

Interference Management in 5G Cellular Networks

HUU MINH TAM HO

THIS DISSERTATION IS SUBMITTED FOR THE REQUIREMENT OF DOCTOR OF PHILOSOPHY TO FACULTY OF ENGINEERING & INFORMATION TECHNOLOGY UNIVERSITY OF TECHNOLOGY SYDNEY

September 2016

Acknowledgments

My special thanks are given to my principal supervisor, Professor Tuan Hoang, for his dedication and patience. Without his constant supervision and generous support, my PhD study would not have been completed.

I am also deeply grateful to Doctor Duy Ngo of The University of Newcastle, Australia, for his productive research collaboration, valuable advice and continuous encouragement over the years. As well, I would like to thank Doctor Ali Arshad Nasir, who is now at King Fahd University of Petroleum and Minerals (KFUPM), KSA, for his cooperative reviews and comments on my research. Furthermore, I am grateful to Prof Ha Nguyen (University of Saskatchewan, Saskatoon, SK, Canada), Prof. Trung Q. Duong (Queen's University Belfast, UK) and Prof. Vincent Poor (Princeton University, USA) for their time and input in my work.

Special thanks are extended to my friends and colleagues in Prof. Tuan Hoang's research group at the University of Technology Sydney for making my PhD study joyful and memorable. Particularly, I appreciate Ye Shi, Zhichao Sheng, Johann Begua and Enlong Che for sharing their PhD candidature with me. I would like to express my gratitude to my best friends, Phien Ho and Bao Truong, for their understanding and encouragement that help me overcome the most challenging periods of my PhD candidature.

Finally, my deepest gratitude goes out to my family for their unconditional love and endless encouragement. They have always given me so much support and hope for the very best of myself.

Certificate of Authorship

I certify that the work in this dissertation has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the dissertation has been written by me. Any help that I have received in my research work and the preparation of the dissertation itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the dissertation.

Signature

Name HUU MINH TAM HO

Acknowledgments	i
Certificate of Authorship	ii
Contents	iii
Abstract	viii
List of Figures	x
List of Tables	xiv
Abbreviations	XV
Notations	xvii
Author's Publications	xix
1 Introduction	1
1.1 Heterogeneous Networks (HetNet)	3

	1.2	FD Ne	etworks	6
	1.3	Energ	y-harvesting-enabled (EH-enabled) Networks	7
	1.4	Objec	tives and Contributions	10
	1.5	Disser	tation Outline	12
2	Bac	kgroui	nd	16
	2.1	Optim	ization Background	16
		2.1.1	Convex Optimization	16
		2.1.2	A Generic Successive Convex Approximation Framework for Non-	
			convex Programming	19
	2.2	Multiu	ıser MIMO Systems	22
		2.2.1	SU-MIMO Communications	24
		2.2.2	MU-MIMO Communications	26
		2.2.3	Coordinated Multipoint Transmission/Reception (CoMP)	29
3	Joir	nt Loa	d Balancing and Interference Management for Small-Cell	l
	Het	erogen	eous Networks with Limited Backhaul Capacity	32
	3.1	Introd	uction	32
	3.2	Syster	n Model and Problem Formulations	36
	3.3	Propo	sed Alternating Descent Algorithm for Sum-Rate Maximization .	40
		3.3.1	BS-UE Association for Fixed Transmit Power	40
		3.3.2	Power Allocation for Fixed BS-UE Association	44
		3.3.3	Joint Optimization of BS-UE Association and Power Allocation	46

	3.4	Propo mizati	sed Alternating Descent Algorithm for Minimum UE Rate Maxi-	4
	3.5	Illustr	ative Examples	50
	3.6	Concl	usions	5
4	Suc	cessive	e Convex Quadratic Programming for Interference Manage	_
	mer	nt in N	IU-MIMO Multicell Networks	59
	4.1	Preco	ding Design for QoS Management in Full-Duplex MU-MIMO Mul-	
		ticell	Networks	59
		4.1.1	Introduction	5
		4.1.2	System Model and Optimization Problem Formulations	64
		4.1.3	QoS-Constrained Sum Throughput Maximization	6
		4.1.4	Maximization of Minimum Cell Throughput	7
		4.1.5	Numerical Results	7
			4.1.5.1 Simulation Scenario 1	7
			4.1.5.2 Simulation Scenario 2	7
			4.1.5.3 Simulation Scenario 3	8
			4.1.5.4 Simulation Scenario 4	8
		4.1.6	Conclusions	8
	4.2	Preco	ding Design for Han-Kobayashi's Signal Splitting in MIMO Inter-	
		ferenc	e Networks	80
		4.2.1	Introduction	80

		4.2.2	System Model and Problem Formulation	88
		4.2.3	Proposed Precoder Design	92
		4.2.4	Numerical Results	94
		4.2.5	Conclusions	97
5	Full	-Duple	ex MU-MIMO Networks and MIMO Energy Harvesting	99
	5.1	Introd	uction	99
	5.2	EH-en	abled FD MU-MIMO Networks	103
	5.3	EH-en	abled FD MU-MIMO by Time Switching	112
	5.4	Throu	ghput QoS Constrained Energy-Harvesting Optimization	119
	5.5	Nume	rical Results	120
		5.5.1	Single Cell Network	122
		5.5.2	Three-cell Network	126
		5.5.3	Convergence Behavior	128
	5.6	Conclu	usion	129
6	Con	clusio	ns	131
	6.1	Summ	ary	131
	6.2	Future	e Research Directions	133
A	Pro	of of F	Proposition 3.2	136
в	Pro	of of F	Proposition 3.3	137

С	Quadratic Forms	140
D	Proof of Theorem 4.1	142
E	Proof of Proposition 4.1	145
\mathbf{F}	Proof of Corollary 4.1	146

Abstract

This dissertation is concerned with the nonconvex optimization problems of interference management under the consideration of new disruptive technologies in the fifthgeneration cellular networks. These problems are the key to the successful roll-out of these new technologies but have remained unsolved due to their mathematical challenge. Therefore, this dissertation provides novel minorants/majorants of the nonconvex functions which are then used for the successive convex approximation framework.

The first considered technology is heterogeneous networks (HetNet) in which base stations (BSs) of various sizes and types are densely deployed in the same area. Although HetNet provides a significant improvement in spectral efficiency and offloading, designing an optimal power transmission and association control policy is challenging, especially when both quality-of-service (QoS) and backhaul capacity are considered. Maximizing the total network throughput or the fairness among users in HetNet are challenging mixed integer nonconvex optimization problems. Iterative algorithms based on alternating descent and successive convex programming are proposed to address such problems.

Next, we consider a full-duplex multi-user multiple-input multiple-output (FD MU-MIMO) multicell network in which base stations simultaneously serve both downlink (DL) users and uplink (UL) users on the same frequency band via multiple antennas to potentially double the spectral efficiency. Since the use of FD radios introduces additional self-interference (SI) and cross interference of UL between DL transmissions, the

Abstract

minimum cell throughput maximization and the sum network throughput maximization with QoS guarantee are nonconvex challenging problems. To solve such challenging optimization problems, we develop path-following algorithms based on successive convex quadratic programming framework. As a byproduct, the proposed algorithms can be extended to the optimal precoding matrix design in a half-duplex MU-MIMO multicell network with the Han-Kobayashi transmission strategy.

Finally, the last research work stems from the need of prolonging user equipments' battery life in power-limited networks. Toward this end, we consider the optimal design of precoding matrices in the emerging energy-harvesting-enabled (EH-enabled) MU-MIMO networks in which BSs can transfer information and energy to UEs on the same channel using either power splitting (PS) or time switching (TS) mechanisms. The total network throughput maximization problem under QoS constraints and EH constraints with either PS or TS in FD networks is computationally difficult due to nonconcave objective function and nonconvex constraints. We propose new inner approximations of these problems based on which a successive convex programming framework is applied to address them.

1.1	The predicted growth of global data use [Cisco, 2016]	2
1.2	An example of HetNet	5
1.3	An example of interference in a simple FD network with one transmitter, one half-duplex (HD) DL UE and one HD UL UE	7
1.4	An example of interference in an EH-enabled network in which a trans- mitter sends information and transfers energy on the same channel	8
1.5	Receiver architecture designs for EH-enabled receiver	9
2.1	An illustration of successive convex approximation.	21
2.2	An example of an SU-MIMO network.	24
2.3	An example of an MU-MIMO network	26
2.4	An example of a multicell MU-MIMO network applying IA or IC. Unin- tended signals are treated as white noise	30
2.5	An example of a multicell MU-MIMO network applying JP. UEs can receive desired data streams from multiple BSs	31
3.1	A small-cell HetNet with limited-capacity backhaul links. 'MBS', 'PBS'	

and 'PoP' refer to macro BS, pico BS and Point of Presence, respectively. 37

3.2	A three-tier network with one fixed MBS (black square), four fixed PBSs	
	(black diamonds), twenty random FBSs (black triangles) and 200 random	
	UEs (red circles).	50
3.3	Sum-rate performance of Algorithm 1 under ideal backhaul links	52
3.4	Effects of QoS constraints and limited backhaul capacity on the sum-rate performance of Algorithm 1	53
3.5	Effects of QoS constraints and limited backhaul capacity on the load distribution by Algorithm 1	54
3.6	Changes in BS-UE associations by Algorithm 1 under various choices of UE QoS requirements and backhaul capacity	55
3.7	Fairness by Algorithm 2 and effects of limited backhaul capacity on the minimum UE rate.	56
3.8	More UEs switch to MBS when backhaul capacity is limited in Algorithm 2.	57
3.9	Convergence of Algorithms 1 and 2 for $\epsilon = 10^{-4}$	57
4.1	Interference scenario in an FD multicell network, where SI denotes the self-interference and ITI_i denotes the interference from the BS and ULUs of cell i .	64
4.2	Scenario 1: A single-cell network with 2 DLUs and 2 ULUs. The user locations are fixed.	77
4.3	Effect of SI on the sum throughput performance of Algorithm 3	78
4.4	Effect of SI on the DL and UL throughput performance of Algorithm 3.	79
4.5	Effect of SI on the network throughput when SI is treated as white noise.	80

 A on the circle of radius of 90m
 4.7 Effect of ULU-DLU distance (hence, intracell interference) on the sum throughput performance of Algorithm 3
4.8 Scenario 3: A three-cell network with 1 DLU and 1 ULU. The cell radius is $r = 100$ m and the user locations are fixed
4.9 Comparing the throughput performance of Algorithms 3 and 4 84
4.10Scenario 4: Three cellular network topologies that serve 12 users in total.The cell radius is $r = 100m$ and the users are placed randomly according to the uniform distribution.85
4.11 Impact of the required minimum rates and the number of cells on through- put performance of Algorithm 3
4.12 Convergence of Algorithms 3 and 4 for $\epsilon = 10^{-3}$ and $\alpha = 0.8$
4.13 Network configurations used in the simulations
4.14 Performance results for the network in Fig. 4.13(a)
4.15 Performance results for the network in Fig. 4.13(b)
5.1 Interference scenario in an FD multicell network, where SI denotes the self-interference and ITI_i denotes the interference from the BS and ULUs of cell i
5.2 A three-cell network with 3 DLUs and 3 ULUs. DLUs are randomly located on the circles with radius of r_1 centered at their serving BS. ULUs are uniformly distributed within the cell of their serving BS 121

5.3	Effect of SI on the sum throughput performance in the single-cell networks	.123
5.4	Effect of SI on the UL/DL throughput performance in the single-cell networks.	124
5.5	Effect of energy harvesting constraints on the total harvested energy performance in the single-cell networks.	125
5.6	Effect of SI on the total harvested energy performance in the single-cell networks.	126
5.7	Effect of SI on the sum throughput performance in the three-cell networks	.127
5.8	Effect of energy harvesting constraints on the total harvested energy performance in the three-cell networks	128
5.9	Effect of SI on the total harvested energy performance in the three-cell networks.	129
5.10	Convergence of Algorithm 6 for $\epsilon = 10^{-4}$.	130

List of Tables

3.1	Simulation parameters used in all numerical examples	51
4.1	Simulation parameters used in all numerical examples	75
4.2	The number of times that at least a DLU or a BS receives a zero data	
	rate in 100 simulation runs	81
4.3	The average number of iterations required by Algorithms 3 and 4 $$	84
4.4	Average number of iterations by Algorithm 5 for the network in Fig. 4.13(a).	96
5.1	The average number of iterations required by Algorithm 6	129

Abbreviations

1G	First generation
3GPP	Third Generation Partnership Project
$5\mathrm{G}$	Fifth generation
BS	Base station
CDMA	Code division multiple access
CoMP	Coordinated multipoint transmission/reception
CPU	Central processing unit
CR	Cognitive radio
CSI	Channel state information
d.c.	Difference of convex functions
DCD	Dual Coordinate Descent
DCI	Difference-of-convex iterations
DL	Downlink
DLU	Downlink user equipment
DPC	Dirty paper coding
DSL	Digital Subscriber Line
EH	Energy harvesting
FBS	Femto base station
FD	Full-duplex
HD	Half-duplex
HetNet	Heterogeneous network
H-K	Han-Kobayashi
IA	Interference aware
IC	Interference coordination
ID	Information decoding
IN	Interference network
JP	Joint signal processing
KKT	Karush-Kuhn-Tucker

Abbreviations

LOS	Line-of-sight
LTE	Long Term Evolution
MBS	Macro base station
MIMO	Multiple-input multiple-output
MISO	Multiple-input single-output
MMSE-SIC	Minimum mean square error - Successive interference cancellation
MU	Multi-user
NOMA	Non-orthogonal multiple access
NP-hard	Non-deterministic polynomial-time hard
PBS	Pico base station
PoP	Point of Presence
PS	Power splitting
QCQP	Quadratically constrained quadratic program
QoS	Quality-of-Servive
QPI	Quadratic programming iterations
RF	Radio frequency
RHS	Right hand side
s.t.	Subject to
SCQP	Successive convex quadratic programming
SDN	Software-defined networking
SDP	Semi-definite programming
SI	Self-interference
SINR	Signal-to-interference-plus-noise ratio
SISO	Single-input single-output
SNR	Signal-to-noise ratio
SOCP	Second-order-cone programming
SU	Single-user
SVD	Singular value decomposition
TS	Time switching
UE	User equipment
UL	Uplink
ULU	Uplink user equipment

Notations

\mathbb{R}	Set of real numbers
\mathbb{R}^+	Set of positive real numbers
\mathbb{C}	Set of complex numbers
Ø	Empty set
$ \mathcal{S} $	Cardinality of set \mathcal{S}
$\mathcal{S}_1 \setminus \mathcal{S}_2$	Elements of set S_2 are excluded for set S_1
x	Vector of constants
х	Vector of variables
X	Matrix of constants
X	Matrix of variables
I_n	Identity matrix of size $n \times n$
$1_{n \times m}$	All-one matrix of size $n \times m$
X^H	Hermitian transpose of a matrix X
X^T	Transpose of a matrix X
x	Absolute value of a complex scalar x
A	Determinant of a square matrix A
$\langle A \rangle$	Trace of a matrix A
$\langle X, Y \rangle = \langle X^H Y \rangle$	Inner product of X and Y
$\ x\ $	Norm of a vector x
X	Frobenius norm of a matrix X
$\ X\ ^2 = \langle XX^H \rangle$	Frobenius squared norm of a matrix X
$A \succeq B$	A - B is a positive semidefinite matrix
$\mathbb{E}[.]$	Expectation operator
$\operatorname{Re}\{.\}$	Real part of a complex number
$(x)^+$	$\max\{x,0\}$
∇f	Gradient of a scalar function f
X^*	Optimal solution of an optimization program

Notations

 $\begin{array}{ll} \forall & \text{for all} \\ \mathcal{O} & \text{Big O notation} \end{array}$

Author's Publications

The contents of this dissertation are based on the following papers that have been published, accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers:

- H. H. M. Tam, H. D. Tuan, and D. T. Ngo, "Successive convex quadratic programming for quality-of-service management in full-duplex MU-MIMO multicell networks," *IEEE Transaction on Communication*, vol. 64, no. 6, pp. 2340-2353, June 2016.
- E. Che, H. D. Tuan, H. H. M. Tam, and H. H. Nguyen, "Successive interference mitigation in multiuser MIMO interference channels," *IEEE Transaction on Communications*, vol. 63, no. 6, pp. 2185-2199, June 2015.
- H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong and H. V. Poor, "Joint load balancing and interference management for small-cell heterogeneous networks with limited backhaul capacity," *IEEE Transaction on Wireless Communications*, vol. 16, no. 2, pp. 872-884, February 2017.
- H. H. M. Tam, H. D. Tuan, A. A. Nasir, T. Q. Duong and H. V. Poor, "MIMO energy harvesting in full-duplex MU-MIMO networks," *IEEE Transactions on Wireless Communication*, 2017.

Author's Publications

- H. H. M. Tam, H. D. Tuan, D. T. Ngo, and H. H. Nguyen, "Precoding design for Han-Kobayashis signal splitting in MIMO interference networks," *IEICE Transactions on Communication*, December 2016.
- Zhichao Sheng, H. D. Tuan, H. H. M. Tam, and Ha H. Nguyen, "Energy-Efficient precoding in multicell networks with full-duplex base stations," *EURASIP Journal on Wireless Communications and Networking*, March 2017.
- H. D. Tuan, D. T. Ngo, and H. H. M. Tam, "Joint power allocation for MIMO-OFDM full-duplex relaying communications," *EURASIP Journal on Wireless Communications and Networking*, January 2017.

Conference Papers:

- H. H. M. Tam, E. Che and H. D. Tuan, "Optimized linear precoder in MIMO interference channel using D.C. programming," in *Proc. 7th International Conference on Signal Processing and Communication Systems (ICSPCS)*, pp. 1-5, December 2013.
- H. H. Kha, H. D. Tuan, H. H. Nguyen and H. H. M. Tam, "Joint design of user power allocation and relay beamforming in two-way MIMO relay networks," in *Proc. 7th International Conference on Signal Processing and Communication Systems (ICSPCS)*, pp. 1-6, December 2013.
- H. H. M. Tam, H. D. Tuan and E. Che, "Coordinated downlink beamforming in multicell wireless network," in *Proc. 2014 IEEE Fifth International Conference* on Communications and Electronics (ICCE), pp. 83-86, July 2014.
- H. H. M. Tam, H. D. Tuan and E. Che, "Power minimization in MU-MIMO cellular network under rate constraints," in *Proc. 2014 IEEE Global Conference* on Signal and Information Processing (GlobalSIP), pp. 113-117, December 2014.

Author's Publications

- E. Che, H. D. Tuan, H. H. M. Tam and H. H. Nguyen, "Maximisation of sum rate in cognitive multi-cell wireless networks with QoS constraints," in *Proc.* 8th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1-4, December 2014.
- H. H. M. Tam, H. D. Tuan, D. T. Ngo and E. Che, "User Pairing and Precoder Design with Han-Kobayashi Transmission Strategy in MU-MIMO Multicell Networks," in *Proc. 2015 IEEE Global Communications Conference (GLOBECOM)*, pp. 1-6, December 2015.
- H. H. M. Tam, H. D. Tuan and D. T. Ngo, "User association in small cell heterogeneous network with downlink sum rate," in *Proc. 2015 IEEE Global Conference* on Signal and Information Processing (GlobalSIP), pp. 123-127, December 2015.
- Z. Sheng, H. D. Tuan, Y. Fang, H. H. M. Tam and Y. Sun, "Data rate maximization based power allocation for OFDM System in a high-speed train environment," in *Proc. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)*, pp. 265-269, December 2015.
- Y. Shi, H. D. Tuan, S. W. Su and H. H. M. Tam, "Nonsmooth optimization for optimal power flow over transmission networks," in *Proc. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)*, pp. 1141-1144, December 2015.
- H. D. Tuan, D. T. Ngo and H. H. M. Tam, "Joint power allocation for MIMO-OFDM communication with full-duplex relaying," to appear in *Proc. 10th International Conference on Signal Processing and Communication Systems (IC-SPCS)*, pp. 1-5, December 2016.