLAM.

There have been notable efforts to solve the SLAM problem in the robotic community, and now

there are several techniques that can provide a solution to this problem (Durrant-Whyte and Bai-

ley 2006; Cadena et al. 2016). However, in GPS-denied unknown environments, solving SLAM

practically is a key step for an autonomous mobile robot. Probabilistic SLAM is formulated as

a Bayesian estimation problem in which the goal is to estimate the robot pose or trajectory and

the feature map of the environment using noisy observations and control inputs. We can divide

SLAM into online SLAM and full SLAM categories. In online SLAM, using available data up to

the current time, the current robot pose and the map of the environment are estimated with re-

spect to the filtering distribution of the robot pose and the map. Full SLAM methods estimate the

smoothing distribution of the robot trajectory and the map given all available data.

8
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Application of the Extended Kalman Filter (EKF) for solving SLAM is one of the first solutions to

this problem. EKF-SLAM is an online SLAMmethod (Dissanayake et al. 2001) and has been stud-

ied extensively. There are two major drawbacks that are associated with this approach; first, the

computational cost is cubic in the number of features due to the updating step of its dense covari-

ance matrix for any new observations. Second, the linearization error in the EKF algorithm can

result in overconfident and inconsistent estimates (Bailey et al. 2006a; Huang and Dissanayake

2007). In order to improve the performance and scalability of the EKF-SLAM, the aforementioned

problems are partially addressed through building local maps and sub-map joining (Bosse et al.

2004; Estrada et al. 2005; Guivant and Nebot 2003; Paz et al. 2008).

The FastSLAM algorithm, introduced inMontemerlo et al. (2002), exploits Rao-Blackwellized par-

ticle filters (Doucet et al. 2000) and does not resort to linear Gaussian assumptions in EKF-SLAM.

The key property of the Fast-SLAM relies on the fact that, given the robot trajectory, landmarks

are conditionally independent. In practice, FastSLAM can generate accurate maps (Montemerlo

et al. 2003), however, it suffers from degeneracy and depletion problems (Bailey et al. 2006b; Smith

et al. 2013).

Later in Thrun et al. (2004), it was discovered that by avoiding marginalizing previous robot

poses, as done in the online SLAM approach, the information matrix (the inverse covariance

matrix) becomes exactly sparse 1. This observation led to extensive studies of full SLAM using

probabilistic graphical models representation and the maximum a posteriori estimate by solving

a non-linear least squares problem (Dellaert and Kaess 2006; Grisetti et al. 2008; Kaess et al. 2011,

2008; Konolige et al. 2010; Sibley et al. 2008, 2009; Strasdat et al. 2010; Thrun and Montemerlo

2006).

The discussed graph-based SLAM is the feature-based form of SLAM, meaning the constructed

graph includes all robot poses and landmarks. A recent popular formulation of SLAM is called

pose graph, a variant of SLAM in which only the robot trajectory is estimated through the obser-

vation of relative constraints between robot poses. The pose-pose constraints can be obtained

using scan matching (Diosi and Kleeman 2005; Borrmann et al. 2008; Olson 2009; Bosse and Zlot

2009) or visual place recognition techniques (Newman and Ho 2005; Ho and Newman 2007; Cum-

mins and Newman 2008) between arbitrary poses and are called loop-closures.

1In the limit, the landmark estimates become fully correlated (Dissanayake et al. 2001), resulting in a heavy com-
putational burden on EKF-SLAM.
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In robotics, full SLAM using probabilistic graphical models representation and the maximum a

posteriori estimate derived by solving a nonlinear least squares problem can be considered the

state-of-the-art and we thus focus our attention on using a pose-graph estimation of the robot

trajectory as in Ila et al. (2010); Valencia et al. (2013). Pose SLAM algorithm (Ila et al. 2010) is

an information-based pose graph technique that considers the relative distance between poses

and the expected information gain for each link (edge) to remove redundant poses and maintain

highly informative loop-closures. The algorithm is capable of operating over long trajectories and

therefore is suitable for experiments in large maps; however, the computational cost is mainly

shifted to the data association process and the required parameters need to be tuned according

to the size and shape of the environment.

2.2 Robotic Exploration and Motion Planning

An environment can be explored by directing a robot to frontiers that indicate unknown regions

of the environment in the neighborhood of known free areas (Yamauchi 1997). Traditional au-

tonomous exploration strategies have been devised to use OGMs (Moravec and Elfes 1985; Elfes

1987) to represent free, occupied and unknown regions. In Juliá et al. (2012), seven methods for

autonomous exploration and mapping of unknown environments are studied and compared on

the basis of exploration time and mapping error, both for single and cooperative mapping. The

seven major approaches analyzed are nearest frontier (Yamauchi 1998), cost-utility (González-

Banos and Latombe 2002), behavior-based coordinated (Lau 2003), coordinated (Burgard et al.

2000), market-based coordinated (Zlot et al. 2002), integrated (Makarenko et al. 2002), and hybrid

integrated (Juliá et al. 2010). The comparison yielded conclusive results on the strategy to be used

depending on the type of scenario and number of robots used. All the compared techniques used

occupancy grids for map representation. In the following, we explain each technique briefly.

In Yamauchi (1998), the technique is based on the selection of the shortest path to the nearest

frontier in which the only cost taken into account is traverse distance to a frontier cell. Therefore,

there is no measure to evaluate the usefulness of a frontier cell and, moreover, this method does

not include any coordination mechanism. In other words, in multi-robot scenarios robots which

are in a close neighborhood may choose the same frontier. Practically, the method consists of

the following steps. First, clustering the frontier map to identify neighborhood frontier cells.
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By removing clusters smaller than a desired threshold, the centroids of the remaining clusters

assemble a set of candidate goals. Next, Dijkstra’s algorithm (Dijkstra 1959) can be employed to

find the nearest frontier and the shortest path to it. The navigation cost defined by this algorithm

is based on a Euclidean distance between cells from the current pose to all candidate goals. To

ensure safe paths an infinite cost for obstacles and unknown cells can be set. Also, a penalizing

factor for cells in the vicinity of obstacles would result in safer paths. Finally, by backtracking,

the minimum cost path is achievable.

Cost-utility method (González-Banos and Latombe 2002) proposes an information gain measure

that evaluates the utility of reaching a given cell. Frontier cells are nominated as candidate tar-

gets and the utility to reach a candidate cell is evaluated according to a cost-utility relation. The

determination of candidate targets is done in the same way as the nearest frontier method, and

Dijkstra’s algorithm can be used to obtain the cost of each candidate. The behavior-based co-

ordinated technique (Lau 2003) consists of three reactive behaviors in order to control the ex-

ploratory behavior of the robot. The behaviors are: go to frontiers, avoid obstacles and

avoid other robots. In this technique, the potential associated with each behavior is modeled

as a sum of Gaussians. Based on the linear combination of these behaviors, a global potential

field is set up. Finally, the reverse direction of the gradient of the global potential field provides

a direction for navigation. In order to recover from a local minimum in the potential field, the

technique plans a path to the nearest frontier. The technique presented in Burgard et al. (2000)

is a coordinated version of the nearest frontier method. The technique chooses a target using a

function of the cost and the distance to candidate frontiers. Similarly, the determination of can-

didate targets is done in the same way as the nearest frontier method, and Dijkstra’s algorithm

can be used to obtain the cost of each candidate.

In Zlot et al. (2002), a market economy strategy is suggested to negotiate for applying some

pre-defined rules. This approach employs the same utility function from the cost-utility model.

Similar to the other techniques, candidate frontier cells are determined using clustering of fron-

tier cells and Dijkstra’s algorithm can be used to obtain the cost of each candidate. The proposed

method in Makarenko et al. (2002) considers a localizability term in the utility function. The

localizability function is calculated using an EKF and is normalized by the current uncertainty

of the robot. The frontier cell that maximizes the utility function is selected as the destination

cell. The determination of candidate targets is done in the same way as the nearest frontier
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method and Dijkstra’s algorithm can be used to obtain the cost of each candidate. Hybrid in-

tegrated algorithm (Juliá et al. 2010) consists of a hybrid exploration planning architecture. In

this method, five reactive behaviors integrate the low-level planning. The behaviors are the

three behaviors included in the behavior-based technique and two additional behaviors: go to

unexplored zones and go to precise poses.

An alternative strategy to compute exploration paths is to treat frontiers as boundary conditions,

and the explored area as a scalar potential field. The objective is to find “optimal” paths to the

unexplored area. For instance, in Prestes e Silva et al. (2002), the technique computes the gradient

of the potential field from solving Laplace’s partial differential equation with Dirichlet boundary

conditions (setting 1 for obstacles and 0 for free cells). The gradient descent direction indicates

the path to the unexplored regions. In order to move beyond simple grid structures, in Shade

and Newman (2011), the use of OctoMaps (Wurm et al. 2010; Hornung et al. 2013) is suggested.

“Optimal” paths to the boundaries of unexplored regions are computed using the steepest descent

on the associated gradient field. Another effort to cope with varying resolutions for the explored

and unexplored regions in grid maps is presented in Shen et al. (2012). In this technique, regis-

tered sensor data is used to populate an occupied voxel, but a sparse free space representation

is generated by a particle set. The evolution of a stochastic differential equation simulates the

expansion of the system of particles in free space using Newtonian dynamics, and determines

sparse unexplored regions.

Active Strategies

The following works fall into the area where active perception (Bajcsy 1988) concept is used to

take actions that reduce the uncertainty of state variables. A combined information utility for

exploration is developed in Bourgault et al. (2002) using the information-based cost function in

Feder et al. (1999) and an OGM. A one-step look-ahead strategy is used to generate the locally

optimal control action. The reported results indicated that the utility for mapping attracts the

robot to unknown areas whilst the localization utility keeps the robot well localized relative to

known features in the map. In Makarenko et al. (2002) an integrated exploration approach for a

robot navigating in an unknown environment populated with beacons is proposed. This method

examines the exploration problem through a total utility function consisting of the weighted sum
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of the OGM entropy, navigation cost, and localizability. The vehicle pose is assumed to follow a

Gaussian distribution, thus the entropy is proportional to the determinant of the vehicle pose co-

variance. In order to enhance the map quality of the EKF-based SLAM, an A-optimal criterion for

autonomous exploration is examined in Sim and Roy (2005). To simplify the objective function,

the map covariance matrix is approximated by ignoring the correlation among features. Further-

more, the search space of trajectories is limited by employing a breadth-first search algorithm to

find global trajectories leading to a tractable method.

In Stachniss et al. (2005), Rao-Blackwellized particle filters are employed to compute map and

robot pose posteriors. The proposed uncertainty reduction approach is based on the joint entropy

minimization of the SLAM posterior. The information gain is approximated using ray-casting

for a given action. In a similar framework in Carlone et al. (2010), the problem of active SLAM

and exploration, and specifically the inconsistency in the filter due to the information loss for a

given policy using the relative entropy concept is addressed. In Amigoni and Caglioti (2010), it

is assumed that all random variables are normally distributed and an exploration strategy based

on relative entropy metric, combined traveling cost, and expected information gain is proposed.

The techniques in Valencia et al. (2012); Vallvé and Andrade-Cetto (2013, 2014, 2015) evaluate

exploratory and place revisiting paths, which are selected based on entropy reduction estimates

of both map and path. Whilst the map entropy is computed on an occupancy grid at coarse

resolution, path entropy is the outcome of Pose SLAM (Ila et al. 2010; Valencia et al. 2013), a

delayed-state SLAM algorithm from the pose graph family. Given the inherent complexity in

the formulation to calculate the joint entropy of robot pose and map, it is assumed that they are

conditionally independent.

In Kim and Eustice (2015), a greedy approach for active visual SLAM that considers area cover-

age and navigation uncertainty is proposed. In Julian et al. (2014), the MI surface between a map

and future measurements is computed numerically. The work assumes known robot poses, and

relies on an OGM representation and measurements from a laser range-finder. The algorithm in-

tegrates over an information gain function with an inverse sensor model at its core. It is formally

proven that any controller tasked to maximize an MI reward function is eventually attracted to

unexplored areas.
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Planning Under Uncertainty

Motion planning algorithms (Latombe 1991; LaValle 2006) construct a broad area of research in

the robotic community. Here, we briefly summarize some of the fundamental and most rele-

vant works related to this thesis. Under the presence of uncertainty, where the state is not fully

observable, measurements and actions are stochastic. The sequential decision-making under un-

certainty, in the most general form, can be formulated as a Partially Observable Markov Decision

Process (POMDP) or optimal control with imperfect state information (Astrom 1965; Smallwood

and Sondik 1973; Bertsekas 1995; Kaelbling et al. 1998). Unfortunately, when the problem is for-

mulated using a dense belief representation, a general purpose POMDP solver is not a practical

choice (Binney et al. 2013).

The sampling-based motion planning algorithms (Horsch et al. 1994; Kavraki et al. 1996; LaValle

and Kuffner 2001; Bry and Roy 2011; Karaman and Frazzoli 2011; Lan and Schwager 2013) have

proven successful applications in robotics. An interesting case is where the environment is fully

observable (knownmap) and the objective is tomake sequential decisions undermotion andmea-

surement uncertainty. This problem is also known as active localization; for a recent technique to

solve such a problem see Agha-mohammadi et al. (2014, and references therein). A closely related

term that is used in the literature is belief space planning (Kurniawati et al. 2008; Huynh and Roy

2009; Prentice and Roy 2009; Platt Jr et al. 2010; Kurniawati et al. 2011; Van Den Berg et al. 2011;

Bry and Roy 2011; Valencia et al. 2013). In this series of works, the assumption of a known map

can be relaxed and the environment is often represented using a set of features. The objective is

to find a trajectory that minimizes the state uncertainty (the total cost) with respect to a fixed or

variable (and bounded) planning horizon that can be set according to the budget (Indelman et al.

2015).

However, in the problem we study in this thesis, the state variables consist of the robot trajectory

and a dense map of the environment. Another approach to study the problem of robotic naviga-

tion under uncertainty, is known as informative motion planning or robotic information gath-

ering (Singh et al. 2009; Levine 2010; Binney and Sukhatme 2012; Binney et al. 2013; Hollinger

and Sukhatme 2013, 2014). Rapidly-exploring information gathering (Hollinger and Sukhatme

2014), is a technique that solves the problem of informative motion planning using incremental
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sampling from the workspace and by partial ordering of nodes builds a graph that contains in-

formative trajectories. In this thesis, we develop this technique by considering the robot pose

and the map being both partially observable. We also develop an information-theoretic crite-

rion for the convergence of the search which allows us to perform online robotic exploration

experiments in an unknown environment. The Rapidly-exploring Adaptive Search and Classifi-

cation (ReASC) (Hollinger 2015) also improves on the Rapidly-exploring information gathering

by allowing for real-time optimization of search and classification objective functions. How-

ever, ReASC considers discrete target locations and, similar to Platt Jr et al. (2010), resorts to the

maximum likelihood assumption for future observations.

In particular, the main features of this work that differentiate the present approach from the

aforementioned literature can be summarized as follows.

− We allow for dense belief representations. Therefore, we incorporate full state uncertainty,

i.e. the robot pose and the map, into the planning process. As a result, the robot behavior

has a strong correlation with its perception uncertainty.

− We take into account all possible future observations and do not resort to maximum like-

lihood assumptions. Therefore, in expectation, the randomness of future observations is

addressed.

− We take into account both cost and information gain in which are included a measure of

distance, motion uncertainty, and the sensing information gain. Therefore, the planning

algorithm runs with respect to available sensing resources, and acting limitations.

− We interpret an information-theoretic notion of planning horizon which brings more flexi-

bility for managing the convergence of the algorithm. This novel notion makes the planner

an infinite-horizon planning technique and provides a general framework for robotic ex-

ploration.

2.3 Gaussian Processes Mapping and Exploration

The occupancy grid maps are the standard way of environment representation in robotics and

are the natural choice for online implementations (Moravec and Elfes 1985; Elfes 1987; Thrun
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2003b). However, they simplify the mapping problem to a set of independent cells and estimate

the probability of occupancy for each cell by ignoring its correlation with neighboring cells. The

map posterior is then approximated as the product of its marginals.

Kernelmethods in the form ofGPs framework (Rasmussen andWilliams 2006) are non-parametric

regression and classification techniques that have been used to model spatial phenomena (Lang

et al. 2007; Vasudevan et al. 2009; Hadsell et al. 2010). Gaussian Processes have proven particu-

larly powerful to represent the affinity of spatially correlated data, hence overcoming the tradi-

tional assumption of independence between cells, characteristic of the occupancy grid method

for mapping environments (O’Callaghan et al. 2009; T O’Callaghan and Ramos 2012). The GP

associated variance surface equates to a continuous representation of uncertainty in the envi-

ronment, which can be used to highlight unexplored regions and optimize a robot’s search plan.

The continuity property of the GP map can improve the flexibility of the planner by inferring

directly on collected sensor data without being limited by the resolution of the grid cell (Gan

et al. 2009; Yang et al. 2013).

Gaussian Processes Occupancy Map (GPOM), in its original formulation (O’Callaghan et al. 2009;

T O’Callaghan and Ramos 2012), is a batch mapping technique and the cubic time complexity of

GPs is prohibitive for scenarios such as robotic navigation where a dense representation is pre-

ferred. The GPOM using a mixture of GPs is studied in Kim and Kim (2012) where the training

set is divided into a number of clusters and the corresponding local occupancy maps are merged

using the Bayesian Committee Machine (BCM) technique (Tresp 2000). In Kim and Kim (2013a),

in order to improve the scalability of GPOMs, a divide and conquer strategy is used to partition

data into clusters with manageable sizes. It also proposes to generate overlapping clusters to

mitigate the discontinuity problem. In Ramos and Ott (2015), the Hilbert maps technique is pro-

posed that is more scalable and can be updated in linear time. However, it is an approximation

for continuous occupancy mapping and produces maps with less accuracy than GPOMs. The

approximate methods for uncertainty propagation into GPs models through kernel functions is

proposed in Girard (2004), and developed for GPOMs in O’Callaghan et al. (2010).

In the present work, we exploit GPs to develop tractable online robotic mapping and exploration

techniques. We start from the problem of occupancy mapping and expand the method to ex-

ploration using geometric frontiers, and mutual information-based exploration. We propose an
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approach to detect frontiers from a continuous representation of the environment that does not

suffer from the issues associated with grid maps. The solution is distinctly flexible in being able

to deal with sparse measurements and predicated on inferring a map posterior using Bayesian

updates with a forward sensor model. We also develop uncertainty propagation into GPs models

through kernel functions as well as the proposed expected sub-map technique for approximate

uncertainty propagation, then incorporate it into our incremental continuous occupancy map-

ping framework. Finally, we integrate the developed GP-based techniques into the proposed

sampling-based incremental information gathering algorithm which can provide a non-myopic

solution to robotic navigation problems by considering the full state uncertainty.

This work on high-dimensional occupancy mapping and its applications can be distinguished

from the literature mentioned earlier as follows.

− We develop the GPOM in an incremental form and use it for robotic exploration tasks.

− We develop the notion of probabilistic continuous frontier map extracted from the GPOM.

− We take into account both uncertain inputs and non-additive perception noise in the GP

framework.

− We exploit the GP associated variance surface for fast mutual information calculations and

non-myopic information-driven robotic exploration tasks.

2.4 Chapter Summary

In this chapter, a brief literature review of the current state of autonomous robotic navigation in

the scope of this thesis is provided. Autonomous robots require very considerable efforts to be

able to adaptively operate in real environments, and there are a large number of research works

that are beyond the scope of this thesis. Here, we focus on studying the problem of robotic

mapping and exploration using Gaussian processes and sampling-based information gathering

algorithms. The motivations include high-dimensional map inference to accommodate structural

dependencies in the environment and handling the uncertaintymore accurately. In the next chap-

ter, some background theories and techniques related to this work are discussed. Mathematical

notation that is used throughout this thesis is also established.
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Background Theory and Techniques

We establish the mathematical notation used throughout this thesis as well as the re-

quired background theory and techniques in this chapter.

3.1 Mathematical Notation

In the present thesis probabilities and probability densities are not distinguished in general. Ma-

trices are capitalized in bold, such as in X , and vectors are in lower case bold type, such as in x.

Vectors are column-wise and 1: n means integers from 1 to n. The Euclidean norm is shown by

‖·‖. tr(X ) and |X | denote the trace and the determinant of matrix X , respectively. With a slight

abuse of notion, for the sake of compactness, random variables, such as X , and their realizations,

x, are sometimes denoted interchangeably where it is evident from context. x[i] denotes a refer-

ence to the i-th element of the variable. An alphabet such asX denotes a set. A subscript asterisk,

such as in x∗, indicates a reference to a test set quantity. The n-by-n identity matrix is denoted by

In. The sign function, and the absolute value are denoted by sgn(x), and |x|, respectively. Finally,
E[·], V[·], and C��[·] denote the expected value, variance, and covariance (for random vectors)

of a random variable, respectively.

18
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3.2 Mathematical Preliminary

3.2.1 Probability Theory

Let X be a random variable that maps the sample space Ω (set of all possible outcomes) to the

state space X . Let p(X = x) ≥ 0 be the probability of the random variable X taking a specific

value x. If X is a discrete random variable, then

∑
x∈X

p(X = x) = 1 (3.1)

and for the continuous form we can write

∫
x∈X

p(X = x)dx = 1 (3.2)

For the sake of simplicity, it is common to use p(x) instead of p(X = x) and sometimes refer to x

as the random variable itself. Let Y be another random variable, the joint distribution of X and

Y is p(x,y) = p(X = x and Y = y) and if X and Y are independent

p(x,y) = p(x)p(y) (3.3)

The conditional probability of X given another random variable Y is defined as

p(x|y) = p(x,y)
p(y)

p(y) > 0 (3.4)

Given the joint distribution of X and Y , the marginalization rule states that the marginal distri-

bution of X can be computed by summing (integration) over Y . The law of total probability is its

variant which uses the conditional probability definition and can be written as

p(x) =
∑
y∈Y

p(x,y) =
∑
y∈Y

p(x|y)p(y) (3.5)

and for continuous random variables is

p(x) =
∫
y∈Y

p(x,y)dy =
∫
y∈Y

p(x|y)p(y)dy (3.6)
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Given three random variables X , Y , and Z , Bayes rule relates the prior probability distribution,

p(x|z), and the likelihood function, p(y|x,z), as follows.

p(x|y,z) = p(y|x,z)p(x|z)
p(y|z) (3.7)

The term p(x|y,z) is called the posterior probability distribution over X . The expected value of

the random variable X is

E[X] =
∫
Ω
Xdp =

∫
X
xp(x)dx (3.8)

and if X is discrete

E[X] =
∑
X

xp(x) (3.9)

Lemma 3.1 (Marginalization property of normal distribution (Von Mises 1964)). Let x and y be

jointly Gaussian random vectors

⎡⎢⎢⎢⎢⎢⎢⎢⎣xy
⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼N (

⎡⎢⎢⎢⎢⎢⎢⎢⎣μxμy
⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣ A C

CT B

⎤⎥⎥⎥⎥⎥⎥⎥⎦) (3.10)

then the marginal distribution of x is

x ∼N (μx,A) (3.11)

3.2.2 Information Theory

Entropy is a measure of the uncertainty of a random variable (Cover and Thomas 1991). The

entropy H(X) of a discrete random variable X is defined as

H(X) = Ep(x)[log
1

p(x)
] = −

∑
X

p(x) logp(x) (3.12)

The joint entropyH(X,Y ) of discrete random variables X and Y with a joint distribution p(x,y)

is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x,y) logp(x,y) (3.13)
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The chain rule implies that

H(X,Y ) =H(X) +H(Y |X) =H(Y ) +H(X |Y ) (3.14)

where H(X |Y ) is the conditional entropy and is defined as

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x,y) logp(y|x) (3.15)

Theorem 3.2 (Chain rule for entropy). Let X1,X2, ...,Xn be drawn according to the joint proba-

bility distribution p(x1,x2, ...,xn). Then

H(X1,X2, ...,Xn) =
n∑
i=1

H(Xi |Xi−1, ...,X1) (3.16)

Proof. Please refer to Cover and Thomas (1991) for the proof.

The relative entropy or Kullback-Leibler Divergence (KLD) is a measure of distance between two

distributions p(x) and q(x). It is defined as

D(p||q) = Ep(x)[log
p(x)
q(x)

] (3.17)

Theorem 3.3 (Information inequality). Let X be a discrete random variable. Let p(x) and q(x) be

two probability mass functions. Then

D(p||q) ≥ 0 (3.18)

with equality if and only if p(x) = q(x)∀ x.

Proof. Please refer to Cover and Thomas (1991) for the proof.

The mutual information I(X;Y ) is the reduction in the uncertainty of one random variable due

to the knowledge of the other. The mutual information is non-negative and can be written as

I(X;Y ) =D(p(x,y)||p(x)p(y)) = Ep(x,y)[log
p(x,y)
p(x)p(y)

] (3.19)

I(X;Y ) =H(X)−H(X |Y ) (3.20)
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Corollary 3.4 (Nonnegativity of mutual information). For any two random variables X and Y ,

I(X;Y ) ≥ 0 (3.21)

with equality if and only if X and Y are independent.

Proof. I(X;Y ) =D(p(x,y)||p(x)p(y)) ≥ 0, with equality if and only if p(x,y) = p(x)p(y).

Some immediate consequences of the provided definitions are as follows.

Lemma 3.5. For any discrete random variable X , we have H(X) ≥ 0.

Proof. 0 ≤ p(x) ≤ 1 implies that log 1
p(x) ≥ 0.

Theorem 3.6 (Conditioning reduces entropy). For any two random variables X and Y ,

H(X |Y ) ≤H(X) (3.22)

with equality if and only if X and Y are independent.

Proof. 0 ≤ I(X;Y ) =H(X)−H(X |Y ).

We now define the equivalent of the functions mentioned above for probability density functions.

Definition 3.7 (Differential entropy). Let X be a continuous random variable whose support set is

S . Let p(x) be the probability density function for X . The differential entropy h(X) of X is defined

as

h(X) = −
∫
S
p(x) logp(x)dx (3.23)

Remark 3.8. The differential entropy of a set of continuous random variables that have a joint

distribution is also defined using Equation (3.23).

Definition 3.9 (Conditional differential entropy). Let X and Y be continuous random variables

that have a joint probability density function p(x,y). The conditional differential entropy h(X |Y ) is
defined as

h(X |Y ) = −
∫

p(x,y) logp(x|y)dxdy (3.24)
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Definition 3.10 (Relative entropy (KLD)). The relative entropy (KLD) between two probability

density functions p and q is defined as

D(p||q) =
∫

p log
p

q
(3.25)

Definition 3.11 (Mutual information). The mutual information I(X;Y ) between two continuous

random variables X and Y with joint probability density function p(x,y) is defined as

I(X;Y ) =
∫

p(x,y) log
p(x,y)
p(x)p(y)

dxdy (3.26)

3.2.3 Numerical Integration

Gauss-Hermite quadrature is a method for numerically approximating the integrals of the kind∫ ∞
−∞ exp(−x2)f (x)dx, as (Davis and Rabinowitz 1984; Press et al. 1996)

∫ ∞

−∞
exp(−x2)f (x)dx ≈

n∑
j=1

w[j]f (x[j]) (3.27)

w[j] =
2

[H
′
n(x[j])]2

(3.28)

H−1 = 0, H0 =
1

π1/4
, Hj+1 = x

√
2

j +1
Hj −

√
j

j +1
Hj−1 (3.29)

H ′
j =

√
2jHj−1 (3.30)

where x[j] are the roots of the Hermite polynomial Hn.

3.2.4 Submodular Functions

A set function f is said to be submodular if ∀A ⊆ B ⊆ S and ∀s ∈ S\B, then f (A∪ s)− f (A) ≥
f (B ∪ s)− f (B). Intuitively, this can be explained as: by adding observations to a smaller set, we

gain more information. The function f has diminishing return. It is normalized if f (∅) = 0 and

it is monotone if f (A) ≤ f (B). The mutual information is normalized, approximately monotone,

and submodular (Krause et al. 2008).
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3.2.5 Gaussian Processes

In this subsection, a brief introduction of Gaussian Processes is presented. The notation and

concept are mainly from the book Gaussian Processes for Machine Learning by Rasmussen and

Williams (2006). Supervised learning is the problem of learning input-output mappings from a

training dataset. Based on the nature of the output the problem is known as regression (contin-

uous outputs) or classification (discrete outputs). A Gaussian process is a generalization of the

Gaussian probability distribution. Randomvariableswhich are scalars or vectors (formultivariate

distributions) are described by a probability distribution whilst a stochastic process governs the

properties of functions. The Gaussian process framework unites a sophisticated and consistent

view with computational tractability. In Rasmussen and Williams (2006), from function-space

point of view a GP is formally defined as: A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

GPs are a non-parametric Bayesian regression technique in the sense that they do not explicitly

define a functional relationship between inputs and outputs. Instead, statistical inference is em-

ployed to learn dependencies between points in a dataset. Define a training set D = {(xi , yi )|i =
1 : n} which consists of a d-dimensional input vector x and a scalar output (target) value y for

n observations. The joint distribution of the observed target values, y, and the function values

(the latent variable), f∗, at the query points can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎣yf∗
⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼N (0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣K(X ,X ) +σ2
n In K(X ,X∗)

K(X∗,X ) K(X∗,X∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎦) (3.31)

where X is the d × n design matrix of aggregated input vectors x, X∗ is a d × n∗ query points

matrix, K(·, ·) is the GP covariance matrix, In is the n-by-n identity matrix, and σ2
n is the vari-

ance of the observation noise which is assumed to have an independent and identically dis-

tributed Gaussian distribution. The predictive conditional distribution for a single query point

f∗|X ,y,x∗ ∼ N (E[f∗],V[f∗]) can be derived as

μ = E[f∗] = k(X ,x∗)
T [K(X ,X ) +σ2

n In]
−1y (3.32)

σ = V[f∗] = k(x∗,x∗)−k(X ,x∗)
T [K(X ,X ) +σ2

n In]
−1k(X ,x∗) (3.33)
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Figure 3.1: An illustrative example of the Gaussian Process prior and predictive posterior over
functions. In the left figure, four functions are randomly sampled from the GP prior where
three observations points are shown in red. In the right figure, four functions are drawn at
random from the GP predictive posterior. The uncertainty of the predictive distribution at the
training points is lower, whereas GP predicts the underlying process at other regions with higher
uncertainties. The predictive mean is also shown in the right figure using a gray solid line. The

light blue areas correspond to 95% confidence regions.

An illustrative example of the GP is shown in Figure 3.1. The figure shows randomly drawn

functions from the GP prior and posterior.

There are some free parameters in a covariance function. In general, these parameters are known

as hyperparameters. The model selection problem refers to the problem of setting of hyperparam-

eters within a family, and comparing across different families. Selection of a covariance function

and its parameters is called training of a Gaussian process. These problems and various methods

to determine the hyperparameters from training data are discussed in detail in Rasmussen and

Williams (2006), chapter 5. The hyperparameters of the covariance and mean function, θ, can be

computed by minimization of the Negative Log of the Marginal Likelihood (NLML) function

logp(y|X ,θ) = −1
2
yT (K(X ,X ) +σ2

n In)
−1y − 1

2
log |K(X ,X ) +σ2

n In| −
n
2
log2π (3.34)

For current application in this thesis, optimization of the hyperparameters can be undertaken at

each increment, but in practice the initial optimization of the hyperparameters produces a set
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of learned parameters than can be used in subsequent increments. This approach is particularly

suitable for real-time scenarios.

3.2.5.1 Covariance Function

Covariance functions are the main part of any GPs. We define a covariance function using the

kernel definition as following.

Definition 3.12 (Covariance function). Let x ∈ X and x′ ∈ X be a pair of inputs for a function

k : X ×X → R known as kernel. A kernel is called a covariance function, as the case in Gaussian

processes, if it is symmetric, k(x,x′) = k(x′ ,x), and Positive Semi-Definite (PSD):

∫
k(x,x′)f (x)f (x′)dμ(x)dμ(x′) ≥ 0 (3.35)

for all f ∈ L2(X ,μ).

Given a set of input points {x|i = 1 : n}, a covariance matrix can be constructed using K [i,j] =

k(xi ,xj ) as its entries.

3.2.5.2 Useful Kernels

The Squared Exponential (SE) covariance function has the form

k(r) = exp(− r2

2l2
) (3.36)

where r = ‖x − x∗‖ is the distance between two input arguments of the covariance function and

l is the characteristic length-scale. This covariance function is the most common kernel used in

GPs and is infinitely differentiable.

The Matérn family of covariance functions (Stein 1999) has proven powerful features to model

structural correlations (Ghaffari Jadidi et al. 2013a; Kim and Kim 2013b; Ghaffari Jadidi et al. 2014;

Kim and Kim 2015). For a single query point x∗ the function is given by

k(r) =
1

Γ(ν)2ν−1

[√
2νr
l

]ν
Kν

(√
2νr
l

)
(3.37)
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where Γ(·) is the Gamma function, Kν(·) is the modified Bessel function of the second kind of

order ν , l is the characteristic length scale, and ν is a positive parameter used to control the

smoothness of the covariance. In the limit for ν →∞ this covariance function converges to the

SE kernel. The widely-used cases for machine learning are ν = 3/2 and ν = 5/2 and the function

becomes of the form

kν=3/2(r) = (1 +

√
3r
l

)exp(−
√
3r
l

) (3.38)

kν=5/2(r) = (1 +

√
5r
l

+
5r2

3l2
)exp(−

√
5r
l

), (3.39)

for the case of ν = 1/2 the function behaves very rough (Rasmussen and Williams 2006) and is

known as the exponential covariance function.

An intrinsically sparse covariance function is developed in Melkumyan and Ramos (2009). The

function is a stationary covariance function and its sparseness is controlled through learning

the hyperparameters. The extension of the function to multiple dimensions using Mahalanobis

distance is

kSparse(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ0[

2+cos(2πr)
3 (1− r) + 1

2π sin(2πr)] if r < 1

0 if r ≥ 1
(3.40)

where in this case r =
√
(x − x∗)TL(x − x∗), σ0 > 0 and L is a positive semi-definite matrix that

can be set as the diagonal matrix of the inverse square of the characteristic length-scales.

Examples of the SE, Matérn (ν = 5/2), and Sparse covariance functions as the distance parameter

r increases are shown in Figure 3.2. The functions are also plotted in the kernel space in Figure 3.3.

For all examples, a unit length-scale is used. The diminishing behavior of the Sparse covariance

function as the distance parameter exceeds 1 can be seen in the plot which in the corresponding

kernel space is represented by mainly non-zero elements on the diagonal part of the covariance

matrix. In general, a smooth kernel such as the SE is suitable to model highly correlated training

data, while less smooth kernels such as Matérn and Sparse can be used for the opposite purpose.

3.2.5.3 GP libraries

The open source GP library in (Rasmussen andWilliams 2006) is developed in MATLAB and pro-

vides a broad range of options for mean, covariance, likelihood, and inference functions. There
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Figure 3.2: Illustrative examples of the SE, Matérn (ν = 5/2), and Sparse covariance function as
the distance parameter is increased from 0 to 4. The length-scale parameter is set to one.

(a) SE (b) Matérn ν = 5/2 (c) Sparse

Figure 3.3: Corresponding function values from Figure 3.2 in the kernel space.

are also different approximate inference methods available. The open source library pyGPs (Neu-

mann et al. 2014) is developed in Python and can be used independently or for online experiments

using Robot Operating System (ROS) (Quigley et al. 2009).

3.2.6 System Dynamics

The equation of motion of the robot is governed by the nonlinear partially observable equation

as follows.

x−t+1 = f (xt ,ut ,wt) wt ∼N (0,Qt) (3.41)
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moreover, with appropriate linearization at the current state estimate, we can predict the state

covariance matrix as

Σ−
t+1 = FtΣtF

T
t +WtQtW

T
t (3.42)

where Ft =
∂f
∂x |xt ,ut andWt =

∂f
∂w |xt ,ut are the Jacobian matrices calculated with respect to x and

w, respectively.

3.3 Basic Techniques

In this section, we briefly explain two major methods that are related to the work in this thesis.

First we introduce the occupancy grid mapping method which is used for traditional mapping

and exploration techniques in order to make comparison. Next, the Pose SLAM algorithm is ex-

plained. We use Pose SLAM throughout the experiments to provide localization data for mapping

and exploration. It is important to solve the SLAM problem initially and observe the effect of each

mapping and exploration technique on the consistency of the SLAM algorithm and localization

accuracy. In Figure 3.4, the examples of Pose SLAM graph and OGM are shown.

3.3.1 Occupancy Grid Maps

The objective of the occupancy grid mapping is to estimate the posterior over maps given the

data p(m|z1:t ,x1:t) in which z1:t is the set of all measurements up to time t and x1:t is the robot

trajectory. At any location, the map cell m[i] is considered as a binary random variable as it can

represent an empty (p = 0) or occupied cell (p = 1). The fundamental assumption in the OGM

algorithm is the independence between cells (Moravec and Elfes 1985; Elfes 1987). Therefore, the

map posterior can be expressed as the product of the individual marginal probabilities of the map

cells

p(m|z1:t ,x1:t) =
∏
i

p(m[i]|z1:t ,x1:t) (3.43)

In order to avoid numerical instability for probabilities near zero or one, it is common to use log

odds representation. Using the binary Bayes filter (Thrun et al. 2005) to estimate each grid cell,

we can write

l
[i]
0 = log

p(m[i])
1− p(m[i])

(3.44)
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Figure 3.4: An illustrative example of the Pose SLAM graph (left), and its associated dense
occupancy grid map (right). In the Pose SLAM graph, the robot poses (vertices) together with
their corresponding odometric measurements links are shown in red. The green links (edges)
show loop-closures computed from sensor registrations. In the occupancy grid map, black, gray,
and white colors indicate occupied, unknown, and free cells, respectively. Map dimensions are

in meters.

l
[i]
inv = log

p(m[i]|zt,xt)
1− p(m[i]|zt,xt)

(3.45)

l
[i]
t = log

p(m[i]|z1:t ,x1:t)
1− p(m[i]|z1:t ,x1:t)

(3.46)

l
[i]
t = l

[i]
t−1 + l

[i]
inv − l

[i]
0 (3.47)

where l
[i]
0 is calculated from map prior probability p(m[i]), l[i]inv is known as the inverse sensor

model in which it assigns an occupancy value to each cell that is in the perception field of mea-

surement zt .

3.3.2 Pose SLAM

Pose SLAM (Ila et al. 2010) is a pose graph SLAM algorithm that generates a graph in which

the nodes represents robot poses and the edges are relative measurements from odometry or

sensor registration. It is an information-based approach that only considers highly informative

loop-closures and non-redundant poses. The objective is to estimate the robot trajectory with
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a canonical parametrization p(x1:t) =N−1(η,Λ) in order to maintain the sparsity of the graph.

The information vector is related to the mean vector η = Λμ and the information matrix is the

inverse of the covariance matrix Λ = Σ−1.

In the online Pose SLAM (Eustice et al. 2006; Ila et al. 2007), the state transition step connects

a new pose to the immediate previous pose using an odometry measurement ut and Bayesian

factorization. In the state update step, using sensor registration zt , the algorithm tries to find a

link between the current pose and any other pose. Each state update changes the entire state es-

timate and the mean vector is required to be recovered in order to compute the Jacobian matrices

for the next filtering step. Therefore, the algorithms consider the mutual information gain of a

candidate edge before adding it to the graph. In this way, the size of the state can be reduced.

3.4 Chapter Summary

In this chapter, we established the mathematical notation as well as some preliminary and ba-

sic definitions and techniques that will be used throughout this thesis. In the next chapter, we

develop Gaussian process occupancy mapping techniques for both mapping and exploration pur-

poses.



Chapter 4

Gaussian Processes Continuous

Occupancy Mapping

Autonomous mobile robots are required to generate a spatial representation of the robot

environment, known as the mapping problem. Solving this problem is an integral part

of all autonomous navigation systems as it encapsulates the knowledge of the robot about its

surrounding. In robotic navigation tasks, a map that indicates occupied areas of the environment

is required. Furthermore, it is desirable that such maps be generated autonomously where the

robot explores new regions of an unknown environment and at the same time maximizes map

accuracy. This is known as the autonomous exploration problem in robotics.

The objective is to estimate the occupancy status of any desired locations in the environment.

However, unlike occupancy grid maps that ignore correlation present in data, we use GPs as a

high-dimensional regression technique to accommodate this matter. GPs have cubic time com-

plexity due to the inversion of the covariancematrix of the size of training datawhich is extremely

prohibitive. As a result, to map an environment faster than batch mapping with any size, i.e. as

far as the available memory allows, a systematic framework is needed to incorporate information

incrementally into the map while the accuracy remains acceptable. In this chapter, the continu-

ous occupancymapping technique which exploits Gaussian processes at its core is developed. We

start from basic GP occupancy mapping and discuss the challenges and limitations of using the

32
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M

u1 u2 ut

x0 X1 X2 Xt

z1
z2 zt

Figure 4.1: Dynamic Bayes network of the SLAM process. Given initial pose x0, control actions
u1:t and observations z1:t , Pose SLAM estimates the robot trajectory x1:t . Therefore, in the
occupancy mapping process robot poses are known (the uncertainty is ignored) and the map

and measurements are considered as random variables. Shaded nodes are observed.

map in practice. The method is developed from the autonomous robotic navigation perspective

in both batch and incremental form with quantitative performance comparison.

Remark 4.1. Since we eventually devise a map building technique based on two GPs to produce

a map suitable for exploration, throughout this chapter we define separate variables and sets for

occupied and free areas of the map.

We are concerned with autonomous exploration when the location of the robot is available

through an appropriate strategy such as Pose SLAM Ila et al. (2010). Therefore, we first con-

sider the map inference using the current estimate of the robot pose. Later, we discuss possible

extensions of the problem of uncertainty propagation into the occupancy mapping process.

Figure 4.1 shows the graphical model of the SLAM process. Given initial pose, control actions,

and relative range and bearing observations, initially, we solve the robot localization problem.

Afterward, the map inference is done using known robot poses and corresponding observations.

Before formal statement of the problem, we clarify the following assumptions.

Assumption 4.2 (Static occupancy map representation). The environment that the robot navi-

gates in is static.

Assumption 4.3 (Gaussian occupancy map points). Any sampled point from the occupancy map

representation of the environment is a random variable whose distribution is Gaussian.
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4.1 Problem Statement and Formulation

LetM be the set of possible occupancymaps. We consider themap of the environment to be static

and as an nm-tuple random variable (M [1], ...,M [nm]) whose elements are described by a normal

distribution m[i] ∼N (μ[i],σ [i]), i ∈ {1: nm}. Let Z ⊂ R≥0 be the set of possible range measure-

ments. The observation consists of an nz-tuple random variable (Z [1], ...,Z [nz]) whose elements

can take values z[k] ∈ Z , k ∈ {1: nz}. Let X ⊂ R
2 be the set of spatial coordinates to build a map

on. Let x[k]o ∈ Xo ⊂ X be an observed occupied point by the k-th sensor beam from the environ-

ment which can be calculated by transforming the local observation z[k] to the global frame using

the robot pose xt ∈ SE(2). Let X [k]
f ∈ Xf ⊂ X be the matrix of sampled unoccupied points from

a line segment with the robot pose and corresponding observed occupied point as its endpoints.

Let D = Do ∪Df be the set of all training points. We define a training set of occupied points

Do = {(x
[i]
o ,y

[i]
o ) | i = 1: no} and a training set of unoccupied points Df = {(x[i]f ,y

[i]
f ) | i = 1: nf }

in which yo = [y[i]o , ..., y
[no]
o ]T and yf = [y[i]f , ..., y

[nf ]
f ]T are target vectors and each of their ele-

ments can belong to the set Y = {−1,+1} where −1 and +1 corresponds to unoccupied and

occupied locations, respectively, no is the total number of occupied points, and nf is the total

number of unoccupied points. Given the robot pose xt and observations Zt = zt , we wish to

estimate p(M =m | xt ,Zt = zt). The map can be inferred as a Gaussian process by defining the

process as the function y : X →M, therefore

y(x) ∼ GP (fm(x), k(x,x′)) (4.1)

It is often the case that we set the mean function fm(x) as zero, unless it is mentioned explicitly

that fm(x) � 0. For a given query point in the map, x∗, GP predicts a mean, μ, and an associated

variance, σ . We can write

m[i] = y(x[i]∗ ) ∼N (μ[i],σ [i]) (4.2)

To show a valid probabilistic representation of the map p(m[i]), the classification step, a logistic

regression classifier (Rasmussen andWilliams 2006, Sections 3.1 and 3.2), (Murphy 2012, Chapter

8), squashes data into the range [0,1].
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Robot/Sensors
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Figure 4.2: Sub-tasks of continuous occupancymapping using Gaussian process regression. The
classifier provides a valid probabilistic representation of the map and the map representation is

based on the distribution of query data.

4.2 Gaussian Processes Occupancy Maps

We employ the continuous occupancy mapping technique which benefits from GPs to learn the

correlation between map points and infer the map in its original high dimensional space. The

objective is to exploit structural correlation present in the environment. We develop the mapping

method for range-sensing mobile robots which are widely used in robotics. The sub-tasks of

continuous occupancy mapping using GPs are depicted in Figure 4.2. GP regression is at the core

of the technique for solving the COM problem. However, the nature of occupancy mapping is a

binary classification problem due to the occupancy status of any points in the environment. As

a result, a classifier is often used to post-process the regression results for a valid probabilistic

representation. The map representation also depends on the distribution and the data structure

of query points. In the following subsections, we explain the details of each sub-task.
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Figure 4.3: Conceptual illustration of the robot, the environment, and observations. Training
data consists of free and occupied points labeled y− = −1 and y+ = +1 respectively. Free points
are sampled along each beam, i.e. negative sensor informationwhilst occupied points are directly

observable.

4.2.1 Sensor Model and Training Data

The robot is assumed to be equipped with a 2D range-finder sensor. The raw measurements

include points returned from obstacle locations. For any sensor beam, the distance from the

sensor position to the detected obstacle along that beam indicates a line from the unoccupied

region of the environment. To build training data points for the unoccupied part of the map, it is

required to sample along the aforementioned line. Figure 4.3 shows the conceptual illustration

of the environment and training points generation.

A sensor beam zt = (z[1]t , ...,z[nz]t ) has nz range observations at a specific bearing depending on

the density of the beam. The observation model for each z[k]t can be written as

z[k]t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ r
[k]
t

α
[k]
t

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = h(xt ,x
[k]
o ) + v, v ∼N (0,R) (4.3)

h(xt ,x
[k]
o )�

⎡⎢⎢⎢⎢⎢⎢⎢⎣
√
(x[k,1]o − x[1]t )2 + (x[k,2]o − x[2]t )2

arctan(x[k,2]o − x[2]t ,x[k,1]o − x[1]t )− x[3]t

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.4)

where r
[k]
t is the range measurement from the k-th sensor beam and α

[k]
t is the corresponding

angle of r
[k]
t . The observation model noise v is assumed to be Gaussian with zero mean and
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covariance R. To find x[k]o which is in the map space, the inverse model can be calculated as

x[k]o = x[1:2]t + r
[k]
t R(x[3]t )

⎡⎢⎢⎢⎢⎢⎢⎢⎣cos(α
[k]
t )

sin(α[k]
t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.5)

where R(x[3]t ) ∈ SO(2) indicates a 2× 2 rotation matrix.

Having defined the observed occupied points in themap space, nowwe can construct the training

set of occupied points as Do = {(x
[k]
o ,y

[k]
o ) | k = 1: nz}. One simple way to build the free area

training points is to uniformly sample along the line segment, l
[k]
z , with the robot position and

any occupied point x[k]o as its end points. Therefore,

X
[k,j]
f = x[1:2]t + δjR(x

[3]
t )

⎡⎢⎢⎢⎢⎢⎢⎢⎣cos(α
[k]
t )

sin(α[k]
t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.6)

where δj ∼ U (0, r
[k]
t ) j = 1: n[k]f , U (0, r[k]t ) is a uniform distribution with the support [0, r[k]t ]

and n
[k]
f is the desired number of samples for the k-th sensor beam. n

[k]
f can be a fixed value for

all the beams or variable, e.g. a function of the line segment length |l[k]z | = r
[k]
t . In the case of a

variable number of points for each beam, it is useful to set a minimum value nf min. Therefore

we can write

n
[k]
f �max({nf min, sl(r

[k]
t )}) (4.7)

where sl(·) is a function that adaptively generates a number of sampled points based on the input

distance. This minimum value controls the sparsity of the training set of unoccupied points.

Alternatively, we can select a number of equidistant points instead of sampling. However, as the

number of training points increases, the computational time grows cubicly. We can construct

the training set of unoccupied points asDf =
⋃nz

i=1D
[i]
f whereD[i]

f = {(X [k]
f ,y[k]f ) | k = 1: nz} and

y[k]f = [y[1]f , ..., y
[n[k]f ]

f ]T .

Remark 4.4. Generally speaking, building maps using GPs can handle sparse sensor observations

and consequently sparse training data. However, in practice, the kernel function describes the corre-

lation between training points. A smooth kernel such as the SE can cover a larger area with fewer

training points, and a rough kernel such as Matérn (ν = 1/2) can only cover the vicinity of sparse
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training points. Therefore, model selection is crucial to fully exploit capabilities of GPs. Furthermore,

hyperparameters have a significant effect on the shape of the map.

Since we only resort to a locally optimal solution of minimizing NLML, one can not expect suit-

able outputs from every run, and the solution needs to be checked carefully. We will discuss

these concerns in the following subsection.

4.2.2 Model Selection and Learning Hyperparameters

Gaussian processes are non-parametric models in a sense that one can learn free parameters of

mean, covariance, and likelihood functions (hyperparameters) through optimizing a cost func-

tion. Practically, this is done by marginalization of the latent function and minimization of NLML

function (Equation 3.34), repeated here for convenience

log p(y|X ,θ) = −1
2
yT (K(X ,X ) +σ2

n In)
−1y − 1

2
log |K(X ,X ) +σ2

n In| −
n
2
log 2π

In Equation (3.34), the first term −1
2y

T (K(X ,X ) + σ2
n In)

−1y corresponds to data-fit, the second

term 1
2 log |K(X ,X ) +σ2

n In| penalizes the model complexity, and the last term is a constant.

Remark 4.5. Note that the selection of NLML function for the optimization problem is entirely

optional. However due to the marginalization property of the multivariate normal distribution, the

latent variable f∗ can be conveniently marginalized.

Since we seldom have sufficient information about a process, this is a useful approach as it pro-

vides flexibility for model selection. However, the problem of minimizing NLML is an ill-posed

problem and using maximum likelihood estimate we can often find a local minimum. Therefore,

it is always possible that the solution suffers from over-fitting, especially if the number of hyper-

parameters is large (Rasmussen and Williams 2006). As we often choose the mean function to

be zero, we are mainly concerned with the selection of a suitable kernel for the spatial mapping

problem. The challenge here is that the structural shape of the environment, especially indoor

environments, can have very diverse forms. There are often sudden variations from unoccupied

to occupied areas which resemble the Heaviside step function which is considered a non-trivial

pattern to be learned in machine learning (Calandra et al. 2014). Moreover, the problem becomes
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more difficult when there is a vast area of free space, disconnected and thin obstacles, and con-

nections to narrow passages. The reason is that for a large unoccupied space, a smooth kernel

can model the area efficiently with a very limited number of observations; however, the same

kernel fails to model walls, entrances, and small obstacles and their connections accurately.

As a result, inferring a high-quality map compatible with the actual shape of the environment

can be non-trivial (see Figure 9 in T O’Callaghan and Ramos (2012) and Figure 3 in Kim and

Kim (2013a)). Although considering correlations of map points through regression results in

handling sparse measurements, training a unique GP for both occupied and free areas has two

major challenges:

− It limits the selection of an appropriate kernel that suits both occupied and unoccupied

regions of the map, effectively resulting in poorly extrapolated obstacles or low-quality

free areas.

− Most importantly, it leads to a mixed variance surface. In other words, it is not possible to

disambiguate between boundaries of occupied-unknown and free-unknown space, unless

the continuous map is thresholded (see Figure 6 in T O’Callaghan and Ramos (2012)).

The first problem is directly related to the inferred map quality, while the second is a challenge

for exploration using continuous occupancy maps. The integral kernel technique O’Callaghan

and Ramos (2011) can mitigate the first deficiency mentioned earlier; however, the integration

over GPs kernels is computationally demanding and results in less tractable methods. To address

these problems we propose training two separate GPs, one for free areas and one for obstacles,

and merge them to build a unique COM.

Conjecture 4.6. Intuitively, the structural correlation is only related to the occupied set of points.

Therefore, exactly for the reason that the problem is defined as a binary classification, correlating

the unoccupied and occupied regions using one kernel decreases the accuracy of the map.

Nevertheless, we consider both cases of mapping using a single GP, which we refer to it as Incre-

mental Gaussian Processes Occupancy Map (I-GPOM), and two GPs, I-GPOM2. We also present

and compare results to support our idea. In our GP mapping approach, optimization of hyperpa-

rameters is performed once at the beginning of each experiment by minimization of the NLML.
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For the prevailing case of multiple runs in the same environment, the optimized values can then

be loaded off-line.

Remark 4.7. In heteroscedastic processes, noise is state dependent. Heteroscedastic Gaussian process

regression (Goldberg et al. 1998; Kersting et al. 2007) can be an alternative to model the structural

correlation more accurately. However, to model the prediction uncertainty, they require a second GP

in addition to the GP governing the noise-free output value. The computational cost is roughly twice

that of the standard GP (Ko and Fox 2009; Titsias and Lázaro-Gredilla 2011). To keep the proposed

mapping algorithm computationally attractive, we do not consider the heteroscedasticity in training

data; however, applying these techniques to the problem at hand is an interesting direction to follow.

4.2.3 Regression and Classification

GP regression is the main step in the continuous occupancy mapping, where given the earlier

discussed inputs we can learn the spatial correlation between map points and calculate the map

posterior without marginalization, as opposed to OGM. By looking at Equations 3.32 and 3.33,

it is evident that only mean values depend on observations (target vector y). The conditional

marginal variance only depends on the input; a property of GPs. In spatial mapping, it implies

that spatial correlation is independent of observations. This property makes the method more

general as we do not need to redevelop the basics and solely the target vector needs to be defined

appropriately.

In general, there is no guarantee that predicted GPs mean values will be constrained to the tar-

get values. Following the idea in binary discriminative classification (see Sections 3.1 and 3.2

in Rasmussen andWilliams (2006) and Chapter 8 in Murphy (2012)), a logistic function (response

function) squashes the predicted outputs into the range [0,1] and guarantees a valid probabilistic

interpretation. Therefore,

p(m[i]|x[i]∗ ,w[i]) =
1

1+ exp(−w[i]μ[i])
(4.8)

where w[i] � γ
√
λ[i] denotes the required weights, λ[i] � σmin/σ

[i] is the bounded information

associated with location i , γ > 0 is a constant to control the sigmoid shape, and σmin is the

minimum estimated variance by the GP.
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An alternative solution is discussed in T O’Callaghan and Ramos (2012) through employing a

probabilistic least-square classifier (see Section 6.5 in Rasmussen andWilliams (2006)). However,

it requires a unique covariance matrix inversion for each point which can be a bottleneck for

long-term exploration experiments.

Remark 4.8. The actual representation of the map depends on the distribution of query points. It is

often the case to use uniformly distributed points (e.g. a grid). Generally speaking, query points can

have any desired distributions. However, building the map over a grid facilitates comparison with

standard occupancy grid-based methods, i.e. at similar map resolutions.

Remark 4.9. Even though the common way for map representation is using a dense set of points

with a particular distribution that is suitable for navigation tasks, there is no restriction for any other

desired representation such as approximate belief representations in Charrow et al. (2014), that can

be useful for other applications such as predictions.

The main bottleneck in GP regression is computation of the term [K(X ,X ) +σ2
n In]

−1 where the

covariance matrix of training data has to be inverted. This limitation reveals itself more when

one tries to use a large number of training data or batch computation. As a result, batch GP-based

continuous occupancy mapping is restricted to small areas in comparison to the nowadays needs

of autonomous robotic systems. We first explain the batch GPOM technique and then develop

the algorithm to formulate I-GPOM which relies on kD-tree data structures for map storage and

approximate nearest neighbor queries (Arya andMount 1993;Mount andArya 2006; Bagon 2009).

4.2.4 Batch Mapping

In the previous part of this chapter, we developed the problem formulation and explained the

required steps to solve it. In the case that all robot poses and measurements are available, it is

possible to build the map at once. The size of the map and the amount of data to process depend

on available computational resources. Building the map using all the data has the advantage of

considering the correlation between all points at the time of inference. While this is a preferable

inference approach, it is clearly not a tractable method for online or incremental robotic navi-

gation tasks. Figure 4.2 illustrates the process of batch map inference where the regression can

be decomposed into two separate GPs as explained in 4.2.2. Following a similar strategy used



Chapter 4. Continuous Occupancy Mapping 42

(a) (b)

(c) (d)

Figure 4.4: A regressed continuous occupancy map of the Cave environment, with size of
20m×20m. (A) shows the Pose SLAM map; red dots indicate robot poses, green lines depict
loop-closures. (B) shows the occupied probability map. (C) shows the unoccupied probability
map, and (D) is the overall fused GPOM. The maps in (B) and (C) are built using the Matérn

(ν = 5/2) covariance function with isotropic distance measure.

for incremental map building (as discussed in the following subsection), it is plausible to fuse

two inferred occupied and unoccupied batch maps into a unique COM, Figure 4.4. We consider

batch mapping to be able to compare the performance of the proposed incremental map fusion

approach presented in the following subsection.

4.2.5 Map Management and Incremental Mapping

TheGPmappermodule is shown in Figure 4.5 and takes the processedmeasurements, i.e. training

data, and a test point window centered at the current robot pose as inputs to perform regression

and classification steps for local maps generation and fuse them incrementally into the global
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Figure 4.5: Schematic illustration of GP Mapper module. GP models the correlation in data
and places distributions on test points. The logistic regression classifier squashes the output of
GP into probabilities and returns the local map where the BCM module updates the global map

incrementally.

frame through the BCM technique (Tresp 2000). An important advantage of a mapping method

is its capability to use past information appropriately. The mapping module returns local maps

centered at the robot pose. Therefore, to keep track of the global map, a map management step

is required where the locally inferred map can be fused with the current global map. This in-

cremental approach allows for handling larger map sizes, and map inference at the local level is

independent of the global map. In practice to increase the efficiency of the mapping process, a

kD-tree data structure and approximate nearest neighbor search (Arya and Mount 1993; Mount

and Arya 2006; Bagon 2009) can be used.

To incorporate new information incrementally, map updates are performed using BCM. The tech-

nique combines estimators which were trained on different data sets. Assuming a Gaussian prior

with zero mean and covarianceΣ and each GPwith meanE[f∗|D[i]] and covarianceC��[f∗|D[i]],

it follows that (Tresp 2000)

E[f∗|D] = C−1
pm∑
i=1

C��[f∗|D[i]]−1E[f∗|D[i]] (4.9)

C = C��[f∗|D]−1 = −(pm − 1)(Σ)−1 +
pm∑
i=1

C��[f∗|D[i]]−1 (4.10)

where pm is the total number of mapping processes.
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Figure 4.6: Comparison of I-GPOM and batch GPOM methods using the Intel dataset with the
observations size of 25 laser scans at each step due to the memory limitation for the batch GP
computations. The top plot shows the AUC and the bottom plot depicts the runtime for each
step. The horizontal axes indicate observations gaps. As the number of gaps grows from 1 to
29, the batch GP outperforms the incremental method as it can learn the correlation between
observations at once, however, with higher computational time. On the other hand, the incre-
mental method in nearly constant time produces a similar average map quality with the mean

difference of 0.0078.

4.2.6 Mapping Results

A comparison of the incremental (I-GPOM) and batch (GPOM) GP occupancy mapping using the

Intel dataset (Howard and Roy 2003) with respect to the Area Under the receiver operating char-

acteristic Curve (AUC) and runtime is presented in Figure 4.6. The probability that the classifier

ranks a randomly chosen positive instance higher than a randomly chosen negative instance can

be understood using the AUC of the classifier; furthermore, the AUC is useful for domains with

skewed class distribution and unequal classification error costs (Fawcett 2006). Without loss of

generality, an observation size of 25 laser scans had to be set due to the memory limitation im-

posed by the batch GP computations with a growing gap between successive laser scans from 1
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(a) (b)

(c)

Figure 4.7: Occupancy maps visualization; (A) shows the OGM, (B) shows the I-GPOM, and (C)
shows the I-GPOM2. The maps are built incrementally using all the available observations in
Intel dataset. For the I-GPOM and I-GPOM2 maps the Matérn (ν = 3/2) covariance function is
used. I-GPOM and I-GPOM2 can complete partially observable areas, i.e. incomplete areas in the
OGM; however, using two GP in I-GPOM2 method produces more accurate maps for navigation
purposes. The SLAM problem is solved by using the Pose SLAM algorithm and the map qualities

depend on the robot localization accuracy.

to 29. The proposed incremental mapping approach using BCM performs accurately and close

to the batch form even with about 8 steps intermission between successive observations and is

faster.

The complete results of occupancy mapping with the three different methods in the Intel dataset
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Table 4.1: Comparison of the AUC and runtime for OGM, I-GPOM, and I-GPOM2 using the
Intel dataset.

Method AUC Runtime (min)

OGM 0.9300 7.28
I-GPOM 0.9439 102.44
I-GPOM2 0.9668 114.53

Algorithm 1 IGPOM()

Require: Robot pose p and measurements z;
1: if f irstFrame then
2: m =∅ // Initialize the map
3: optimize GP hyperparameters θ // Minimize the NLML
4: end if

5: X∗ ← TestDataWindow(p) // Query points grid centered at the robot pose
6: Xo,yo ← Transform2Global(p,z) // Occupied training data, label +1
7: Xf ,yf ← TrainingData(p,z) // Unoccupied training data, label −1
8: [μ∗,σ∗]← GP(θ, [Xo;Xf ], [yo;yf ],X∗) // Compute predictive mean and variance
9: m← UpdateMap(μ∗,σ∗,m) // Algorithm 4
10: return m

are presented in Figure 4.7, while the AUCs are compared in Table 4.1. The I-GPOM2 method

demonstrates more flexibility to model cluttered rooms and has higher performance than the

other methods. The ground truth map was generated using the registered points map and an

image dilation technique to remove outliers. In this way, the ground truth map has the same

orientation whichmakes the comparison convenient. GPOM-basedmaps infer partially observed

regions; however, in the absence of a complete ground truth map, this fact can be only verified

using Figure 4.7 and is not reflected in the AUC of I-GPOM and I-GPOM2.

The steps of the incremental GPOM (I-GPOM) are shown in Figure 4.5 and Algorithm 1 where

a BCM module updates the global map as new observations are taken. Algorithms 2, 3, 4, and 5

encapsulate the I-GPOM2 methods as implemented in the present work.

4.3 Gaussian Processes Frontier Maps

Constructing a frontier map is the fundamental ingredient of any geometry-based exploration

approach. It reveals the boundaries between known-free and unknown areas which are poten-

tially informative regions for map expansion. In contrast to the classical binary representation,
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Algorithm 2 IGPOM2()

Require: Robot pose p and measurements z;
1: if f irstFrame then
2: m =mo =mf =∅ // Initialize the map
3: optimize GP hyperparameters θo , θf // Minimize the NLML
4: end if

5: X∗ ← TestDataWindow(p) // Query points grid centered at the robot pose
6: Xo,yo ← Transform2Global(p,z) // Occupied training data, label +1
7: Xf ,yf ← TrainingData(p,z) // Unoccupied training data, label −1
8: [μo∗,σo∗]← GP(θo,Xo,yo,X∗) // Compute occupied map predictive mean and variance
9: [μf ∗,σf ∗]← GP(θf ,Xf ,yf ,X∗) // Compute unoccupied map predictive mean and variance
10: mo ← UpdateMap(μo∗,σo∗,mo) // Algorithm 4
11: mf ← UpdateMap(μf ∗,σf ∗,mf )
12: m← MergeMap(mo,mf ) // Algorithm 5
13: return m,mo

Algorithm 3 FusionBCM(μa,μb,σa,σb)

1: σc ← (σ−1a +σ−1b )−1 // Point-wise calculation of Equation (4.10)

2: μc ← σc(σ−1a μa +σ−1b μb) // Point-wise calculation of Equation (4.9)
3: return μc,σc

Algorithm 4 UpdateMap()

Require: Global map m, μ, σ and local map m∗, μ∗, σ∗;
1: for all i ∈M∗ do
2: j ← find the corresponding global index of i using a nearest neighbor search

3: μ[j],σ[j] ← FusionBCM(μ[j],μ[i]∗ ,σ[j],σ[i]
∗ ) // Algorithm 3

4: end for

5: m← LogisticRegression(μ,σ) // Squash data into (0,1), Equation (4.8)
6: return m

defining frontiers in a probabilistic form using map uncertainty is more suitable for computing

expected behaviors. The value of a frontier point can be computed as

f̄ [i] � ‖∇p(m[i])‖1 − β(‖∇p(m[i]
o )‖1 + p(m[i]

o )− 0.5) (4.11)

where ∇ denotes the gradient operator, and β is a factor that controls the effect of obstacle

boundaries. ‖∇p(m[i])‖1 indicates all boundaries whilst ‖∇p(m[i]
o )‖1 defines obstacle outlines.

The subtracted constant is to remove the biased probability for unknown areas in the obstacles

probability map.

The frontier surface is converted to a probability frontier map through the incorporation of the
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Algorithm 5 MergeMap()

Require: Unoccupied map mf , μf , σf and occupied map mo , μo , σo;
1: for all i ∈M do

2: μ[i],σ[i] ← FusionBCM(μ[i]o ,μ[i]f ,σ[i]
o ,σ[i]

f ) // Algorithm 3

3: end for

4: m← LogisticRegression(μ,σ) // Squash data into (0,1), Equation (4.8)
5: return m

Algorithm 6 BuildFrontierMap()

Require: Current map m, σ and occupied map mo , σo;
1: // Compute boundaries
2: dm← ‖∇p(m)‖1, dmo ← ‖∇p(mo)‖1
3: σmin ←min(σ)
4: f ←∅

5: // Compute probabilistic frontiers
6: for all i ∈M do

7: f̄ [i] ← dm[i] − β(dm[i]
o +m

[i]
o − 0.5)

8: w
[i]
f ← γf sqrt(σmin/σ[i]) // Logistic regression weights

9: f [i] ← (1 + exp(−w[i]
f f̄ [i]))−1 // Squash data into (0,1), Equation (4.12)

10: end for

11: return f

map uncertainty. To squash the frontier and variance values into the range [0,1], a logistic

regression classifier with inputs from f̄ [i] and map uncertainty σ [i] is applied to data which

yields

p(f [i]|m[i],w
[i]
f ) =

1

1+ exp(−w[i]
f f̄ [i])

(4.12)

where w
[i]
f = γf

√
λ[i] denotes the required weights and γf > 0 is a constant to control the sig-

moid shape. The details of the frontier map computations are presented in Algorithm 6. Figure 4.8

(right) depicts an instance of the frontier map from an exploration experiment in the Cave envi-

ronment.

In practice, the following steps are required to use the frontier map and check the termination

condition:

1. The probabilistic frontier map is converted to a binary map using a pre-defined threshold.

Note that any point with a probability higher than 0.5 is potentially a valid frontier.
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Figure 4.8: Inferred continuous occupancy map (left); associated probabilistic frontier map
(right). The frontier map highlights the informative regions for further exploration by assign-
ing higher probabilities to frontier points. The lower probabilities show the obstacles and walls
whilst the values greater than the “no discrimination” probability, 0.5, can be considered as

frontiers.

2. The binary map of frontiers is clustered into subsets of candidate macro-actions (see Chap-

ter 5 for the definition).

3. The centroids of clusters construct a discrete action set at time step t, i.e. At , that is used

in the utility maximization step.

4. The robot plans a path to each centroid (macro-action) to check its reachability. A centroid

that is not reachable is then removed from the action set.

5. The exploration mission continues while the action setAt is not empty (repeats from step

1).

4.4 Chapter Summary

In this chapter, we formulated the GP occupancy mapping problem and presented algorithmic

implementations of the solution using both batch and incremental techniques. In particular, we

showed that the performance of our incremental mapping technique is comparable to that of

the batch method and is faster. To make the I-GPOM suitable for geometric-based exploration

scenarios, we proposed to use I-GPOM2. We also developed a probabilistic representation of the
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geometric frontiers using GPOM. In the next chapter, we employ these maps for autonomous

robotic exploration.



Chapter 5

Exploration using Gaussian Processes

Maps

In this chapter, we study the problem of autonomous robotic exploration using the developed

incremental GPOM techniques in the previous chapter. The classical solution for this task is

a geometric-based approach in which the goals represent boundaries of unknown regions of the

map. These boundaries are known as frontiers and in the traditional grid-based approach they are

represented using a binary map, i.e. there is no notion of uncertainty. To mitigate this deficiency,

information gain-based methods that minimize entropy-based cost functions are proposed (Feder

et al. 1999; Bourgault et al. 2002; Stachniss et al. 2005; Carlone et al. 2010; Amigoni and Caglioti

2010). Occupancy grid mapping techniques represent the environment by relying on the assump-

tion of independence between cells. This assumption leads to a map posterior inference through

marginalization and ignoring structural correlations in the environment. In contrast, GP-based

occupancy maps (T O’Callaghan and Ramos 2012; Kim and Kim 2013a) capture structural depen-

dencies of the environment. Therefore, such maps are better suited for accurately computing the

statistical properties such as entropy and mutual information.

Decision making is the core part of any robotic exploration algorithm and relies heavily on the

chosen utility function. Many cost/utility functions have been examined to improve the over-

all performance of the exploration algorithms (Juliá et al. 2012). Mutual Information (MI) is a

51
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Mapper Node

Perception+SLAM

GP Mapper
Training and Test
 Data Generation
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Frontier Map

Mutual
 Information Map

Planner+Robot

Actions

Maps

Measurements+Robot Pose

Robot Pose

Figure 5.1: Schematic illustration of the autonomous mapping and exploration process using
GPs maps. The GP mapper module provides the continuous occupancy map which can be ex-
ploited to extract geometric frontiers and mutual information maps. The maps also give support
to the planner module for basic navigation tasks as well as cost-aware planning. The explorer
node returns a macro-action (chosen frontier) that optimizes the expected utility function. The

gray nodes are not investigated.

measure of the value of information that quantifies the information gain from sensor measure-

ments (Krause and Guestrin 2005). Therefore, it is a reasonable choice for the utility optimization

problem. We develop a greedy mutual information-based exploration strategy that exploits the

developed incremental GPOM and probabilistic frontier map techniques for solving the robotic

exploration problem. Even though the technique is greedy, it takes into account all possible future

measurements. The MI-based utility function is computed at the centroids of geometric frontiers

and the frontier with the highest information gain is chosen as the next-best “macro-action”. We

borrow the notion of macro-action from planning under uncertainty (He et al. 2010) and define

it as follows.

Definition 5.1 (Macro-action). Amacro-action is an exploration target (frontier) which is assumed

to be reachable through an open-loop control strategy.

Figure 5.1 depicts the proposed navigation process concept using GPs maps. The proposed tech-

nique is in particular interesting due to its simplicity to implement and its strength for dense map
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entropy reductions. The technique uses a probabilistic frontier representation and continuous

occupancy maps and can handle sparse observations. Furthermore, the MI is computed accu-

rately using a forward sensor model map prediction algorithm. Given the robot pose and corre-

sponding laser scans, GPOM and its associated variance surface are used for generating MI-based

macro-actions. The employed measurement model is a standard beam-based mixture model for

range-finder sensors (Thrun et al. 2005), however, the proposed algorithm can be adapted to other

sensor modalities with reasonable probabilistic observation models.

5.1 Decision Making Problem

The Maximum Expected Utility (MEU) principle states that the robot should choose the action

that maximizes its expected utility, in the current state (Russell and Norvig 2009, page 483). The

expectation is taken due to the stochastic nature of the state and observations. For a large se-

quence of actions and continuous state and action space, the computational time of calculating

the expected utility function can be exponential. This is often the case in robotics when one

tries to calculate the information gain. In the following subsection, we discuss the problem of

sequential decision making; then we define the utility functions that are used in the experiments

in this chapter.

5.1.1 Sequential Decision Making

In robotics, if the robot poses x1:t are known, i.e. full observability, the sequential decisionmaking

problem is an instance of Markov Decision Processes (MDPs). In the MDP framework, the sensor

model p(z|x,m) is deterministic and bijective. However, uncertainty in action is allowed (Thrun

et al. 2005). In the fully probabilistic case, the state is not fully observable. Therefore, mea-

surements and actions are both stochastic. This is the common case in robotics and the general

problem is known as POMDPs (Simmons and Koenig 1995; Kaelbling et al. 1998; Roy et al. 1999;

Pineau et al. 2003; Spaan and Vlassis 2005; Roy et al. 2005). In two extreme cases, the planning

horizon is 1 or ∞. The former case is called greedy exploration (or planning), and the latter is

often treated as a discounted problem in which as the horizon goes to infinity the payoff dimin-

ishes. Alternatively, a fixed or variable (and bounded) planning horizon can be set according to
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the budget (Indelman et al. 2015). The budget needs to be defined for a specific problem, e.g. the

uncertainty upper bound in the system or the available amount of fuel.

5.1.2 Exploration Policies

The definition of utility/cost function depends on the specific application and aim. In the context

of autonomous robotic mapping, typically, the main goal is map completion while maintaining

the localization accuracy at an acceptable level 1. It is also important that the exploration policy

not encourage actions that lead to inconsistencies in the SLAM algorithm. Let at be an action

from the set of all possible actions At
2 at time t. Taking at leads to the future measurement

Zt+1 whose realization is unknown at time t. The exploration (planning) problem is to find the

action(s) that results in the measurements which optimize the desired utility/cost function. In

the following, we define three most common utility functions for the single robot exploration

case.

5.1.2.1 Nearest Frontier

The nearest frontier policy (Yamauchi 1997), as its name implies, it is a cost function that drives

the robot towards the closest frontier to its current pose. This technique is greedy and the robot

solely considers the cost of navigation. Geometric frontiers can be extracted by a desired method

from the occupancy map (Keidar and Kaminka 2014). For the GPOM technique, we use the prob-

abilistic frontier map developed in Section 4.3. Let Ft be the finite set of all detected frontiers

at time t. Let the action at be the planned path from the current robot pose to the frontier ft .

The cost function, fc : At → R≥0, is the length of the path from the current robot pose to the

corresponding frontier. Thus the problem can be defined as finding the action that minimizes the

cost function. Therefore,

a�t = argmin
at∈At

fc(at) (5.1)

In practice, frontier cells/points are clustered, and only those with the size above a threshold are

valid. The centroid of each cluster is considered as the target point for path planning.

1The required localization accuracy is subject to the specific application.
2At can be discrete or continuous.



Chapter 5. Exploration 55

Remark 5.2. The cost function in Equation (5.1) is modular. It means if Pa and Pb be two partial
trajectories and Pab the trajectory constructed by concatenating them, we have fc(Pab) = fc(Pa) +
fc(Pb).

Remark 5.3. In general, the path length can be seen as the line integral of the curve with the current

robot pose and the frontier as its end points. Thus, one can define a scalar field over the map and

calculate the cost as the line integral of the scalar field using a Riemann sum. In Equation (5.1) the

integrand (the scalar field function) is simply 1.

Remark 5.4. As it can be seen in Equation (5.1), this method is passive meaning it does not consider

the possible return for any future measurements. In an environment with a rich flow of sensory

information, this shortcoming is insignificant. However, in general, it can cause severe difficulties

for any estimation module relying on sequential informative observations 3.

5.1.2.2 Information Gain

Intuitively, we are interested to know the amount of information the robot can gain from a mea-

surement before actually taking that measurement. Since future measurements are unknown, we

treat them as random. Therefore, by taking the expectation over random future measurements,

we can predict the information gain. In the Bayesian framework, this can be interpreted as the

distance between the prior and posterior distributions. The KLD presented in Equation (3.17)

measures this distance. Taking the expectation over both the state and future measurements

results in the information gain (mutual information), Equation (3.19), repeated here for conve-

nience

I(X;Y ) =D(p(x,y) || p(x)p(y)) = Ep(x,y)[log
p(x,y)
p(x)p(y)

]

Remark 5.5. Note that using the definition of the conditional probability, we can write Equa-

tion (3.19) as

I(X;Y ) = Ep(x,y)[log
p(y|x)
p(y)

] = Ep(x,y)[log
p(x|y)
p(x)

] (5.2)

and depending on the specific problem it can simplify the calculation of the MI. However, the ex-

pectation is still with respect to the joint distribution of the random variables. Equation (5.2) also

implies that I(X;Y ) = I(Y ;X), a property of MI.

3The problem of selecting an action that results in the best feasible future measurement is known as active percep-
tion.
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Let p(x1:t ,m|z1:t) be the state estimate of the robot trajectory and the map up to time t. The

predictive posterior distribution can then be considered as p(x1:t+1,m|Zt+1,z1:t). Note that the

subscript t for the map is dropped, as it is assumed the map of the environment is static. To find

the action, at , that maximizes the information gain-based utility function, fI : At → R≥0, the

problem can be written as

a�t = argmax
at∈At

fI (at) (5.3)

In other words, the robot takes the action that leads to the maximum return of information.

However, as it is evident from Equation (5.3) the cost of taking that action is not included in the

utility function. Therefore, an action with the maximum return of information can be costlier

than another action which is less informative.

Remark 5.6. The mutual information of two random variables X and Y conditioned on a third

random variable Z is called conditional mutual information and is denoted by I(X;Y |Z). Although
the robot trajectory and the map are conditioned on observations, for the sake of simplicity we refer

to the conditional mutual information as mutual information.

5.1.2.3 Cost-Utility Trade-off

The third approach which is the common case in many practical scenarios is based on the idea of

a trade-off between the cost and utility of an action, i.e. the payoff. The total utility function can

be constructed by combination of Equations (5.1) and (5.3). The primary problem is that the units

of utility/cost functions are different. One solution is the expression of the cost in the form of

information loss (uncertainty). Another approach is the combination of them using appropriate

coefficients, e.g. a linear combination of the utility and cost functions. Let g : R2
≥0 → R≥0 be a

function that takes fc(at) and fI (at) as its input arguments. The problem of maximizing the total

utility function, u(at)� g(fI (at), fc(at)), can then be defined as follows.

a�t = argmax
at∈At

u(at) (5.4)
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5.2 Mutual Information-based Exploration

In information gain-based exploration the utility function is defined to maximize the MI between

the current state and future measurements. The expectation over new sets of measurements and

actions provides a path and goal which is considered as the “optimal” behavior. The underlying

process involves simulating the robot traversing towards a candidate goal and collecting a set of

measurements. The widely-employed approach to approximate the expected information gain is

using an inverse sensor model through ray casting operation in OGMs (Makarenko et al. 2002;

Stachniss et al. 2005; Sim and Little 2006; Valencia et al. 2012; Julian et al. 2014).

Using a continuous representation of the map, we propose to compute the MI of the map and

futuremeasurements in the current perception field of the robot at a subset of candidate goals. We

take into account all future measurements by taking an expectation over them. We estimate the

map posterior with a forward sensor model through the Bayes update formula and compute MI

numerically. The GPOM-based maps place distributions over map points, and consequently the

computed map entropy using this representation is more descriptive of the real map uncertainty.

5.2.1 Mutual information computation

MI is the reduction in uncertainty of a random variable due to the knowledge of another random

variable (Cover and Thomas 1991). In other words, given a measurement Z = z from Z what

will be the reduction in the map M = m uncertainty? The MI between the map and the future

measurement Zt+1 = ẑ is

I(M ;Zt+1|z1:t) =
∫
ẑ∈Z

∑
m∈M

p(m, ẑ|z1:t) log
p(m, ẑ|z1:t)

p(m|z1:t)p(ẑ|z1:t)
dẑ

=H(M |z1:t)−H(M |Zt+1,z1:t), (5.5)

where H(M |z1:t) and H(M |Zt+1,z1:t) are map and map conditional entropy respectively, which

by definition are

H(M |z1:t) = −
∑
m∈M

p(m|z1:t) logp(m|z1:t) (5.6)

H(M |Zt+1,z1:t) =
∫
ẑ∈Z

p(ẑ|z1:t)H(M |Zt+1 = ẑ,z1:t)dẑ (5.7)
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Figure 5.2: The inferred continuous occupancy map (left), the associated probabilistic frontier
map (middle), and an example of the MI surface. The areas beyond the current perception field
of the robot preserve their initial entropy values. The higher values demonstrate regions with
greater information gain. The map dimensions are in meters and the MI values in NATS. The

robot position is at (10,13), along horizontal and vertical axes, respectively.

To compute the map conditional entropy, the predicted map posterior given the new measure-

mentZt+1 = ẑt+1 is required. The Bayesian inference finds the posterior probability for each map

point m[i] and k-th beam of the range-finder as

p(m[i]|ẑ[k]t+1,z1:t) =
p(ẑ[k]t+1|m[i])p(m[i]|z1:t)

p(ẑ[k]t+1|z1:t)
(5.8)

p(ẑ[k]t+1|z1:t) =
∑

m[i]∈M
p(ẑ[k]t+1|m[i])p(m[i]|z1:t) (5.9)

The likelihood function p(ẑ[k]t+1|M =m[i]) is a beam-based mixture measurement model, where

the term p(ẑ[k]t+1|M = 0) can be interpreted as the likelihood of not observing the map point at

location i , i.e. uniform distribution, and the term p(ẑ[k]t+1|z1:t) is the marginal distribution over

measurements which is calculated in line 14 of Algorithm 7 and denoted by pz . By numerically

integrating over a desired beam range, we can compute the predicted map posterior entropy

using Equation (5.7). Note that the conditional entropy does not depend on the realization of

future measurements, but it is an average over them.

Let I [k]
t+1 be the index set of map points that are in the perception field of the k-th sensor beam at

time t +1. At any robot location, ∀i ∈ I [k]
t+1, the MI can be written as

I [i] = h(m[i])− h(m[i]) (5.10)
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Algorithm 7 BuildMIMap()

Require: Robot pose or desired location, current map estimate m, sensor model;
1: m̄←m
2: // Initialize MI map using current map entropy
3: I ←−(m log(m) + (1−m) log(1−m))
4: for all k do

5: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

6: for i ∈ I [k]
t+1 do

7: h̄← 0 // Map conditional entropy

8: for all z ≤ ẑ
[k]
t+1 do

9: // Calculate marginal measurement probability pz
10: p1 ← p(ẑ[k]t+1|M = 0)
11: p2 ← 0
12: for j ∈ I [k]

t+1 do

13: p1 ← p1(1−m[j])
14: p2 ← p2 + p(ẑ[k]t+1|M =m[j])m[j]

∏
l<j

(1−m[l])

15: end for

16: pz ← p1 + p2
17: // Map prediction at point i along beam k

18: m̄[i] ← p−1z p(ẑ[k]t+1|M =m[i])m[i]
∏
l<i

(1−m[l])

19: h̄← h̄+ pz[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
20: end for

21: I [i] ← I [i] + h̄s−1z // Equation (5.10)
22: end for

23: end for

24: return I

where h(m[i]) is the current entropy of the map pointm[i] and h(m[i]) is the estimated map condi-

tional entropy. In practice, at each time step, the map is initialized with the current map entropy,

H(M |z1:t), and for all map points inside the current perception field the estimated map condi-

tional entropy is subtracted from corresponding initial values. In Algorithm 7, the implementa-

tion of theMImap is givenwhere sz denotes the numerical resolution of integration. In Figure 5.2,

an estimated MI map during an exploration experiments in the Cave environment (Howard and

Roy 2003) is depicted.
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5.2.2 Decision making

The resulting MI map shows the expectation for uncertainty reduction in the map at each place.

To define a utility function, the frontier map is initially thresholded and, through k-means, clus-

ters of geometric frontiers are extracted as macro-actions. The decision making process is thus

reduced to a standard multi-objective utility maximization problem; see Stachniss et al. (2005)

for a similar treatment of the problem.

Let each geometric frontier be regarded as a macro-action from the exploration point of view.

The action space can thus be defined as At = {a[j]t }
na
j=1. We define the utility function as the

difference between the total expected information gain predicted at the macro-action at , fI (at),

and the corresponding path length from the current robot pose to the same macro-action, fc(at),

as follows

fI (at)�
nz∑
k=1

∑
i∈I [k]

I [i](at) (5.11)

u(at)� αfI (at)− fc(at) (5.12)

where α is a factor to relate information gain to the cost of motion. The optimal action can be

found by maximizing the utility function. Therefore,

a�t = argmax
at∈At

u(at) (5.13)

Note that the expectation over futuremeasurements and path lengths is already incorporated into

the information and cost functions. The optimal action a�t directs the robot towards the frontier

with the best balance between information gain and travel cost. This greedy action selection

is similar to what is known as next-best view planning in the literature (González-Banos and

Latombe 2002; Surmann et al. 2003). It lacks active searching for explicit loop closing actions;

however, there are two main motivations to use the proposed utility function:

− The prediction step is often computationally expensive and after taking one action the

robot and map states change. Therefore, all previous computations become obsolete and

need to be recalculated.
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− In office-like indoor environments (such as the Intel office floor space map presented in the

results section), a mid-range range-finder sensor covers large areas in the vicinity of the

robot. Therefore, even in the absence of explicit loop closing actions, as the robot explores

it is highly possible to close informative loops.

5.2.3 Map Regeneration

Loop closure during SLAM can change the map significantly. To account for such changes, we

reset and learn the occupancy map with all the available data again. To be able to efficiently

detect such a drift in the GPOM we measure the Jensen-Shannon Divergence (JSD) (Lin 1991).

The generalized JSD for n probability, p1,p2, ...,pn, with weights π1,π2, ...,πn is

JSπ(p1,p2, ...,pn) =H(
n∑
i=1

πipi )−
n∑
i=1

πiH(pi ) (5.14)

whereH(·) is the Shannon entropy function and p(xi ) is the probability associated with variable

xi . All weights are set uniformly as all points are equal.

Alternatively, cumulative relative entropy by summing the computed Jensen-Shannon entropy

in each iteration shows map drifts over a period and contains the history of map variations.

Consequently, the method is less sensitive to small sudden changes.

Remark 5.7. The main advantage of JSD over KLD, in this case, is that JSD is bounded. As a result,

it is more suitable for decision making (Lin 1991).

5.3 Exploration Results

In this section, we present results using two publicly available datasets (Howard and Roy 2003).

In the first scenario, we use the Intel research lab. map which is a highly structured indoor

environment. The second scenario is based on the University of Freiburg campus area. The

second map is almost ten times larger than the Intel map and is an example of a large-scale

environment with open areas.
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Figure 5.3: The constructed environment for exploration experiments using the binary map of
obstacles from the Intel dataset.

Table 5.1: The compared exploration methods and their corresponding attributes.

NF OGMI GPNF GPMI

SLAM Pose SLAM Pose SLAM Pose SLAM Pose SLAM
Mapping OGM OGM I-GPOM2 I-GPOM2
Frontiers binary binary probabilistic probabilistic
Utility path length MI+path length path length MI+path length
Planner A∗ A∗ A∗ A∗

The experiments include comparison among the original nearest frontier (NF) (Yamauchi 1997),

MI-based exploration using OGM (OGMI), the natural extension of NF with a GPOM represen-

tation (GPNF) (Ghaffari Jadidi et al. 2014), and the proposed MI-based (GPMI) exploration ap-

proaches. NF and OGMI results are computed using OGMs while for the GPOM-based methods

the I-GPOM2 representation and the probabilistic frontier map proposed in this work are em-

ployed. For all the techniques, we use the A∗ algorithm to find the shortest path from the robot

position to any frontier. The path cost is calculated using the Euclidean distance between map

points. Details about the compared methods are described in Table 5.1.

5.3.1 Experimental setup

The environment is constructed using a binary map of obstacles and, for the Intel map, is shown

in Figure 5.3. The simulated robot is equipped with odometric and laser range-finder sensors to

provide the required sensory inputs for Pose SLAM. The odometric sensor noise covariance is set
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Table 5.2: Parameters for frontier and MI maps computations.

Parameter Symbol Value

1) Beam-based mixture measurement model:
Hit std σhit 0.03 m
Short decay λshort 0.2 m
Max range rmax
− Intel map 4.0 m
− Freiburg map 60.0 m
Hit weight zhit 0.7
Short weight zshort 0.1
Max weight zmax 0.1
Random weight zrand 0.1

2) Frontier map:
Occupied boundaries factor β 3.0
Logistic regression weight γ 10.0
Frontier probability threshold −
− Intel map 0.6
− Freiburg map 0.55
Frontier cluster size −
− Intel map 14
− Freiburg map 3
Number of clusters −
− Intel map 20
− Freiburg map 5

3)MI map and utility function:
No. of sensor beams over 360 deg nz 133
Numerical integration resolution sz
− Intel map 10/3 m−1

− Freiburg map 1 m−1

Information gain factor α
− Intel map 0.1
− Freiburg map 0.5
Occupied probability threshold po 0.65
Unoccupied probability threshold pf
− Intel map 0.35
− Freiburg map 0.4

to Σu = diag(0.1m,0.1m,0.0026rad)2, and the laser range-finder sensor noise is characterized

by the diagonal covariance matrix Σy = diag(0.03m,0.03m,0.0013rad)2. Laser beams are

simulated through ray-casting operation over the groundtruth map using the true robot pose.

In all the presented results, Pose SLAM (Ila et al. 2010) is included as the backbone to provide

localization data together with the number of closed loops. Additionally, for each map, Pose

SLAM parameters are set and fixed regardless of the exploration method.

The localization Root Mean-Squared Error (RMSE) is computed at the end of each experiment
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by the difference in the robot traveled path (estimated and groundtruth poses) to highlight the

effect of each exploration approach on the localization accuracy. The required parameters for

the beam-based mixture measurement model (Thrun et al. 2005), frontier maps, and MI maps

computations are listed in Table 5.2. The sensitivity of the parameters in Table 5.2 is not high

and slight variations of them (about 10%) do not affect the presented results.

The implementation has been developed in MATLAB and GP computations have been imple-

mented by modifying the open source GP library in Rasmussen and Williams (2006). During

exploration, map drifts occur due to loop-closure in the SLAM process. As it is computationally

expensive to process all measurements from scratch at each iteration, a mechanism has been

adopted to address the problem. The cumulative relative entropy by summing the computed JSD

can detect such map drifts.

Each technique is evaluated based on six different criteria, namely, travel distance, mapping and

planning time, Map Entropy Rate (MER), AUC of the GP occupancy map calculated at the end of

each experiment using all available observations, localization RMSE, and the Number of Closed

Loops (NCL). Note that none of the compared exploration strategies explicitly plans for loop-

closing actions. For each dataset, the results are from 10 independent runs using the same setup

and parameters.

5.3.2 Exploration results in the Intel map

An example of the exploration results using GPMI is shown in Figure 5.4. The statistical sum-

mary of the results are depicted in Figure 5.5. The most significant part of the results is related

to the map entropy rate in which a negative value means the map entropy has been reduced at

each step. In the nearest frontier techniques there is no prediction step regarding map entropy

reduction; therefore, the results are purely based on chance and structural shape of the environ-

ment. OGMI shows marginal improvements over NF with roughly similar computational times

for the exploration mission. Thus, it is the preferred technique in comparison with NF.

GPNF and GPMI exploit I-GPOM2 for mapping, exploration, and planning. GP-based methods

handle sparse sensor measurements by learning the structural dependencies (spatial correlations)

present in the environment. The significant increase in the map entropy rate is due to this fact.
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(a) (b)

(c) (d)

Figure 5.4: MI-based exploration in the Intel map. (A) shows Pose SLAM map, (B) shows I-
GPOM2, (C) is the equivalent OGM, and (D) is the corresponding entropy map of (B) in NATS.
The continuous occupancy map shows the occupancy probability at each location where mid-
probability value of 0.5 represents unknown points. The sparse observations due to the occluded
perception field in a complex environment such as the Intel map signifies the capabilities of OGM
and GPOM methods to cope with such limitations. Map dimensions are in meters. The starting
robot position is at (18,26), horizontally and vertically, respectively, and the robot terminates the

exploration mission at the most bottom right room.

The results from GPMI show higher travel distance and a higher number of closed loops which

can be understood from the fact that information gain in the utility function drives the robot to

possibly further but more informative targets. As this behavior does not show any undesirable

effect on the localization accuracy, it can be concluded that it performs better than the other

techniques; however with a higher computational time. The information gain calculation could
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Figure 5.5: The box plots show comparison of different exploration strategies in the Intel dataset
from 10 independent runs. The compared criteria are travel distance (m), time (min), map en-
tropy rate (nats/step), the mapping performance using the area under the receiving operating
characteristic curve, localization root mean-squared error (m), and the number of closed loops

by Pose SLAM.

be sped up by using CSQMI due to its similar behavior to MI (Charrow et al. 2015). Under the

GPMI scheme, the robot chooses macro-actions that balance the cost of traveling andMI between

themap and future measurements. Although the utility function does not include the localization

uncertainty explicitly, the correlation between robot poses and the map helps to improve the

localization accuracy.

5.3.3 Outdoor scenario: Freiburg Campus

In the second scenario, the map is an outdoor area with a significantly larger size (almost ten

times). Figure 5.6 shows the satellite map of the area as well as the trajectory that the robot

was driven for data collection. Similar to the first experiment, a binary map of the dataset is

constructed and used for exploration experiments. The statistical summary of the experiment

results is shown in Figure 5.7. To maintain the computational time manageable, the occupancy

maps are built with the coarse resolution of 1m.
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Figure 5.6: The left picture shows the satellite map of the Freiburg University Campus where
the yellow dashed line indicate the robot trajectory. The middle figure shows the corresponding
occupancy map of the dataset (Howard and Roy 2003). The right figure shows the corresponding

binary map of obstacles used for exploration experiments. Map dimensions are in meters.

Overall, the trend is similar to the previous test, and specifically, the map entropy rate plot shows

a significant difference between GPMI and the other techniques. Again, this significant map

entropy rate improvement has been achieved without any undesirable effects on the localization

accuracy. Although the GMPI localization error median is slightly higher than NF and GPNF, the

overall distribution is sharper. The sharpness of the localization error distribution can be seen

as the reliability and repeatability characteristic of GPMI. Since this map has large open areas

relative to the robot’s sensing range, it is highly unlikely that the robot closes loops by chance.

For the GPMI, the number of closed loops has a higher median which supports the idea of implicit

loop-closing actions due to the correlations between the map and the robot pose. However, the

of NCL distribution has wider tails which does not support its repeatability.

Figure 5.8 shows the results from an exploration run in Freiburg campus map using NF, OGMI,

GPNF, and GPMI. The robot behavior is distinguishable in all four maps. In NF case, the robot

tends to travel to every corner in the map to complete the partially observable parts of the map.

This behavior leads to trajectories along the boundaries of the map. In OGMI, the prediction

of the information gain reduces this effect. However, the OGM requires a higher number of

measurements to cover an area; therefore, the robot still needs to travel to the corners. In GPNF

case, this effect has been alleviated since the the continuous mapping algorithm can deal with

sparse measurements. However, in GPMI case, the robot behaves completely different as by

taking the expectation over future measurements (calculating MI) the robot does not act based

on the current map uncertainty minimization, but improving the future map state in expectation.
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Figure 5.7: The box plots show comparison of different exploration strategies in the Freiburg
campus dataset from 10 independent runs. The compared criteria are travel distance (m), time
(min), map entropy rate (nats/step), the mapping performance using the area under the receiving
operating characteristic curve, localization root mean-squared error (m), and the number of

closed loops by Pose SLAM.

5.3.4 Computational complexity

For the mapping algorithms, the computational cost of GPs is O(n3t ), given the need to invert

a matrix of the size of training data, nt . BCM scales linearly with the number of map points,

nm. The overall map update operation involves a nearest neighbor query for each test point, nq ,

and the logistic regression classifier is at worst linear in the number of map points resulting in

O(n3t + nq lognq + nm). For MI surface, the time complexity is at worst quadratic in the number

of map points in the current perception field of the robot, np , and linear in the number of sensor

beams, nz , and numerical integration’s resolution, sz , resulting in O(n2pnzsz).

A more sophisticated approximation approach can reduce the computational complexity further.

The fully independent training conditional (FITC) (Snelson and Ghahramani 2006) based on in-

ducing conditionals suggests anO(ntn2i ) upper bound where ni is the number of inducing points.

More recently, in Hensman et al. (2013), the GP computation upper bound is reduced to O(n3i )
which brings more flexibility in increasing the number of inducing points.
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Figure 5.8: Illustrative examples of exploration in the Freiburg Campus map. The top left and
right, and the bottom left and right figures show the results for NF, OGMI, GPNF, and GPMI,

respectively.

5.4 Chapter Summary

In this chapter, we studied the problem of autonomous mapping and exploration for a range-

sensing mobile robot using Gaussian processes maps. The continuity of GPOMs is exploited

for a novel representation of geometric frontiers, and we showed that the GP-based mapping

and exploration techniques are a competitor for traditional occupancy grid-based techniques.

The primary motivations stemmed from the fact that high-dimensional map inference requires

fewer observations to infer the map, leading to a faster map entropy reduction. The proposed

exploration strategy is based on learning spatial correlations of map points using incremental

GP-based regression from sparse range measurements and computing mutual information from
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the map posterior and conditional entropy. We presented results for two exploration scenarios

including a highly structured indoor map as well as a large-scale outdoor area.

When accurate sensors with large coverage relative to the environment are available, existing

SLAM techniques can produce reliable localization without the need for an active loop-closure

detection. MI-based utility function proposed in this work is suitable for decision making in such

scenarios. Themore general form of this problem known as active SLAM requires an active search

for loop-closures to reduce pose uncertainties. However, the expansion of the state space to both

the robot pose and map results in a computationally expensive prediction problem. In the next

chapter, we discuss Gaussian processes continuous occupancy mapping problem extensions.



Chapter 6

Gaussian Processes Occupancy

Mapping Extensions

In this chapter, we study extensions to the Gaussian processes continuous occupancy mapping

problem. There are two classes of occupancy mapping problems that we particularly inves-

tigate. The first problem is related to mapping under pose uncertainty and how to propagate

pose estimation uncertainty into the map inference. We develop expected kernel and expected

sub-map notions to deal with uncertain inputs. In the second problem, we account for the com-

plication of the robot’s perception noise usingWarped Gaussian Processes (WGPs) (Snelson et al.

2004). This approach allows for non-Gaussian noise in the observation space and captures the

possible nonlinearity in that space better than standard GPs. The developed techniques can be

applied separately or concurrently to a standard GP occupancy mapping problem. According to

our experimental results, although taking into account pose uncertainty leads, as expected, to

more uncertain maps, by modeling the nonlinearities present in the observation spaceWGPs can

improve the map quality.

In many scenarios such as robotic navigation, the robot pose is partially observable; and we have

access only to an estimate (noise-corrupted version) of the robot pose, as depicted in Figure 6.1.

Under these circumstances, the robot requires to navigate in an uncertain environment (Roy

et al. 1999; Prentice and Roy 2009; Valencia et al. 2013; Vallvé and Andrade-Cetto 2015), and the

71
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Figure 6.1: The pose-graph estimation of the robot trajectory from the Intel research lab.
dataset (Howard and Roy 2003), solved using the techniques in Ila et al. (2010); Valencia et al.
(2013). The large uncertainties from pose estimation are often ignored in the dense occupancy
map representation. For the sake of clarity, loop-closures are omitted, and only one-sixth of the

pose covariances are illustrated.

probability distribution of the robot pose will be the input for the mapping problem. In prac-

tice, and based on the application, most of the occupancy mapping techniques ignore robot pose

uncertainty for map representation; either for efficiency or as the resultant map is not suitable

for navigation. Furthermore, dense representation of the state often makes uncertainty propa-

gation intractable. This problem is not unique to Gaussian Processes Occupancy Maps (GPOMs),

but it is also present in Occupancy Grid Maps. With this motivation, we study the problem of

GP occupancy mapping under pose uncertainty. The first solution is uncertainty propagation

through kernel functions. The second solution we propose uses the expected sub-map notion to

incorporate pose uncertainties into the map building process.

The second problem studied, as discussed in Subsection 4.2.2, is motivated by the fact that due

to the smoothness common in the resultant regressed maps, inferring a high-quality map com-

patible with the actual shape of the environment is non-trivial. Furthermore, for a complicated
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task such as robotic mapping (Thrun 2003a), the additive white Gaussian noise assumption in

standard GPs can be simplistic. To account for these problems, we improve the incremental

GPOM technique using Warped Gaussian Processes Occupancy Maps (WGPOMs). The core idea

is to map the target values through a warping (transforming) function to capture the nonlinear

behavior of the observations.

We tackle the mentioned problems to improve map quality and provide results using incremental

WGPOMs under pose uncertainty.

Remark 6.1. In this chapter, we develop GPOMs extensions using the I-GPOM. The computational

overhead to account for uncertain robot pose can be prohibitive for the case of I-GPOM2, especially

in large environments. Further, WGPOM is also an incremental mapping technique.

6.1 Mapping Under Pose Uncertainty

The main challenge in building occupancy maps under robot pose uncertainty is the dense repre-

sentation of map belief which makes uncertainty propagation computationally expensive. Max-

imum likelihood dense map representations are currently the common practice which does not

necessarily produce correct maps, especially if pose estimation uncertainties are significant. This

popularity can be understood from the fact that employing an environment representation con-

structed with significant uncertainties results in vague obstacles and free space and is not suit-

able for robotic motion planning and navigation. However, accounting for pose uncertainties

in mapping is not only important for correct map representations, but also for motion planning

(prediction) tasks.

6.1.1 Problem Statement and Formulation

Let M be the set of possible static occupancy maps. We consider the map of the environment

as an nm-tuple random variable (M [1], . . . ,M [nm]) whose elements are described by a normal

distribution M [i] ∼N (μ[i],σ [i]), ∀ i ∈ {1: nm}. Let X ⊂ R
2 be the set of spatial coordinates to

build a map on. Let y = ỹ + εy be a noisy measurement (class label; −1 and 1 for unoccupied and

occupied, respectively) at a noisy sample x = x̃ + εx, where εy ∼N (0,σ2
n ) and εx ∼N (0,Σx).
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Define a training set D = {(x[i], y[i]) | i = 1: nt} which consists of noisy measurements at noisy

locations. Let function f : X →M, i.e. y = f (x̃ + εx) + εy , be the real underlying process that we

model as a Gaussian process

f (x) ∼ GP (0, k(x,x′)) (6.1)

where k : X ×X → R is the covariance function or kernel; and x and x′ are either in the training

or the test (query) sets. Estimate p(M =m | D), i.e. the map posterior probability given a noisy

training set. For a given query point in the map, x∗, GP predicts a mean, μ, and an associated

variance, σ . We can write

m[i] = y(x[i]∗ ) ∼N (μ[i],σ [i]) (6.2)

To show a valid probabilistic representation of themap p(m[i] | D), the classification step squashes

data into the range [0,1].

Approximate methods for uncertainty propagation into GPs models through kernel functions

are proposed in Girard (2004), and developed for GPOM in O’Callaghan et al. (2010). Generally

speaking, training and query points can both be noisy. In Girard (2004), the problem of prediction

at an uncertain input is discussed while it is assumed the input in training data is noise free.

In O’Callaghan et al. (2010), using a similar approach, the idea is extended to account for noisy

training input. Similarly, we assume the input in training data is uncertain and query points

are deterministic. In this chapter, we employ this technique and develop the expected sub-map

technique for approximate uncertainty propagation, then incorporate both techniques into the

WGPOM framework.

We propose two methods to solve the defined problem. The first approach is based on the ex-

pected kernel. The alternative approach, expected sub-map, treats all inputs deterministically and

propagates pose uncertainties through uncertain map fusion. The following assumptions are

made in the present work:

Assumption 6.2 (Deterministic query points). In the problem of Gaussian processes occupancy

mapping under robot pose uncertainty, query points are deterministic.

Assumption 6.3. The covariance function in the expected sub-map method is stationary, k(x,x′) =

k(‖x − x′‖).
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Remark 6.4. Using Assumption 6.3, map inference in the local coordinates of the robot (local map)

can be done using deterministic inputs.

6.1.2 Expected Kernel

The core idea in the expected kernel approach is taking an expectation of the covariance function

over uncertain inputs. Let x be distributed according to a probability distribution p(x). The

expected covariance function can be computed as

k̃ = E[k] =
∫
Ω
kdp (6.3)

In general, this integral is analytically intractable; therefore we employ two numerical approxi-

mations to solve (6.3). However, for the case of the SE kernel, a closed-form solution exists (Gi-

rard et al. 2003). Hence, once the expected covariance matrix is calculated, we can compute the

predictive conditional distribution for a single query point similar to standard GPs.

Monte Carlo Integration

Since we assume the distribution of the uncertain input is known, by drawing independent sam-

ples, x[i], from p(x) and using a Monte-Carlo technique, we can approximate Equation (6.3) by

k̃ =
1
n

n∑
i=1

ki (6.4)

where ki is the covariance function computed at x[i].

Remark 6.5. In Equation (6.4), the covariance k(x,x) and cross-covariance k(x,x∗) are both denoted

as ki . Depending on the input, the integration is only performed on training points as it is assumed

query points are deterministic.
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Gauss-Hermite Quadrature

Gauss-Hermite quadrature (Davis and Rabinowitz 1984) of integrals of the kind
∫ ∞
−∞ exp(−x2)f (x)dx

are given by Equation (3.27), repeated here for convenience

∫ ∞

−∞
exp(−x2)f (x)dx ≈

n∑
j=1

w[j]f (x[j])

The multi-variate normal distribution of noisy input is given byN (x̃,Σx). Through a change of

variable such that LLT = 2Σx and u = L−1(x − x̃), where L is a lower triangular matrix that can

be calculated using a Cholesky factorization, the Equation (6.3) can be approximated as

k̃ = (2π)
−d
2

n∑
i1=1

...
n∑

id=1

w̄ki1:d (6.5)

where w̄ � ∏d
j=1w

[ij ], u[ij ] are the roots of the Hermite polynomial Hn, ui1:d � [u[i1], ...,u[id ]]T ,

and ki1:d is the covariance function computed at xi1:d = Lui1:d + x̃. When d = 2, we can simplify

Equation (6.5) and write

k̃ =
1
2π

n∑
i1=1

n∑
i2=1

w̄ki1:2 (6.6)

Remark 6.6. We assumed points from the map spatial support, x ∈ X , are global coordinates. In

practice, to transform local points, an unscented transform (Julier and Uhlmann 1997) is used to

reduce linearization errors (O’Callaghan et al. 2010).

An illustrative example of GP regression where inputs are uncertain is shown in Figure 6.2. By

propagating the input uncertainty using the expected kernel, the output does not follow the

observations exactly yet remains consistent as the underlying function is within the estimated

uncertainty bounds.

6.1.3 Expected Sub-map

As an alternative strategy, We exploit the fact that a stationary covariance function does not

depend on the selected coordinates, i.e. the global or a local sub-map frame. Therefore, we treat

all training inputs as noise free and conduct map inference using deterministic inputs in the local
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Figure 6.2: The plot shows an example of GP regression with uncertain inputs. The GP-EK
shows GP regression by incorporating the input uncertainty using the expected kernel. The
standard GP results are generated by ignoring the input uncertainty which cannot provide a
consistent solution. The ground truth function is f (x) = 1

5 cos(x
2)e−x + 3

20 sin(x) and training
points are corrupted by εx ∼N (0,0.62).

(sensor/robot) frame. To fuse the inferred sub-map into the global map, we draw independent

samples from p(xt). In other words, by taking the expectation over the location of the sub-map,

we propagate uncertainty of each map point to its neighborhood. Thus, we have

p(m|x̃, y) =
∫

p(m|x, y)p(xt)dxt (6.7)

and by drawing independent samples from p(x) and using a Monte-Carlo approximation it fol-

lows that

p(m|x̃, y) ≈ 1
n

n∑
j=1

p(mj |xj ,y) (6.8)

Note that any sub-map p(mj |xj ,y) can be fused into the global map using Algorithm 4. However,

as a result of sampling, the expected map, p(m|x̃, y), is similar to a mixture distribution; therefore,

the mean and variance calculations need to be addressed accordingly. We present the following

proposition to calculate the first two moments of p(m|x̃, y).

Lemma 6.7 (Sample mean and variance of a mixture distribution). Let X1,X2, ...,Xn be random

variables that are distributed according to probability densities p(x1),p(x2), ...,p(xn), with constant

weightsw1,w2, ...,wn, where
∑n

i=1wi = 1. The probability density function of the mixture is p(x) =∑n
i=1wip(xi ). Given μi = E[Xi ] and σ2

i = V[Xi ], the mean and variance of the mixture density is
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given by

μ = E[X] =
n∑
i=1

wiE[Xi ] (6.9)

σ2 = V[X] =
n∑
i=1

wi(σ
2
i +μ2i )− (

n∑
i=1

wiμi )
2 (6.10)

Proof. The proof follows from the fact that for the k-th moment of the mixture, we can write

E[X(k)] =
n∑
i=1

wiE[X
(k)
i ] (6.11)

and define the variance accordingly.

Proposition 6.8 (Expected sub-map fusion). In incremental map building, to compute p(m|x̃, y),
sampled sub-maps can be fused into the global map using the following equations

E[M] =
1
n

n∑
j=1

E[Mj ] (6.12)

V[M] =
1
n
(

n∑
j=1

(V[Mj ] +E[Mj ]
2)− 1

n
(

n∑
j=1

E[Mj ])
2) (6.13)

where E[Mj ] is the updated global map built using the j-th independently drawn robot pose sample,

and (6.12) and (6.13) can be computed point-wise for every map point m[i].

Proof. The proof directly follows from Lemma 6.7.

Therefore, we can perform incremental map fusion by considering the robot pose uncertainty

without modifying the GP framework.

6.2 Warped GP Occupancy Mapping

The primary challenge in modeling the environment “accurately” is the different nature of free

and occupied classes. Free space tends to span vast areas while occupied space often represents

the structural shape of the environment. In addition, the assumption of additive Gaussian noise
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in the observations in standard GPs is unable to capture complexity in observations appropri-

ately. We propose to employ Warped Gaussian Processes to account for the nonlinear behavior

of observations. This method is appealing as it allows for non-Gaussian noise in the observation

space. However, exact inference is not possible anymore, and approximate inference algorithms

such as expectation propagation (Minka 2001) or variational Bayes (Jordan et al. 1999) are required.

The idea to accommodate non-Gaussian distributions and noise is to use a nonlinear monotonic

function for warping (transforming) the observation space (Snelson et al. 2004). Let gw(·) be a

transformation from the observation space to a latent space as

t[i] = gw(y
[i];ψ) i = 1: n (6.14)

where ψ denotes the vector of warping function hyperparameters and t = [t[1], . . . , t[n]]T is the

vector of latent targets. Now we can re-write the GP formulation for the latent target and by

accounting for the transformation between a true observation and the latent target, the NLML

can be written as

log p(y|X,θ,ψ) =− 1
2
gw(y)

T [K(X ,X ) +σ2
n In]

−1gw(y)

− 1
2
log |K(X ,X ) +σ2

n In| −
n
2
log 2π +

n∑
i=1

log
∂gw(y)
∂y

∣∣∣∣∣∣
y[i]

(6.15)

in which the last term is the Jacobian of the defined transformation. To compute the mean at a

new test point, it is possible to calculate the expectation of the inverse warping function over the

latent target predictive density, therefore

E[y[n+1]] =
∫

g−1w (t)N (t̂[n+1],σ [n+1])dt = E[g−1w ] (6.16)

This integral can be computed numerically using Gauss-Hermite quadrature with a weighted

sum of the inverse warping function g−1w .

Inspired by the neural network transfer functions, a sum of hyperbolic tangent functions satis-

fies the requirements for the transformation to be monotonic and at the same time allowing for

complicated mappings. With hyperparameters vector ψ = [a,b,c]T , the function can be defined
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Figure 6.3: A challenging example of regression using standard and Warped GPs. The mea-
surements are sampled from the true output values by adding noise, i.e. εy ∼ N (0,0.052). The
warping functions are tanh(
 = 2) and polynomial of degree five. The tanh demonstrate a better
extrapolating behavior, while the polynomial function can follow the underlying function more
closely. However, polynomials are prone to over-fitting as it can be seen that the estimated

uncertainties (blue shaded region) are significantly narrower.

as

gw(y;ψ) = y +

∑

i=1

a[i] tanh(b[i](y + c[i])) a[i], b[i] ≥ 0 ∀i ∈ {1 : 
} (6.17)

where the parameter 
 is the number of steps and has to be set depending on the complexity

of observations, a = [a[1], . . . , a[
]], b = [b[1], . . . , b[
]], and c = [c[1], . . . , c[
]]. Alternative warping

functions can be polynomials (ψ = c):

gw(y;ψ) = y +

∑

i=2

c[i−1]sgn(y)|y|i c[i] ≥ 0 ∀i ∈ {2 : 
} (6.18)

Figure 6.3 shows a simple yet challenging example for regression using standard andWarpedGPs.

The measurements are corrupted by an additive Gaussian noise. Even though the noise is still

Gaussian, the complicated structure of the underlying function makes modeling it non-trivial.

Note that the inputs are deterministic.

Remark 6.9. By increasing the number of training points, it is possible to generate more accurate

results using standard GPs. However, given the cubic time complexity of GPs, dense training datasets

reduce the scalability of the algorithms significantly.



Chapter 6. GP Occupancy Mapping Extensions 81

Figure 6.4: The synthetic dataset used for comparison of GPOM and WGPOM under various
uncertainty propagation conditions. The figure shows collected observations along the robot
trajectory (orange dots) and the robot position uncertainty ellipse at each corresponding pose
(Q3 scenario). The robot starting position is shown in green. Map dimensions are in meters.

6.3 Results and Discussion

We now present results from experiments using a synthetic dataset and a real publicly avail-

able pose-graph dataset. The synthetic dataset, Figure 6.4, is built in such a way as to highlight

the strength of WGPOM to model complicated structural shapes and to better appreciate the

mapping performance of the incremental GPOM and WGPOM under the Expected Kernel (EK)

and Expected Sub-Map (ESM) uncertainty propagation techniques. On the other hand, the Intel

dataset (Howard and Roy 2003), as shown in Figure 6.1, exposes an extreme real-world example

of the problem at hand where highly uncertain robot poses along the estimated trajectory are

present.

We compare the overall taken time to build the entire map (using all the available data) as well as

the map accuracy using the AUC (Fawcett 2006). For each model, we learn the hyperparameters

at the first increment of map building by minimization of the NLML using the first set of train-

ing data with manual supervision to ensure the best possible outcome for all models. The data

processing and computations for the incremental map building are implemented usingMATLAB.



Chapter 6. GP Occupancy Mapping Extensions 82

Table 6.1: Details of the experiments for the motion uncertainty effect in a synthetic dataset
using the expected kernel and the expected sub-map uncertainty propagation schemes. The ex-
periment is repeated five times by increasing the robot motion noise covariance, i.e.Q1, . . . ,Q5.

Note that all mapping techniques are incremental.

Model selection:

Technique Cov. func. Warping func.

GPOM Matérn (ν = 5/2) n/a
WGPOM SE (ARD) tanh (
 = 2)
Compared mapping techniques:

Technique Uncertainty propagation Abbreviation

GPOM EK GEK
GPOM ESM GESM
WGPOM EK WEK
WGPOM ESM WESM
Numerical integration:

Uncertainty propagation Technique Samples

EK Gauss-Hermite 9
ESM Monte-Carlo 10
Training and test (query) points size:

Parameter Symbol Value

Tot. training points nt 87833
Ave. training points n̄t 829
Test points nq 6561
Robot motion model noise covariances:

Q1 = diag(0.05m,0.05m,0.25rad)2, Q2 = diag(0.1m,0.1m,0.5rad)2

Q3 = diag(0.15m,0.15m,0.75rad)2, Q4 = diag(0.2m,0.2m,1.00rad)2

Q5 = diag(0.3m,0.3m,2.00rad)2

6.3.1 First Experiment: Motion Uncertainty Effect

The map of the environment, the robot trajectory, the observations collected at each pose using

a simulated range-finder sensor, together with the evolution of the robot pose uncertainty due

to its motion noise, are illustrated in Figure 6.4. The uncertainty ellipsoids show the worst-case

covariance of the robot position, and there is no uncertainty reduction along the path by closing

loops.

Details from the model selection, compared techniques, and conducted experiments are collected

in Table 6.1. We use Matérn (ν = 5/2) covariance function for GPOM as its performance has been

shown fitting in Chapter 4. For WGPOM, we use SE covariance function with Automatic Rele-

vance Determination (ARD) (Neal 1996). Since the observations do not cover the entire map, we
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Figure 6.5: The AUC and runtime for incremental GPOM and WGPOM using the synthetic
dataset and proposed uncertainty propagation methods. The runtimes are in minutes. All maps
are computed using 0.5m resolution and a kd-tree data structure for the storage and nearest
neighbor queries. As it is expected, generally, by propagating pose uncertainties into the map
inference, the map quality degrades (GESM and GEK). However, applying WGPs can alleviate

this effect and produce maps with improved accuracies (WESM and WEK).

use tanh with 
 = 2 as the warping function to improve the extrapolation ability of GPs (Fig-

ure 6.3). The experiment for each mapping technique using EK and ESM uncertainty propagation

is repeated by increasing the robot motion noise covariance in five steps. In Figure 6.5, the map

accuracy and runtime comparisons of all methods using AUC are shown. In the bottom plot,

the runtime for the ESM is higher than the EK for both mapping techniques. From the top plot,

we can see that applying WGPs improves the map quality regardless of the uncertainty propa-

gation choice. The expected kernel is computed using Gauss-Hermite quadrature with 9 sample

points, and the expected sub-map computations are performed using Monte-Carlo approxima-

tions with 10 samples. When increasing the number of samples from 9 to 18 we did not observe

any improvement in the map accuracy.

Figure 6.6 illustrates the results of all combinations of the proposed techniques. GPOM and

WGPOM by ignoring the robot pose uncertainty are shown in Figures 6.6a and 6.6d, respectively.

WGPOM demonstrates a better discrimination performance between class labels in the absence
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Illustrative examples of the occupancy map from the first experiment (for Q3). The
top row corresponds to the GPOM, and the bottom row shows WGPOM results. The maps in (a)
and (d) show GPOM andWGPOM results by ignoring the robot pose uncertainties. In (b) and (e)
the robot pose uncertainty is incorporated using the expected sub-map method. In (c) and (f) the
robot pose uncertainty is incorporated using the expected kernel method. The WGPOM-based
maps can deal with input uncertainty better and provide maps with higher quality, shown in (e)

and (f). All maps are computed using 0.5m resolution.
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Table 6.2: TheAUC and runtime for incremental GPOMandWGPOMusing the Intel dataset and
proposed uncertainty propagation methods. The runtimes are in minutes. Maps are computed
using 0.2m resolution and a kd-tree data structure for the storage and nearest neighbor queries.
The Sparse covariance function is used for all techniques and Polynomials of degree seven as the
warping function. Total and average number of training points, and the number of test points

are nt = 137979, n̄t = 186, and nq = 40401, respectively.

Method No uncertainty EK ESM

AUC Time AUC Time AUC Time

GPOM 0.8499 72 0.7323 532 0.7026 657
WGPOM 0.8463 125 0.7887 577 0.7436 766

of measurements. This effect can be seen in the middle of the smaller star in both maps. Note that

further optimization of hyperparameters can lead to over-fitting instead of solving the discussed

problem.

Even though ESM and EK try to achieve the same goal, they demonstrate different behaviors.

Generally speaking, integration over the covariance function (EK) has a smoothing effect that

sometimes can be desirable. For example, in all the presentedmaps the central part of themap due

to the lack of observation is partially complete. As a result of this smoothing effect of the EK, this

part is correctly classified to be closer to the free space class. However, the probabilities are closer

to 0.5, and the robot cannot be completely confident about the status of the area. Alternatively,

ESM leads to relatively more confident maps with smaller smoothing effects. The resultant maps

are safer for navigation as the gap between occupied and unoccupied areas is classified as an

unknown region. While this behavior can be an appealing property from amotion planning point

of view, the occupied areas are faded; and we cannot see the structural shape of the environment

accurately. Overall, by propagating more uncertainty into the map inference process, we expect

less accuracy in the outcome and more realistic estimation of the belief. However, WGPs by

modeling nonlinearity in the observation space improve the map quality.

6.3.2 Experimental Results

The experimental results of occupancy mapping using the Intel dataset are shown in Table 6.2

and Figure 6.7. In the absence of a complete ground truth map, the ground truth map for this

dataset is generated using the estimated robot trajectory and rangefinder measurements. In this

way, the ground truth map has the same orientation which makes the comparison convenient.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Occupancy mapping results using the Intel dataset. The top row corresponds to the
GPOM, and the bottom row shows WGPOM results. The maps built by ignoring pose uncer-
tainties are shown in (a) and (d) using GPOM and WGPOM, respectively. In (b) and (e) the robot
pose uncertainty is incorporated using the expected sub-map method. In (c) and (f) the robot

pose uncertainty is incorporated using the expected kernel method.
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The covariance function used is an intrinsically sparse kernel (Melkumyan and Ramos 2009).

The logic behind this choice is that the structural shape of the environment is complex, and it is

cluttered with random people and typical office furniture; therefore, using a covariance function

that correlatesmap points over a long range is not suitable. We use the Sparse covariance function

for both GPOM and WGPOM and their corresponding uncertainty propagation experiments.

Table 6.2 shows the runtime and accuracy comparison of the mapping techniques. In this sce-

nario, where the pose uncertainties are ignored, GPOM performs marginally better than WG-

POM. This result, shown in Figures 6.7a and 6.7d, can be understood from the fact that WGPOM

has covered more partially observed areas in the map. While this is desirable, in the absence of a

complete ground truth map, it leads to a lower AUC. However, WGPOMmaintains more accurate

maps by incorporating the pose uncertainties which is the actual problem to be solved.

In this experiment, the uncertainty propagation using the ESM method leads to poor map quali-

ties and the maps, shown in Figures 6.7b and 6.7e, are almost entirely faded due to the significant

pose uncertainties resulting from the robot repeatedly traveling through the same areas. This

fading effect could be partially mitigated by increasing the number of samples, but based on the

runtimes in Table 6.2, it is not justifiable. Nevertheless, WGPOM using the EK demonstrates a

better performance in comparison to all methods that incorporated pose uncertainties; more-

over, it produces a map that is also usable for navigation tasks, i.e. obstacle avoidance, and path

planning.

6.3.3 Discussion and Limitations

Uncertainty propagation through the developed methods can provide safer maps for robotic nav-

igation. However, long-term uncertainty propagation leads to highly faded maps. If the uncer-

tainty at each step is large and the robot cannot improve the localization confidence through

loop-closures, this fading effect is more severe. Also, the uncertainty of the robot orientation has

a large impact on the map quality. As we have seen in the presented results, in the expected sub-

map approach, if the orientation uncertainty is significant, integration using a small number of

samples leads to poor map accuracies. The expected kernel technique has an advantage from this

perspective, as the unscented transform maps the measurement into the map space, and samples

are related to the map spatial dimensions.
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It is also demonstrated that the concept of accounting for possible nonlinearities in the obser-

vation space, here through the warping function, has desirable effects on the map quality. Our

results showed that regardless of the uncertainty propagation technique, applyingWGPs provide

better maps than standard GPs. We reiterate that by ignoring the robot pose uncertainty, the map

is a potentially incorrect representation of the environment.

Finding an appropriate warping function that is compatible with non-Gaussianity in the observa-

tion space can be time-consuming unless the model selection is performed in a more systematic

way. In this work, we tried several functions and chose the best one. Moreover, since the exact

inference is not possible, approximate methods may not always converge. Although the upper-

bound time complexity of WGPOM is similar to that of GPOM, in practice for larger datasets the

inference takes longer. Improving the computational efficiency of the proposed methods is an

interesting direction to follow.

6.3.4 Computational Complexity

For both GPOM and WGPOM, the worst-case time complexity is cubic in the number of training

data, O(n̄3t ). For ESM, the number of sub-map fusion into the global map scales linearly with

the number of samples, ns , and the sub-map fusion involves a nearest neighbor query for each

test point resulting inO(n̄3t +nsnq lognq). In the case of two-dimensional mapping, using Gauss-

Hermite quadrature, the time complexity of EK computation is quadratic in the number of sample

points and together with sub-map fusion leads to O(n̄3t +n2s +nq lognq). In EK, applying the un-

scented transform to all training points involves a Cholesky factorization of the input covariance

matrix which is ignored for the two-dimensional case.

6.4 Chapter Summary

In this chapter, we studied incremental GP occupancy mapping extensions throughWGPs. Since

occupancy maps have dense belief representations, the robot pose uncertainty is often ignored.

We proposed two methods to incorporate robot pose uncertainty into the map inference, the

expected kernel and the expected sub-map. While the expected kernel handles the input un-

certainty within the GPs framework, the expected sub-map exploits the inherent property of
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stationary covariance functions for map inference in the local frame with deterministic inputs.

The proposed methods can also be useful if the belief representation is not dense (as opposed to

occupancy mapping). Furthermore, theWGPOM technique can deal with the nonlinear behavior

of measurements through a nonlinear transformation which improves the ability of GPs to learn

complex structural shapes more accurately, especially, under uncertain inputs. In the following

chapter, we study a more general class of motion planning using a sampling-based strategy, and

we use the expected kernel method developed here for the prediction purpose.



Chapter 7

Sampling-based Incremental

Information Gathering

In this chapter, we propose a sampling-based motion planning algorithm equipped with an

information-theoretic convergence criterion for incremental informative motion planning.

The proposed approach allows for a dense map representation and incorporates the full state

uncertainty into the planning process. The problem is formulated as a maximization problem

with a budget constraint. Our approach is built on rapidly-exploring information gathering al-

gorithms and benefits from advantages of sampling-based optimal motion planning algorithms.

We propose two information functions and their variants for fast and online computations. We

prove an information-theoretic convergence for the entire exploration and information gathering

mission based on the least upper bound of the average map entropy. The convergence criterion

gives rise to a natural automatic stopping criterion for information-driven motion control. We

demonstrate the performance of the proposed algorithms using three scenarios: comparison of

the proposed information functions and sensor configuration selection, robotic exploration in

unknown environments, and a wireless signal strength monitoring task in a lake from a publicly

available dataset collected using an autonomous surface vehicle.

Exploration in unknown environments is a major challenge for an autonomous robot and has

numerous present and emerging applications from search and rescue operations to space explo-

ration programs. While exploring an unknown environment, the robot is often tasked to monitor

90
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a quantity of interest through a cost or an information quality measure (Dhariwal et al. 2004;

Singh et al. 2010; Marchant and Ramos 2012; Dunbabin and Marques 2012; Lan and Schwager

2013; Yu et al. 2015). Robotic exploration algorithms usually rely on geometric frontiers (Ya-

mauchi 1997; Ström et al. 2015) or visual targets (Kim and Eustice 2015) as goals to solve the

planning problem using geometric/information gain-based greedy action selection or planning

for a limited horizon. The main drawback of such techniques is that a set of targets constrains the

planner search space to the paths that start from the current robot pose to targets. In contrast, a

more general class of robotic navigation problem known as robotic information gathering (Singh

et al. 2009; Binney and Sukhatme 2012; Binney et al. 2013), and in particular the Rapidly-exploring

Information Gathering (RIG) (Hollinger and Sukhatme 2013, 2014) concept exploits a sampling-

based planning strategy to calculate the cost and information gain while searching for traversable

paths. This approach differs from classic path planning problems as there is no goal to be found.

Therefore, a solely information-driven robot control can be formulated. Another important ad-

vantage of RIG methods is their multi-horizon planning nature through representing the envi-

ronment by an incrementally built graph that considers both the information gain and cost.

Rapidly-exploring information gathering algorithms are suitable for non-myopic robotic explo-

ration techniques. However, the developed methods are not online, the information function

calculation is often a bottleneck, and they do not offer an automated convergence criterion,

i.e. they are anytime 1. To be able to employ RIG for online navigation tasks, we propose an

Incrementally-exploring Information Gathering (IIG) algorithm built on the RIG. In particular,

the following developments are performed:

− We allow the full state including the robot pose and a dense map to be partially observable.

− We develop a convergence criterion based on relative information contribution. This con-

vergence criterion is a necessary step for incremental planning as the robot needs to exe-

cute planned actions autonomously.

− We propose two information functions (five including their variants) that can approximate

the information gain for online applications. The algorithmic implementation of the pro-

posed functions is also provided.

1Being anytime is typically a good feature, but we are interested in knowing when the algorithm converges.
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− We develop a heuristic algorithm to extract the most informative trajectories.

− We prove an information-theoretic automatic stopping criterion for the entire mission

based on the least upper bound of the average map entropy.

− We provide results in batch and incremental experiments as well as in publicly available

robotic datasets and discuss potential applications of the developed algorithms.

This chapter is organized as follows. In the next section, we present the problem definition and

make the difference between RIG and IIG algorithms clear. We explain RIG algorithms to es-

tablish the required basis. In Section 7.2, we present the novel IIG algorithm. In Section 7.3,

we discuss the proposed information functions to approximate the information quality of nodes

and trajectories. In Section 7.4, the problem of path extraction and selection is explained and

a heuristic algorithm is proposed to solve the problem. Section 7.5 presents theoretical analy-

ses of the proposed algorithms including proving an information-theoretic automatic stopping

criterion for exploration and information gathering missions. In Section 7.6, we present results

from the comparison of the proposed information functions, exploration experiments including

comparison with relevant techniques in the literature, a lake monitoring scenario, and discuss

the limitations and possible extension of this work. Finally, Section 7.7 concludes the chapter.

7.1 Problem Statement and Preliminaries

The problem of robotic information gathering is formulated as a maximization problem subject

to finite resources, i.e. a budget b. In Hollinger and Sukhatme (2014), this problem is defined as

follows.

Problem 7.1 (Informative motion planning). Let A be the space of all possible trajectories and

fI (P ) be a function that quantifies the information quality along a trajectory P . Let fc(P ) be a
function that returns the cost associated with trajectory P . Given the available budget b, the problem
can be formulated as following.

P ∗ = argmax
P∈A

fI (P ) s.t. fc(P ) ≤ b (7.1)
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Now we express the assumptions in RIG algorithms.

Assumption 7.2. The cost function fc(P ) is strictly positive, monotonically increasing, bounded,

and additive such as distance and energy.

Remark 7.3. The information function fI (P ) can be modular, time-varying modular, or submod-

ular.

The information function assumption follows from Hollinger and Sukhatme (2014), even though

we focus our attention on the submodular class of information functions as the information

gathered at any future time during navigation depends on prior robot trajectories. Another rea-

son to consider submodular information functions is to avoid information “double-counting”.

This choice allows us to develop an information-theoretic convergence criterion for RIG/IIG as

the amount of available information remains bounded. The following assumptions are directly

from Hollinger and Sukhatme (2014) which in turn are equivalent or adapted from Bry and Roy

(2011); Karaman and Frazzoli (2011). The Steer function used in Assumption 7.4 extends nodes

towards newly sampled points.

Assumption 7.4. Let xa, xb , and xc be three points within radiusΔ of each other. Let the trajectory

e1 be generated by Steer(xa,xc,Δ), e2 be generated by Steer(xa,xb,Δ), and e3 be generated by

Steer(xb,xc,Δ). If xb ∈ e1, then the concatenated trajectory e2 + e3 must be equal to e1 and have

equal cost and information.

This assumption is required as in the limit drawn samples are infinitely close together, and the

Steer function, cost, and information need to be consistent for any intermediate point.

Assumption 7.5. There exists a constant r ∈ R>0 such that for any point xa ∈ Xf there exists an

xb ∈ Xf , such that 1) the ball of radius r centered at xa lies inside Xf and 2) xa lies inside the ball

of radius r centered at xb .

This assumption ensures that there is enough free space near any point for extension of the

graph. Violation of this assumption in practice can lead to failure of the algorithm to find a path.

Assumption 7.6 (Uniform sampling). 2 Points returned by the sampling function sample are

independent and identically distributed (i.i.d.) and drawn from a uniform distribution.

2Results extend naturally to any absolutely continuous distribution with density bounded away from zero on
workspace X (Karaman and Frazzoli 2011).
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7.1.1 Incremental Informative Motion Planning

Now we define the problem of incremental informative motion planning as follows.

Problem 7.7 (Incremental informative motion planning). Let s0:ts ∈ S be the current estimate

of the state up to time ts . Let At be the space of all possible trajectories at time t and fI (Pt) be a
function that quantifies the information quality along a trajectory Pt . Let fc(Pt) be a function that

returns the cost associated with trajectory Pt . Given the available budget bt , the problem can be

formulated as following:

P ∗
t = argmax

Pt∈At

fI (Pt) ∀ t > ts s.t. fc(Pt) ≤ bt and S = s0:ts (7.2)

Remark 7.8. The state S can include the representation of the environment (map), the robot trajec-

tory, and possibly any other variables defined in the state vector. In general, the information function

fI (Pt) is responsible for incorporating the state uncertainty in the information gain calculations.

Remark 7.9. In practice we solve the problem incrementally and use a planning horizon T > ts

that in the limit goes to∞.

The main difference between Problem 7.1 and Problem 7.7 is that in the latter, the robot does

not have the full knowledge of the environment a priori. Therefore Problem 7.7 is not only the

problem of information gathering but also planning for estimation as the robot needs to infer the

map (and in general its pose in the SLAM problem) sequentially. Note that we do not impose any

assumptions on the observability of the robot pose and the map, therefore, they can be partially

observation as the case in POMDPs.

The problems mentioned earlier are both in their offline (nonadaptive) and online (adaptive)

forms NP-hard (Singh et al. 2009). We build our proposed incremental information gathering

algorithm on top of RIG to solve the interesting problem of autonomous robotic exploration

in unknown environments. Furthermore, since the ultimate goal is online applications, we only

consider the RIG-tree variant to be extended for sequential planning. This conclusion stems from

extensive comparisons of RIG variants provided in Hollinger and Sukhatme (2014). However, we

acknowledge that the RIG-graph is an interesting case to consider as under a partial ordering

assumption it is asymptotically optimal.
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Algorithm 8 RIG-tree()

Require: Step size Δ, budget b, free space Xf , EnvironmentM, start configuration xstart , near
radius r;

1: // Initialize cost, information, starting node, node list, edge list, and tree
2: Iinit ← Information([ ],xstart ,M),Cinit ← 0,n← 〈xstart ,Cinit , Iinit〉
3: V ← {n},Vclosed ←∅,E ←∅

4: while not terminated do

5: // Sample configuration space of vehicle and find nearest node
6: xsample ← Sample(Xf )
7: xnearest ← Nearest(xsample,V\Vclosed )
8: xf easible ← Steer(xnearest ,xsample,Δ)
9: // Find near points to be extended
10: Vnear ← Near(xf easible,V\Vclosed , r)
11: for all nnear ∈ Vnear do
12: // Extend towards new point
13: xnew ← Steer(xnear ,xf easible,Δ)
14: if NoCollision(xnear ,xnew,Xf ) then
15: // Calculate new information and cost
16: Inew ← Information(Inear ,xnew,M), c(xnew)← Cost(xnear ,xnew)
17: Cnew ← Cnear + c(xnew),nnew ← 〈xnew,Cnew, Inew〉
18: if Prune(nnew) then
19: delete nnew
20: else

21: // Add edges and nodes
22: E ← ∪{(nnear ,nnew)},V ← ∪{nnew}
23: // Add to closed list if budget exceeded
24: if Cnew > b then

25: Vclosed ←Vclosed ∪ {nnew}
26: end if

27: end if

28: end if

29: end for

30: end while

31: return T = (V ,E)

7.1.2 RIG Algorithms

The sampling-based RIG algorithms find a trajectory that maximizes an information quality met-

ric with respect to a pre-specified budget constraint (Hollinger and Sukhatme 2014). The RIG is

based on RRT*, RRG, and PRM* (Karaman and Frazzoli 2011) and borrows the notion of infor-

mative path planning from the branch and bound optimization (Binney and Sukhatme 2012).

Algorithm 8 shows the RIG-tree algorithm. The functions that are used in the algorithm are

explained as follows.
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Cost – The cost function assigns a strictly positive cost to a collision-free path between two

points from the free space Xf .

Information – This function quantifies the information quality of a collision-free path between

two points from the free space Xf .

Sample – This function returns i.i.d. samples from Xf .

Nearest – Given a graph G = (V ,E), where V ⊂ Xf , and a query point x ∈ Xf , this function

returns a vertex v ∈ V that has the “closest” distance to the query point 3.

Steer – This function extends nodes towards newly sampled points and constrains the motion

of the robot 4.

Near – Given a graph G = (V ,E), where V ⊂ Xf , a query point x ∈ Xf , and a positive real number

r ∈ R>0, this function returns a set of vertices Vnear ⊆ V that are contained in a ball of radius r

centered at x.

NoCollision – Given two points xa,xb ∈ Xf , this functions returns true if the line segment

between xa and xb is collision-free and false otherwise.

Prune – This function implements a pruning strategy to remove nodes that are not “promising”.

This can be achieved through defining a partial ordering for co-located nodes.

In line 2-3 the algorithm initializes the starting node of the graph (tree). In line 6-8, a sample point

from workspace X is drawn and is converted to a feasible point, from its nearest neighbor in the

graph. Line 10 extracts all nodes from the graph that are within radius r of the feasible point.

These nodes are candidates for extending the graph and each node is converted to a new node

using the Steer function in line 13. In line 14-17, if there exists a collision-free path between the

candidate node and the new node, the information gain and cost of the new node are evaluated.

In line 18-25, if the new node does not satisfy a partial ordering condition is pruned. Otherwise,

it is added to the graph. Furthermore, the algorithm checks for the budget constraint violation.

The output is a graph that contains a subset of traversable paths with maximum information

gain.

3Here we use Euclidean distance.
4Through this function, it is possible to make the planner kinodynamic.
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7.2 IIG: Incrementally-exploring Information Gathering

In this section, we present the IIG algorithm which is essentially RIG with an information-

theoretic convergence condition. The algorithmic implementation of IIG is shown inAlgorithm 9.

We employ IIG to solve the robotic exploration problem with the partially observable state. Both

RIG and IIG, through incremental sampling, search the space of possible trajectories to find the

maximally informative path; however, due to the automatic convergence of the IIG it is possible

to run the algorithm online without the full knowledge of the state, i.e. the map and robot poses.

We introduce the Relative Information Contribution (RIC) criterion to detect the convergence of

the search. Themotivation behind this definition is that the number of nodes constantly increases

unless an aggressive pruning strategy is used. However, an aggressive pruning strategy leads to

potentially pruning nodes that can be part of optimal solutions 5. Even though the algorithm

continues to add nodes, it is possible to evaluate the contribution of each added node in the

relative information sense. In other words, adding nodes does not affect the convergence of the

algorithm, but the amount of information the algorithm can collect by continuing the search. We

define the RIC of a node as follows.

Definition 7.10 (Relative Information Contribution). In Algorithm 9, let xnew ∈ Xf be a reachable

point through a neighboring node nnear ∈ V returned by the function Near(). Let Inew and Inear be

the information values of their corresponding nodes returned by the function Information(). The

relative information contribution of node nnew is defined as

RIC � Inew
Inear

− 1 (7.3)

Equation (7.3) is conceptually important as it defines the amount of information gain relative

to a neighboring point in the IIG graph. In practice, the number of samples it takes before the

algorithm finds a new node becomes important. Thus we define penalized relative information

contribution that is computed in line 24.

Definition 7.11 (Penalized Relative Information Contribution). Let RIC be the relative informa-

tion contribution computed using Equation (7.3). Let nsample be the number of samples it takes to

5Note that more than one optimal trajectory at each time can exist, e.g. when the robot needs to explore two
equally important directions.
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Algorithm 9 IIG-tree()

Require: Step size Δ, budget b, free space Xf , EnvironmentM, start configuration xstart , near
radius r , relative information contribution threshold δRIC , averaging window size nRIC ;

1: // Initialize cost, information, starting node, node list, edge list, and tree
2: Iinit ← Information([ ],xstart ,M),Cinit ← 0,n← 〈xstart ,Cinit , Iinit〉
3: V ← {n},Vclosed ←∅,E ←∅

4: nsample ← 0 // Number of samples
5: IRIC ←∅ // Relative information contribution
6: while AverageRIC(IRIC,nRIC ) > δRIC do

7: // Sample configuration space of vehicle and find nearest node
8: xsample ← Sample(Xf )
9: nsample ← nsample +1
10: xnearest ← Nearest(xsample,V\Vclosed )
11: xf easible ← Steer(xnearest ,xsample,Δ)
12: // Find near points to be extended
13: Vnear ← Near(xf easible,V\Vclosed , r)
14: for all nnear ∈ Vnear do
15: // Extend towards new point
16: xnew ← Steer(xnear ,xf easible,Δ)
17: if NoCollision(xnear ,xnew,Xf ) then
18: // Calculate new information and cost
19: Inew ← Information(Inear ,xnew,M), c(xnew)← Cost(xnear ,xnew)
20: Cnew ← Cnear + c(xnew),nnew ← 〈xnew,Cnew, Inew〉
21: if Prune(nnew) then
22: delete nnew
23: else

24: IRIC ← append(IRIC, (
Inew
Inear

− 1)/nsample) // Equation (7.4)
25: nsample ← 0 // Reset sample counter
26: // Add edges and nodes
27: E ← ∪{(nnear ,nnew)},V ← ∪{nnew}
28: // Add to closed list if budget exceeded
29: if Cnew > b then

30: Vclosed ←Vclosed ∪ {nnew}
31: end if

32: end if

33: end if

34: end for

35: end while

36: return T = (V ,E)

find the node nnew. The penalized relative information contribution is defined as

IRIC � RIC
nsample

(7.4)
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An appealing property of IRIC is that it is non-dimensional and it does not depend on the ac-

tual calculation/approximation of the information values. In practice, as long as the information

function satisfies the RIG/IIG requirements, using the following condition, the IIG algorithm con-

verges. Let δRIC be a threshold that is used to detect the convergence of the algorithm. Through

averaging IRIC values over a window of size nRIC , we ensure that continuing the search will not

add any significant amount of information to the IIG graph. In Algorithm 9, this condition is

shown in line 6 by function AverageRIC.

Remark 7.12. In Algorithm 9, δRIC sets the planning horizon from the information gathering point

of view. Through using smaller values of δRIC the planner can reach further points in both spatial

and belief space. In other words, if δRIC → 0, then T →∞.

7.3 Information Functions Algorithms

We propose two algorithms together with their variations to approximate the information gain

at any sampled point from the free workspace. The information function in RIG/IIG algorithms

often causes a bottleneck and computationally dominates the other parts. Therefore, even for

offline calculations, it is important to have access to functions that, concurrently, are computa-

tionally tractable and can capture the essence of information gathering. We emphasize that the

information functions are directly related to the employed sensors. However, once the model is

provided and incorporated into the estimation/prediction algorithms, the information-theoretic

aspects of the provided algorithms remain the same.

The information functions that are proposed are different in nature. First, we discuss MI-based

information functions whose calculations explicitly depend on the sensor model. We provide two

variants of Algorithm 7 that are based on forward and inverse sensor model map predictions. We

also present an algorithm to approximateMI upper boundwhich reveals themaximum achievable

information gain.

Then, we exploit the property of GPs to approximate the information gain. In Equation (3.33),

repeated here for convenience

σ = V[f∗] = k(x∗,x∗)−k(X ,x∗)
T [K(X ,X ) +σ2

n In]
−1k(X ,x∗)



Chapter 7. Sampling-based Incremental Information Gathering 100

the variance calculation does not depend on the target vector (measurements). In this case, the

information gain can be calculated using only map prior and posterior variances which removes

the need for relying on a specific sensor model and calculating the expectation over future mea-

surements. Once we established Gaussian Processes Variance Reduction (GPVR) algorithm, we

use the expected kernel notion to propagate pose uncertainty into the covariance function re-

sulting in Uncertain Gaussian Processes Variance Reduction (UGPVR) algorithm. In particular,

GPVR-based information functions are interesting for the following reasons:

− Unlike MI-based (direct information gain calculation), they are non-parametric.

− GPVR-based information functions provide a systematic way to incorporate pose uncer-

tainty into information gathering frameworks.

− In the case of incomplete knowledge about the quantity of interest in an unknown envi-

ronment, they allow for active learning 6.

7.3.1 Mutual Information

To be able to calculate MI using map prediction we need to update the map after every mea-

surement prediction. It is possible to perform map prediction using a forward or inverse sensor

model. Typically using an inverse sensor model results in simpler calculations. Nevertheless,

we provide two algorithms that use both types of map predictions. First, we define necessary

parameters required in the proposed algorithms.

Definition 7.13 (Map saturation probability). The probability that the robot is completely confi-

dent about the occupancy status of a point is defined as psat .

Definition 7.14 (Map saturation entropy). The entropy of a point from a map whose occupancy

probability is psat , is defined as hsat �H(psat).

The defined parameters are relevant since they prevent the exhaustive search for information

in “less important” areas. The MI-based information function using a forward sensor model

implementation is shown in Algorithm 10. In line 4, the predicted measurement for beam k is

6Although this is one of the most interesting aspects of GPVR-based information functions, it is beyond the scope
of this thesis and we leave it as a possible extension of this work.
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Algorithm 10 InformationMI()

Require: Robot pose or desired location, current map estimate m, sensor model, saturation en-
tropy hsat ;

1: m̄←m
2: I ← 0
3: for all k do

4: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

5: // Current map entropy along beam k
6: h = −∑

i∈I [k]
t+1
[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]

7: I = I + h
8: // Calculate map conditional entropy along beam k

9: for i ∈ I [k]
t+1 do

10: hi = −[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
11: if hi < hsat then
12: I = I − hi
13: continue

14: end if

15: h̄← 0
16: for all z ≤ ẑ

[k]
t+1 do

17: // Calculate marginal measurement probability pz
18: p1 ← p(ẑ[k]t+1|M = 0)
19: p2 ← 0
20: for j ∈ I [k]

t+1 do

21: p1 ← p1(1−m[j])
22: p2 ← p2 + p(ẑ[k]t+1|M =m[j])m[j]

∏
l<j

(1−m[l])

23: end for

24: pz ← p1 + p2
25: // Map prediction at point i along beam k

26: m̄[i] ← p−1z p(ẑ[k]t+1|M =m[i])m[i]
∏
l<i

(1−m[l])

27: h̄← h̄+ pz[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
28: end for

29: I ← I + h̄s−1z
30: end for

31: end for

32: return I (total information gain), m̄ (estimated map)

computed using ray casting in the current map estimate. In line 7, for each beam k, the algorithm

adds the total map entropy along beam k to the information gain, I . In line 11-14, the algorithm

skips any map point whose entropy surpasses the saturation entropy and deducts its entropy

from I . In line 15-28, the map conditional entropy by integrating over future measurement is

calculated and in line 29 it is subtracted from initial map entropy using an appropriate numerical
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Algorithm 11 InformationMI2()

Require: Robot pose or desired location, currentmap estimatem, sensormodel, saturation prob-
ability psat , saturation entropy hsat , free point belief bf ree , occupied point belief bocc;

1: m̄←m
2: I ← 0
3: for all k do

4: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

5: // Current map entropy along beam k
6: h = −∑

i∈I [k]
t+1
[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]

7: I = I + h
8: // Calculate map conditional entropy along beam k

9: for i ∈ I [k]
t+1 do

10: hi = −[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
11: if hi < hsat then
12: I = I − hi
13: continue

14: end if

15: h̄← 0
16: for all z ≤ ẑ

[k]
t+1 do

17: // Calculate marginal measurement probability pz
18: p1 ← p(ẑ[k]t+1|M = 0)
19: p2 ← 0
20: for j ∈ I [k]

t+1 do

21: p1 ← p1(1−m[j])
22: p2 ← p2 + p(ẑ[k]t+1|M =m[j])m[j]

∏
l<j

(1−m[l])

23: end for

24: pz ← p1 + p2
25: // Map prediction at point i along beam k using inverse sensor model
26: if isFree(m̄[i]) then
27: m̄[i] = max(psat − ε,bf ree ∗ m̄[i])
28: else

29: m̄[i] = min(1− psat + ε,bocc ∗ m̄[i])
30: end if

31: h̄← h̄+ pz[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
32: end for

33: I ← I + h̄s−1z
34: end for

35: end for

36: return I (total information gain), m̄ (estimated map)

integration resolution, s−1z .
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Algorithm 12 InformationMIUB()

Require: Robot pose or desired location, current map estimate m, sensor model, saturation en-
tropy hsat ;

1: m̄←m
2: IUB ← 0
3: for all k do

4: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

5: // Current map entropy along beam k
6: h = −∑

i∈I [k]
t+1
[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]

7: IUB = IUB + h
8: // Check for saturated points along beam k

9: for i ∈ I [k]
t+1 do

10: hi = −[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]
11: if hi < hsat then
12: IUB = IUB − hi
13: continue

14: end if

15: Update the map points m̄[i] along beam k using forward or inverse sensor model
16: end for

17: end for

18: return IUB (total information gain), m̄ (estimated map)

In practice, the map prediction using a forward sensor model used in Algorithm 10 for multi-

step predictions may lead to poor map quality and, consequently, inaccurate information gain.

Therefore, we develop Algorithm 11 that employs an inverse sensor model technique for map

prediction. Algorithm 11 performs well in practice for multi-step predictions. The main differ-

ence can be seen in line 26-30 where map prediction is performed using free point belief, bf ree ,

and occupied point belief, bocc . To avoid losing numerical computation accuracy, the predicted

probabilities are clamped using ε > 0 which is a small number relative to psat .

It is also interesting to calculate an upper bound for the information gain. Given the provided

algorithms, it is trivial to calculate MI upper bound using the total amount of map entropy in the

current perception field of the robot. It is faster to compute the upper bound as it only shows the

uncertainty from the current map and it does not consider any gain from future measurements.

However, in practice, it can be useful for fast and online predictions. More details regarding the

difference between maximizing mutual information and entropy are discussed in Guestrin et al.

(2005); Krause et al. (2008).

Lemma 7.15 (Information gain upper bound). For any location in the map, the information gain
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upper bound is given by the total map entropy calculated using map points in the perception field of

the robot at the same location.

Proof. From Lemma 3.5 and Theorem 3.6; 0 ≤ I(M ;Z) = H(M) −H(M |Z) ≤ H(M) which ex-

tends to any sub-mapMsub that is in the perception field of the robot. Note that MI beyond the

perception field is zero as ∀M ∈M\Msub ,M⊥Z .

Algorithm 12 shows theMutual Information Upper Bound (MIUB) information function in which

the integration over predicted measurement is omitted. However, to avoid information double-

counting, it is still required to update the map estimate after each function call. Furthermore, the

MIUB calculation can be integrated into Algorithm 10 and 11 with an insignificant computational

load.

7.3.2 GP Variance Reduction

Variance reduction is the essence of information gathering. Since predictive variance calculation

in Equation (3.33), does not depend on observations, we can come up with a non-parametric

algorithm to estimate variance reduction throughout dense belief representation of the map. For

the problem of informative path planning, a similar approach is used in Binney et al. (2013) where

the reduction in the trace of the covariance function is considered as the objective function (A-

optimality). Here, we are interested in approximating the mutual information through entropy

reduction, i.e. using determinant of the covariance matrix (D-optimality) (Pukelsheim 2006). This

is mainly to keep the proposed IIG framework agnostic about the choice of information functions.

We treat each map point as a continuous random variable that is normally distributed. Therefore

we use differential entropy formulation for mutual information approximation.

Lemma 7.16 (Differential entropy of a Gaussian random variable). Let X ∼ N (μ,σ2). The dif-

ferential entropy of X can be derived as follows.

h(X) =
1
2
log(2πeσ2) (7.5)

Proof. The proof follows from the definition of differential entropy and direct integration (Cover

and Thomas 1991).
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Proposition 7.17. Let X1,X2, ...,Xn have a multivariate normal distribution with covariance ma-

trix K . The mutual information between X and observations Z can be approximated as

Î(X;Z) =
n∑
i=1

log(σXi
)−

n∑
i=1

log(σXi |Z ) (7.6)

where σXi
and σXi |Z are marginal variances for Xi before and after incorporating observations Z ,

i.e. prior and posterior marginal variances.

Proof. Using marginalization property of normal distribution, Lemma 3.1, for every Xi we have

V[Xi ] = K [i,i]. From Lemma 7.16, the mutual information for Xi can be written as

Î [i](Xi ;Z) ≈ log(σXi
)− log(σXi |Z ) (7.7)

and the total mutual information can be calculated as Î(X;Z) =
∑n

i=1 Î
[i](Xi ;Z).

Algorithm 13 shows the details of GPVR information function 7. Based on the training points

generated from predictedmeasurement z, a sub-map from the currentmap estimate using nearest

neighbor search is found, line 3-8. In line 9-13, GP predictive variances are computed using

covariance function k with the same hyperparameters learned for the map inference. In line 14-

17, using BCM fusion the predictive marginal posterior variance is calculated and the information

gain is updated consequently. The Cholesky factorization is the most computationally expensive

operation of the algorithm. However, it is possible to exploit a sparse covariance matrix such

as 3.40 or use a cut-off distance for the covariance function 8 to speed up the algorithm.

7.3.3 Uncertain GP Variance Reduction

Thus far, the developed information functions do not incorporate uncertainties of other state

variables that are jointly distributed with the map (such as the robot pose) in information gain

calculation. Using the expected kernel notion, Subsection 6.1.2, we define the modified kernel k̃

as follows.

7The algorithm uses MATLAB-style operations for matrix inversion, Cholesky factorization, and dot product with
matrix inputs.

8The semi-positive definiteness of the covariance matrix needs to be maintained.
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Algorithm 13 InformationGPVR()

Require: Robot pose or desired location p, current map estimatem, covariance function k, sen-
sor noise σ2

n ;
1: σ̄← σ // global map variance
2: I ← 0
3: for all k do

4: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

5: end for

6: D← TrainingData(p,z)
7: // Find the global sub-map using nearest neighbor search
8: MD ← Near(D)
9: K← k(X ,X ),K∗ ← k(X ,X∗) // X ∈MD and X∗ ∈ D
10: // Calculate vector of diagonal variances for training/test points
11: k∗∗ ← k(X∗,X∗, ’diag’)
12: L← Cholesky(K +σ2

n I), V ← L\K∗
13: v← k∗∗ − dot(V ,V )T // dot product
14: for all i ∈MD do

15: σ̄[i] ← ((σ[i])−1 + (v[i])−1)−1 // BCM fusion
16: I ← I + log(σ[i])− log(σ̄[i])
17: end for

18: return I (total information gain), σ̄ (estimated map variance)

Definition 7.18 (Modified kernel). Let k(x,x∗) be a kernel and X ∈ X a random variable that is

distributed according to a probability distribution function p(x). The modified kernel is defined as

its expectation with respect to p(x), therefore we can write

k̃ = E[k] =
∫
X
kp(x)dx (7.8)

Through replacing the kernel function in Algorithm 13 with the modified kernel we can propa-

gate the robot pose uncertainty in the information gain calculation. Intuitively, under the pres-

ence of uncertainty in other state variables that are correlated with the map, the robot does not

take greedy actions as the amount of available information calculated using themodified kernel is

less than the original case. Therefore, the chosen actions are relativelymore conservative. The in-

tegration in Equation 7.8 can be numerically approximated using Monte-Carlo or Gauss-Hermite

quadrature techniques. In the case of a Gaussian assumption for the robot pose, Gauss-Hermite

quadrature provides a better accuracy and efficiency trade-off and is preferred.

Algorithm 14 shows UGPVR information function. The difference with GPVR is that the input

location is not deterministic, i.e. it is approximated as a normal distribution N (p,Σ), and the
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Algorithm 14 InformationUGPVR()

Require: Robot pose or desired location pwith covariance Σ, current map estimatem, modified
covariance function k̃, sensor noise σ2

n ;
1: σ̄← σ // global map variance
2: I ← 0
3: for all k do

4: Compute ẑ
[k]
t+1 and I

[k]
t+1 using ray casting in m

5: end for

6: D← TrainingData(p,z)
7: // Find the global sub-map using nearest neighbor search
8: MD ← Near(D)
9: K← k̃(X ,X ,Σ),K∗ ← k̃(X ,X∗,Σ) // X ∈MD and X∗ ∈ D
10: // Calculate vector of diagonal variances for training/test points
11: k∗∗ ← k̃(X∗,X∗,Σ, ’diag’)
12: L← Cholesky(K +σ2

n I), V ← L\K∗
13: v← k∗∗ − dot(V ,V )T // dot product
14: for all i ∈MD do

15: σ̄[i] ← ((σ[i])−1 + (v[i])−1)−1 // BCM fusion
16: I ← I + log(σ[i])− log(σ̄[i])
17: end for

18: return I (total information gain), σ̄ (estimated map variance)

covariance function is replaced by its modified version. Given the initial pose belief, the pose

uncertainty propagation on the IIG graph can be performed using the robot motion model, i.e.

using Equations (3.41) and (3.42). Since we already calculate the information gain for each node,

it suffices to consider the worst-case covariance prediction. This approach is computationally

more efficient and does not rely on any specific SLAM front-end for loop-closure detection.

7.4 Path Extraction and Selection

The RIG/IIG-tree algorithm provides a tree (graph) that is already expanded in the state space

using maximum information gathering policy. However, we need to extract the maximally infor-

mative path as the selected action. For robotic exploration scenarios, it is not possible to traverse

all the available trajectories because after execution of one trajectory 9 the state belief is updated

and previous predictions are obsolete. Therefore, one possible solution will be finding a path in

the IIG tree that maximizes the information gain.

9With the assumption that the robot remains committed to the selected action.
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Algorithm 15 PathSelection()

Require: RIG/IIG tree T , maximum path length lmax, maximum similar nodes nsim;
1: // Find all leaves using depth first search
2: Vleaves = DFSpreorder(T )
3: // Find all paths by starting from each leaf and following parent nodes
4: Pall = Paths2root(T ,Vleaves)
5: lmin = ceil(κlmax) // Minimum path length, 0 < κ < 1
6: for all P ∈ Pall do
7: if length(P ) ≤ lmin then

8: Delete P
9: end if

10: end for

11: l = length(Pall )
12: vote = zeros(l,1)
13: // Find longest independent paths
14: for all i < l − 1 do

15: for all i +1 < j < l do
16: lmin =min(length(Pi ),length(Pj ))
17: // Find number of common nodes between path i and j
18: ncom = SimilarNodes(Pi ,Pj )
19: if ncom/lmin > nsim then

20: if length(Pi ) > length(Pj ) then
21: vote[i] = vote[i] + 1
22: vote[j] = vote[j] − 1
23: else

24: vote[i] = vote[i] − 1
25: vote[j] = vote[j] + 1
26: end if

27: else // Two independent paths
28: vote[i] = vote[i] + 1
29: vote[j] = vote[j] + 1
30: end if

31: end for

32: end for

33: // Find paths with maximum vote and select the maximally informative path
34: Pmax = MaxVotePath(Pall , vote)
35: PI = MaxInformativePath(Pmax)
36: return PI

We provide a heuristic algorithm based on a voting method. Algorithm 15 shows the implemen-

tation of the proposed method. The algorithm first finds all possible paths using a preorder depth

first search, function DFSpreorder, and then removes paths that are shorter than a minimum

length (using parameter 0 < κ < 1), line 2-10. Then each path is compared with others using the

following strategy. If two paths have more than a specified number nodes in common, then we
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penalize the shorter path by a negative vote and encourage the longer path by a positive vote.

However, if two paths do not have many common nodes, then they are considered as two inde-

pendent paths, and they receive positive votes, line 11-32. The function SimilarNodes returns

the number of overlapping nodes between two paths. In line 34, the function MaxVotePath re-

turns all paths that have the maximum number of votes. There is usually more than one path

with the maximum vote, therefore, in line 35, the function MaxInformativePath selects the path

that overall has the maximum information gain.

7.5 Information-theoretic Robotic Exploration

In this section, we present the information-theoretic basis for applying the IIG-tree algorithm

to solve the autonomous robotic exploration problem. Since the developed algorithm does not

rely on geometric features (frontiers) for map exploration, an alternative criterion is required

for mission termination. We use the entropy independence bound theorem to leverage such a

criterion.

Theorem 7.19 (Independence bound on entropy). Let X1,X2, ...,Xn be drawn according to the

joint distribution p(x1,x2, ...,xn). Then

H(X1,X2, ...,Xn) ≤
n∑
i=1

H(Xi ) (7.9)

with equality if and only if the Xi are Independent.

Proof. The proof follows directly from Theorem 3.2 and 3.6.

This theorem states that the joint entropy is always smaller than the sum of entropies indepen-

dently, and both sides are equal if and only if the random variables are independent. We start

from this inequality and prove that for robotic information gathering or map exploration the least

upper bound of the average map entropy that is calculated by assuming independence between

map points can be a threshold for mission termination.
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Theorem 7.20 (The least upper bound of the average map entropy). Let n ∈ N be the number

of map points. In the limit, for a completely explored occupancy map, the least upper bound of the

average map entropy is given by H(psat).

Proof. From Theorem 7.19 and throughmultiplying each side of the inequality by 1
n , we can write

the average map entropy as

1
n
H(M) <

1
n

n∑
i=1

H(M =m[i]) (7.10)

by taking the limit as p(m)→ psat , then

lim
p(m)→psat

1
n
H(M) < lim

p(m)→psat

1
n

n∑
i=1

H(M =m[i])

lim
p(m)→psat

1
n
H(M) < H(psat)

sup
1
n
H(M) =H(psat) (7.11)

The result from Theorem 7.20 is useful because the calculation of the right hand side of the

inequality (7.10) is trivial. In contrast, calculation of the left-hand side assuming the map belief

is represented by a multi-variate Gaussian, requires maintaining the full map covariance matrix

and computation of its determinant. This is not practical, since the map often has a dense belief

representation and can be theoretically expanded unbounded (to a very large extent). In the

following, we present some notable remarks and consequences of Theorem 7.20.

Remark 7.21. The result from Theorem 7.20 also extends to continuous random variables and dif-

ferential entropy.

Remark 7.22. Note that we do not assume any distribution for map points. The entropy can be

calculated either with the assumption that the map points are normally distributed or treating them

as Bernoulli random variables.

Remark 7.23. Since 0 < psat < 1 and H(psat) =H(1− psat), one saturation entropy can be set for

the entire map.
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Corollary 7.24 (information gathering termination). Given a saturation entropy hsat , the problem

of search for information gathering for desired random variables X1,X2, ...,Xn whose support is

alphabet X , can be terminated when 1
n

∑n
i=1H(Xi ) ≤ hsat .

Corollary 7.25 (Map exploration termination). The problem of autonomous robotic exploration

for mapping can be terminated when 1
n

∑n
i=1H(M =m[i]) ≤H(psat).

The Corollary 7.24 generalizes the notion of exploration in the sense of information gathering.

Therefore, regardless of the quantity of interest, we can provide a stopping criterion for the ex-

ploration mission. The Corollary 7.25 is of great importance for the classic robotic exploration

for map completion problem as there is no need to resort to geometric frontiers with a specific

cluster size to detect map completion. Another advantage of setting a threshold in the informa-

tion space is the natural consideration of uncertainty in the estimation process before issuing a

mission termination signal.

7.6 Results and Discussion

In this section, we examine the proposed algorithms in several scenarios. We first design ex-

periments for comparison of information functions under various sensor parameters such as the

number of beams and the sensor range, and their effects on the convergence of IIG. Although the

primary objective of this experiment is to evaluate the performance of IIG using each informa-

tion function, it can also be seen as a sensor selection problem. In other words, given the map

of an environment and a number of sensors with different characteristics, we wish to select the

sensor that has a reasonable balance of performance and cost. However, we do not emphasize

this aspect as the main objective of the test as it requires more in-depth analysis of the problem

and comparison with other available techniques.

The second experiment is what IIG is originally developed for. The robot explores an unknown

environment; it needs to solve SLAM incrementally, estimate a dense occupancy map repre-

sentation suitable for planning and navigation, and automatically detect the completion of an

exploration mission. Therefore, the purpose of information gathering is map completion while

maintaining accurate pose estimation, i.e. planning for estimation. We compare exploration ex-

periments where the robot pose is estimated through a pose graph algorithm such as Pose SLAM,
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and the map of the unknown environment is computed using the I-GPOM. Therefore, the state

which includes the robot pose and the map is partially observable.

In the third scenario, we demonstrate another possible application of IIG in a lake monitoring

experiment using experimental data collected by an Autonomous Surface Vehicle (ASV). This

dataset is also used in the original RIG article (Hollinger and Sukhatme 2014) 10. In the end,

we also discuss the limitations of this work including our observations and conjectures. The

algorithms were implemented in MATLAB and the code is publicly available 11.

7.6.1 Experimental Setup

We first briefly describe the experiment setup that is used in Subsections 7.6.2 and 7.6.3. The pa-

rameters for experiments and the information functions are listed in Table 7.1. The environments

are constructed using a binary map of obstacles. For GPVR-based algorithms, the covariance

function is Matérn (ν = 5/2)

kVR = σ2
f kν=5/2(r) = σ2

f (1 +

√
5r
l

+
5r2

3l2
)exp(−

√
5r
l

) (7.12)

with hyperparameters that were learned prior to the experiments and are available in Table 7.1.

The modified kernel in UGPVR algorithm was calculated using Gauss-Hermite quadrature with

11 sample points. The robot pose covariance was approximated using the worst-case uncer-

tainty propagation and local linearization of the robot motion model using Equations (3.41) and

(3.42). Each run was continued until the algorithm converges without any manual intervention.

In case of multiple runs for an algorithm we report the mean and the standard error of outcomes.

Furthermore, in all experiments, an unlimited budget is used to show the performance of each

method in the limit and also examine our convergence criteria for IIG and exploration experi-

ments (Corollary 7.25). The online parameters in Table 7.1 refer to exploration experiments and

are used in Subsection 7.6.3.

10The dataset is publicly available on: http://research.engr.oregonstate.edu/rdml/software
11https://github.com/MaaniGhaffari/sampling_based_planners
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Table 7.1: Parameters for IIG-tree experiments. “Online” parameters are only related to the
exploration experiments.

Parameter Symbol Value

− General parameters:
Occupied probability pocc 0.65
Unoccupied probability pf ree 0.35
Initial position xinit [10,2]m
Map resolution δmap 0.2m
IRIC threshold δRIC 5e-4
IRIC threshold (Online) δRIC 1e-2
−MI-based parameters:
Hit std σhit 0.05 m
Short decay λshort 0.2 m
Hit weight zhit 0.7
Short weight zshort 0.1
Max weight zmax 0.1
Random weight zrand 0.1
Numerical integration resolution sz 2m−1

Saturation probability psat 0.05
Saturation probability (Online) psat 0.3
Occupied belief bocc 1.66
Unoccupied belief bf ree 0.6
− Covariance function hyperparameters:
characteristic length-scale l 3.2623 m
Signal variance σ2

f 0.1879

− Robot motion model:
Motion noise covariance Q diag(0.1m,0.1m,0.0026rad)2

Initial pose uncertainty Σinit diag(0.4m,0.1m,0rad)2

7.6.2 Comparison of Information Functions

We now compare the proposed information functions by running IIG-tree using different sensor

parameters. The map is known and initialized as an occupancy grid map by assigning each point

the occupied or unoccupied probability according to its ground truth status. For GPVR-based

methods, an initial variance map is set to the value of 1 for all points. In the first experiment, we

varied the number of sensor beams by running each method for 30 times. The chosen number

of beams are 10, 20, and 50. The compared information functions are MI, MIUB, GPVR, and

UGPVR, and the results are presented in Table 7.2. The maximum sensor range is kept fixed at

rmax = 5m and the convergence is detected when the average of penalized relative information

contribution IRIC over a window of size 30 drops below the threshold δRIC = 5e − 4. The total

information gain/cost are calculated using the sum of all edges information/cost. Therefore, it

denotes the total information/cost over the searched space and not a particular path. The reason
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Table 7.2: Comparison of the information functions in offline IIG-tree experiments by increasing
the sensor number of beams from 10 to 50. The figures are averaged over 30 experiments (mean
± standard error). For all experiments the following parameters are set in common rmax = 5m,

δRIC = 5e − 4.

Number of beams nz 10 20 50

Mutual information (MI)

Planning time (min) 6.88 ± 0.16 8.44 ± 0.27 14.64 ± 0.81
Number of samples 911 ± 19 588 ± 13 435 ± 20
Number of nodes 402 ± 5 280 ± 5 181 ± 8
Total information gain (NATS) 1.4071e+04 ± 148.3 1.3624e+04 ± 173.8 1.2546e+04 ± 313.2
Total cost (m) 336.3 ± 3.8 258.5 ± 3.7 187.2 ± 7.7

Mutual information upper bound (MIUB)

Planning time (min) 4.53 ± 0.16 6.95 ± 0.28 12.88 ± 0.51
Number of samples 1014 ± 24 629 ± 17 486 ± 15
Number of nodes 444 ± 8 303 ± 7 212 ± 5
Total information gain (NATS) 2.0472e+04 ± 169.2 1.9602e+04 ± 207.7 1.9881e+04 ± 403.1
Total cost (m) 358.3 ± 5.6 272.0 ± 5.0 211.5 ± 4.4

GP variance reduction (GPVR)

Planning time (min) 9.31 ± 0.39 13.10 ± 0.41 15.07 ± 0.61
Number of samples 1677 ± 53 1135 ± 36 874 ± 36
Number of nodes 616 ± 15 477 ± 13 382 ± 11
Total information gain (NATS) 7840.6 ± 62.8 9123.4 ± 80.5 1.3111e+04 ± 176.9
Total cost (m) 490.5 ± 9.5 392.4 ± 7.9 320.6 ± 7.2

Uncertain GP variance reduction (UGPVR)

Planning time (min) 19.75 ± 0.48 27.89 ± 0.94 47.79 ± 2.16
Number of samples 4746 ± 136 2633 ± 102 1828 ± 81
Number of nodes 1344 ± 28 913 ± 25 704 ± 22
Total information gain (NATS) 3197.6 ± 16.0 3731.3 ± 22.1 5557.5 ± 52.4
Total cost (m) 894.0 ± 16.3 621.4 ± 15.6 497.8 ± 12.5

is to avoid any possible randomness in path selection which can make the results biased. In other

words, the results are independent of the path selection algorithm.

As it can be seen from Table 7.2, MIUB has the lowest runtime which is expected, followed by

MI, GPVR, and UGPVR, respectively. However, MI has the fastest convergence speed with, ap-

proximately, half of the number of samples taken by GPVR. The calculation of MI can be more

expensive than GPVR-based algorithms, but using sparse sensor observations (only 10 beams)

and a very coarse numerical integration resolution it performs faster. For all the compared algo-

rithms, as the number of beams increases, i.e. taking more observations, the computational time

rises, and the number of samples/nodes reduces. An important observation is that incorporating

the pose uncertainty in UGPVR leads to a slower convergence. This can be explained as a result

of the reduction in the information content of each set of observations by adding uncertainty to
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Table 7.3: Comparison of the information functions in offline IIG-tree experiments by increasing
the sensor range from 5m to 20m (averaged over 30 experiments, mean ± standard error). For

all experiments the following parameters are set in common nz = 10; δRIC = 5e − 4.

Sensor range rmax (m) 5 10 20

Mutual information (MI)

Planning time (min) 5.00 ± 0.13 6.60 ± 0.10 7.88 ± 0.11
Number of samples 979 ± 22 782 ± 21 780 ± 20
Number of nodes 423 ± 7 352 ± 8 360 ± 6
Total information gain (NATS) 1.4019e+04 ± 146.5 1.4525e+04 ± 177.9 1.5789e+04 ± 220.9
Total cost (m) 351.7 ± 4.8 307.8 ± 5.4 309.2 ± 4.0

Mutual information upper bound (MIUB)

Planning time (min) 3.67 ± 0.10 3.56 ± 0.08 3.87 ± 0.11
Number of samples 1015 ± 23 813 ± 15 811 ± 20
Number of nodes 444 ± 7 368 ± 6 369 ± 7
Total information gain (NATS) 2.0414e+04 ± 161.7 1.9845e+04 ± 228.5 1.9730e+04 ± 272.9
Total cost (m) 360.1 ± 5.2 309.9 ± 4.2 311.6 ± 4.5

GP variance reduction (GPVR)

Planning time (min) 6.20 ± 0.22 7.03 ± 0.24 6.60 ± 0.22
Number of samples 1745 ± 71 1393 ± 41 1248 ± 48
Number of nodes 636 ± 18 559 ± 13 523 ± 16
Total information gain (NATS) 7977.7 ± 56.4 7801.6 ± 71.0 7835.1 ± 62.5
Total cost (m) 501.7 ± 11.2 445.0 ± 7.5 422.7 ± 9.8

Uncertain GP variance reduction (UGPVR)

Planning time (min) 20.52 ± 0.65 26.3 ± 0.68 26.68 ± 0.54
Number of samples 4994 ± 167 3661 ± 109 3385 ± 87
Number of nodes 1404 ± 35 1139 ± 25 1078 ± 19
Total information gain (NATS) 3174.8 ± 19.3 3254.2 ± 21.4 3271.0 ± 21.0
Total cost (m) 934.4 ± 22.3 765.2 ± 15.5 724.1 ± 12.3

the information gain calculation. Another interpretation is that the UGPVR algorithm is, rela-

tively speaking, less greedy or more conservative for information gathering. MI in comparison

to MIUB has more realistic information gain estimation which is reflected in less total cost on

average. The latter results also confirm the advantage of maximizing the information gain rather

than minimizing the entropy which is discussed in Krause et al. (2008).

In the second experiment, the number of beams is kept fixed at nz = 10, but the sensor range is

increased from 5m to 20m. The results shown in Table 7.3 are consistent with the previous test

and the variations are even slighter. In fact, the first column of Table 7.3 is the repetition of the

experiment with the similar parameters to the first column of Table 7.2, for another 30 runs 12.

Furthermore, the difference between rmax = 10 and rmax = 20 cases is marginal which shows

12The results are computed during several days using high-performance computing facilities at the University of
Technology Sydney and the reported time is affected by other users activities. However, it can be used for relative
comparison and other factors remain consistent.
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increasing the sensor range more than 10m does not improve the information gathering process

in this environment. Overall, we can conclude that by changing the parameters the convergence

of IIG using the relative information contribution notion remains consistent, and the speed of

convergence varies reasonably with the parameters. We reiterate that the δRIC = 5e − 4 is used

for all the results in Table 7.2 and 7.3 and this demonstrates a strong correlation with the planning

time (horizon) for each information function, by ignoring the overhead computations due to the

increase in nz or rmax.

In Figure 7.1, an example of IIG-tree using MI information function in the Cave map (Howard

and Roy 2003) is illustrated. The sensor range and the number of beams are set to 5m and

10, respectively. Figure 7.1a shows the map of the environment, Figure 7.1b illustrates the IIG

graph where the extracted paths are also shown and the most informative path is separated

using a darker color. The convergence of IRIC for both MI and MIUB is shown in Figure 7.1c

and Figure 7.1d shows the calculated information gain in NATS where its diminishing return

over time (as the number of samples grows) is evident.

The equivalent results for IIG-tree using GPVR and UGPVR information functions are shown

in Figure 7.2 and Figure 7.3. It is interesting to observe that IRIC converges to close values for

MIUB and GPVR, but it has a lower value for MI as the estimated information gain is more real-

istic by taking the expectation over future measurements. For UGPVR information function, we

can see that IRIC is increased. From Figure 7.2d and Figure 7.3b, we can conclude that the overall

trend is similar to the GPVR case. However, due to the incorporated pose uncertainty the amount

of information gain is remarkably lower which explains the longer tail of information gain evo-

lution before the convergence of the algorithm and the higher relative information contribution

from each node. In other words, farther nodes have higher pose uncertainties. Therefore the

discrimination between farther and nearer nodes from relative information contribution is less

than the case where the pose uncertainty is ignored.

Finally, a practical conclusion can be that increasing the sensor range and the number of beams

(observations) increases the computational time but does not necessarily make the corresponding

information function superior to its coarser approximation. As long as the approximation can

capture the essence of information gain estimation consistently, the search algorithm performs

well. However, we should acknowledge that the conclusion is not complete, and the structural
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(a) (b)

(c) (d)

Figure 7.1: Results from running the IIG-tree algorithm using MI information function in the
Cave map. (A) shows the map of the environment. (B) shows the IIG-tree graph and the selected
paths, the most informative path is shown using a darker color. (C) is the convergence graph of
the penalized relative information contribution IRIC for MI and MIUB. (D) shows the evolution

of the information gain calculation.

shape of the environment affects the result, e.g. the maximum and minimum perception field

at different areas of the map. We use these results to select a sensor configuration for the next

experiments. To speed up the exploration scenario, we select nz = 10 and rmax = 5m which lead

to the fastest computational time with reasonable total information gain and cost values.
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(a) (b)

(c) (d)

Figure 7.2: Results from running the IIG-tree algorithm using GPVR and UGPVR information
functions in the Cavemap. IIG-tree graph and the selected paths for (A) using GPVR information
function, and (B) using UGPVR information function. The most informative path is shown using
a darker color. The convergence graph of the penalized relative information contribution IRIC

for (C) GPVR, and (D) UGPVR.
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(a) (b)

Figure 7.3: Evolution of the information gain calculation for (A) IIG-tree using GPVR informa-
tion function, and (B) IIG-tree using UGPVR information function.

7.6.3 Robotic Exploration in Unknown Environments

In this section, we examine the proposed algorithms in the interesting and challenging scenario

of autonomous robotic exploration in an unknownmap. The robot does not have any prior infor-

mation neither from the map nor its location. Therefore, it needs to solve the SLAM problem for

localization and possibly the topological map of features (environment). Then building a dense

map representation that shows occupied and unoccupied regions for planning and navigation.

The robot pose and map are partially observable which makes the planning for a long horizon

difficult. We solve the localization problem using Pose SLAM, the occupancy mapping using I-

GPOM, and the planning using IIG-tree with different information functions for comparison. We

also compare our results with Active Pose SLAM (APS) (Valencia et al. 2012) which is an infor-

mation gain-based technique that considers explicit loop-closures by searching through nearby

poses in the pose graph.

Figure 7.4 shows the statistical summary of the results from exploration experiments in the Cave

environment. The results are from 30 exploration rounds in which each mission was terminated

automatically using Corollary 7.25 and saturation probability psat = 0.1 13. The IIG-GPVR has the

13Note that MI-based information functions and map exploration termination condition have different saturation
probabilities that do not necessarily have a similar value.
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Figure 7.4: The box plots show the statistical summary of the comparison of different explo-
ration strategies in the Cave dataset. The compared methods are APS, IIG-MI, IIG-GPVR, and

IIG-UGPVR.

lowest travel distance, highest map entropy reduction rate, but, relatively speaking, the highest

localization error. The improvement in the map entropy rate over our previous results on the

same dataset using MI-based greedy exploration (Ghaffari Jadidi et al. 2015) is roughly more

than 1.63 times which is surprisingly high for an algorithm that can preserve the localization

accuracy better as well. IIG-UGPVR demonstrates a more conservative version of IIG-GPVR

which bymore planning time due to the pose uncertainty propagation provides better localization

and map accuracies. This behavior is expected and shows the consistency between our problem

definition and algorithmic development.

From another point of view, IIG-MI has the lowest localization error with a similar planning
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Table 7.4: Lake monitoring experiments using IIG with GPVR and UGPVR information func-
tions. For the comparison, the sensing range is varied from 5m to 20m. The results are averaged

over 100 runs (mean ± standard error). For all experiments δRIC = 5e − 4.

Sensor range (m) 5 10 15 20

IIG-GPVR

Time (sec) 5.26 ± 0.16 2.92 ± 0.08 2.38 ± 0.09 2.32 ± 0.07
RMSE (dBm) 4.54 ± 0.05 4.28 ± 0.06 3.97 ± 0.06 3.61 ± 0.07
Number of samples 830.6 ± 18.7 507.9 ± 13.0 437.0 ± 15.6 428.1 ± 12.9
Number of nodes 826.1 ± 18.7 454.5 ± 12.8 359.9 ± 14.5 331.6 ± 12.7
Total information gain (NATS) 2.0817e+04 ± 160.1 2.4272e+04 ± 111.2 2.6207e+04 ± 133.1 2.7716e+04 ± 130.6
Total cost (Km) 6.77 ± 0.11 4.50 ± 0.09 3.67 ± 0.11 3.42 ± 0.10

IIG-UGPVR

Time (sec) 33.98 ± 1.30 25.93 ± 0.67 29.26 ± 0.98 53.69 ± 1.61
RMSE (dBm) 4.55 ± 0.05 4.26 ± 0.05 4.00 ± 0.06 3.56 ± 0.07
Number of samples 844.8 ± 19.8 496.0 ± 12.3 467.4 ± 15.4 413.0 ± 13.3
Number of nodes 839.2 ± 19.7 447.9 ± 12.4 389.1 ± 14.9 325.8 ± 12.8
Total information gain (NATS) 2.1268e+04 ± 176.7 2.4967e+04 ± 107.8 2.6925e+04 ± 120.6 2.8087e+04 ± 113.9
Total cost (Km) 6.81 ± 0.13 4.46 ± 0.09 3.91 ± 0.11 3.39 ± 0.10

time, but higher travel distance. The IIG-MI makes direct use of sensor model for information

gain estimation. The fact that the sensor model for range-finders is an accurate model together

with the correlation between themap and robot pose leads to implicit pose uncertainty reduction.

This result reveals the fundamental difference between mutual information approximation using

a direct method (taking the expectation over future measurements) and GPs which to best of our

knowledge was not previously discussed in the literature.

7.6.4 Lake Monitoring Experiment

In this experiment, we demonstrate the performance of IIGs in a lake monitoring scenario. The

ASV can localize using a GPS unit and a Doppler Velocity Log. The communication with the

ground station is through an 802.11 wireless connection and at any location the wireless signal

strength (WSS) can be measured in dBm. The Puddingstone Lake dataset is a publicly avail-

able dataset that includes about 2700 observations. The dataset is collected through a full sur-

vey of the lake area located at Puddingstone Lake in San Dimas, CA (Lat. 34.088854°, Lon.

−117.810667°) (Hollinger and Sukhatme 2014). The objective is to find a trajectory for the robot

to maintain a strong connectivity with the base station while taking physical samples in the lake.

The ground truth map of WSS is built using GP regression with a constant mean function, SE

covariance function with automatic relevance determination (ARD) (Neal 1996), and a Gaussian
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(a) (b)

(c) (d)

Figure 7.5: Lake monitoring scenario (a) satellite view of the lake and the survey trajectories
using ASV, (b) the robot trajectories in metric scale on WSS map, (c) GP WSS mean surface

(in dBm), and (d) GP WSS covariance surface.

likelihood functionwhichmakes the exact inference possible. Furthermore, it is well-known that,

in line-of-sight scenarios, radio signals propagation can be characterized based on Friis free space

model (Rappaport 1996; Goldsmith 2005). In this model, the signal attenuation is proportional to

the logarithm of the distance. Therefore, to improve the regression accuracy we use logarithmic

scales for input points during GP training and inference phases. The number of training points

was down-sampled to 267 observations, and the surface was inferred using 3648 query points. We

store the output using a kd-tree data structure to be able to perform fast online nearest neighbor

inquiries within the robot sensing range. Figure 7.5 shows the satellite view of the lake area

together with the survey trajectories and regressed maps that are used as a proxy for ground

truth. Figure 7.5b shows the survey trajectories on the WSS surface where the longitudes and
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latitudes are converted to their corresponding distances using the haversine formula. Figures 7.5c

and 7.5d illustrate the GP WSS mean and covariance surfaces, respectively.

For information functions, we used Algorithms 13 and 14 as they are natural choices for scenarios

involving spatial phenomena and environmental monitoring. The experiment is designed in such

a way as that at any location the robot can take measurements within a sensing range from the

grundtruth maps. This step replaces the raytracing operation in both algorithms. The modified

kernel in Algorithm 14 was calculated using Gauss-Hermite quadrature with 11 sample points.

The robot pose covariance was approximated using the worst-case uncertainty propagation and

local linearization of the robot motion model 14. Table 7.4 shows the comparison results between

IIG-GPVR and IIG-UGPVR using several criteria including Root Mean-Squared Error (RMSE).

To calculate the RMSE, we used the collected measurements along the most informative path

extracted from the IIG graph using Algorithm 15 and rebuilt the GP WSS mean surface with the

same resolution. We repeated the experiment 100 times with 5m, 10m, 15m, and 20m sensing

ranges. The IIG-GPVR algorithm is faster and can compute the most informative trajectory in

only a few seconds. This is promising for online applications where the robot needs to replan

along the trajectory. Note that, as it is expected, by increasing the sensing range, the information

gain rises and the total cost and RMSE decrease. However, this means it is assumed that in reality,

the signal strength at any location has stronger correlations with its nearby locations. While

this is true for the presented experiment, in a cluttered environment, it can be an unrealistic

assumption.

Figure 7.6 shows the illustrative examples of IIG-GPVR with different sensing ranges. As the

sensing range increases, the graph becomes gradually sparser. This effect can be understood

from the fact that the information from a larger neighborhood is integrated into each node. Note

that the objective is to explore the entire area while maintaining a strong wireless connectivity

with the based station. Therefore, the robot does not need always to travel in the area with high

signal strengths. However, it travels most of the time in the regions with strong connectivity.

Figure 7.7 shows the same scenario using IIG-UGPVR. The main difference is that the robot

behaves more conservatively and tends to return to the regions with strong connectivity. By

traveling farther, the growth in pose uncertainty reduces the information gain of those areas.

14The pose uncertainties are not part of the original dataset. Hence, we calculate them by simulation.
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(a) (b)

(c) (d)

Figure 7.6: Informative motion planning for WSS monitoring in the lake area using IIG-GPVR
with sensing range (a) 5m (b) 10m (c) 15m, and (d) 20m.

In both IIG-GPVR and IIG-UGPVR results, we can see that by increasing the sensing range the

robot tends to explore farther distances which is a natural behavior, in Figures 7.6d and 7.7d.

7.6.5 Limitations and Observations

The proposed algorithms can provide an approximate solution to the robotic exploration prob-

lem in unknown environments as a basic navigation task as well as environmental monitoring

tasks. Although IIG can be implemented for online tasks, it has the limitations of its ancestors.

Therefore, violating the main assumptions, such as availability of free area near any point for

graph expansion, can result in failure of the task. More conceptually, most of the present robotic
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(a) (b)

(c) (d)

Figure 7.7: Informative motion planning for WSS monitoring in the lake area using IIG-UGPVR
with sensing range (a) 5m (b) 10m (c) 15m, and (d) 20m. By incorporating pose uncertainties
in planning, the informative trajectories are those in which not only the wireless connectivity

is strong, but the pose uncertainty along the trajectories is minimized.

navigation algorithms are not truly adaptive as they commit to a decision once it is planned and

replanning occurs only if the amount of computation is manageable, and often not with a high

frequency. So there will be a window of time the robot acts based on the previously made de-

cision. Although humans act in a similar fashion, we can make decisions more spontaneously

(fully adaptive). This problem can be severe in environments that are highly dynamic as the robot

is not as responsive as it is required.

To our experience, using a coarse approximation, i.e. less number of beams than the actual range-

finder sensor results in not only faster search in the workspace and reducing the computational
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time, but giving the chance to more samples to be candidates as part of the potential most infor-

mative path. This is a promising feature that the algorithm works reasonably well without near

exact estimation of information quality. Moreover, uniform sampling produces reasonable results

in the early stage, however as the graph grows, this sampling strategy becomes less efficient. Bi-

asing the sampling towards directions that are less explored may lead to a faster convergence.

7.7 Chapter Summary

In this chapter, we developed a sampling-based planning algorithm for incremental robotic infor-

mation gathering. The proposed algorithm is based on RIG and offers an information-theoretic

convergence criterion using the notion of penalized relative information contribution. We formu-

lated the problem as an information maximization problem subject to budget and state estimate

constraints. The unique feature of this approach is that it can handle dense belief representa-

tions as well as the robot pose uncertainty. We proposed MI-based and GPVR-based information

functions and their variants that can be used in both RIG and IIG frameworks. The proposed IIG-

tree algorithm using a UGPVR information function considers pose uncertainties in planning

and provides an approximate solution for finding maximally informative paths under partially

observable state variables.

The proposed algorithms can directly be applied to environmental monitoring and robotic explo-

ration tasks in unknown environments. The proposed algorithms also have potential applications

in solving the sensor configuration selection problem that we did not fully investigate as it is be-

yond the scope of this work. Furthermore, the planning horizon does not need to be set as a

number of steps. Instead, the information-theoretic representation of the planning horizon used

here brings more flexibility for managing the convergence of the algorithm.



Chapter 8

Conclusion and Future Work

Westudied the problem of robotic mapping and exploration in unknown environments in

the presence ofmotion and sensing uncertainties. We started fromGaussian Processes

occupancy mapping problem with known poses and extended the method to an incremental

continuous occupancy mapping technique using the Bayesian committee machines. We showed

that the accuracy of the proposed incremental mapping framework is close to that of the batch

GPOM. The continuity of GPOM is exploited for a novel representation of geometric frontiers,

and we showed that the GP-based mapping and exploration techniques are a competitor for

traditional occupancy grid-based techniques. The primary motivations stemmed from the fact

that high-dimensional map inference requires fewer observations to infer the map, leading to

a faster map entropy reduction. Furthermore, we used the notion of macro-action to develop

a greedy mutual information-based robotic exploration technique on the proposed novel map

representation that takes into account all possible future measurements.

The problem of occupancymap building is extended to the case where the robot pose is uncertain

and formulated using the expected kernel and expected sub-map approaches. While the expected

kernel handles the input uncertainty within the GPs framework, the expected sub-map exploits

the inherent property of stationary covariance functions for map inference in the local frame

with deterministic inputs. Moreover, we showed that the WGPOM technique can deal with the

nonlinear behavior of measurements through a nonlinear transformation which improves the
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ability of GPs to learn complex structural shapes more accurately, especially, under uncertain

inputs.

Since the original problem of robotic motion planning under uncertainty is NP-hard, based on

the robotic information gathering concept, we developed a sampling-based incremental motion

planning algorithm that has applications for robotic exploration and information gathering tasks.

Through Gaussian Processes, the framework takes into account the state estimation uncertainty,

and it can deal with dense belief representations. The developed algorithm does not discretize

the robot action space, nor the state space. Instead, by sampling from the free workspace, the

algorithm builds a graph representation of the most informative trajectories. Another interesting

feature is the information-theoretic notion of the planning horizon which can be set as a con-

vergence criterion rather than a number of steps. The planning horizon from the information

gathering perspective has intuitive connections with the uncertainty minimization.

The developments in the early chapters are integrated into the proposed incremental informa-

tion gathering framework in the form of mutual information-based information functions. The

information functions algorithms exhibit different characteristics. For instance, MI-based func-

tions are more suitable for exploration scenarios when a probabilistic sensor model is explicitly

available and taking the expectation over future measurements is possible. On the other hand,

GP-based functions are non-parametric and demonstrate promising properties for environmental

monitoring tasks.

Wewould like to share some ideas that are natural extensions of this work. For the sake of clarity,

we itemize them as follows.

− The algorithms in this thesis could be extended for multi-robot planning; exploiting the

information gain available through wireless communication channels to manage the coor-

dination between robots while a feedback controller satisfied kinodynamic constraints.

− We developed IIG-tree based on the RIG-tree algorithm. IIG could also be used to extend

RIG-roadmap and RIG-graph. RIG-graph is asymptotically optimal and can asymptotically

explore all possible budget-constraint trajectories, it produces a fully connected graph and

is an interesting case to study. Therefore, IIG-graph would allow us to generate a unique
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trajectory without choosing one from several, reducing the number steps required for in-

cremental planning tasks such as robotic exploration.

− While we provide a procedural implementation of the proposed algorithms, and it suffices

for research and comparison purposes, we believe the integration of the algorithms in open

source libraries such as the Open Motion Planning Library (OMPL) (Sucan et al. 2012) has

advantages for possible applications of this work.

− The GPVR-based algorithms could be used for active learning to model the quantity of

interest online using GPs.

− IIG/RIG frameworks could be used for maximizing a multi-objective information function

to perform multiple tasks concurrently. In a naïve approach, the objective function can be

defined as the sum of information functions; however, if random variables from different

information functions are correlated, e.g. through the robot pose, the total information

gain calculation will not be accurate. Hence, developing a more systematic approach is an

interesting avenue to follow.

− A sparse covariance matrix could be constructed using the Sparse covariance function.

Exploiting the sparse structure of the covariance matrix for large-scale problems could be

an interesting extension of this work for online implementations.



Appendix A

Mutual Information-based

Exploration Results

Theexploration results from extensive scenarios are presented in this appendix. The indoor

experiments are focusing on comparison of the presented method with comparable ex-

ploratory methods available in the literature, whereas the outdoor experiment demonstrates the

scalability. An average improvement over the standard and state-of-the-art exploratory meth-

ods by more than 20% and 13% in travel distance and map entropy reduction rate, respectively,

while maintaining the localization Mean Squared Error (MSE) 36% lower, can be clearly seen in

Tables A.1 and A.2. The localization MSE was computed at the end of each experiment by the

difference between the robot traveled path, i.e. estimated poses and ground truth poses. The re-

quired parameters for the beam-based mixture measurement model, frontier maps, and MI maps

computations are listed in Table 5.2.

The experiments include exhaustive comparison among the original Nearest Frontier (NF) (Ya-

mauchi 1997), APS (Valencia et al. 2012), GPNF, and GPMI exploration approaches. In order

to maintain NF and APS methods in their original frameworks, the results are computed using

OGMs while in COM-based methods the developed COM and the probabilistic frontier map are

employed. In all of the presented results, Pose SLAM (Ila et al. 2010) is included as the back-

bone to provide localization data together with the number of closed loops. Additionally, re-

gardless of the exploration method, the same set of Pose SLAM parameters was used in each
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environment. The simulated robot and its sensors, i.e. the odometric and laser range-finder,

provide required sensory inputs for Pose SLAM and the environment is built by loading a bi-

nary image. The odometric and laser range-finder sensors noise covariances were set to Σu =

diag(0.1m,0.1m,0.0026rad)2 and Σy = diag(0.05m,0.05m,0.0017rad)2, respectively. The

robot started the experimentswith an initial pose uncertainty ofΣ0 = diag(0.1m,0.1m,0.09rad)2

and laser beams were simulated through ray-casting operation over the ground truth map using

the true robot pose.

The proposed approach is demonstrated with exploratory simulations in three mapping environ-

ments. The indoor datasets include the Cave and Freiburg maps (Howard and Roy 2003) and the

outdoor dataset is a parking area as an experiment on a larger scale (16 times on average in the

area) to demonstrate the scalability of the presented approach. The Cave map represents a sim-

ple hand-drawn environment with a few rough obstacles, whereas the Freiburg map is computed

from a real LMS-laser log taken with a Pioneer2 robot at the University of Freiburg (building 079

AIS-Lab), and contains many rooms and disconnected obstacles which make for a challenging

environment to explore. The implementation has been developed in MATLAB and GP compu-

tations have been implemented using the open source GP library in Rasmussen and Williams

(2006).

A.1 Indoor Experiments

Table A.1 summarizes the exploration results in the indoor environments. The figures are aver-

aged over 30 repetitions of the experiments in order to demonstrate repeatability and reliability

of each method. To achieve the best outcome for all of the compared methods, in the nearest

frontier methods (NF and GPNF), frontiers closer than 2m to the current robot pose are ignored.

Furthermore, only frontiers with the size larger than 10 cells are considered valid in NF and APS.

For GPNF and GPMI, a threshold was set for the frontier map as the termination condition of an

experiment. These conditions lead to avoiding excessive search and fluctuation in a small area

and exploring the whole map faster.

Despite the common belief in the literature, classic NF performs reasonably satisfactorily in terms

of minimum requirements for an exploration method. However, NF does not contemplate any
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Table A.1: Comparison of the exploration strategies in the indoor datasets (averaged over 30
experiments, mean ± standard error)

Cave environment 20m×20m; map resolution: 0.2m; frontier map threshold: 0.59
NF APS GPNF GPMI

Travel distance (m) 109.12 ± 4.72 317.83 ± 0.40 108.60 ± 7.64 100.54 ± 3.46
Exploration time (min) 14.50 ± 0.48 18.58 ± 0.28 5.40 ± 0.43 11.25 ± 0.38
Map ent. rate (NATS/step) -14.1576 ± 0.4683 -10.2131 ± 0.1500 -15.1586 ± 0.4250 -16.5754 ± 0.4905

Localization MSE (m2) 0.3392 ± 0.0629 0.1234 ± 0.0348 0.0930 ± 0.0189 0.0784 ± 0.0135
Number of closed loops 17.10 ± 2.17 157.30 ± 1.28 31.30 ± 5.08 25.60 ± 2.11

Freiburg environment 40m×15m; map resolution: 0.2m; frontier map threshold: 0.57
NF APS GPNF GPMI

Travel distance (m) 265.26 ± 10.59 n/a 170.37 ± 6.20 154.46 ± 5.39
Exploration time (min) 57.29 ± 1.25 n/a 18.23 ± 0.87 15.13 ± 0.90
Map ent. rate (NATS/step) -8.2347 ± 0.1582 n/a -12.6333 ± 0.3509 -13.0932 ± 0.3100

Localization MSE (m2) 0.6135 ± 0.1432 n/a 0.3257 ± 0.0470 0.2035 ± 0.0256
Number of closed loops 17.00 ± 1.11 n/a 9.07 ± 0.64 7.87 ± 0.60

form of uncertainty reduction which explains the highest localization error in Table A.1. APS

tries to minimize the approximated joint entropy of the map and robot pose which results in

completion of the experiment with a lower localization error. However, by aiming for the most

informative goal together with the replanning policy, according to the utility function, the robot

may fluctuate among several areas of the map. The increased travel distance and significantly

higher number of closed loops imply over-visiting of some already known areas. The results show

that grid-based mapping does not give sufficient support for information gain-based exploration

as the robot may travel a long distance to approach an informative area and meanwhile collect

sparse measurement along its way. This is where the importance of GP mapping becomes high-

lighted through handling sparse measurements and fast map entropy reduction. In other words,

in many cases, the robot does not need to revisit partially observed areas; and the correlation

between points in the map helps in reducing the map entropy at a faster rate.

GPNF and GPMI exploit COM for mapping, exploration, and planning providing a common

ground for both travel distance and uncertainty reductions. GP-based methods handle sparse

sensor measurements and by learning the environment’s structural dependencies define distri-

butions over the map points occupancy and also frontier points. The significant increase in the

map entropy reduction rate while maintaining the localization error low is due to these facts

and can be concluded from the data in Table A.1. GPMI through the developed utility function

tries to maximize the MI between map and future measurements. It demonstrates a better long

term decision making, since it has the fastest map entropy reduction rate as the MI map suggests.
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(a) (b)

(c) (d)

Figure A.1: MI-based exploration in Cave and Freiburg environments. (a) and (b) Pose SLAM
maps, (c) and (d) continuous occupancy maps. In (a) and (b), red curves are the robot path
and green lines indicate loop-closures. The continuous occupancy maps show the occupancy
probability at each location where mid-probability value of 0.5 represents unknown points. Map

dimensions are in meters.

The developed MI surface is a suitable cost map for planners such as A∗ as demonstrated in the

results. Although the map is one-step look-ahead it is assumed to be fixed during the planning

time. Furthermore, traveling through uncertain traversable regions facilitates closing informa-

tive loops in the SLAM process by taking overlapping observations from diverse orientations.

Figure A.1 illustrates the indoor exploration results with the GPMI method in Cave and Freiburg

datasets.

A.2 Outdoor Experiments

The outdoor scenario consists of a large parking area, approximately 16 times larger than the

earlier indoor setting. Figure A.2 shows the exploration results with the GPMI method. The

environment is challenging, not only due to its size, but also for the long sections with few
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Figure A.2: MI-based exploration in an outdoor parking area. This map, on average, is 16 times
larger than the indoor maps in area and demonstrates the scalability of the presented method.
The lack of distinctive features in many region makes closing informative loops extremely chal-
lenging which can easily lead to the localization inconsistency in such a large environment. Map

dimensions are in meters.

Table A.2: Comparison of the GPNF and GPMI in the outdoor dataset (averaged over 10 exper-
iments, mean ± standard error)

Outdoor parking environment 210m×42m; map resolution: 0.4m
frontier map threshold: 0.53

GPNF GPMI

Travel distance (m) 634.44 ± 36.54 594.94 ± 53.53

Exploration time (min) 20.51 ± 1.00 38.65 ± 2.17
Map ent. rate (NATS/step) -72.8809 ± 4.0572 -74.1553 ± 3.8043

Localization MSE (m2) 2.5288 ± 0.4777 1.7357 ± 0.4664

Number of closed loops 34.50 ± 4.83 24.10 ± 8.89

distinguishing features. Closing informative loops is non-trivial and moving towards frontiers

as they emerge along the long straight section in the middle of the map significantly increases

robot pose uncertainty. Table A.2 presents the comparative results of running GPNF and GPMI

in this dataset. It can be seen how the latter performs slightly better in regards to travel distance,

map entropy rate, and localization error, while computational cost is slightly worse. A longer run

experiment such as this reveals how the lack of an explicit utility term for loop-closure actions

results in statistically closer figures.



Bibliography

Agha-mohammadi Aa, Chakravorty S and Amato NM (2014) FIRM: Sampling-based feedback

motion-planning under motion uncertainty and imperfect measurements. The Int. J. Robot.

Res. 33(2): 268–304.

Amigoni F and Caglioti V (2010) An information-based exploration strategy for environment

mapping with mobile robots. Robot. Auton. Syst. 58(5): 684–699.

Arya S and Mount DM (1993) Approximate nearest neighbor queries in fixed dimensions. In:

Proc. 4th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 271–280.

Astrom K (1965) Optimal control of markov processes with incomplete state information. Journal

of Mathematical Analysis and Applications 10(1): 174–205.

Bagon S (2009) Matlab class for ANN. URL http://www.wisdom.weizmann.ac.il/~bagon/

matlab.html.

Bailey T, Nieto J, Guivant J, Stevens M and Nebot E (2006a) Consistency of the EKF-SLAM algo-

rithm. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 3562–3568.

Bailey T, Nieto J and Nebot E (2006b) Consistency of the FastSLAM algorithm. In: Proc. IEEE Int.

Conf. Robot Automat. IEEE, pp. 424–429.

Bajcsy R (1988) Active perception. Proceedings of the IEEE 76(8): 966–1005.

Bertsekas DP (1995) Dynamic programming and optimal control, volume 1. Athena Scientific

Belmont, MA.

Binney J, Krause A and SukhatmeGS (2013) Optimizingwaypoints formonitoring spatiotemporal

phenomena. The Int. J. Robot. Res. 32(8): 873–888.

135



Bibliography 136

Binney J and Sukhatme GS (2012) Branch and bound for informative path planning. In: Proc.

IEEE Int. Conf. Robot Automat. IEEE, pp. 2147–2154.

Borrmann D, Elseberg J, Lingemann K, Nüchter A and Hertzberg J (2008) Globally consistent 3d

mapping with scan matching. Robot. Auton. Syst. 56(2): 130–142.

Bosse M, Newman P, Leonard J and Teller S (2004) Simultaneous localization and map building

in large-scale cyclic environments using the atlas framework. The Int. J. Robot. Res. 23(12):

1113–1139.

Bosse M and Zlot R (2009) Continuous 3d scan-matching with a spinning 2d laser. In: Proc. IEEE

Int. Conf. Robot Automat. IEEE, pp. 4312–4319.

Bourgault F, Makarenko AA, Williams SB, Grocholsky B and Durrant-Whyte HF (2002) Infor-

mation based adaptive robotic exploration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,

volume 1. IEEE, pp. 540–545.

Bry A and Roy N (2011) Rapidly-exploring random belief trees for motion planning under uncer-

tainty. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 723–730.

Burgard W, Moors M, Fox D, Simmons R and Thrun S (2000) Collaborative multi-robot explo-

ration. In: Proc. IEEE Int. Conf. Robot Automat., volume 1. pp. 476–481.

Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I and Leonard JJ (2016) Past,

present, and future of simultaneous localization and mapping: Toward the robust-perception

age. IEEE Trans. Robot. 32(6): 1309–1332.

Calandra R, Peters J, Rasmussen CE and Deisenroth MP (2014) Manifold Gaussian processes for

regression. arXiv preprint arXiv:1402.5876 .

Carlone L, Du J, Ng MK, Bona B and Indri M (2010) An application of kullback-leibler divergence

to active SLAM and exploration with particle filters. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst. IEEE, pp. 287–293.

Charrow B, Kumar V and Michael N (2014) Approximate representations for multi-robot control

policies that maximize mutual information. Auton. Robot 37(4): 383–400.



Bibliography 137

Charrow B, Liu S, Kumar V and Michael N (2015) Information-theoretic mapping using Cauchy-

Schwarz quadratic mutual information. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp.

4791–4798.

Cover TM and Thomas JA (1991) Elements of information theory. John Wiley & Sons.

Cummins M and Newman P (2008) Fab-map: Probabilistic localization and mapping in the space

of appearance. The Int. J. Robot. Res. 27(6): 647–665.

Davis PJ and Rabinowitz P (1984) Methods of numerical integration. Academic Press.

Dellaert F and KaessM (2006) Square root sam: Simultaneous localization andmapping via square

root information smoothing. The Int. J. Robot. Res. 25(12): 1181–1203.

Dhariwal A, Sukhatme GS and Requicha AA (2004) Bacterium-inspired robots for environmental

monitoring. In: Proc. IEEE Int. Conf. Robot Automat., volume 2. IEEE, pp. 1436–1443.

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische mathematik

1(1): 269–271.

Diosi A and Kleeman L (2005) Laser scanmatching in polar coordinates with application to SLAM.

In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 3317–3322.

Dissanayake MG, Newman P, Clark S, Durrant-Whyte HF and Csorba M (2001) A solution to the

simultaneous localization and map building (slam) problem. Robotics and Automation, IEEE

Transactions on 17(3): 229–241.

Doucet A, De Freitas N, Murphy K and Russell S (2000) Rao-blackwellised particle filtering for dy-

namic bayesian networks. In: Proceedings of the Sixteenth conference on Uncertainty in artificial

intelligence. Morgan Kaufmann Publishers Inc., pp. 176–183.

Dunbabin M and Marques L (2012) Robots for environmental monitoring: Significant advance-

ments and applications. IEEE Robotics & Automation Magazine 19(1): 24–39.

Durrant-Whyte H and Bailey T (2006) Simultaneous localization and mapping: part I. Robotics &

Automation Magazine, IEEE 13(2): 99–110.

Elfes A (1987) Sonar-based real-world mapping and navigation. Robotics and Automation, IEEE

Journal of 3(3): 249–265.



Bibliography 138

Estrada C, Neira J and Tardós JD (2005) Hierarchical SLAM: Real-time accurate mapping of large

environments. IEEE Trans. Robot. 21(4): 588–596.

Eustice RM, Singh H and Leonard JJ (2006) Exactly sparse delayed-state filters for view-based

SLAM. IEEE Trans. Robot. 22(6): 1100–1114.

Fawcett T (2006) An introduction to ROC analysis. Pattern recognition letters 27(8): 861–874.

Feder HJS, Leonard JJ and Smith CM (1999) Adaptive mobile robot navigation and mapping. The

Int. J. Robot. Res. 18(7): 650–668.

Gan S, Yang K and Sukkarieh S (2009) 3D online path planning in a continuous Gaussian process

occupancy map. In: Proc. Australian Conf. Field Robotics.

Ghaffari Jadidi M, Miro JV, Valencia R and Andrade-Cetto J (2014) Exploration on continuous

Gaussian process frontier maps. In: Proc. IEEE Int. Conf. Robot Automat. pp. 6077–6082.

Ghaffari Jadidi M, Valls Miro J and Dissanayake G (2015) Mutual information-based exploration

on continuous occupancy maps. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. pp. 6086–6092.

Ghaffari Jadidi M, Valls Miro J and Dissanayake G (2017) Warped Gaussian processes occu-

pancy mapping with uncertain inputs. IEEE Robotics and Automation Letters PP(99): 1–1. doi:

10.1109/LRA.2017.2651154.

Ghaffari Jadidi M, Valls Miro J, Valencia Carreño R, Andrade-Cetto J and Dissanayake G (2013a)

Exploration in information distribution maps. In: RSS Workshop on Robotic Exploration, Moni-

toring, and Information Content.

Ghaffari Jadidi M, Valls Miro J, Valencia Carreño R, Andrade-Cetto J and Dissanayake G (2013b)

Exploration using an information-based reaction-diffusion process. In: Australasian Conf.

Robot. Automat.

Girard A (2004)Approximate methods for propagation of uncertainty with Gaussian process models.

PhD Thesis, University of Glasgow.

Girard A, Rasmussen CE, nonero Candela JQ and Murray-Smith R (2003) Gaussian process priors

with uncertain inputs application to multiple-step ahead time series forecasting. In: Advances

in Neural Information Processing Systems. pp. 545–552.



Bibliography 139

Goldberg PW, Williams CK and Bishop CM (1998) Regression with input-dependent noise: A

Gaussian process treatment. In: Advances in Neural Information Processing Systems. pp. 493–

499.

Goldsmith A (2005) Wireless communications. Cambridge university press.

González-Banos H and Latombe J (2002) Navigation strategies for exploring indoor environ-

ments. The Int. J. Robot. Res. 21(10-11): 829–848.

Grisetti G, Rizzini DL, Stachniss C, Olson E and Burgard W (2008) Online constraint network

optimization for efficient maximum likelihood map learning. In: Proc. IEEE Int. Conf. Robot

Automat. IEEE, pp. 1880–1885.

Guestrin C, Krause A and SinghAP (2005) Near-optimal sensor placements in Gaussian processes.

In: Proc. Int. Conf. Machine learning. ACM, pp. 265–272.

Guivant JE and Nebot EM (2003) Solving computational and memory requirements of feature-

based simultaneous localization andmapping algorithms. Robotics andAutomation, IEEE Trans-

actions on 19(4): 749–755.

Hadsell R, Bagnell JA, Huber D and Hebert M (2010) Space-carving kernels for accurate rough

terrain estimation. The Int. J. Robot. Res. 29(8): 981–996.

He R, Brunskill E and Roy N (2010) Puma: Planning under uncertainty with macro-actions. In:

AAAI.

Hensman J, Fusi N and Lawrence ND (2013) Gaussian processes for big data. arXiv preprint

arXiv:1309.6835 .

Ho KL and Newman P (2007) Detecting loop closure with scene sequences. Int. J. Computer Vision

74(3): 261–286.

Hollinger GA (2015) Long-horizon robotic search and classification using sampling-based motion

planning. In: Robotics: Science and Systems.

Hollinger GA and Sukhatme GS (2013) Sampling-based motion planning for robotic information

gathering. In: Robotics: Science and Systems.



Bibliography 140

Hollinger GA and SukhatmeGS (2014) Sampling-based robotic information gathering algorithms.

The Int. J. Robot. Res. 33(9): 1271–1287.

Hornung A, Wurm KM, Bennewitz M, Stachniss C and Burgard W (2013) OctoMap: An efficient

probabilistic 3d mapping framework based on octrees. Autonomous Robots 34(3): 189–206.

Horsch T, Schwarz F and Tolle H (1994) Motion planning with many degrees of freedom-random

reflections at c-space obstacles. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 3318–3323.

Howard A and Roy N (2003) The robotics data set repository (Radish). URL http://radish.

sourceforge.net.

Huang S and Dissanayake G (2007) Convergence and consistency analysis for extended kalman

filter based SLAM. IEEE Trans. Robot. 23(5): 1036–1049.

Huynh VA and Roy N (2009) icLQG: combining local and global optimization for control in in-

formation space. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 2851–2858.

Ila V, Andrade-Cetto J, Valencia R and Sanfeliu A (2007) Vision-based loop closing for delayed

state robot mapping. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 3892–3897.

Ila V, Porta J and Andrade-Cetto J (2010) Information-based compact Pose SLAM. IEEE Trans.

Robot. 26(1): 78–93.

Indelman V, Carlone L and Dellaert F (2015) Planning in the continuous domain: A generalized

belief space approach for autonomous navigation in unknown environments. The Int. J. Robot.

Res. 34(7): 849–882.

JordanMI, Ghahramani Z, Jaakkola TS and Saul LK (1999) An introduction to variational methods

for graphical models. Machine learning 37(2): 183–233.

Juliá M, Gil A and Reinoso O (2012) A comparison of path planning strategies for autonomous

exploration and mapping of unknown environments. Auton. Robot 33(4): 427–444.

Juliá M, Reinoso Ó, Gil A, Ballesta M and Payá L (2010) A hybrid solution to the multi-robot

integrated exploration problem. Eng. Appl. Artif. Intell. 23(4): 473–486.

Julian BJ, Karaman S and Rus D (2014) On mutual information-based control of range sensing

robots for mapping applications. The Int. J. Robot. Res. 33(10): 1375–1392.



Bibliography 141

Julier SJ and Uhlmann JK (1997) New extension of the kalman filter to nonlinear systems. In:

AeroSense’97. Int. Society for Optics and Photonics, pp. 182–193.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning and acting in partially observable

stochastic domains. Artificial intelligence 101(1): 99–134.

Kaess M, Johannsson H, Roberts R, Ila V, Leonard J and Dellaert F (2011) isam2: Incremental

smoothing and mapping with fluid relinearization and incremental variable reordering. In:

Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 3281–3288.

Kaess M, Ranganathan A and Dellaert F (2008) isam: Incremental smoothing and mapping. IEEE

Trans. Robot. 24(6): 1365–1378.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. The

Int. J. Robot. Res. 30(7): 846–894.

Kavraki LE, Švestka P, Latombe JC andOvermarsMH (1996) Probabilistic roadmaps for path plan-

ning in high-dimensional configuration spaces. Robotics and Automation, IEEE Transactions on

12(4): 566–580.

Keidar M and Kaminka GA (2014) Efficient frontier detection for robot exploration. The Int. J.

Robot. Res. 33(2): 215–236.

Kersting K, Plagemann C, Pfaff P and Burgard W (2007) Most likely heteroscedastic Gaussian

process regression. In: Proc. Int. Conf. Machine learning. ACM, pp. 393–400.

Kim A and Eustice RM (2015) Active visual SLAM for robotic area coverage: Theory and experi-

ment. The Int. J. Robot. Res. 34(4-5): 457–475.

Kim S and Kim J (2012) Building occupancy maps with a mixture of Gaussian processes. In: Proc.

IEEE Int. Conf. Robot Automat. IEEE, pp. 4756–4761.

Kim S and Kim J (2013a) Continuous occupancymaps using overlapping local Gaussian processes.

In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 4709–4714.

Kim S and Kim J (2013b) Occupancy mapping and surface reconstruction using local Gaussian

processes with Kinect sensors. IEEE Transactions on Cybernetics 43(5): 1335–1346.



Bibliography 142

Kim S and Kim J (2015) GPmap: A unified framework for robotic mapping based on sparse Gaus-

sian processes. In: Field and Service Robotics. Springer, pp. 319–332.

Ko J and Fox D (2009) GP-BayesFilters: Bayesian filtering using Gaussian process prediction and

observation models. Auton. Robot 27(1): 75–90.

Konolige K, Grisetti G, Kümmerle R, BurgardW, Limketkai B and Vincent R (2010) Efficient sparse

pose adjustment for 2dmapping. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 22–29.

Krause A and Guestrin C (2005) Near-optimal value of information in graphical models. In:

Conference on Uncertainty in Artificial Intelligence (UAI).

Krause A, Singh A and Guestrin C (2008) Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research

9: 235–284.

Kurniawati H, Du Y, Hsu D and Lee WS (2011) Motion planning under uncertainty for robotic

tasks with long time horizons. The Int. J. Robot. Res. 30(3): 308–323.

Kurniawati H, Hsu D and Lee WS (2008) Sarsop: Efficient point-based POMDP planning by ap-

proximating optimally reachable belief spaces. In: Robotics: Science and Systems.

Lan X and Schwager M (2013) Planning periodic persistent monitoring trajectories for sensing

robots in Gaussian random fields. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 2415–2420.

Lang T, PlagemannC and BurgardW (2007) Adaptive non-stationary kernel regression for terrain

modeling. In: Robotics: Science and Systems.

Latombe JC (1991) Robot motion planning, volume 124. Springer US.

Lau H (2003) Behavioural approach for multi-robot exploration. In: Australasian Conf. Robot.

Automat.

LaValle SM (2006) Planning algorithms. Cambridge university press.

LaValle SM and Kuffner JJ (2001) Randomized kinodynamic planning. The Int. J. Robot. Res. 20(5):

378–400.

Levine DS (2010) Information-rich path planning under general constraints using rapidly-exploring

random trees. Master’s Thesis, Massachusetts Institute of Technology.



Bibliography 143

Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans. Information Theory

37(1): 145–151.

Makarenko A, Williams S, Bourgault F and Durrant-Whyte H (2002) An experiment in integrated

exploration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., volume 1. pp. 534–539.

Marchant R and Ramos F (2012) Bayesian optimisation for intelligent environmental monitoring.

In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp. 2242–2249.

Melkumyan A and Ramos F (2009) A sparse covariance function for exact Gaussian process in-

ference in large datasets. In: IJCAI, volume 9. pp. 1936–1942.

Minka TP (2001) A family of algorithms for approximate Bayesian inference. PhD Thesis, Mas-

sachusetts Institute of Technology.

Montemerlo M, Thrun S, Koller D and Wegbreit B (2003) FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges. In: In

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI). pp. 1151–1156.

Montemerlo M, Thrun S, Koller D, Wegbreit B et al. (2002) Fastslam: A factored solution to the

simultaneous localization and mapping problem. In: AAAI/IAAI. pp. 593–598.

Moravec HP and Elfes A (1985) High resolution maps from wide angle sonar. In: Proc. IEEE Int.

Conf. Robot Automat., volume 2. IEEE, pp. 116–121.

Mount DM and Arya S (2006) ANN: A library for approximate nearest neighbor searching. URL

http://www.cs.umd.edu/~mount/ANN/. Version 1.1.1.

Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press.

Neal RM (1996) Bayesian learning for neural networks, volume 118. Springer New York.

Neumann M, Marthaler D, Huang S and Kersting K (2014) pyGPs; a library for Gaussian process

regression and classification. https://github.com/marionmari/pyGPs.

Newman P and Ho K (2005) SLAM-loop closing with visually salient features. In: Proc. IEEE Int.

Conf. Robot Automat. IEEE, pp. 635–642.

O’Callaghan S and Ramos F (2011) Continuous occupancy mapping with integral kernels. In:

Proceedings of the AAAI Conference on Artificial Intelligence. pp. 1494–1500.



Bibliography 144

O’Callaghan S, Ramos FT and Durrant-Whyte H (2009) Contextual occupancy maps using Gaus-

sian processes. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 1054–1060.

O’Callaghan ST, Ramos FT and Durrant-Whyte H (2010) Contextual occupancy maps incorpo-

rating sensor and location uncertainty. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 3478–

3485.

Olson EB (2009) Real-time correlative scan matching. In: Proc. IEEE Int. Conf. Robot Automat.

IEEE, pp. 4387–4393.

Paz LM, Tardós JD and Neira J (2008) Divide and conquer: EKF SLAM in O(n). IEEE Trans. Robot.

24(5): 1107–1120.

Pineau J, Gordon G, Thrun S et al. (2003) Point-based value iteration: An anytime algorithm for

POMDPs. In: IJCAI, volume 3. pp. 1025–1032.

Platt Jr R, Tedrake R, Kaelbling L and Lozano-Perez T (2010) Belief space planning assuming

maximum likelihood observations .

Prentice S and Roy N (2009) The belief roadmap: Efficient planning in belief space by factoring

the covariance. The Int. J. Robot. Res. 28(11-12): 1448–1465.

PressWH, Teukolsky SA, VetterlingWT and Flannery BP (1996)Numerical recipes in C, volume 2.

Cambridge university press Cambridge.

Prestes e Silva E, Engel P, Trevisan M and Idiart M (2002) Exploration method using harmonic

functions. Robot. Auton. Syst. 40(1): 25–42.

Pukelsheim F (2006) Optimal design of experiments. Society for Industrial and Applied Mathe-

matics.

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R and Ng AY (2009) ROS: an

open-source Robot Operating System. In: ICRA workshop on open source software, volume 3.

p. 5.

Ramos F and Ott L (2015) Hilbert maps: scalable continuous occupancy mapping with stochastic

gradient descent. In: Robotics: Science and Systems.



Bibliography 145

Rappaport TS (1996) Wireless communications: principles and practice, volume 2. Prentice Hall

PTR New Jersey.

Rasmussen C and Williams C (2006) Gaussian processes for machine learning, volume 1. MIT

press.

Roy N, Burgard W, Fox D and Thrun S (1999) Coastal navigation-mobile robot navigation with

uncertainty in dynamic environments. In: Proc. IEEE Int. Conf. Robot Automat., volume 1. IEEE,

pp. 35–40.

Roy N, Gordon GJ and Thrun S (2005) Finding approximate POMDP solutions through belief

compression. J. Artif. Intell. Res.(JAIR) 23: 1–40.

Russell SJ and Norvig P (2009) Artificial intelligence: a modern approach. 3 edition. Prentice Hall.

Shade R and Newman P (2011) Choosing where to go: Complete 3D exploration with stereo. In:

Proc. IEEE Int. Conf. Robot Automat. pp. 2806–2811.

Shen S, Michael N and Kumar V (2012) Stochastic differential equation-based exploration algo-

rithm for autonomous indoor 3d exploration with a micro-aerial vehicle. The Int. J. Robot. Res.

31(12): 1431–1444.

Sibley D, Mei C, Reid I and Newman P (2009) Adaptive relative bundle adjustment. In: Robotics:

Science and Systems, volume 32. p. 33.

Sibley G, Matthies L and Sukhatme G (2008) A sliding window filter for incremental SLAM. In:

Unifying perspectives in computational and robot vision. Springer, pp. 103–112.

Sim R and Little JJ (2006) Autonomous vision-based exploration and mapping using hybrid maps

and rao-blackwellised particle filters. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. IEEE, pp.

2082–2089.

Sim R and Roy N (2005) Global A-optimal robot exploration in SLAM. In: Proc. IEEE Int. Conf.

Robot Automat. IEEE, pp. 661–666.

Simmons R and Koenig S (1995) Probabilistic robot navigation in partially observable environ-

ments. In: IJCAI, volume 95. pp. 1080–1087.



Bibliography 146

Singh A, Krause A, Guestrin C and Kaiser WJ (2009) Efficient informative sensing using multiple

robots. Journal of Artificial Intelligence Research : 707–755.

Singh A, Ramos F, Whyte HD and Kaiser WJ (2010) Modeling and decision making in spatio-

temporal processes for environmental surveillance. In: Proc. IEEE Int. Conf. Robot Automat.

IEEE, pp. 5490–5497.

Smallwood RD and Sondik EJ (1973) The optimal control of partially observablemarkov processes

over a finite horizon. Operations Research 21(5): 1071–1088.

Smith A, Doucet A, de Freitas N and Gordon N (2013) Sequential Monte Carlo methods in practice.

Springer Science & Business Media.

Snelson E andGhahramani Z (2006) Sparse Gaussian processes using pseudo-inputs. In: Advances

in Neural Information Processing Systems. pp. 1257–1264.

Snelson E, Rasmussen CE and Ghahramani Z (2004) Warped Gaussian processes. Advances in

neural information processing systems 16: 337–344.

Spaan MT and Vlassis N (2005) Perseus: Randomized point-based value iteration for POMDPs.

Journal of artificial intelligence research : 195–220.

Stachniss C, Grisetti G and Burgard W (2005) Information gain-based exploration using rao-

blackwellized particle filters. In: Robotics: Science and Systems, volume 2.

Stein M (1999) Interpolation of spatial data: some theory for kriging. Springer Verlag.

Strasdat H, Montiel J and Davison AJ (2010) Real-time monocular SLAM: Why filter? In: Proc.

IEEE Int. Conf. Robot Automat. IEEE, pp. 2657–2664.

Ström DP, Nenci F and Stachniss C (2015) Predictive exploration considering previously mapped

environments. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 2761–2766.

Sucan IA, Moll M and Kavraki LE (2012) The open motion planning library. IEEE Robotics &

Automation Magazine 19(4): 72–82.

Surmann H, Nüchter A and Hertzberg J (2003) An autonomous mobile robot with a 3d laser range

finder for 3d exploration and digitalization of indoor environments. Robot. Auton. Syst. 45(3):

181–198.



Bibliography 147

T O’Callaghan S and Ramos F (2012) Gaussian process occupancy maps. The Int. J. Robot. Res.

31(1): 42–62.

Thrun S (2003a) Exploring artificial intelligence in the newmillennium. chapter RoboticMapping:

A Survey. Morgan Kaufmann Publishers Inc. ISBN 1-55860-811-7, pp. 1–35.

Thrun S (2003b) Learning occupancy grid maps with forward sensor models. Autonomous robots

15(2): 111–127.

Thrun S, Burgard W and Fox D (2005) Probabilistic robotics, volume 1. MIT press.

Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z and Durrant-Whyte H (2004) Simultaneous lo-

calization and mapping with sparse extended information filters. The Int. J. Robot. Res. 23(7-8):

693–716.

Thrun S and Montemerlo M (2006) The graph SLAM algorithm with applications to large-scale

mapping of urban structures. The Int. J. Robot. Res. 25(5-6): 403–429.

TitsiasMK and Lázaro-GredillaM (2011) Variational heteroscedastic Gaussian process regression.

In: Proc. Int. Conf. Machine learning. ACM, pp. 841–848.

Tresp V (2000) A Bayesian committee machine. Neural Computation 12(11): 2719–2741.

Valencia R, Morta M, Andrade-Cetto J and Porta JM (2013) Planning reliable paths with Pose

SLAM. IEEE Trans. Robot. 29(4): 1050–1059.

Valencia R, Valls Miro J, Dissanayake G and Andrade-Cetto J (2012) Active Pose SLAM. In: Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst. pp. 1885–1891.

Valiente D, Ghaffari Jadidi M, Valls Miro J, Gil A and Reinoso O (2015) Information-based view

initialization in visual SLAM with a single omnidirectional camera. Robot. Auton. Syst. 72: 93

– 104.

Vallvé J and Andrade-Cetto J (2013) Mobile robot exploration with potential information fields.

In: 6th European Conference on Mobile Robots.

Vallvé J and Andrade-Cetto J (2014) Dense entropy decrease estimation for mobile robot explo-

ration. In: Proc. IEEE Int. Conf. Robot Automat. IEEE, pp. 6083–6089.



Bibliography 148

Vallvé J and Andrade-Cetto J (2015) Potential information fields for mobile robot exploration.

Robot. Auton. Syst. 69: 68–79.

Van Den Berg J, Abbeel P and Goldberg K (2011) LQG-MP: Optimized path planning for robots

with motion uncertainty and imperfect state information. The Int. J. Robot. Res. 30(7): 895–913.

Vasudevan S, Ramos F, Nettleton E and Durrant-Whyte H (2009) Gaussian process modeling of

large-scale terrain. Journal of Field Robotics 26(10): 812–840.

Von Mises R (1964) Mathematical theory of probability and statistics. Academic Press.

Wurm KM, Hornung A, Bennewitz M, Stachniss C and BurgardW (2010) OctoMap: A probabilis-

tic, flexible, and compact 3D map representation for robotic systems. In: Proc. of the ICRA 2010

workshop on best practice in 3D perception and modeling for mobile manipulation, volume 2.

Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: Int. Sym. Comput.

Intell. Robot. Automat. pp. 146–151.

Yamauchi B (1998) Frontier-based exploration using multiple robots. In: Int. Conf. Autonomous

Agents. pp. 47–53.

Yang K, Keat Gan S and Sukkarieh S (2013) A Gaussian process-based RRT planner for the ex-

ploration of an unknown and cluttered environment with a UAV. Advanced Robotics 27(6):

431–443.

Yu J, Karaman S and Rus D (2015) Persistent monitoring of events with stochastic arrivals at

multiple stations. IEEE Trans. Robot. 31(3): 521–535.

Zlot R, Stentz A, Dias M and Thayer S (2002) Multi-robot exploration controlled by a market

economy. In: Proc. IEEE Int. Conf. Robot Automat., volume 3. pp. 3016–3023.


	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Nomenclature
	Chapter 1 Introduction
	1.1 Outline of the Problem and Assumptions
	1.2 Contributions
	1.3 Thesis Overview
	1.4 Publications

	Chapter 2 Related Work
	2.1 Simultaneous Localization and Mapping
	2.2 Robotic Exploration and Motion Planning
	2.3 Gaussian Processes Mapping and Exploration
	2.4 Chapter Summary

	Chapter 3 Background Theory and Techniques
	3.1 Mathematical Notation
	3.2 Mathematical Preliminary
	3.2.1 Probability Theory
	3.2.2 Information Theory
	3.2.3 Numerical Integration
	3.2.4 Submodular Functions
	3.2.5 Gaussian Processes
	3.2.5.1 Covariance Function
	3.2.5.2 Useful Kernels
	3.2.5.3 GP libraries

	3.2.6 System Dynamics

	3.3 Basic Techniques
	3.3.1 Occupancy Grid Maps
	3.3.2 Pose SLAM

	3.4 Chapter Summary

	Chapter 4 Gaussian Processes Continuous Occupancy Mapping
	4.1 Problem Statement and Formulation
	4.2 Gaussian Processes Occupancy Maps
	4.2.1 Sensor Model and Training Data
	4.2.2 Model Selection and Learning Hyperparameters
	4.2.3 Regression and Classification
	4.2.4 Batch Mapping
	4.2.5 Map Management and Incremental Mapping
	4.2.6 Mapping Results

	4.3 Gaussian Processes Frontier Maps
	4.4 Chapter Summary

	Chapter 5 Exploration using Gaussian Processes Maps
	5.1 Decision Making Problem
	5.1.1 Sequential Decision Making
	5.1.2 Exploration Policies
	5.1.2.1 Nearest Frontier
	5.1.2.2 Information Gain
	5.1.2.3 Cost-Utility Trade-off


	5.2 Mutual Information-based Exploration
	5.2.1 Mutual information computation
	5.2.2 Decision making
	5.2.3 Map Regeneration

	5.3 Exploration Results
	5.3.1 Experimental setup
	5.3.2 Exploration results in the Intel map
	5.3.3 Outdoor scenario: Freiburg Campus
	5.3.4 Computational complexity

	5.4 Chapter Summary

	Chapter 6 Gaussian Processes Occupancy Mapping Extensions
	6.1 Mapping Under Pose Uncertainty
	6.1.1 Problem Statement and Formulation
	6.1.2 Expected Kernel
	6.1.3 Expected Sub-map

	6.2 Warped GP Occupancy Mapping
	6.3 Results and Discussion
	6.3.1 First Experiment: Motion Uncertainty Effect
	6.3.2 Experimental Results
	6.3.3 Discussion and Limitations
	6.3.4 Computational Complexity

	6.4 Chapter Summary

	Chapter 7 Sampling-based Incremental Information Gathering
	7.1 Problem Statement and Preliminaries
	7.1.1 Incremental Informative Motion Planning
	7.1.2 RIG Algorithms

	7.2 IIG: Incrementally-exploring Information Gathering
	7.3 Information Functions Algorithms
	7.3.1 Mutual Information
	7.3.2 GP Variance Reduction
	7.3.3 Uncertain GP Variance Reduction

	7.4 Path Extraction and Selection
	7.5 Information-theoretic Robotic Exploration
	7.6 Results and Discussion
	7.6.1 Experimental Setup
	7.6.2 Comparison of Information Functions
	7.6.3 Robotic Exploration in Unknown Environments
	7.6.4 Lake Monitoring Experiment
	7.6.5 Limitations and Observations

	7.7 Chapter Summary

	Chapter 8 Conclusion and Future Work
	Appendices
	A Mutual Information-based Exploration Results
	A.1 Indoor Experiments
	A.2 Outdoor Experiments


	Bibliography

