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Abstract

Abstract

This dissertation is concerned with the nonconvex optimization problems of interfer-

ence management under the consideration of new disruptive technologies in the fifth-

generation cellular networks. These problems are the key to the successful roll-out of

these new technologies but have remained unsolved due to their mathematical challenge.

Therefore, this dissertation provides novel minorants/majorants of the nonconvex func-

tions which are then used for the successive convex approximation framework.

The first considered technology is heterogeneous networks (HetNet) in which base sta-

tions (BSs) of various sizes and types are densely deployed in the same area. Although

HetNet provides a significant improvement in spectral efficiency and offloading, de-

signing an optimal power transmission and association control policy is challenging,

especially when both quality-of-service (QoS) and backhaul capacity are considered.

Maximizing the total network throughput or the fairness among users in HetNet are

challenging mixed integer nonconvex optimization problems. Iterative algorithms based

on alternating descent and successive convex programming are proposed to address such

problems.

Next, we consider a full-duplex multi-user multiple-input multiple-output (FD MU-

MIMO) multicell network in which base stations simultaneously serve both downlink

(DL) users and uplink (UL) users on the same frequency band via multiple antennas to

potentially double the spectral efficiency. Since the use of FD radios introduces addi-

tional self-interference (SI) and cross interference of UL between DL transmissions, the

viii



Abstract

minimum cell throughput maximization and the sum network throughput maximization

with QoS guarantee are nonconvex challenging problems. To solve such challenging op-

timization problems, we develop path-following algorithms based on successive convex

quadratic programming framework. As a byproduct, the proposed algorithms can be

extended to the optimal precoding matrix design in a half-duplex MU-MIMO multicell

network with the Han-Kobayashi transmission strategy.

Finally, the last research work stems from the need of prolonging user equipments’

battery life in power-limited networks. Toward this end, we consider the optimal design

of precoding matrices in the emerging energy-harvesting-enabled (EH-enabled) MU-

MIMO networks in which BSs can transfer information and energy to UEs on the same

channel using either power splitting (PS) or time switching (TS) mechanisms. The total

network throughput maximization problem under QoS constraints and EH constraints

with either PS or TS in FD networks is computationally difficult due to nonconcave

objective function and nonconvex constraints. We propose new inner approximations of

these problems based on which a successive convex programming framework is applied

to address them.
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