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Abstract

Abstract

This dissertation is concerned with the nonconvex optimization problems of interfer-

ence management under the consideration of new disruptive technologies in the fifth-

generation cellular networks. These problems are the key to the successful roll-out of

these new technologies but have remained unsolved due to their mathematical challenge.

Therefore, this dissertation provides novel minorants/majorants of the nonconvex func-

tions which are then used for the successive convex approximation framework.

The first considered technology is heterogeneous networks (HetNet) in which base sta-

tions (BSs) of various sizes and types are densely deployed in the same area. Although

HetNet provides a significant improvement in spectral efficiency and offloading, de-

signing an optimal power transmission and association control policy is challenging,

especially when both quality-of-service (QoS) and backhaul capacity are considered.

Maximizing the total network throughput or the fairness among users in HetNet are

challenging mixed integer nonconvex optimization problems. Iterative algorithms based

on alternating descent and successive convex programming are proposed to address such

problems.

Next, we consider a full-duplex multi-user multiple-input multiple-output (FD MU-

MIMO) multicell network in which base stations simultaneously serve both downlink

(DL) users and uplink (UL) users on the same frequency band via multiple antennas to

potentially double the spectral efficiency. Since the use of FD radios introduces addi-

tional self-interference (SI) and cross interference of UL between DL transmissions, the

viii



Abstract

minimum cell throughput maximization and the sum network throughput maximization

with QoS guarantee are nonconvex challenging problems. To solve such challenging op-

timization problems, we develop path-following algorithms based on successive convex

quadratic programming framework. As a byproduct, the proposed algorithms can be

extended to the optimal precoding matrix design in a half-duplex MU-MIMO multicell

network with the Han-Kobayashi transmission strategy.

Finally, the last research work stems from the need of prolonging user equipments’

battery life in power-limited networks. Toward this end, we consider the optimal design

of precoding matrices in the emerging energy-harvesting-enabled (EH-enabled) MU-

MIMO networks in which BSs can transfer information and energy to UEs on the same

channel using either power splitting (PS) or time switching (TS) mechanisms. The total

network throughput maximization problem under QoS constraints and EH constraints

with either PS or TS in FD networks is computationally difficult due to nonconcave

objective function and nonconvex constraints. We propose new inner approximations of

these problems based on which a successive convex programming framework is applied

to address them.

ix
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Chapter 1

Introduction

Since the introduction of the first generation (1G) cellular networks in the 1980s, hu-

manity has witnessed its dynamic evolution. From being a substitute for landlines,

mobiles phones have become increasingly popular, with more than seven billion mo-

bile subscriptions worldwide in 2015 [ITU, 2015]. In addition, more than ever wireless

devices are used to stream and download various types of media and data. Fig. 1.1

shows the prediction of Cisco of the significant global data growth from 2015 to 2020

with traffic growing about 53% each year in which smartphones, tablets, and video

streaming are the main driving forces [Cisco, 2016]. With the exponential growth rate

of both data consumption and the number of subscriptions, a series of workshops has

been organized around the globe to identify the framework and overall objectives of the

fifth generation (5G) of the cellular networks [Alexiou, 2013]. The expectations of 5G

communication technologies are to serve 100 times more devices, to offer 1000 times

more aggregated throughput and to prolong battery life by 10 times [Metis, 2013].

Simultaneously meeting these expectations is very challenging and may not be practical

since different applications have different performance requirements. For instance, high-

definition video stream application such as Netflix require a very high data rate with

relaxed latency, whereas driverless cars require up to one-millisecond latency but low

data rate. On the other hand, prolonging the battery life of the sensors is a top priority

1
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Figure 1.1: The predicted growth of global data use [Cisco, 2016].

in a wireless sensor network.

To realize the expectations, there are many revolutionary technologies under consider-

ation including non-orthogonal multiple access (NOMA) [Ding et al., 2014; Benjebbour

et al., 2015], large-scale antenna systems (massive MIMO) [Rusek et al., 2013; Larsson

et al., 2014], full-duplex (FD) radio [Hong et al., 2014; Duarte et al., 2014], millimeter

wave communications [Li et al., 2014; Rappaport et al., 2013], heterogeneous networks

(HetNets) [Andrews, 2013], cognitive radio (CR) [Kim and Giannakis, 2011; Wang et al.,

2013], simultaneous information decoding (ID) and energy harvesting (EH) networks

[Lu, Niyato, Wang and Kim, 2015; Lu et al., 2016] and software-defined networking

(SDN) [Sezer et al., 2013]. Therefore, numerous problems and designs must be ad-

dressed before 5G comes into practice. The research of this dissertation examines three

disruptive technologies that not only provide significant performance improvement but

also change the architecture of the current network, i.e.,

• HetNets in which cells of different types are densely deployed to serve a large
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number of user equipments (UEs);

• FD networks in which transmitters can send and receive simultaneously on the

same frequency band to boost the network throughput;

• EH technology that enables ID and EH from the received radio frequency signal

on the same frequency band to prolong devices’ battery life.

To provide better understanding of the benefits and difficulties of these three investi-

gated technologies, a general review of them is provided as the following sections.

1.1 Heterogeneous Networks (HetNet)

Traditionally, macro cells are designed to serve a large area (i.e., 1-30 km in cell radius).

Consequently, UEs at cell edges cannot be served with high throughput since the signal

strength attenuates quickly with distance. Moreover, there are isolated areas (e.g.,

residential and office areas) that the radio signals cannot penetrate due to walls and

obstacles. In addition, the macro cell can be easily overloaded in areas with high

population of UEs (e.g., shopping malls or concerts) in which each UE is served with a

small amount of resources (i.e., time slots or frequency bands) despite receiving signals

with a high signal-to-noise (SNR) ratio.

To address these issues, heterogeneous networks (HetNet) in which numerous low-power

small cell base stations (BSs) overlapping with a macro cell area as depicted in Fig.

1.2 have been introduced to serve the massive number of UEs in the next generation

cellular network. [Andrews, 2013] has considered HetNet as a cellular paradigm shift

as well as the only scalable way to address the high demand of throughput of numerous

UEs since it offers the following benefits [Chandrasekhar et al., 2008]:

• Better coverage: UEs in the isolated areas can now be served by newly deployed

small cells. Moreover, the signal reception quality or SNR is enhanced thanks to
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the shortened BS-UE distance.

• Better spectral efficiency : Since small cells transmit with much smaller power

than the macro cells, they can opportunistically transmit in the same resource

blocks with the macro cells without creating much interference to the macrocell’s

UEs. Consequently, HetNet provides a more efficient area spectral efficiency (i.e.,

total number of UEs served per Hz per unit area).

• Macrocell offload : The traffic that is traditionally concentrated at macro cells can

be offloaded to smaller cells where the resources (i.e., spectrum and time slots) are

more available. Consequently, UEs’ quality-of-service (QoS) is improved thanks

to less competition for radio resources.

• Cost effectiveness : In comparison to macrocells, the deployment cost of the micro-

cells and picocells can be reduced thanks to smaller deployment sizes and flexible

backhaul solutions (e.g., DSL links, optical cables or wireless links). Moreover,

femto cells are deployed mainly by an end user in a plug-and-play manner which

eliminates the expense of site survey and network planning process.

However, small-cells’ BSs are generally equipped with low capacity backhaul for eco-

nomic benefits [Andrews, Buzzi, Choi, Hanly, Lozano, Soong and Zhang, 2014]. If these

BSs serve too many high throughput-demanding UEs, there will be a potentially un-

acceptable level of delay/jitter at the UEs due to the bottleneck in transporting data

through their non-ideal backhaul links. Backhaul capacity constraints are necessary

when designing the BS-UE association rules (i.e., deciding which UEs are served by

which BS). Moreover, since small-cells’s BSs can be closely located to each other, in-

tercell interference in HetNet becomes much more acute in comparison to traditional

networks [Lopez-Perez et al., 2011]. Given established BS-UE associations, the interfer-

ence can be effectively managed via power control. Nevertheless, the once presumably

optimal BS-UE associations might be no longer optimal after the power control strategy
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Figure 1.2: An example of HetNet.

is updated. Therefore, jointly optimal designs of both traffic offloading and interference

management are crucial to achieve high network performance.

However, the joint design problems belong to the difficult class of mixed integer non-

convex optimization since the BS-UE association variables and the transmit power vari-

ables are binary and continuous, respectively. In addition, the backhaul constraints are

nonconvex even under fixed BS-UE association variables. Furthermore, the through-

put function is coupled by both BS-UE association variables and the transmit power

variables, making the problem even more challenging. Despite the high complexity

of the joint problems, the promising benefits for HetNet motivate the research of this

dissertation to develop novel solution frameworks.
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1.2 FD Networks

It has long been believed to be impossible to simultaneously transmit and receive signals

on the same frequency band due to the severe self-interference (SI) from the transmit

antenna of a transmitter toward its receive antenna [Goldsmith, 2005]. Since transmit

antennas and receive antennas are closely co-located, the incurred SI is many times

(100 dB+) stronger than the background noise, which creates a significant degradation

of the network performance. Every traditional radio transmits and receives on either a

different frequency or time slot to avoid the SI.

Until recently, SI can be suppressed to a sustainable level for FD communication thanks

to the breakthroughs in hardware design [Duarte et al., 2012; Everett et al., 2014;

Duarte et al., 2014; Anttila et al, 2014; Heino et al, 2015]. DUPLO project [DUPLO

project, 2015] also provides a proof-of-concept that validates the feasibility of FD radios.

This breakthrough enables numerous new network designs allowing in-band full duplex

transmissions. In particular, the spectrum dedicated for downlink (DL) transmission

can now be used for uplink (UL) transmissions as well. With the new implementa-

tion of FD radios in Long Term Evolution (LTE) networks, spectrum licence holders

immediately double their spectrum assets that are worth billions of dollars.

Still, the state-of-the-art SI canceller cannot perfectly eliminate all the SI. The residual

SI, albeit being reduced, still has a substantial impact on the network performance.

In addition, since the DL and UL transmission is simultaneously conducted on the

same frequency band, there will be cross interference between the UL and the DL

transmissions as illustrated in Fig. 1.3. The UL and DL transmission problems can

no longer be separated due to the joint dependency of throughput functions on the UL

and the DL transmissions.

Moreover, since UL and DL transmissions in FD networks have adverse effects on each

other’ s performance, it is important to guarantee a minimum QoS for all receivers to
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Figure 1.3: An example of interference in a simple FD network with one transmitter,
one half-duplex (HD) DL UE and one HD UL UE.

avoid the situations in which one transmission direction is completely shut off for the

sake of the other. Nonetheless, QoS guarantee results in difficult nonconvex constraints

which have not been efficiently addressed before. Even finding a feasible point to the

design is already challenging due to the nonconvexity and disconnectivity of the feasible

set. Therefore, it is attractive and useful to analyze the mutual effect of UL and DL

transmissions in FD networks by designing of precoding matrices (i.e., matrices that

represent antenna transmit patterns) for both UL and DL transmissions to manage the

newly generated interference.

1.3 Energy-harvesting-enabled (EH-enabled) Networks

To prolong the battery life of devices, it is appealing to harvest energy from the am-

bient radio frequency (RF) signals [Lu, Niyato, Wang and Kim, 2015; Lu et al., 2016].

This approach not only enhances the battery life but also opens up an opportunity to

eliminate the need of replacing batteries in some power-limited networks via wireless

charging. Although it is possible to opportunistically harvest energy from nature sources

such as wind and sun, the amount of harvested energy is unpredictable and cannot be

controlled. In the next generation cellular networks, small-cells’ BS could become dedi-

cated and reliable wireless energy sources that power up distant EH-enabled UEs [Buzzi
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et al., 2016]. Taking advantage of the close BS-UE proximity in small cells, battery

powered UEs can harvest an adequate amount of RF energy for practical applications

[Ding et al., 2015; Lu, Niyato, Wang and Kim, 2015; Lu et al., 2016].

Though RF energy transferring has been used long ago to power devices that are several

meters to several kilometers away from the transmitter [Huang and Lau, 2014; Lu,

Wang, Niyato and Han, 2015], there is a recently emerging interest in the use of RF

signals for both information transferring and energy delivering [Varshney, 2008; Shen

et al., 2014]. The transmitter can now behave as both the information source and the

energy source to provide efficient and on-demand services for low-power-consumption

devices such as sensors as depicted in Fig. 1.4. The advantage of this approach is

that it can be implemented on the existing wireless communication networks without

hardware modification at the transmitters.

Figure 1.4: An example of interference in an EH-enabled network in which a transmitter
sends information and transfers energy on the same channel.

In this approach, there are two typical implementations for wireless EH and ID. The

first is by splitting the received signal into two portions for decoding information and
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harvesting energy separately, namely receive power splitting (PS). The second is named

transmit time switching (TS) in which the receiver harvests energy for a portion of a

time frame and decodes information for the rest of the time. The receiver architecture

designs of these two implementations are depicted in Fig. 1.5.

(a) Power splitting architecture

(b) Time switching architecture

Figure 1.5: Receiver architecture designs for EH-enabled receiver.

However, it is not possible to maximize the total network throughput and the total

harvested energy at the same time since the received signal is split for ID and EH. The

tradeoff between ID and EH in the EH-enabled system has been investigated in point-

to-point communications or in an interference channel (i.e., there are many point-to-

point pairs of transceivers communicating at the same time). However, the rate-energy

trade-off is still unknown for a general network such as a multicell multi-user MIMO

network. In addition, the EH-enabled UEs can opportunistically harvest even more

energy from UL transmissions in the FD network. Although the relationship between

ID and EH becomes even more complicated in FD communications, the potential for

better spectral efficiency and higher harvested energy motivates the research of this

dissertation to design the optimal splitting factors and precoding matrices for either PS
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or TS.

1.4 Objectives and Contributions

The key common factor that hinders the practicality of these three technologies inves-

tigated in this dissertation is the generated interference which can significantly degrade

the network performance. To mitigate the interference, it is crucial to properly manage

the resources in the wireless cellular network. These resources can be categorized into

two groups. In the first group, resources can be represented as continuous variables

such as transmit power, antenna transmit patterns, or transmit/receive durations. Re-

sources in the second group are discrete in nature such as time slots, subcarriers, devices

or logical links. The variables that represent this group are either binary or integer and

restricted in a finite set. Proper allocation of these resources is the key to mitigating the

interference and maximizing the network performance while satisfying physical/design

limitations as well as network/application requirements. However, since a universal

frequency reuse approach1 will be applied in the next generation wireless network for

better spectral utilization [Lopez-Perez et al., 2009; 3GPP, 2010], this task is nontrivial

due to the intricate relationship between resource allocation and network performance

in wireless networks. For instance, the increase in transmit power of a BS can enhance

the throughput of its serving UEs but degrade the reception quality of other nearby

UEs due to the incurred interference. On the order hand, letting a UE be served by a

BS that provides the largest signal strength may not be the optimal solution if that BS

is currently serving a large number of UEs. Consequently, most of interference manage-

ment problems are open and challenging nonconvex optimization problems, especially

when new technologies are adopted in 5G.

The main objective of this dissertation is to develop numerically tractable algorithms

1The practice of universal frequency reuse in a network means that all transmitters and receivers in that network are
operating on the same frequency band
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to find optimal solutions of various NP-hard nonconvex optimization problems in the

next generation cellular networks. With the newly developed inner approximations,

these problems can be addressed via a successive convex approximation framework.

The resulting optimal resource management strategies will provide insights into the

achievable performance of the wireless cellular network when the new technologies are

applied. In particular, the objectives and contributions of research in this dissertation

include the followings:

• To study a joint design of BS-UE associations and transmit power control to max-

imize network total throughput or to provide fairness among UEs in the downlink

of a HetNet. The effect of imperfect backhaul links is also considered. Both

problems belong to the difficult class of mixed-integer nonconvex optimization.

Algorithms based on an exact penalty method combined with successive convex

programming are proposed to address these problems.

• To investigate a joint design of UL and DL linear precoders in a MU-MIMO multi-

cell network to maximize the total network throughput or the UE’s fairness. The

effects of self-interference (SI) and the cross interference from UL to DL trans-

missions on the network throughput are also studied. The problem is nonconvex

and will be addressed by the proposed successive convex quadratic programming.

• To analyze a joint design of precoding matrices for the sum throughput maximiza-

tion in an EH-enabled FD MU-MIMO network. Both throughput constraints and

EH constraints are considered to guarantee the QoS requirements. The total har-

vested energy maximization problem is also studied. All these problems will be

addressed by the newly proposed path-following algorithms.
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1.5 Dissertation Outline

The outline of the dissertation is as follows:

Chapter 1

This chapter presents the motivation and objectives of this PhD research. The overview

of each problem and its challenges are introduced.

Chapter 2

An overview of optimization theory with an emphasis on successive convex approxima-

tion framework are firstly provided. Then, a brief review of some fundamental concepts

of wireless communication channels and transmission techniques that are frequently

used throughout this dissertation is introduced.

Chapter 3

New strategies are devised for joint load balancing and interference management in the

downlink of a heterogeneous network, where small cells are densely deployed within the

coverage area of a traditional macrocell. Unlike existing work, the limited backhaul

capacity at each BS is taken into account. The objective here is either (i) to maximize

the network sum rate subject to minimum throughput requirements at individual UEs,

or (ii) to maximize the minimum UE throughput. The inherently binary BS-UE asso-

ciation variables are strongly coupled with the transmit power variables. New iterative

algorithms are developed based on an exact penalty method combined with successive

convex programming, where we deal with the binary BS-UE association problem and

the nonconvex power allocation problem one at a time. Numerical results demonstrate

the efficiency of the proposed algorithms in both traffic offloading and interference mit-

igation.

The work in this chapter has been published in:

• H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong and H. V. Poor, “Joint

load balancing and interference management for small-cell heterogeneous networks

with limited backhaul capacity,” IEEE Transaction on Wireless Communications,
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vol. 16, no. 2, pp. 872-884, February 2017.

Chapter 4

The designs for jointly optimal linear precoders for both BSs and users in a FD MU-

MIMO multicell network are studied. The BSs are full-duplexing transceivers while

uplink users and downlink users (DLUs) are equipped with multiple antennas. Here,

the network QoS requirement is expressed in terms of the minimum throughput at the

BSs and DLUs. The problems of either QoS-constrained sum throughput maximiza-

tion or minimum cell throughput maximization are considered. The first problem has

a nonconcave objective and a nonconvex feasible set, whereas the second problem has

a nonconcave and nonsmooth objective. To solve such challenging optimization prob-

lems, iterative low-complexity algorithms that only invoke one simple convex quadratic

program at each iteration are developed. Numerical results demonstrate the advantages

of our successive convex quadratic programming framework over existing solutions.

Moreover, the proposed approach can also be extended for the optimal precoding ma-

trices design in an HD MU-MIMO multicell network with the Han-Kobayashi (H-K)

transmission strategy [Han and Kobayashi, 1981]. The key benefit of H-K strategy is

that it gives the largest known achievable capacity region [Etkin et al., 2008; Karmakar

and Varanasi, 2013]. However, the throughput function is a highly nonlinear and non-

smooth function in the precoding matrix variables, which renders existing approaches

unable to address the difficult sum network throughput maximization problem. For the

first time, the optimal precoding matrices under H-K strategy are found via a successive

convex quadratic programming algorithm that generates a sequence of improved points.

Numerical results confirm the advantages of our proposed algorithm over conventional

coordinated precoding approaches where the intercell interference is treated as noise.

The work in this chapter has been published in:
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• H. H. M. Tam, H. D. Tuan, and D. T. Ngo, “Successive convex quadratic pro-

gramming for quality-of-service management in full-duplex MU-MIMO multicell

networks,” IEEE Transaction on Communication, vol. 64, no. 6, pp. 2340-2353,

June 2016.

• H. H. M. Tam, H. D. Tuan, D. T. Ngo, and H. H. Nguyen, “Precoding de-

sign for Han-Kobayashis signal splitting in MIMO interference networks,” IEICE

Transactions on Communication, December 2016.

Chapter 5

An efficient design of precoding matrices for the sum throughput maximization under

throughput QoS constraints and EH constraints for energy-constrained devices for a

FD MU-MIMO network is investigated in this chapter. Both TS and PS are considered

to ensure practical EH and ID. The considered practical problems are quite complex

due to the highly nonconvex objective and constraints. Especially, with TS, which is

implementation-wise quite simple, the problem is even more challenging because the

time splitting variable is not only coupled with the DL throughput function but also

coupled with the SI in the UL throughput function. New path-following algorithms

which require a convex quadratic program for each iteration are developed for the solu-

tions of these problems. In the end, the merits of the proposed algorithms are illustrated

through extensive simulations.

The work in this chapter has been published in:

• H. H. M. Tam, H. D. Tuan, A. A. Nasir, T. Q. Duong and H. V. Poor, “MIMO

energy harvesting in full-duplex MU-MIMO networks,” IEEE Transactions on

Wireless Communication, 2017.

Chapter 6

This chapter firstly summarizes the studies and contributions of this PhD dissertation.
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The potential future research developments are then presented.
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Chapter 2

Background

In this chapter, the general introduction of some optimization concepts and techniques

that are frequently used to address the challenging mathematical problems in this dis-

sertation will be provided. Then, an overview of MIMO transmission techniques that

will be used throughout this dissertation is presented. The focus of this overview is

on DL transmissions since the BSs are equipped with much better hardware capabili-

ties than UEs and thus can implement complex processing algorithms. In particular,

the benefits of MIMO system are briefly discussed. Then the system model and the

achievable capacity of a single-user MIMO network and a multi-user MIMO network

are presented. In the context of multicell networks, coordinated multipoint transmis-

sion/reception techniques will be introduced as a key technology to mitigate the intercell

interference.

2.1 Optimization Background

2.1.1 Convex Optimization

Fundamental definitions in convex optimization are given as follows
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Definition 2.1. [Tuy, 1998] A set S is convex if for any x and y in S and α ∈ [0, 1],

it is true that αx+ (1− α)y also belongs to S.

Definition 2.2. [Tuy, 1998] A function f(x) is convex in x on a convex domain S if

for any x and y in S and α ∈ [0, 1], it is true that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Definition 2.3. [Tuy, 1998] A function f(x) is concave in x on a convex domain S if

for any x and y in S and α ∈ [0, 1], it is true that

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

Definition 2.4. [Tuy, 1998] For a convex function f : Rn → R or f : Cn → R, the

constraint f(x) ≤ 0 is called convex whereas the constraint f(x) ≥ 0 is called reverse

convex.

Definition 2.5. [Tuy, 1998] An optimization problem minx f(x) s.t. x ∈ S is said to

be convex if f(x) is a convex function in x and S is a convex set.

Note that maximizing a concave function over a convex set is the same as minimizing

of a convex function over a convex set and thus is a convex program.

Definition 2.6. [Tuy, 1998] x∗ ∈ S is a global minimizer of a function f over a set

S if and only if f(x∗) ≤ f(x), ∀x ∈ S. Then f(x∗) is called the global minimum of f

over S.

Definition 2.7. [Horst and Tuy, 1996] Let ε > 0 be a real number. An ε-neighbourhood

of a point x∗ ∈ S is defined as:

N(x∗, ε) := {x ∈ S : ||x− x∗|| ≤ ε}.

A point x∗ is called a local minimizer of a function f over S if and only if there exists

ε > 0 such that f(x∗) ≤ f(x) for all x ∈ N(x∗, ε).
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Convex programming is inarguably one of the most popular classes of optimization

problems and finds its use in various application areas such as signal processing, con-

trol and finance. The most fundamental property of convex programming is that any

found local minimizers are also the global minimizer. Nevertheless, many problems in

wireless communications, especially in the 5G cellular network, are nonconvex. In some

particular cases, these seemingly nonconvex problems can be transformed to convex op-

timization problems via mathematical manipulation. On the other hand, a nonconvex

problem is typically addressed by its convex approximmated/relaxed problem whose

global minimum can be served as the upper bound of the original problem. In addition,

iterative optimization frameworks such as alternating optimization [Bertsekas, 1999],

block coordinate descent[Bertsekas, 1999] and successive convex approximation [Marks

and Wright, 1978] can be applied to find local minimizers. Under these frameworks,

a simple convex problem is solved for each iteration. Therefore, convex programming

is still an essential tool to solve the challenging nonconvex problems in the modern

communication systems.

Semi-definite programming (SDP) is an important class of convex optimization [Boyd

and Vandenberghe, 2004] that is frequently encountered in the wireless communication

problems. Typically, an SDP has the following form:

min
Q

〈CQ〉
s.t. 〈AiQ〉 = bi, ∀i = 1, . . . , p

Q � 0,

(2.1)

where C ∈ Cn×n, Ai ∈ Cn×n, i = 1, . . . , p are known symmetric matrices and Q � 0

means that Q is a positive semidefinite matrix.

Second-order cone programming (SOCP) is another special class of convex programming

that is closely related to quadratic programming [Boyd and Vandenberghe, 2004]. An
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SOCP has the following form:

min
x

cTx

s.t. ‖Aix+ bi‖ ≤ cTi x+ di, ∀i = 1, . . . , p

Mx = m,

(2.2)

where c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rn
i , ci ∈ Rn, di ∈ R,M ∈ Rl×n and m ∈ Rl. The

constraint

‖Aix+ bi‖ ≤ cTi x+ di

is called second-order cone constraint. With Ai = 0, ∀i, an SOCP becomes an

LP whereas a SOCP is a quadratically constrained quadratic program programming

(QCQP) if ci = 0, ∀i. Also, an SOCP can be equivalently represented as an SDP by

applying the Schur complement on the second-order cone constraints. The advantage

of SOCP over SDP is that the former has lower computational complexity than the

latter of the same SDP size [Alizadeh and Goldfarb, 2001]. For other classes of convex

programming, the reader can refer to [Boyd and Vandenberghe, 2004] for more details.

2.1.2 A Generic Successive Convex Approximation Framework for Non-

convex Programming

The main aim of this dissertation is to investigate the network performance in terms of

total network throughput or UE’s fairness under the consideration of new technologies

in 5G. Unfortunately, all of considered problems are nonconvex or even nonsmooth.

The main approach in this dissertation is to apply the successive convex approxima-

tion framework [Gao and Sherali, 2009] in which the challenging original problem is

addressed by successively solving its convex approximation.

Consider the following nonconvex problem:

min
x

f0(x)

s.t. fi(x) ≤ ai, i = 1, . . . , p,
(2.3)
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where fi(x) are nonconvex functions. Many nonconvex problems are NP-hard and it

is thus very complicated to locate its global minimizer in this case. Instead, finding a

local minimizer is more tractable and computationally efficient. By using the convex

approximations f̄
(κ)
i (x) ≈ fi(x), one has the approximated problem of (2.3) at the

κ-iteration:

min
x

f̄
(κ)
0 (x)

s.t. f̄
(κ)
i (x) ≤ ai, i = 1, . . . , p,

(2.4)

whose global minimizer is x̄(κ+1).

The following concepts of function approximations [Tuy, 1998] play an important role

in the subsequent development.

Definition 2.8. A function f̄ is called a (global) majorant of function a f at a point

x̄ in the definition domain of f if f̄(x̄) = f(x̄) and f(x) ≤ f̄(x) ∀ x.

Definition 2.9. A function f̄ is called a (global) minorant of function a f at a point

x̄ in the definition domain of f if f̄(x̄) = f(x̄) and f(x) ≥ f̄(x) ∀ x.

Based on these definitions, if f̄
(κ)
i (x) is a majorant of fi(x) at x̄

(κ) and ∇f̄
(κ)
i (x̄(κ)) =

∇fi(x̄
(κ)), [Marks and Wright, 1978; Grover, 1997] show that the following procedure

will converge to a point that satisfies Karush-Kuhn-Tucker (KKT) conditions of the

original problem (2.3):

• Choose the initial point x(0) that is feasible to (2.3).

• κ-iteration: Solve problem (2.4) and obtain its global minimizer x̄(κ+1). Set κ :=

κ+ 1. Repeat this step until convergence.

An important property of this procedure is that it generates a sequence of feasible and

improved solution {x̄(κ)} such that

f0(x̄
(κ+1)) ≤ f̄

(κ)
0 (x̄(κ+1)) ≤ f̄

(κ)
0 (x̄(κ)) = f0(x̄

(κ)).
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The idea of this procedure is illustrated in Fig. 2.1. However, finding a majorant of a

nonconvex function is not always an easy task and it requires an understanding of some

advanced mathematical tools. In the followings, two techniques frequently applied in

this dissertation are introduced.

Figure 2.1: An illustration of successive convex approximation.

Firstly, one has the following property of a convex function.

Theorem 2.1. [Tuy, 1998] If f(x) is a convex function in x over a convex set S, the
first-order approximation f̄(x) of f(x) at x̄ is also its minorant as:

f̄(x) := f(x̄) + 〈∇f(x̄),x− x̄〉 ≤ f(x),

where ∇f(x̄) is a gradient of f(x) at x̄.

This property is very useful when a nonconvex function f(x) is a difference of two

convex functions (d.c.):

f(x) = g(x)− h(x),

where g(x) and h(x) are convex in x. Then, the majorant of f(x) at x̄ is given as

g(x)− h(x̄)− 〈∇h(x̄),x− x̄〉 ≥ f(x).
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since

h(x̄)− 〈∇h(x̄),x− x̄〉 ≤ h(x).

For instance, the following functions are d.c. functions [Horst and Tuy, 1996] :

• f(x) = −g(x), where g(x) is a convex function.

• f(x) = − log(x) + log(1 + x).

• max
i

fi(x), where fi(x) are d.c. functions.

Unfortunately, recognizing the d.c. form of a nonconvex function f(x) is not always

easy. On some occasions, although f(x) is nonconvex in x, h(g(x)) := f(x) is convex

in g(x). In this case, the minorant of f(x) is found as:

f(x) ≥ f(x̄) + 〈∇g(x)h(g(x̄)), g(x)− g(x̄)〉,

where ∇g(x)h(g(x̄)) is a gradient of h(g(x)) at g(x̄). For example, for any x and y in R+,

f(x, y) := −xy is a nonconvex bilinear function but h(g(x), g(y)) := −√g(x)g(y) =

f(x, y) where g(x) := x2 ≥ 0 is a convex geometric mean in g(x) and g(y). The

minorant of f(x, y) at (x̄, ȳ) is thus

−x̄ȳ − ȳ

2x̄
(x2 − x̄2)− x̄

2ȳ
(y2 − ȳ2) ≤ f(x, y), ∀ x ∈ R+, ∀ y ∈ R+.

It should be noted that a nonconvex function f(x) can have multiple minorants and

not all minorants are convex. In this dissertation, one of the main contributions is

to propose convex minorants of many nonconvex and complicated functions which are

then used in the successive convex approximation framework.

2.2 Multiuser MIMO Systems

Initial work of point-to-point MIMO systems (i.e., single-user MIMO systems) [Winters,

1987; Foschini, 1996; Telatar, 1999] has shown a significant enhancement of spectral
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efficiency and reliability compared to single-antenna networks. In practice, single-user

MIMO (SU-MIMO) has been considered as a key technology to boost spectral efficiency

in LTE [Liu et al., 2012]. Furthermore, a BS equipped with multiple antennas can

simultaneously serve different UEs on the same frequency band by spatially multiplexing

different data streams. The advantages of MIMO systems are provided by the following

gains:

• Diversity gain: In MIMO systems, a symbol is sent and received via by multiple

antennas. The UE receives multiple independently faded replicas of the same

symbol, resulting in a reduction in the probability that all replicas are badly

faded at the same time. The reliability of data transmission is thus improved.

For a MIMO system with Nt transmit antennas and Nr receive antennas, the

maximum diversity order is Nt ×Nr [Sanayei and Nosratinia, 2004].

• Array gain or beamforming gain: This is the enhancement in the quality of signal

reception by coherently combining the replicated symbols from multiple antennas.

In practice, the radiation beam can be focused to the desired UE by applying

proper precoding matrices prior to transmission. The radiation beam can also be

directed away from the undesired UEs to reduce the undue interference, resulting

in better signal reception at these UEs.

• Spatial multiplexing gain: By exploiting the multiple antennas, multiple data

streams can be multiplexed into the same frequency band and transmitted at the

same time. In other words, different symbols are simultaneously sent via different

faded paths to a receiver or multiple receivers. In the high signal-to-noise (SNR)

ratio region, it is shown in [Foschini, 1996] that the capacity of a point-to-point

MIMO channel is linearly proportional to the spatial multiplexing gain as

C(SNR) = min{Nt, Nr} log(SNR) +O(log(SNR)). (2.5)

where min{Nt, Nr} is the spatial multiplexing gain. However, some of these

streams may suffer from weak SNRs, reducing the reliability of the reception
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of symbols tranmitting on these stream. This is a fundamental tradeoff between

diversity gain and spatial multiplexing gain [Zheng and Tse, 2003].

In the followings, the capacity of the SU-MIMO communication and MU-MIMO com-

munication will be introduced. The concepts and techniques that are introduced in the

section can also be interchangably applied for both uplink and downlink transmission.

Throughout this dissertation, the channel state information (CSI) is always assumed

to be known at a central processing unit.

2.2.1 SU-MIMO Communications

Figure 2.2: An example of an SU-MIMO network.

A typical SU-MIMO includes one BS and one UE as depicted in Fig. 2.2. The MIMO

transmission channel is represented by a matrix H ∈ CNr×Nt where Nt and Nr are the

number of BS transmit antennas and receive antennas, respectively. Denote a vector

of symbols intended to the UE as s ∈ Cd×1 where d ≤ min{Nt, Nr} is a number of

symbols. The BS processes these symbols via a precoding matrix V ∈ CNt×d before

transmission. Upon defining the transmit covariance matrix as Q = Vs(Vs)H , the

achievable throughput at the UE is

R(Q) = log2

∣∣∣∣INr +
1

σ2
HQHH

∣∣∣∣ , (2.6)

where σ2 is the noise power at the UE and INr is the identical matrix of size Nr. To

find the optimal Q that maximizes the throughput, the following optimization problem
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is addressed:

max
Q�0

R(Q) : 〈Q〉 ≤ P, rank(Q) = d, (2.7)

where P is the maximum transmit power of the BS. Assuming d = Nt, the difficult

rank constraint rank(Q) = d can be neglected and (2.7) reduces to a convex program.

[Telatar, 1999] shows that each symbol in s can be transmitted through a parallel

subchannel. In particular, one has H = UΣV H via singular value decomposition (SVD)

where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices. Σ is an Nt × Nt diagonal

matrix with the singular value λi for i = 1, . . . , Nmin where Nmin = min{Nt, Nr}. Then,
the received signal y at the UE can be represented as

y = Hs+ n = UΣV Hs+ n (2.8)

⇔ UHy = Σ(V Hs) + UHn (2.9)

⇔ ȳ = Σs̄+ n̄, (2.10)

where ȳ = UHy, s̄ = V Hs and n̄ = UHn. UH and V H can be understood as the receive

filter and transmit precoding matrices, respectively. Because U is an unitary matrix,

n̄ has the same mean and variance as n. As shown in (2.10), the i-th symbol si in s

is transmitted through a SISO subchannel with a channel gain of λi. The throughput

of each symbol is log(1 + λ2
iPi/σ

2) where Pi is the transmit power of symbol si and∑
i Pi ≤ P . A water-filling algorithm [Chuah et al., 2002] can be applied to find the

optimal transmit power P ∗
i as

P ∗
i =

(
μ− σ2

λ2
i

)+

, (2.11)

where μ is chosen such that
∑

i Pi = P . As shown in (2.10), each symbol in si is

transmitted with power P ∗
i through a parallel subchannel whose channel gain is λi. If

the subchannel power λi is small in comparison to σ2 for some i, the reliability of the

reception of si is low. This illustrates the tradeoff between the multiplexing gain and

the diversity gain.
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2.2.2 MU-MIMO Communications

Figure 2.3: An example of an MU-MIMO network.

A typical MU-MIMO includes one BS equipped with Nt antennas and K UEs equipped

with Nr antennas as depicted in Fig. 2.3. Denote Hi ∈ CNr×Nt as the channel matrix

from BS to UE i. The BS transmits the vector of symbols si ∈ Cd×1,E{sisHi } = Id to

UE i where d is the number of concurrent symbols and d ≤ min{Nr, Nt} 1. The symbol

vector si is precoded by the matrix Vi ∈ CNt×d. The received signal at UE i is

yi = HiVisi +
K∑

j=1,j �=i

HjVjsj + ni, (2.12)

where ni is the additive white circularly symmetric complex Gaussian noise with vari-

ance σ. Notice that UE i receives not only its desired symbols si but also the symbols

intended to other UEs. Without proper network designs, these unwanted signals will

significantly degrade the network performance due to interference.

In the literature, the Dirty paper coding (DPC) technique of [Costa, 1983] is shown

to be optimal for maximizing the network throughput in MU-MIMO communications

where there is only one transmitter. By constructing the codeword for each UE in

such a way that the UEs with higher order do not see the interference from the signals

1The transmit power of each symbol will be included in the design of precoding matrices.
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intended for lower order UEs, the throughput at UE i is

Ri(Q) = log2

∣∣∣∣∣∣INr +HiQiH
H
i

(∑
j>i

HjQjH
H
j + σ2INr

)−1
∣∣∣∣∣∣ , (2.13)

where Qi = ViV
H
i � 0 is the transmit covariance of UE i and Q = [Qi]i=1,...,K .

Although Ri(Q) is a nonconvex function in Q, the total throughput

K∑
i=1

Ri(Q) = log2 |INr +
K∑
i=1

HiQiH
H
i | − log2 |σ2INr | (2.14)

is actually a concave function in Q. Consequently, the total throughput maximization

problem

max
Q

K∑
i=1

Ri(Q) :
K∑
i=1

〈Qi〉 ≤ P (2.15)

is a convex problem. However, this approach is impractical since DPC requires the non-

causal knowledge of the channels as well as a complicated successive encoding process

[Caire and Shamai, 2003; Yu and Cioffi, 2004].

A practical approach is to decode the desired signal only and consider the others as

white noise. Thus, a natural design of precoding matrices is to minimize the incurred

interference. Block diagonalization [Spencer et al., 2004] is a design of Vi in which the

interference toward all other UEs due to the transmission of si is zero. In particular, one

defines H i = [HT
1 . . . HT

i−1 HT
i+1 . . . H

T
K ]

T as a collection of channels to all UEs except

that to UE i. The zero interference constraint is expressed as

H iVi = 0, (2.16)

where 0 is a matrix of all zeros with a proper size. The SVD of H i is given as H i =

UiΣi

[
(V

1

i )
T (V

0

i )
T
]T

where V
0

i contains all singular vectors corresponding to the zero

singular values in Σi. By letting each Vi to be some columns in V
0

i , the constraint

(2.16) is automatically satisfied since V
0

i belongs to the null space of H i. Therefore,

the reception of si at UE i is interference-free. The condition for this approach to be

feasible is Nt ≥ KNr so that the null space of H i is not empty. However, forcing the
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interference to be zero results in a degradation of network throughput. On the other

hand, if the block diagonalization is not applied, the throughput function at the UE i

is

Ri(V) = log2

∣∣∣∣∣∣INr +HiViV
H
i H

H
i

(∑
j �=i

HjVjV
H
j H

H
j + σ2INr

)−1
∣∣∣∣∣∣ , (2.17)

where V = [Vi]i=1,...,K . Unlike (2.13), the total network throughput based on (2.17)

is a nonconvex function and maximizing the network throughput is thus a difficult

optimization problem.

In a multi-user system, it is also essential to guarantee that each UE is served with a

minimum throughput. In literature, this constraint is actually a linear constraint in an

MU-SISO network as

log2

⎛
⎝1 + gipi

(∑
j �=i

gjpj + σ2

)−1
⎞
⎠ ≥ r, (2.18)

⇔ gipi ≥ (2r − 1)

(∑
j �=i

gjpj + σ2

)
, (2.19)

where pi is the transmit power of UE i, gi is the channel gain from BS to UE i, and

r is the guaranteed minimum throughput. In an MU-MISO network, both the channel

matrix Hi and the precoding matrix Vi are vectors and the throughput constraint can

be recast as a convex second-order-cone constraint [Wiesel et al., 2006] as

log2

⎛
⎝1 + |HT

i Vi|2
(∑

j �=i

|HT
j Vj|2 + σ2

)−1
⎞
⎠ ≥ r, (2.20)

⇔ |HT
i Vi|2 ≥ (2r − 1)

(∑
j �=i

|HT
j Vj|2 + σ2

)
, (2.21)

⇔ Re{HT
i Vi} ≥ √

2r − 1‖X‖, (2.22)

where X = [HT
1 V1 . . . H

T
KVK σ]. However, there is no convex representation of the

throughput constraint in an MU-MIMO network since the throughput function (2.17)

now involves with the determinant operation of a matrix. Consequently, the sum net-

work throughput maximization with throughput guarantee for each UE is still an open
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problem. Motivated by this shortcoming, an effective method to handle problems in-

volved with the challenging throughput constraint is proposed in Chapters 4 and 5.

2.2.3 Coordinated Multipoint Transmission/Reception (CoMP)

To enhance the spectrum efficiency, multiple BSs are allowed to operate on the same

time slots and on the same frequency band (i.e., universal/fractional frequency reuse)

[Damnjanovic et al., 2011; Andrews, Buzzi, Choi, Hanly, Lozano, Soong and Zhang,

2014]. This results in extra intercell interference from one BS towards the UEs served

by other BSs as depicted in Fig. 2.4. Therefore, it is necessary to have some forms

of coordination among the BSs to mitigate the generated intercell interference. CoMP

[Gesbert et al., 2010; Lee, Kim, Lee, Ng, Mazzarese, Liu, Xiao and Zhou, 2012] has

been supported by LTE and LTE-Advanced standards as a key technology to improve

coverage and spectral efficiency by providing a common feedback and signaling frame-

work among the BSs. Based on the extent of the coordination, there are three modes

of CoMP: Interference Aware (IA), Interference Coordination (IC) and Joint Signal

Processing (JP).

In the IA mode, there is no exchange of UE’s data and control information (e.g. channel

information, transmit precoding matrices) among the BSs. A BS selfishly adjusts its

transmission beam to maximize the performance of its own UEs based on feedback of

those UEs on the measured interference. There is no intention of reducing intercell

interference in the IA mode. Therefore, IA forms a non-cooperative game among BSs

with an aim to find a Nash equilibrium (NE) point. Although an NE point can be far

away from the optimal point, the IA mode can serve as a baseline for other coordination

techniques thanks to its simplicity.

In the IC mode, there is also no data exchange among the BSs, which means that a

UE only receives its desired data stream from its serving BS. To mitigate the intercell

interference, the control information among the BSs is shared to enable the precoding
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Figure 2.4: An example of a multicell MU-MIMO network applying IA or IC. Unin-
tended signals are treated as white noise.

designs that exploit the antenna gain to steer the radiation beam away from the un-

desired UEs while focusing the desired UEs. Even in SISO networks where there is

no antenna gain, the exchange information is helpful in determining a proper transmit

power of each BS.

In the JP mode, both UE’s data and control information are shared among BSs. A

UE can receive its desired data streams from multiple BSs as depicted in Fig. 2.5.

The multicell network can now be considered as a single-cell network in which only

one transmitter whose antennas are geographically separated. Although this mode

allows the best exploitation of the antenna gain and the spatial multiplexing gain in

comparison to the other two modes, the high amount of exchanged information puts a

stringent requirement on the backhaul links of BSs . This feature limits the practical

use of the JP mode.
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Figure 2.5: An example of a multicell MU-MIMO network applying JP. UEs can receive
desired data streams from multiple BSs.

In practice, the IC mode is more popular because it can efficiently mitigate the in-

terference without putting a large burden of signaling on the backhaul links. For this

reason, this dissertation will assume the IC mode whenever CoMP techniques are em-

ployed.
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Chapter 3

Joint Load Balancing and Interference Management for

Small-Cell Heterogeneous Networks with Limited Back-

haul Capacity

3.1 Introduction

Cell densification is currently the best hope to meet the unprecedented data increase

(the 1000× data challenge) in the 5G wireless networks [Andrews, 2013; Hossain et al.,

2014; Li et al., 2014]. By densely deploying cells of different types and sizes (e.g.,

macro, micro, pico, femto), the resulting HetNet can offer a substantial growth in

area spectral efficiency and full network coverage in regions traditionally difficult to

penetrate. Another key benefit of HetNet is data offloading, where traffic otherwise

transported via the traditional macrocell is directed to the newly deployed small cells.

Traditionally, a UE is associated with the BS that offers the maximum signal-to-

interference-plus noise ratio (SINR), i.e., the max-SINR rule (see, e.g., [Dhillon et al.,

2012]). As a result, a ‘hotspot’ BS with advantageous link conditions and/or high

transmit power would potentially be inundated with too many UEs while other BSs

only serve a few UEs. Range expansion is a heuristic method that may help balance
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the traffic load among different BSs, in which the SINR is regulated through a pos-

itive bias level [Damnjanovic et al., 2011; Jo et al., 2012]. Still, it is challenging to

determine optimal bias levels for multiple cells. Other related BS-UE association rules

proposed in the literature are based on maximizing the estimated throughput [Lee, Son,

Gong and Yi, 2012] and sum logarithmic throughput [Ye et al., 2013; Fooladivanda and

Rosenberg, 2013; Shen and Yu, 2014]. Using Lagrangian duality decomposition [Low

and Lapsley, 1999], the association rule in [Boostanimehr and Bhargava, 2015] aims

at maximizing the network sum-rate while satisfying the Quality-of-Service (QoS) con-

straints. A heuristic adjustment is then proposed to keep the total number of time

slots demanded by the UEs below that available at the BSs. In [Corroy and Mathar,

2012; Corroy et al., 2012], a binary relaxation method is proposed to find the optimal

association rule for the sum-rate and minimum-rate maximization objectives. However,

the proposed method is limited to a two-cell network. An extensive overview of the

state-of-the-art in user association for 5G networks can be found in [Liu, Wang, Chen,

Elkashlan, Wong, Schober and Hanzo, 2016].

A common assumption in the above existing work is the availability of ideal backhaul

links with unlimited capacity. This assumption is not true for HetNets. Here, the

low-power BSs of small cells (e.g., pico and femto) connect to the core network via

low capacity backhaul (e.g., DSL links) for economic benefits [Andrews, Singh, Ye,

Lin and Dhillon, 2014]. If these small-cell BSs must serve too many UEs, their non-

ideal backhaul becomes the bottleneck in transporting the required amount of data

traffic to the UEs, resulting in a potentially unacceptable level of delay/jitter at the

UEs. The study of [Beyranvand et al., 2015] proposes an optimal BS-UE association

rule that maximizes the logarithmic utility function while guaranteeing a target delay.

Note that one can guarantee certain levels of delay if the demanded throughput at the

BSs is kept below their respective backhaul capacity [Ghimire and Rosenberg, 2015].

Instead of maximizing the network sum-rate or the minimum UE’s throughput, [Singh

and Andrews, 2014] devises a backhaul-aware BS-UE association rule that is based on
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biasing, cell size and user distribution.

Interference is a major issue in dense small-cell HetNets, wherein numerous cell bound-

aries with poorly defined patterns are created. Compared with traditional cellular net-

works, the effects of the intercell interference are much more acute and unpredictable,

especially at the cell edges [Lopez-Perez et al., 2011]. Power control is an effective way

to manage the interference, assuming that the BS-UE links have already been estab-

lished. For a given BS-UE association, [Yu et al., 2014] devises an optimal BS transmit

power policy for sum-rate maximization with backhaul capacity constraints by solving

the KKT conditions. However, due to the nonconvexity of the considered problem, a

KKT point may not even be locally optimal or feasible. In addition, the once pre-

sumably optimal BS-UE associations will no longer be optimal when the new transmit

power values are used as a result of power control. It is therefore essential to design

jointly optimal strategies for both traffic offload and interference management.

For CDMA-based networks, joint optimization of BS-UE association and interference

management is considered in [Ha and Le, 2014] for network sum-rate maximization and

in [Sun et al., 2015] for minimum UE’s SINR maximization. It is not straightforward to

apply the results of [Ha and Le, 2014] and [Sun et al., 2015] to networks in which a BS

uses orthogonal channels to serve its UEs to eliminate intracell interference. Different

from CDMA, each UE here is only assigned with a fraction of the time/frequency slots

depending on the current load at its serving BS. Assuming zero intracell interference,

[Madan et al., 2010] proposes an iterative procedure for joint BS-UE association and

interference management that guarantees a maximum delay not be exceeded. Yet, the

convergence of the proposed heuristic method is not proven. Using game theory, [Hong

and Garcia, 2012] finds the Nash equilibrium for such joint optimization problem, albeit

without considering QoS constraints. It is commonly known that a Nash equilibrium

may not be efficient as it could be far away from the actual optimal solution. Notably,

the practical issue of imperfect backhaul links is not considered in [Madan et al., 2010]

and [Hong and Garcia, 2012], presumably due to the nonconvexity of the backhaul

34



3.1 Introduction

capacity constraints even when the BS-UE association is fixed.

In this chapter, we formulate new problems for joint traffic offload and interference

management in the downlink of a HetNet. Aiming to maximize the network throughput

and the minimum UE rate, our formulations accommodate both backhaul capacity

constraints and UE QoS requirements. The considered problems belong to the difficult

class of mixed integer nonconvex optimization. The binary BS-UE association variables

are strongly coupled with the transmit power variables, making the problems even more

challenging to solve.

We then develop new iterative algorithms based on alternating descent [Bertsekas, 1999]

and successive convex programming for the formulated problems. Alternating descent

allows us to decouple the original problem into two subproblems and deal with them

one at a time. Even so, each resulting subproblem is still challenging. For a fixed power

allocation, the BS-UE association subproblem is combinatorial. And for a fixed BS-UE

association, the power allocation subproblem is highly nonconvex. We propose to deal

with the binary nature of BS-UE association by relaxation combined with a penalty

method. We then employ successive convex programming to solve two subproblems

in the same time scale. We prove that our proposed alternating descent algorithms

converge, where only two simple convex problems are to be solved in each iteration.

Simulation results show that the proposed algorithms enhance the network throughput

through better load balancing and interference management.

The rest of this chapter is organized as follows: Sec. 3.2 formulates the problems of joint

load balancing and interference management. Sec. 3.3 proposes an alternating descent

algorithm to solve the sum-rate maximization problem. Sec. 3.4 extends the devised

solution to the case of minimum UE rate maximization. Sec. 3.5 presents numerical

results to demonstrate the performance of our proposed algorithms. Finally, Sec. 3.6

concludes the chapter.
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3.2 System Model and Problem Formulations

Consider the downlink of a K-cell HetNet in which one macrocell is overlaid with

K − 1 small cells, as depicted in Fig. 3.1. To best exploit the limited radio spectrum,

universal frequency reuse is adopted [Ye et al., 2013; Shen and Yu, 2014]. Without loss

of generality, we assume that macro base station (MBS) serving the macrocell is indexed

as BS 1, and the BS serving small cell k (e.g., a micro/pico/femto BS) is indexed as BS

k ∈ {2, 3, . . . , K}. Transmitting at a much lower power than an MBS, the small-cell

BSs are deployed densely in order to extend network coverage, increase throughput and

offload data traffic from the MBS.

We assume that each BS k ∈ {1, 2, . . . , K} connects to a backhaul link with limited

capacity. The backhaul link of each BS carries the downlink traffic for its serviced UEs

from the core network to that BS via a central access point called ‘Point of Presence’

(PoP) [Beyranvand et al., 2015; Jafari et al., 2015; Zhang et al., 2016]. The PoP is

connected to the core network via an optical fiber link whose capacity is much higher

than the total capacity of all links from the PoP to all BSs. Therefore, the effect of core

network-PoP link capacity is neglected in our model [Zhang et al., 2016]. For simplicity,

we also neglect the traffic coming from the control plane [Ghimire and Rosenberg, 2015].

In the considered HetNet, there are N UEs looking for the serving BSs. Similar to

the BSs, the UEs are each equipped with one antenna. A snapshot model is adopted

where the channels remain unchanged during the optimization process. This channel

assumption is well-justified for networks with a low degree of mobility and/or very

high throughput. A central processing unit is employed to collect all the channel state

information and perform the underlying network optimization.

In this chapter, a UE is allowed to associate with at most one BS, but a BS can serve

multiple UEs. Assume that BS k ∈ {1, 2, . . . , K} has a full buffer and transmits with

power pk. First, consider that only one UE n ∈ {1, 2, . . . , N} is connected to BS k.
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Figure 3.1: A small-cell HetNet with limited-capacity backhaul links. ‘MBS’, ‘PBS’
and ‘PoP’ refer to macro BS, pico BS and Point of Presence, respectively.

The achieved data rate in nats/s/Hz of UE n is expressed as:

rnk(p) � ln

(
1 +

gnkpk∑K
j �=k,j=1 gnjpj + σ2

)
, (3.1)

where p � (p1,p2, . . . ,pK)
T , gnk is the channel gain from BS k to UE n, and σ2 is

the power of background additive white Gaussian noise. As seen from (3.1), UE n is

subjected to the intercell interference from other BS j �= k.

Next, consider the general case of multiple UEs connecting to a BS. The BS will then

divide the total available time into a number of time slots and allocates them to its

serviced UEs in a round-robin fashion [Shen and Yu, 2014; Ye et al., 2013]. As such,

each connected UE will receive an equal amount of transmission time while there is no

intracell interference. Denote xnk ∈ {0, 1} as the BS-UE association variable, i.e., xnk =

1 if UE n is associated with BS k and xnk = 0 otherwise. Define xk � [x1k, . . . ,xNk]
T

and x �
[
xT
1 , . . . ,x

T
K

]T
. If BS k serves a total of 〈xk〉 �

∑N
n̂=1 xn̂k UEs, then each of

these UEs will be allocated 1/〈xk〉 of the total available time. Effectively, data rate

perceived by a connected UE n is rnk(p)/〈xk〉, which will be further reduced as more

and more UEs are associated to BS k. To reflect the fact that this rate is only possible

if UE n actually connects to BS k, we define the effective data rate given to UE n by
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BS k as:

reffnk(xk,p) �
xnkrnk(p)

〈xk〉 . (3.2)

It follows that the sum effective data rate of cell k is

reffk (x,p) �
N∑

n=1

reffnk(p) =
N∑

n=1

xnkrnk(p)

〈xk〉 , (3.3)

which is required not to exceed the limited backhaul capacity available to BS k [Olmos

et al., 2013],[Qian et al., 2013]. The total network throughput across all K cells is then

simply

K∑
k=1

reffk (x,p) =
K∑
k=1

N∑
n=1

xnkrnk(p)

〈xk〉 . (3.4)

This chapter aims to enhance the network throughput by joint optimization of BS-UE

association and transmit power allocation. Importantly, our design takes into account

both the QoS requirement of each UE and the limited backhaul capacity at each BS. If

too many UEs connect a particular BS (e.g., due to favorable channel conditions), then

(i) the perceived rate of each UE will decrease and potentially not satisfy the minimum

QoS requirement, and (ii) the sum effective rate of the corresponding cell may increase

and potentially exceed the backhaul capacity. With a proper BS-UE association, the

traffic load will be more balanced among different BSs and the network crowding issue

can be alleviated. With adaptive power allocation, the intercell interference can be

effectively managed to further improve the throughput. Here, we will consider the
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following joint design problem for sum-rate maximization.

max
p,xnk∈{0,1}

K∑
k=1

N∑
n=1

xnkrnk(p)

〈xk〉 (3.5a)

s.t.
K∑
k=1

xnk = 1, n = 1, . . . , N (3.5b)

〈xk〉 ≥ 1, k = 1, . . . , K (3.5c)

K∑
k=1

xnkrnk(p)

〈xk〉 ≥ RQoS
n , n = 1, . . . , N (3.5d)

N∑
n=1

xnkrnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . , K (3.5e)

0 ≤ pk ≤ Pmax
k , k = 1, . . . , K. (3.5f)

Constraint (3.5b) ensures each UE be connected with one BS only. Constraint (3.5c)

requires each BS serves at least one UE [Shen and Yu, 2014; Fooladivanda and Rosen-

berg, 2013; Ye et al., 2013; Beyranvand et al., 2015]. In (3.5d) and (3.5e), RQoS
n ≥ 0

and CBH
k ≥ 0 specify the minimum throughput requirement for UE n and the backhaul

capacity for cell k, respectively. Finally, (3.5f) caps the maximum transmit power of

each BS k.

We also consider the following problem of maximizing the minimum effective rate among

all UEs:

max
p,xnk∈{0,1}

min
n=1,...,N

{
K∑
k=1

xnkrnk(p)

〈xk〉

}

s.t. (3.5b), (3.5c), (3.5e), (3.5f).

(3.6)

In problem (3.6), our aim is to support the most vulnerable UEs, e.g., those at the cell

edges.

Both problems (3.5) and (3.6) belong to the difficult class of mixed-integer program-

ming. The strong coupling between the binary variables x and the continuous variables

p make the problems even more challenging. State-of-the-arts in existing literature typ-

ically apply the alternating optimization framework [Kuang et al., 2012; Chitti et al.,
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2013; Ha and Le, 2014; Shen and Yu, 2014; Sun et al., 2015]. In this ‘divide-and-

conquer’ approach, instead of dealing with x and p simultaneously, one decouples the

original problems into subproblems of lower dimensions and resolve one subproblem at

a time. Still for our problems (3.5) and (3.6) at hand, the BS-UE association problem

for optimization in binary x scales exponentially with the number of BSs and UEs.

It is not practical to try all the possible BS-UE combinations, even for networks of

small-to-medium size. Moreover, for a given BS-UE combination, the power allocation

for optimization in p remains highly nonconvex. Specifically, problem (3.5) has a non-

convex objective subject to nonconvex QoS and backhaul constraints, whereas problem

(3.6) has a nonsmooth nonconvex objective subject also to a nonconvex set.

In what follows, we will address both problems (3.5) and (3.6) by a novel alternating

descent method, which aims at improving the iterative solutions. It is noteworthy that

the proposed joint user association and power control algorithms, although designed

for single-antenna networks, can serve as a fundamental building block for subsequent

development of joint user association and beamforming/precoding in multiple-antenna

networks [Shen and Yu, 2014].

3.3 Proposed Alternating Descent Algorithm for Sum-Rate

Maximization

3.3.1 BS-UE Association for Fixed Transmit Power

Given a fixed p := p, we aim to solve problem (3.5) in variable x. References [Corroy

and Mathar, 2012; Corroy et al., 2012] considered the simplest case with K = 2 cells,

under which the objective function (3.5a)∑N
n=1 xn1rn1(p)

〈x1〉 +

∑N
n=1 xn2rn2(p)

〈x2〉 =

∑N
n=1 xn1rn1(p)〈x2〉+

∑N
n=1 xn2rn2(p)〈x1〉

〈x1〉〈x2〉
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is a fraction of linear functions in the new rank-one constrained matrix variableX = xxT

for x =
[
xT
1 ,x

T
2

]T
. By dropping the constraint rank(X) = 1 and relaxing binary

constraints on its entries to real numbers belonging to the interval [0, 1], a bisection

search is used in finding the optimal solution of the resultant program. It should be

emphasized again that such a relaxation only works if there are two cells in the network.

This is because for K > 2 the objective function (3.5a) becomes a fraction of nonlinear

functions in X = xxT .

Our objective here is to devise a solution that works for a general network with an

arbitrary number of cells. To begin with, notice that all the constraints (3.5b), (3.5c)

and (3.5e) are linear in x, but not (3.5d). The following proposition allows us to

equivalently recast the nonconvex constraint (3.5d) as a system of linear constraints on

x.

Proposition 3.1. Under the constraint (3.5b), the constraint (3.5d) is equivalent to

(M − (M − 1)xnk) rnk(p) ≥ RQoS
n 〈xk〉, n = 1, . . . , N, k = 1, . . . , K (3.7)

for a sufficiently large number M .

Proof. Denote by (3.5d)n the constraint (3.5d) for n. It is sufficient to show that each

(3.5d)n is equivalent to the following K constraints:

(M − (M − 1)xnk) rnk(p) ≥ RQoS
n 〈xk〉, k = 1, . . . , K. (3.8)

Under the constraint (3.5b), for each n there is kn such that xnkn = 1 and xnk = 0, ∀k ∈
{1, . . . , K} \ {kn}. Therefore, (3.8) merely means that

rnkn(p) ≥ RQoS
n 〈xkn〉, (3.9)

and

Mrnk(p) ≥ RQoS
n 〈xk〉, k �= kn. (3.10)

Note that (3.9) is (3.5d)n, showing the implication (3.8) ⇒ (3.5d)n.
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On the other hand, (3.10) holds true for 0 < M < +∞ because its right hand side is

obviously bounded while the factor rnk(p) on the left hand side is strictly positive. The

inverse implication (3.5d)n ⇒ (3.8) thus follows, yielding the equivalence between (3.8)

and (3.5d)n. �

Next, we deal with the binary nature of x. For xn̂k ∈ {0, 1}, one has xn̂k = x2
n̂k and

thus 〈xk〉 = 〈x2
k〉 �

∑N
n̂=1 x

2
n̂k. The objective function (3.5a) is then expressed as

K∑
k=1

N∑
n=1

x2
nkrnk(p)

〈x2
k〉

. (3.11)

On the one hand, it is straightforward to see that xnk ∈ {0, 1} is equivalent to x2
nk =

xnk, xnk ∈ [0, 1]. On the other hand, it holds true that x2
nk ≤ xnk for xnk ∈ [0, 1].

Following [Che et al., 2014], we relax binary xnk to xnk ∈ [0, 1] and introduce a penalty

term in the objective function (3.11) to enforce x2
nk = xnk, thus making xnk binary.

This leads to the following problem:

max
xk∈[0,1]N

P1(x, p) �
K∑
k=1

N∑
n=1

x2
nkrnk(p)

〈x2
k〉

+ λ
K∑
k=1

N∑
n=1

(
x2
nk − xnk

)
s.t. (3.5b)− (3.5e),

(3.12)

where λ ≥ 0 is a constant penalty factor. Parameter λ signifies the relative impor-

tance of recovering binary values for x over throughput maximization. In (3.12), the

term
∑K

k=1

∑N
n=1(xnk − x2

nk) is always nonnegative and can therefore be used to mea-

sure the degree of satisfaction of the binary constraints xnk ∈ {0, 1}, ∀n, k. Without

squaring such a term, the above penalization is exact, meaning that the constraints

x ∈ {0, 1}, ∀n, k can be satisfied by a maximizer of (3.12) with a finite value of λ (see,

e.g., [Bonnans et al., 2006, Ch. 16]). This nice property makes such exact penalization

attractive.

With Proposition 3.1, problem (3.12) becomes

max
xk∈[0,1]N

P1(x, p)

s.t. (3.5b), (3.5c), (3.5e), (3.7).
(3.13)
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With an appropriate choice of λ, problems (3.13) and (3.5) are equivalent in the sense

that they share the same optimal solution [Che et al., 2014, Sec. II]. Since problem

(3.13) is still nonconvex, we now employ successive convex programming to solve it.

Proposition 3.2. For a given point (x(κ), p), the following convex problem is a global

lower bound maximization for (3.13):

max
xk∈[0,1]N

P̃(κ)
1 (x, p) �

K∑
k=1

N∑
n=1

α
(κ)
nk (x, p) + λ

K∑
k=1

N∑
n=1

γ
(κ)
nk (x)

s.t. (3.5b), (3.5c), (3.5e), (3.7),

(3.14)

where we define

α
(κ)
nk (x, p) �

(x
(κ)
nk )

2rnk(p)

〈(x(κ)
k )2〉

+
2x

(κ)
nk

(
xnk − x

(κ)
nk

)
rnk(p)

〈(x(κ)
k )2〉

− (x
(κ)
nk )

2rnk(p)(
〈(x(κ)

k )2〉
)2

(
〈x2

k〉 − 〈(x(κ)
k )2〉

)
,

(3.15a)

γ
(κ)
nk (x) � (x

(κ)
nk )

2 − x
(κ)
nk + (2x

(κ)
nk − 1)

(
xnk − x

(κ)
nk

)
. (3.15b)

Proof. See Appendix A, where we show that the objective P̃ (κ)
1 (., p) in (3.14) is a global

lower bound of the objective P1(x, p) in (3.13), i.e.

P1(x, p) ≥ P̃(κ)
1 (x, p), ∀x and P1(x

(κ), p) = P̃ (κ)
1 (x(κ), p). (3.16)

�

The nonconvex problem (3.13) can then be addressed by instead solving its global lower

bound maximization (3.14) in a sequential manner as follows: After initializing from

a feasible point x(0) of problem (3.13), we iteratively solve problem (3.14) to generate

a sequence {x(κ)}, κ = 1, 2, . . . of feasible and improved points toward the optimal

solution of (3.13). More specifically, at iteration κ we use x(κ−1) as a feasible point to

solve (3.14) and obtain x(κ).

Theorem 3.1. Initialized from a feasible point x(0), the sequence {x(κ)} obtained by

iteratively solving (3.14) is a sequence of improved points of (3.13), which converges to

a KKT point.
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Proof. Note that x(κ) and x(κ+1) are a feasible point and the optimal solution of (3.14),

respectively. By using (3.16),

P1(x
(κ+1), p) ≥ P̃ (κ)

1 (x(κ+1), p) ≥ P̃ (κ)
1 (x(κ), p) = P1(x

(κ), p), (3.17)

i.e. x(κ+1) is a better point of (3.13) than x(κ). Since the sequence {x(κ)} is bounded,

by Cauchy’s theorem there is a convergent subsequence {x(κν)} with a limit point x̄,

i.e.

lim
ν→+∞

[P1(x
(κν), p)− P1(x̄, p)] = 0.

For every κ there is ν such that κν ≤ κ ≤ κν+1 so

0 = lim
ν→+∞

[P1(x
(κν), p)− P1(x̄, p)]

≤ lim
ν→+∞

[P1(x
κ), p)− P1(x̄, p)]

≤ lim
ν→+∞

[P1(x
κν+1), p)− P1(x̄, p)]

= 0,

showing that lim
κ→+∞

P1(x
κ), p) = P1(x̄, p). Then, each accumulation point x̄ of the

sequence {x(κ)} is a KKT-point according to [Marks and Wright, 1978, Theorem 1].

The proof of Theorem 3.1 is thus complete. �

3.3.2 Power Allocation for Fixed BS-UE Association

Given x := x, we proceed to solving problem (3.5) in the variable p. Although the

difference-of-convex iterations (DCI) approach of [Kha et al., 2012] can be applied in

the absence of backhaul constraints (3.5e), the required log-determinant optimization

is computationally expensive even for commercialized convex solvers. This drawback is

particularly severe in HetNets which consist of a large number of densely deployed BSs

and UEs. Reference [Yu et al., 2014] proposes solving the KKT conditions, followed

by applying the gradient descent method to update Lagrangian multipliers in order to

satisfy (3.5e). Nevertheless, a solution derived from the KKT conditions of a nonconvex

problem may not be locally optimal or even feasible.
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Our aim here is to devise an efficient and optimal power allocation solution. Using

Proposition 3.1 and simple algebraic manipulations, (3.5d) is expressed as the following

linear constraints:

gnkpk ≥
[
exp

(
RQoS

n 〈xk〉
M−(M−1)xnk

)
− 1

] (∑K
j �=k,j=1 gnjpj + σ2

)
,

n = 1, . . . , N, k = 1, . . . , K.
(3.18)

Problem (3.5) is then reduced to

max
p

P1(x,p) �
K∑
k=1

N∑
n=1

(xnk)
2

〈x2
k〉

rnk(p) (3.19a)

s.t.
N∑

n=1

xnkrnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . , K (3.19b)

(3.5f), (3.18).

Because (3.19a) and (3.19b) are still nonconvex in p, we instead consider their convex

bounds as given in the following result.

Proposition 3.3. The rate function rnk(p) in (3.1) admits

rnk(p) ≤ θ
(κ)
nk (p) � rnk(p

(κ)) +
1

K∑
j �=k,j=1

gnjp
(κ)
j + σ2

K∑
j �=k,j=1

(gnjp
(κ)
j )2

(
1

gnjpj

− 1

gnjp
(κ)
j

)

+
1∑K

j=1 gnjp
(κ)
j + σ2

K∑
j=1

gnj(pj − p
(κ)
j ) (3.20)

as its upper bound, and

rnk(p) ≥ β
(κ)
nk (p) � rnk(p

(κ))− 1
K∑
j=1

gnjp
(κ)
j + σ2

K∑
j=1

(gnjp
(κ)
j )2

(
1

gnjpj

− 1

gnjp
(κ)
j

)

− 1∑K
j �=k,j=1 gnjp

(κ)
j + σ2

K∑
j �=k,j=1

gnj(pj − p
(κ)
j ) (3.21)

as its lower bound.

Proof. See Appendix B. �
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With the bounds in (3.20) and (3.21), we now address the nonconvex problem (3.19)

by successive convex programming. Specifically, after initializing a feasible point p(0) of

problem (3.19), we iteratively solve the following global lower bound maximization of

(3.19):

max
p

P̄(κ)
1 (x,p) �

K∑
k=1

N∑
n=1

(xnk)
2

〈x2
k〉

β
(κ)
nk (p) (3.22a)

s.t.
N∑

n=1

xnkθnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . , K (3.22b)

(3.5f), (3.18)

to generate a sequence {p(κ)}, κ = 1, 2, . . . of feasible and improved points toward the

solution of (3.19). At iteration κ, we use p(κ−1) as a feasible point to solve (3.22) and

obtain p(κ). Similarly to Theorem 3.1, we can prove the following result.

Theorem 3.2. Initialized from a feasible point p(0), the sequence {p(κ)} obtained by

iteratively solving (3.22) is a sequence of improved points, which converges to a KKT

point of (3.19).

3.3.3 Joint Optimization of BS-UE Association and Power Allocation

The alternating optimization framework requires solving a series of convex problems

(3.14) [cf. Section 3.3.1] followed by solving a series of convex problems (3.22) [cf.

Section 3.3.2] and repeating until convergence. Realizing that solving one instant of

(3.14) and (3.22) alone already provides a better point, we use them as an alternating

descent to achieve a much faster convergence speed. The proposed joint optimization

of BS-UE association and power allocation for sum-rate maximization is summarized

in Algorithm 1. Our alternating descent approach gives flexibility in executing user

association and power control in the same time slot (as in Algorithm 1) or different

time slots (by selectively deactivating Step 3 or 4 of Algorithm 1).
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Algorithm 1 Joint BS-UE Association and Power Allocation for Sum-Rate Maximiza-
tion

1: Initialize x
(0)
nk := 1

KN
, n = 1, . . . , N, k = 1, . . . , K and p

(0)
k := Pmax

k , k = 1, . . . , K.
Set κ := 0.

2: repeat
3: Solve convex program (3.14) with p := p(κ) to find optimal solution x�.
4: Solve convex program (3.22) with x := x∗ to find optimal solution p�.
5: Set (x(κ+1), p(κ+1)) := (x�, p�) and κ := κ+ 1.
6: until

∣∣(P1(x
(κ), p(κ))− P1(x

(κ−1), p(κ−1))
)
/P1(x

(κ−1), p(κ−1))
∣∣ < ε

At each iteration of Algorithm 1, the computational complexity of solving convex prob-

lems (3.14) and (3.22) is only polynomial in the number of variables and constraints. To

see this, (3.14) can be equivalently reformulated as an optimization problem with a �
(NK +1) real-valued scalar decision variables, a linear objective, b � (N +2K +NK)

linear constraints and one quadratic constraint. Similarly, (3.22) can be equivalently

reformulated as a semidefinite program with (2K+1) scalar variables, a linear objective

and a system of linear matrix inequalities. The complexity required to solve (3.14) and

(3.22) is thus O (
(1 + a+ b)a2

√
b+ 1

)
and

O
([

(2K + 1)2(K + 1)3 + (2K + 1)2NK3
]√

3K +NK + 1
)
,

respectively [Nemirovski, 2004].

Theorem 3.3. Initialized from a feasible point (x(0), p(0)), Algorithm 1 converges to a

solution of problem (3.5) after a finite number of iterations for a given error tolerance

ε > 0.

Proof. The BS-UE association problem (3.13) and the power allocation problem (3.19)

have the same objective function P1(x,p). From (3.17), (3.20) and (3.21), we have the

following relations:

P1(x
(κ+1), p(κ+1)) ≥ P̄ (κ)

1 (x(κ+1), p(κ+1)) ≥ P̄ (κ)
1 (x(κ+1), p(κ))

= P1(x
(κ+1), p(κ)) ≥ P̃ (κ)

1 (x(κ+1), p(κ))

≥ P̃(κ)
1 (x(κ), p(κ)) = P1(x

(κ), p(κ)). (3.23)
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It means that alternatingly solving their respective convex minorants (3.14) and (3.22)

always improves P1(x,p) in each iteration. As such, once initialized from a feasible

point (x(0), p(0)) that satisfies (3.5b), (3.5c) and (3.5f), Algorithm 1 generates a sequence

{(x(κ), p(κ))} of feasible and improved points which eventually converges to a solution

(x̄, p̄) of (3.5). Note that x̄ is a KKT point of (3.13) for p = p̄ while p̄ is a KKT of

(3.19) for x = x̄. Under the stopping criterion

∣∣(P1(x
(κ+1), p(κ+1))− P1(x

(κ), p(κ))
)
/P1(x

(κ), p(κ))
∣∣ < ε, (3.24)

Algorithm 1 terminates after a finite number of iterations for a given ε > 0. �

3.4 Proposed Alternating Descent Algorithm for Minimum

UE Rate Maximization

The above developed Algorithm 1 is readily extendable to solve the max-min problem

(3.6). In this case, we consider the following objective function.

P2(x,p) � min
n=1,...,N

{
K∑
k=1

x2
nkrnk(p)

〈x2
k〉

}
+ λ

K∑
k=1

N∑
n=1

(
x2
nk − xnk

)
, (3.25)

where xnk ∈ [0, 1], n = 1, . . . , N, k = 1, . . . , K and λ ≥ 0 is a constant penalty factor.

The BS-UE association problem for a fixed power allocation p := p is now

max
xk∈[0,1]N

P2(x, p)

s.t. (3.5b), (3.5c), (3.5e).
(3.26)

Although the constraint set of (3.26) is convex, its objective is nonsmooth and noncon-

vex. Similar to Proposition 3.2, it can be shown that the following convex problem is

a global lower bound maximization of (3.26):

max
xk∈[0,1]N

P̃2(x, p) � min
n=1,...,N

{
K∑
k=1

α
(κ)
nk (x, p)

}
+ λ

K∑
k=1

N∑
n=1

wnkγ
(κ)
nk (x),

s.t. (3.5b), (3.5c), (3.5e),

(3.27)
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where α
(κ)
nk (x, p) and γ

(κ)
nk (x) have previously been defined in (3.15).

Next, the power allocation problem for a fixed x := x is

max
p

P2(x,p) � min
k=1,...,K

{
N∑

n=1

x2
nk

〈x2
k〉
rnk(p)

}

s.t. (3.5e), (3.5f),

(3.28)

which has a nonsmooth nonconvex objective function and a nonconvex set. Similar to

Proposition 3.3, it can be shown that the following convex problem is a global lower

bound maximization of (3.28):

max
p

P̄(κ)
2 (x,p) � min

k=1,...,K

{
N∑

n=1

x2
nk

〈x2
k〉
βnk(p)

}

s.t. (3.22b), (3.5f),

(3.29)

where βnk(p) has previously been defined in (3.21).

To solve problem (3.6) in both x and p, we modify Algorithm 1 as follows. In Step 3, we

solve convex problem (3.27) instead of (3.14). In Step 4, we solve convex problem (3.29)

instead of (3.22). And because the objective function is now P2(x,p), the proposed

algorithm for problem (3.6) terminates when

∣∣(P2(x
(κ), p(κ))− P2(x

(κ−1), p(κ−1))
)
/P2(x

(κ−1), p(κ−1))
∣∣ < ε.

We shall refer to this modified algorithm as Algorithm 2.

In each iteration of Algorithm 2, the computational complexity of solving problem

(3.27) is O (
(N + a+ d)c2

√
c+N

)
, because (3.27) can be equivalently reformulated as

an optimization problem with a = (NK + 1) scalar real decision variables, a linear

objective, c � (N + K) linear constraints and N quadratic constraints [Nemirovski,

2004]. Similarly, the complexity of solving problem (3.29) is

O
([

cd2(K + 1)2 + d2NK3
]√

3K +NK +N
)
,

because (3.29) can be reformulated as a semidefinite program with d � (2K +1) scalar

variables, a linear objective and a system of linear matrix inequalities. Finally, similar
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to Theorem 3.3, it can be proved that once initialized from a feasible point (x(0), p(0))

that satisfies (3.5b), (3.5c) and (3.5f), Algorithm 2 converges after a finite number of

iterations for a given error tolerance ε.

3.5 Illustrative Examples

0 0.25 0.5 0.75 1 (km)
0

0.25

0.5

0.75

1 (km)

Figure 3.2: A three-tier network with one fixed MBS (black square), four fixed PBSs
(black diamonds), twenty random FBSs (black triangles) and 200 random UEs (red
circles).

Consider a three-tier HetNet where four pico BSs (PBSs) and twenty femto BSs (FBSs)

are deployed within a macrocell of size 1, 000m × 1, 000m. The locations of MBS and

PBSs are fixed whereas those of FBSs are random, as shown in Fig. 3.2. We assume there

are N = 200 UEs randomly distributed over the macrocell coverage area. The network

topology is then fixed during the optimization process. Without loss of generality, we

only consider the effect of pathloss when generating the channel gains. The fading

channel is not considered in this work to provide a clear and simple illustration of the

BSs’ footprint. The proposed algorithms can be applied for the fading channel without
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modifications. To illustrate the impact of imperfect backhaul links, we assume that the

MBS, PBSs, and FBSs are each equipped with a backhaul link of capacity CBH, CBH/3

and CBH/10, respectively. Following [Tipmongkolsilp et al., 2011], we choose CBH ∈
{100, 150, 200,∞} Mbps where CBH = ∞ represents the ideal backhaul. For simplicity,

we set the required minimum UE throughput as RQoS
n = RQoS, n = 1, . . . , N . The error

tolerance for the algorithms is set as ε = 10−4. Other 3GPP LTE parameters used to

setup our simulations are listed in Table 3.1 [3GPP TS 36.814 V9.0.0, 2010]. Note that

we divide the obtained rate results by ln(2) to arrive at the unit of bps/Hz.

Table 3.1: Simulation parameters used in all numerical examples
Parameter Value

Minimum distance between MBS-UE 35m
Minimum distance between PBS/FBS-UE 10m
Path loss model for MBS-UE links 128.1 + 37.6 ln10(d), d is in km
Path loss model for PBS-UE links and FBS-UE links 140.7 + 36.7 ln10(d), d is in km
Maximum MBS transmit power 43dBm
Maximum PBS transmit power 24dBm
Maximum FBS transmit power 20dBm
Background noise power −104dBm
System bandwidth 10MHz
Frequency reuse factor 1

First, we compare the sum-rate performance of the joint design in Algorithm 1 to that of

Algorithm 1 but with full BS transmit power (i.e., no power control). We use the heuris-

tic BS-UE association schemes, namely, max-SINR and DCD [Shen and Yu, 2014] as

benchmarks where full BS transmit power is also assumed. As both benchmark schemes

assume ideal backhaul, we set CBH = ∞ here for a fair comparison. And since the max-

SINR and DCD schemes do not include the minimum UE throughput constraint, we

first assume RQoS = 0 in these two schemes to find their BS-UE associations, followed

by calculating their achieved sum-rates and minimum UE rates. Fig. 3.3 shows that

joint design of load balancing and interference management in Algorithm 1 gives much

higher network throughput over load balancing alone. This can be explained by not-

ing that the joint design has an extra dimension of BS transmit power to optimize to
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further enhance the sum-rate performance. When comparing Algorithm 1 with full BS

transmit power to the max-SINR and DCD schemes, the former offers more flexibility

in setting the desired minimum RQoS. Furthermore, for the same values of RQoS that are

achieved by the max-SINR and DCD schemes, the sole BS-UE design by Algorithm 1

gives a slightly better sum-rate performance as can be observed from Fig. 3.3.
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Figure 3.3: Sum-rate performance of Algorithm 1 under ideal backhaul links.

Next, we evaluate the effects of QoS constraints and limited backhaul capacity in the

joint design of Algorithm 1. Fig. 3.4 shows that as we move away from the assumption

of ideal backhaul, the total throughput is gradually degraded. This observation is as

expected because the feasible region of problem (3.5) becomes more restricted. For

each value of CBH, Fig. 3.4 also shows that lowering the UE throughput requirement

RQoS actually increases the total throughput. However, while such an throughput

improvement is pronounced for the ideal backhaul, it is not much so for limited backhaul

capacity cases where reducing RQoS beyond 0.2Mbps only marginally improves the sum-

rate. Our numerical analysis reveals that most of the PBSs and FBSs have fully utilized

their respective limited backhaul capacities of CBH/3 and CBH/10, leaving no room for

further throughput improvement at these small cells even if RQoS is small. Such an
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Figure 3.4: Effects of QoS constraints and limited backhaul capacity on the sum-rate
performance of Algorithm 1.

observation again verifies that backhaul capacity is in fact a bottleneck for network

performance.

Fig. 3.5 further demonstrates that for a given RQoS, switching from ideal backhaul

(CBH = ∞) to non-ideal backhaul (CBH = 100Mbps) may limit the offloading capability

of small cells. Indeed, many UEs will be transferred from the small cells back to the

macrocell. This observation can be explained as follows. The small cells are more

easily overloaded in the non-ideal backhaul case as their backhaul capacity is much

smaller than that of the macrocell. To meet their backhaul limitations, small-cell BSs

decrease their transmit power to shrink their cell size and serve fewer UEs with lower

cell throughput. With 19dB-23dB higher in power budget compared to that available to

small-cell BSs, the MBS then increases its transmit power (and effectively its coverage

area) to take over the UEs pushed out by the small cells. And with 3-10 times more

backhaul capacity, the MBS is still able to accommodate the incoming traffic. This can

be best observed in Fig. 3.6(b) [cf. Fig. 3.6(a)] and Fig. 3.6(d) [cf. Fig. 3.6(c)], where
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Figure 3.5: Effects of QoS constraints and limited backhaul capacity on the load dis-
tribution by Algorithm 1.

the MBS serves more distant UEs for CBH = 100Mbps.

Fig. 3.7 demonstrates the fairness given by Algorithm 2 for max-min UE rates. Here,

we compare against Algorithm 1 for sum-rate maximization where RQoS = 0.05Mbps

is assumed. As seen from the figure, Algorithm 2 improves the minimum UE rate

as the cost of reduced total throughput. Furthermore, for CBH ≥ 150 Mbps, reducing

backhaul capacity does not affect much the minimum UE rate and sum-rate performance

of Algorithm 2 because the ample backhaul capacity at each cell can still accommodate

more data traffic. However, for CBH ≤ 100 Mbps, the minimum UE rate by Algorithm 2

starts to fall dramatically. And at CBH = 50Mbps, the achieved minimum UE rate drops

by more than 4.5 times compared to that in the ideal backhaul case. At this point, a

significantly larger number of UEs turns to the MBS for service as shown Fig. 3.8. This

is because the MBS still has available backhaul capacity while the PBSs and FBSs are

more likely to be overloaded.

Finally, we examine the convergence of the proposed algorithms. It is sufficient to

54



3.5 Illustrative Examples

0 0.5 1 (km)
0

0.5

1 (km)

(a) (RQoS, CBH) = (0.05,∞) Mbps

0 0.5 1 (km)
0

0.5

1 (km)

(b) (RQoS, CBH) = (0.05, 100) Mbps

0 0.5 1 (km)
0

0.5

1 (km)

(c) (RQoS, CBH) = (0.25,∞) Mbps

0 0.5 1 (km)
0

0.5

1 (km)

(d) (RQoS, CBH) = (0.25, 100) Mbps

Figure 3.6: Changes in BS-UE associations by Algorithm 1 under various choices of UE
QoS requirements and backhaul capacity.

choose a large value of the penalty factor λ in the exact penalty method. To improve

the convergence speed of Algorithms 1 and 2, our implementation starts with λ = 103

and fine-tunes λ through a bisection search until the objective functions no longer

change and binary values of x are found. For brevity, only the case of CBH = 100Mbps

is presented for illustration. Fig. 3.9(a) plots the convergence of the objective function

(3.19) by Algorithm 1 for RQoS = 0.1Mbps. Fig. 3.9(b) plots the convergence of the

objective function (3.25) by Algorithm 2. In these plots, the system bandwidth is

normalized to unit to ensure the compatibility of the utility function and the penalty
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Figure 3.7: Fairness by Algorithm 2 and effects of limited backhaul capacity on the
minimum UE rate.

term in (3.19) and (3.25). The number of iterations in each plot corresponds to the

presented values of λ. As can be seen from Fig. 3.9, the proposed algorithms only

require at most ten iterations to converge. It is worth noting that each iteration of

our algorithms involves solving only two easy convex problems, each with polynomial

complexity.

3.6 Conclusions

In this chapter, we have proposed new joint BS-UE association and power control

schemes for HetNets. Specifically, we have addressed two difficult mixed-integer opti-

mization problems: (i) sum-throughput maximization under QoS constraints and (ii)

maximization of minimum UE throughput. Our problem formulations also include the

practical constraint of limited backhaul capacity. Our developed alternative descent

algorithms are based on an exact penalty method combined with successive convex
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Figure 3.8: More UEs switch to MBS when backhaul capacity is limited in Algorithm 2.
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Figure 3.9: Convergence of Algorithms 1 and 2 for ε = 10−4.

programming, where we address the binary BS-UE association problem and the non-

convex power allocation problem separately. At each iteration, only two simple convex

problems are solved in the same time scale. Our algorithms improve the objective func-

tions in each iteration and converge eventually. Simulation results have demonstrated

the usefulness of our devised algorithms in both traffic offloading and interference man-

agement. The simulated data rate indeed does not meet the expectation of 5G. How-

ever, the main purpose of this Section is to proposed a method to optimize the power
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allocation and BS-UE association in HetNet. Future researches will investigate the im-

plement of MIMO transmission and OFMD system which can much further enhance

the performance of the network.
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Chapter 4

Successive Convex Quadratic Programming for Interfer-

ence Management in MU-MIMO Multicell Networks

In this chapter, the main focus is on developing path-following algorithms based on

successive convex quadratic programming for QoS management in the FD MU-MIMO

multicell networks. Then the proposed algorithms are extended to address the optimal

precoding matrices design in the half-duplex MU-MIMO multicell networks with H-K

transmission strategy [Han and Kobayashi, 1981]. Though H-K strategy is not a part of

5G technologies, the significant enhancement in the capacity region that this strategy

provides is the driving force of this investigation.

4.1 Precoding Design for QoS Management in Full-Duplex

MU-MIMO Multicell Networks

4.1.1 Introduction

Full-duplexing is recently proposed as one of the key transceiving techniques for the 5G

networks with the potential of doubling the capacity of wireless links [Choi and Shirani-

Mehr, 2013; Sabharwal et al, 2014; Heino et al, 2015]. Different from the conventional
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time-division and frequency-division duplexing, FD allows simultaneous transmissions

to multiple DLUs and multiple reception from multiple ULUs in the same time slot and

on the same frequency. Such bidirectional communication on the same radio resources

is traditionally assumed impractical, due to the huge SI between transmit and receive

antennas on the same device. Only recently, advances in hardware design have allowed

the SI to be suppressed to a level potentially suitable for FD communications [Everett

et al., 2014; Duarte et al., 2014; Anttila et al, 2014; Heino et al, 2015].

Under FD, the interference situation in a multicell network is further complicated not

only by the residual SI but also the cross interference between the uplink and the down-

link transmissions. In the uplink, the additional interference includes the SI from the

same BS and the downlink interference from other BSs, which further degrades the QoS

of the ULUs. In the downlink, the QoS of the DLUs is adversely affected by the addi-

tional interference from the ULUs. Note that one of the most common figure-of-merit

for network QoS is the achievable data throughput. With these new forms of inter-

ference, it is not straightforward to extend the available signal precoding designs that

manage interference in the traditional half-duplexing (HD) networks [Ng and Huang,

2010; Shi et al., 2011; Wang et al., 2012; Song et al., 2007; Cai et al., 2012; Huang et al.,

2013] to the new FD settings. In the FD cases, both uplink and downlink throughput

functions jointly depend on the uplink and the downlink precoders. Most importantly,

FD destroys the computationally tractable structure of the throughput functions. For

instance, while the uplink throughput function can be made concave with respect to

the signal covariances of the ULUs in a single-cell network (e.g., by implementing the

successive interference cancellation receiver at the BS), it is not concave in the signal

covariances of the DLUs.

While guaranteeing a minimum QoS for all users is essential, it should be emphasized

that existing works for HD and FD MU-MIMO networks [Ng and Huang, 2010; Shi

et al., 2011; Wang et al., 2012; Song et al., 2007; Cai et al., 2012; Huang et al., 2013;

Huberman and Le-Ngoc, 2015; Nguyen et al., 2014; Xu and Wang, 2012] at best can

60



4.1 Precoding Design for QoS Management in Full-Duplex MU-MIMO
Multicell Networks

only apply to the problem of total throughput maximization without rate constraints.

Such problem formulations generally result in an unfair allocation of the available radio

resources. Users with favorable link conditions get most of the throughput, whereas the

remaining users achieve low (or even zero) throughput. Unfortunately, any throughput

guarantee leads to the inherently difficult nonconvex throughput constraints. In this

case, even finding a feasible point is already a challenging task because the feasible set

is nonconvex and disconnected.

In this section, we consider a general MU-MIMO multicell network. The BSs are

equipped with multiple antennas and operate in the FD mode. There are two separate

groups of multi-antenna UEs in each cell—the ULUs and the DLUs—both operate in

the HD mode. In the uplink, the receiver of a BS suffers from (i) the uplink interference

from all ULUs in other cells, (ii) the downlink interference from other BSs, and (iii)

the SI from its own downlink transmission. In the downlink, the receiver of a DLU is

subject to (i) the downlink interference from all BSs including its serving BS and (ii)

the uplink interference from all ULUs in the same cell. Note that while we restrict to

the above cases for the clarity of analysis and presentation, our proposed approach in

this section can be straightforwardly extended to the case that the uplink interference

is generated by all ULUs in all cells.

Our objective is to develop jointly optimal linear precoders for both BSs and ULUs in

order to manage all the aforementioned types of interference. Specifically, we consider

the following two problems which aim to optimally and fairly share the radio resources

among the cells.

• Problem (P1): Maximizing the total network throughput subject to data rate

constraints at each cell. This problem involves a nonconvex objective function

and nonconvex constraints.

• Problem (P2): Maximizing the minimum throughput among all cells. The objec-

tive function of this problem is not only nonconvex but also nonsmooth.
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In (P1), it is difficult to even find a feasible point from the nonconvex feasible set.

In (P2), the nonsmoothness of the objective function presents an extra dimension of

technical difficulty.

To the authors’ best knowledge, existing works can only address some specific single-

cell cases of Problem (P1) without the nonconvex throughput constraints. Indeed, the

nonconvex constraints have never been effectively dealt with. Since the publication of

[Kha et al., 2012], it has been known that the uplink and downlink throughput func-

tions are d.c. (difference of two convex functions) [Tuy, 1998] in the signal covariance

variables. Their maximization over (convex) power constraints can thus be computa-

tionally solved by the so-called d.c. iteration (DCI) algorithm of [Kha et al., 2012].

Reference [Huberman and Le-Ngoc, 2015] follows the approach in [Kha et al., 2012] to

address the problem of power-constrained single-cell throughput maximization via the

signal covariance design. Reference [Nguyen et al., 2014] also considers the problem of

single-cell throughput maximization where downlink beamformers and uplink transmit

powers are jointly optimized. Here, the BS is equipped with multiple antennas whereas

each DLU/ULU only has a single antenna. The difficult nonconvex rank-one matrix

constraints on the outer products of the beamforming vectors are dropped to arrive at

a d.c. optimization formulation, for which DCI [Kha et al., 2012] can be applied. To

find a feasible rank-one matrix point from which the beamforming vector can be re-

covered, [Nguyen et al., 2014] resorts to the randomization techniques which are shown

inefficient by [Phan et al., 2012].

For the problems that we presently consider, the throughput functions are very com-

plicated in the precoding matrix variables, resulting in complex d.c. optimizations (see

[Kha et al., 2012; Che and Tuan, 2013b; Tam et al., 2013; Che and Tuan, 2014]). The

DCI algorithm of [Kha et al., 2012] may not be efficiently applied to Problem (P1) even

when there is no data rate constraint. Each iteration of the DCI algorithm involves a

difficult convex program—a challenge for existing convex solvers to efficiently compute

for optimal solutions. Optimizing the QoS via minimal cell throughput maximization
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in Problem (P2) is similarly difficult. We also note that the optimization of nons-

mooth and nonconvex objective functions such as that in Problem (P2) has never been

appropriately addressed in any previous works.

The aim of this chpater is to develop novel solutions that directly tackle the noncon-

vexity of the formulated problems. Specifically, we solve both problems (P1) and (P2)

by successive convex quadratic programming (SCQP), where each iteration (referred to

as QPI) involves a simple convex quadratic program. Once initialized from a feasible

point, the proposed SCQP algorithms generate a sequence of feasible and improved

points, which monotonically converges to an optimum of (P1) or (P2). Moreover, the

QPI admits a closed-form optimal solution when the rate constraints in (P1) are not

required.

While successive convex programming is a natural approach to solving nonconvex op-

timization problems (see, e.g., [Marks and Wright, 1978]), it does not quite instruct

how to develop the specific algorithms to resolve the problems at hand. In this sec-

tion, we specifically construct the SCQP algorithms to serve as a new computationally

tractable framework for many difficult nonconvex interference management problems in

both HD and FD network settings. Therefore, our SCQP approach is novel even from

the optimization-theoretical perspective. The proposed algorithms lend themselves to

practical solutions for large-scale MU-MIMO networks. The complexity per iteration

is low since only one simple quadratic program needs to be solved. Here we completely

avoid the log det operation, a major bottleneck for fast computation in the available

commercial convex solvers. Furthermore, the devised algorithms do not face any con-

vergence issue at all. Given any initial feasible point, our path-following algorithms are

guaranteed to always converge to an optimal solution.

The rest of this section is organized as follows: Section 4.1.2 presents the system model

and formulates the QoS management problems. Section 4.1.3 proposes the SCQP ap-

proach to solve problem (P1). Section 4.1.4 extends the proposed SCQP framework to
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solve problem (P2). Section 4.1.5 evaluates the performance of our devised solutions

by numerical examples. Finally, Section 4.1.6 concludes the section.

4.1.2 System Model and Optimization Problem Formulations

Figure 4.1: Interference scenario in an FD multicell network, where SI denotes the
self-interference and ITIi denotes the interference from the BS and ULUs of cell i.

We consider an MU-MIMO network consisting of I cells. As illustrated in Fig. 4.1,

the BS of cell i ∈ {1, . . . , I} serves a group of D DLUs in the downlink (DL) channel

and a group of U ULUs in uplink (UL) channel. Each BS operates in the FD mode

and is equipped with N � N1 +N2 antennas, where N1 antennas are used to transmit

and the remaining N2 antennas to receive signals. In cell i, DLU (i, jD) and ULU

(i, jU) operate in the HD mode and each is equipped with Nr antennas. In the DL,

let a complex-valued vector si,jD ∈ Cd1 denote the symbols intended for DLU (i, jD),

where E
[
si,jD(si,jD)

H
]
= Id1 , d1 is the number of concurrent data streams and d1 ≤

min{N1, Nr}. We also denote the complex-valued precoding matrix for DLU (i, jD) as
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Vi,jD ∈ CN1×d1 . Similarly, in the UL, let si,jU ∈ Cd2 denote the symbols sent by ULU

(i, jU), where E
[
si,jU(si,jU)

H
]
= Id2 , d2 is the number of concurrent data streams and

d2 ≤ min{N2, Nr}. The precoding matrix of ULU (i, jU) is denoted as Vi,jU ∈ CNr×d2 .

For notational convenience, let us define

I � {1, 2, . . . , I}; D � {1D, 2D, . . . , DD}; U � {1U, 2U, . . . , UU};
S1 � I × D; S2 � I × U ; V � [Vi,j](i,j)∈S1∪S2 .

In the DL channel, the received signal at DLU (i, jD) is expressed as:

yi,jD � Hi,i,jDVi,jDsi,jD︸ ︷︷ ︸
desired signal

+
∑

(m,�D)∈S1\(i,jD)
Hm,i,jDVm,�Dsm,�D︸ ︷︷ ︸

DL interference

+
∑
�U∈U

Hi,iD,�UVi,�Usi,�U︸ ︷︷ ︸
UL intracell interference

+ni,jD ,

(4.1)

where Hm,i,jD ∈ CNr×N1 and Hi,iD,�U ∈ CNr×Nr are the channel matrices from BS m to

DLU (i, jD) and from ULU (i, �U) to DLU (i, jD), respectively. Also, ni,jD is the additive

white circularly symmetric complex Gaussian noise with variance σ2
D. The DLU decodes

its own message while treating all other messages as noise. The downlink throughput

at DLU (i, jD) is then given as:

fi,jD(V) � ln
∣∣INr + Li,jD(Vi,jD)LH

i,jD
(Vi,jD)Ψ

−1
i,jD

(V)
∣∣ , (4.2)

where

Li,jD(Vi,jD) � Hi,i,jDVi,jD , (4.3)

which means that

Li,jD(Vi,jD)LH
i,jD

(Vi,jD) = Hi,i,jDVi,jDV
H
i,jD

HH
i,i,jD

, (4.4)

and

Ψi,jD(V) �
∑

(m,�D)∈S1\(i,jD)
Hm,i,jDVm,�DV

H
m,�D

HH
m,i,jD

+
∑
�U∈U

Hi,iD,�UVi,�UV
H
i,�U

HH
i,iD,�U

+ σ2
DINr .

(4.5)
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In the UL channel, the received signal at BS i is expressed as

yi �
∑
�U∈U

Hi,�U,iVi,�Usi,�U︸ ︷︷ ︸
desired signal

+
∑

m∈I\{i}

∑
�U∈U

Hm,�U,iVm,�Usm,�U︸ ︷︷ ︸
UL interference

+HSI
i

∑
�D∈D

Vi,�D s̃i,�D︸ ︷︷ ︸
residual SI

+
∑

m∈I\{i}
HB

m,i

∑
jD∈D

Vm,jDsm,sD︸ ︷︷ ︸
DL intercell interference

+ni, (4.6)

where Hm,�U,i ∈ CN2×Nr and HB
m,i ∈ CN2×N1 are the channel matrices from ULU (m, �U)

to BS i and from BS m to BS i, respectively; ni is the additive white circularly symmet-

ric complex Gaussian noise with variance σ2
U; H

SI
i ∈ CN2×N1 is the residual self-loop

channel from the transmit antennas to the receive antennas at BS i after all real-time

cancelation in both analog and digital domains [Duarte et al., 2012, 2014]; s̃i,�D is the

additive Gaussian noise with E
[
s̃i,jD(s̃i,jD)

H
]
= σ2

SIId1 that models the effect of analog

circuit non-ideality and the limited dynamic range of the analog-to-digital converter

(ADC) [Korpi et al, 2014; Sabharwal et al, 2014; Duarte et al., 2012; Anttila et al,

2014]; and the SI level σ2
SI is the ratio of the average SI powers before and after the

SI cancelation process. Upon applying the Minimum mean square error - Successive

interference cancellation (MMSE-SIC) decoder, the achievable uplink throughput at BS

i is given as [Tse and Viswanath, 2005]

fi(V) � ln
∣∣IN2 + Li(VUi)LH

i (VUi)Ψ
−1
i (V)

∣∣ , (4.7)

where VUi � (Vi,�U)�U∈U and

Li(VUi) �
[
Hi,1U,iVi,1U , Hi,2U,iVi,2U , . . . , Hi,UU,iVi,UU

]
, (4.8)

which means that

Li(VUi)LH
i (VUi) =

U∑
�=1

Hi,�U,iVi,�UV
H
i,�U

HH
i,�U,i

, (4.9)
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and

Ψi(V) �
∑

m∈I\{i}

∑
�U∈U

Hm,�U,iVm,�UV
H
m,�U

HH
m,�U,i

+ σ2
SIH

SI
i

(∑
�D∈D

Vi,�DV
H
i,�D

)
(HSI

i )H

+
∑

m∈I\{i}
HB

m,i

(∑
jD∈D

Vm,jDV
H
m,jD

)
(HB

m,i)
H + σ2

UIN2 . (4.10)

In this section, we consider two precoding design problems for QoS management in the

MU-MIMO FD multicell network. The first problem is the following QoS-constrained

sum throughput maximization:

max
V

P1(V) �

⎡
⎣ ∑

(i,jD)∈S1

fi,jD(V) +
∑
i∈I

fi(V)

⎤
⎦ s.t. (4.11a)

∑
jD∈D

〈Vi,jDV
H
i,jD

〉 ≤ Pmax
BS , i ∈ I; 〈Vi,jUV

H
i,jU)

〉 ≤ Pmax
UE , (i, jU) ∈ S2, (4.11b)

fi,jD(V) ≥ rmin
i,jD

, (i, jD) ∈ S1; fi(V) ≥ rU,min
i , i ∈ I. (4.11c)

The objective function in (4.11a) is nonconcave. The convex constraints (4.11b) specify

the maximum transmit power available at the BSs and the ULUs. The highly nonconvex

constraints (4.11c) represent the QoS guarantee, where rmin
i,jD

and rU,min
i are the minimum

data rates required by DLU (i, jD) and BS i, respectively. It should be emphasized that

the approach in this section also works for the sum downlink throughput constraints

of all DLUs in a cell and the uplink throughput constraints of individual ULUs. For

clarity of presentation, we do not include those constraints here.

The second problem of interest is the following QoS maximin problem:

max
V

P2(V) � min
i∈I

[∑
jD∈D

fi,jD(V) + fi(V)

]
s.t. (4.11b), (4.12)

where the minimal cell throughput is maximized. This problem has a nonconcave and

nonsmooth objective function and is subject to convex power constraints.

As in all previous works on precoding and interference suppression in multi-cell MIMO

cooperative networks (see, e.g., [Ng and Huang, 2010; Shi et al., 2011; Wang et al.,
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2012; Song et al., 2007; Cai et al., 2012; Huang et al., 2013; Huberman and Le-Ngoc,

2015; Nguyen et al., 2014, 2013] and references therein), the conventional assumption

here is that full channel state information (CSI) is available to a central processing site

[Gesbert et al., 2010; Lee, Kim, Lee, Ng, Mazzarese, Liu, Xiao and Zhou, 2012], which

solves the optimization of problems (4.11) and (4.12) in coordinating the network trans-

mission. This assumption is practical if there are high-performing channel estimation

mechanisms in place and a central processing unit available to collect and disseminate

the relevant CSI. More importantly, the full CSI assumption together with our pro-

posed optimal algorithms helps provide the best performance that can be achieved by

FD MIMO precoding. Such benchmark performance is crucial in evaluating the poten-

tial of FD systems and future technical developments such as robust schemes against

the imperfect channel estimation and distributed implementations.

Remark 4.1. Upon introducing the new variable

Wi,j �Vi,jV
H
i,j � 0, (4.13)

which must satisfy the following rank constraints

rank(Wi,jD) ≤ d1; rank(Wi,jU) ≤ d2, (4.14)

it is seen that (4.5) and (4.10) are linear in W � [Wi,j](i,j)∈S1∪S2 . Accordingly, the

throughput expressions (4.2) and (4.7) are d.c. functions in W.

If we further assume that Wi,j is the covariance of the signal si,j, the rank constraints

(4.14) are dropped. In the new variable W and without (4.14), problems (4.11) and

(4.12) are reduced to the special case of covariance design. Such simplified problems

belong to the class of d.c. programming [Kha et al., 2012], and their solutions provide

the upper bounds to the original problems (4.11) and (4.12). The works of [Huberman

and Le-Ngoc, 2015] and [Nguyen et al., 2014] use the DCI technique in [Kha et al.,

2012] to address the single-cell sum throughput maximization similar to (4.11), albeit

by covariance design and without rate constraints. Even with these simplifications,
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each iteration of DCI still involves a mixed semidefinite log det optimization problem,

which is convex but cannot be efficiently solved by existing convex solvers. Reference

[Nguyen et al., 2013] also employs DCI [Kha et al., 2012] to tackle a similar single-cell

sum throughput maximization problem without rate constraints. Yet to facilitate their

solution, [Nguyen et al., 2013] ignores the UL interference and requires other strict

conditions of interference alignment for the DL interference cancelation.

In what follows, we will solve (4.11) and (4.12) via a sequence of convex quadratic

programs in V; hence, constraints (4.14) will be automatically satisfied. The approach

developed here applies to a general multicell network setting with QoS constraints and it

treats the covariance design as a special case, even bypassing the semidefinite constraint

(4.13).

4.1.3 QoS-Constrained Sum Throughput Maximization

Considering the sum throughput maximization problem (4.11), the key difficulty is how

to handle the highly nonconcave functions fi,jD(V) and fi(V) there. First, using the

identity ln |I +AB−1| = − ln |I −A(A+B)−1|, ∀ A � 0, B � 0, we rewrite fi,jD(V) in

(4.2) and fi(V) in (4.7) as:

fi,jD(V) = − ln
∣∣INr − Li,jD(Vi,jD)LH

i,jD
(Vi,jD)M−1

i,jD
(V)

∣∣ , (4.15)

fi(V) = − ln
∣∣IN2 − Li(VUi)LH

i (VUi)M−1
i (V)

∣∣ , (4.16)

where

Mi,jD(V) � Li,jD(Vi,jD)LH
i,jD

(Vi,jD) + Ψi,jD(V) (4.17)

� Ψi,jD(V), (4.18)

Mi(V) � Li(VUi)LH
i (VUi) + Ψ(Vi) (4.19)

� Ψ(Vi), (4.20)

which are concretized by (3.1) and (3.2) in Appendix C.
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At V (κ) � [V
(κ)
i,j ](i,j)∈S1∪S2 , we define the following quadratic functions in V:

Θ
(κ)
i,jD

(V) � fi,jD(V
(κ)) + 2Re

{
〈Ψ−1

i,jD
(V (κ))Li,jD(V

(κ)
i,jD

),Li,jD(Vi,jD)− Li,jD(V
(κ)
i,jD

)〉
}

− 〈Ψ−1
i,jD

(V (κ))−M−1
i,jD

(V (κ)),Mi,jD(V)−Mi,jD(V
(κ))〉, (4.21)

Θ
(κ)
i (V) � fi(V

(κ)) + 2Re
{
〈Ψ−1

i (V (κ))Li(V
(κ)
Ui ),Li(VUi)− Li(V

(κ)
Ui )〉

}
− 〈Ψ−1

i (V (κ))−M−1
i (V (κ)),Mi(V)−Mi(V

(κ))〉, (4.22)

which are also concretized by (3.3) and (3.6) in Appendix C. It follows from (4.18)

and (4.20) that

Ψ−1
i,jD

(V (κ))−M−1
i,jD

(V (κ)) � 0,

Ψ−1
i (V (κ))−M−1

i (V (κ)) � 0

in (4.21) and (4.22). Therefore, the functions Θ
(κ)
i,jD

(V) and Θ
(κ)
i (V) are concave.

The following result shows that the highly nonlinear and nonconcave functions fi,jD(·)
and fi(·) in problem (4.11) can be globally and locally approximated by concave quadratic

functions.

Theorem 4.1. It is true that

fi,jD(V
(κ)) = Θ

(κ)
i,jD

(V (κ)) and fi,jD(V) ≥ Θ
(κ)
i,jD

(V) ∀ V, (4.23)

fi(V
(κ)) = Θ

(κ)
i (V (κ)) and fi(V) ≥ Θ

(κ)
i (V) ∀ V. (4.24)

Proof. See Appendix D. �

We now address the nonconvex problem (4.11) by successively solving the following

convex quadratic program (QP):

max
V

P (κ)
1 (V) �

⎡
⎣ ∑

(i,jD)∈S1

Θ
(κ)
i,jD

(V) +
∑
i∈I

Θ
(κ)
i (V)

⎤
⎦ : (4.11b), (4.25a)

Θ
(κ)
i,jD

(V) ≥ rmin
i,jD

, (i, jD) ∈ S1; Θ
(κ)
i (V) ≥ rU,min

i , i ∈ I. (4.25b)

Note that (4.25) involves n = 2(N1d1ID +Nrd2IU) scalar real decision variables and

m = ID+2I+IU quadratic constraints so its computational complexity is O(n2m2.5+

m3.5).
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Proposition 4.1. Let V (κ) be a feasible point to (4.11). The optimal solution V (κ+1)

of convex program (4.25) is feasible to the nonconvex program (4.11) and it is better

than V (κ), i.e.,

P1(V
(κ+1)) ≥ P1(V

(κ)). (4.26)

Consequently, once initialized from a feasible point V (0) to (4.11), the κ-th QP iteration

(4.25) generates a sequence {V (κ)} of feasible and improved points toward the nonconvex

program (4.11), which converges to an optimal solution of (4.11). Under the stopping

criterion ∣∣(P1(V
(κ+1))− P1(V

(κ))
)
/P1(V

(κ))
∣∣ ≤ ε

for a given tolerance ε > 0, the QP iterations will terminate after finitely many itera-

tions.

Proof. See Appendix E. �

Algorithm 3 Proposed SCQP for QoS-constrained sum throughput maximization

Initialization: Set κ := 0, and choose a feasible point V (0) that satisfies (4.11b)-
(4.11c).
κ-th iteration: Solve (4.25) for an optimal solution V ∗ and set κ := κ+1, V (κ) := V ∗

and calculate P1(V
(κ)). Stop if

∣∣(P1(V
(κ))− P1(V

(κ−1))
)
/P1(V

(κ−1))
∣∣ ≤ ε.

The proposed SCQP that solves problem (4.11) is summarized in Algorithm 3. It should

be emphasized that finding a feasible initial point V (0) to meet nonconvex throughput

constraint (4.11c) is difficult. To this end, let us consider the following problem:

max
V

P3(V) � min
(i,jD)∈S1

{
fi,jD(V)

rmin
i,jD

,
fi(V)

rU,min
i

}
: (4.11b). (4.27)

It is observed that problems (4.27) and (4.12) have a similar form. Therefore, they can

be solved by Algorithm 4 developed in the next section, which terminates as soon as

fi,jD(V
(κ))/rmin

i,jD
≥ 1 and fi(V

(κ))/rU,min
i ≥ 1, ∀(i, jD) ∈ S1. (4.28)

The found solution V (κ) is feasible to (4.11c) and thus is used as the initial solution

V (0) in Algorithm 3.
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In the absence of QoS constraints (4.11c), QP (4.25) can be further decomposed into I

convex quadratic subprograms in the DL precoders VDi � (Vi,1D , . . . ,Vi,DD
) as:

max
Vi,jD

,jD∈D

⎡
⎣∑

jD∈D
2Re

{
〈Ã(κ)

i,jD
,Vi,jD〉

}
−
∑
jD∈D

∑
(m,�D)∈S1

〈(Vi,jD)
HB̃(κ)

m,�D
(i)Vi,jD〉

−σ2
SI

∑
jD∈D

〈(Vi,jD)
HF̃ (κ)

i Vi,jD〉 −
∑

m∈I\{i}

∑
jD∈D

〈(Vi,jD)
H G̃(κ)

m (i)Vm,jD〉
⎤
⎦ :

∑
jD∈D

||Vi,jD ||2 ≤ Pmax
BS , (4.29)

and I convex quadratic subprograms in the UL precoders VUi = (Vi,1U , . . . ,Vi,UU
) as:

max
Vi,�U

,�U∈U

[
2
∑
�U∈U

Re
{
〈D̃(κ)

i (�U),Vi,�U〉
}
−
∑
jD∈D

∑
�U∈U

〈(Vi,�U)
H C̃(κ)

i,jD
(�U)Vi,�U〉

−
∑

(m,�U)∈S2

〈(Vi,�U)
H Ẽ (κ)

m (i, �U)Vi,�U〉
⎤
⎦ :

∑
jU∈U

||Vi,jU ||2 ≤ Pmax
UE . (4.30)

Here, all matrices in (4.29) and (4.30) are defined by (3.4), (3.5) and (3.7) in Ap-

pendix C.

If we define

R(κ)
i,jD

�
∑

(i,jD)∈S1

B̃(κ)
i,jD

(i) + F̃ (κ)
i +

∑
m∈I\{i}

G̃(κ)
m (i), (4.31)

the closed-form optimal solution of (4.29) is derived from the Karush-Kuhn-Tucker

(KKT) conditions as:

V
(κ+1)
i,jD

=

⎧⎪⎪⎨
⎪⎪⎩

(
R(κ)

i,jD

)−1

Ã(κ)
i,jD

, if
∑
jD∈D

∥∥∥(R(κ)
i,jD

)−1Ã(κ)
i,jD

∥∥∥2 ≤ Pmax
BS(

R(κ)
i,jD

+ μi,jDINr

)−1

Ã(κ)
i,jD

, otherwise

(4.32)

where μi,jD > 0 is chosen such that
∑
jD∈D

∥∥∥∥(R(κ)
i,jD

+ μi,jDINr

)−1

Ã(κ)
i,jD

∥∥∥∥2 = Pmax
BS .

Similarly, if we define

Q(κ)
i,�U

�
∑
jD∈D

C̃(κ)
i,jD

(�U) +
∑
m∈I

Ẽ (κ)
m (i, �U), (4.33)
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the closed-form optimal solution of (4.30) is derived from the KKT conditions as:

V
(κ+1)
i,�U

=

⎧⎪⎪⎨
⎪⎪⎩

(
Q(κ)

i,�U

)−1

D̃(κ)
i (�u), if

∑
�U∈U

∥∥∥(Q(κ)
i,�U

)−1D̃(κ)
i (�u)

∥∥∥2 ≤ Pmax
UE(

Q(κ)
i,�U

+ μi,�UIN2

)−1

D̃(κ)
i (�u), otherwise

(4.34)

where μi,�U > 0 is chosen such that
∑
�U∈U

∥∥∥(Q(κ)
i,�U

+ μi,�UINr)
−1D̃(κ)

i (�u)
∥∥∥2 = Pmax

UE .

4.1.4 Maximization of Minimum Cell Throughput

Initialized by a feasible point V (0) to (4.12), an iterative point V (κ+1) for κ = 0, 1, . . . is

generated as the optimal solution of the following convex quadratic maximin problem:

max
V

P (κ)
2 (V) � min

i∈I

[∑
jD∈D

Θ
(κ)
i,jD

(V) + Θ
(κ)
i (V)

]
: (4.11b), (4.35)

under the definitions (4.21)/(3.3) and (4.22)/(3.6) of Θ
(κ)
i,jD

(V) and Θ
(κ)
i (V). Problem

(4.35) involves n = 2(N1d1ID + Nrd2IU) + 1 scalar real decision variables and m =

ID+3I+IU quadratic constraints, so its computational complexity is O(n2m2.5+m3.5).

By Theorem 4.1, program (4.35) is a minorant maximization of the maximin problem

(4.12). Each incumbent V (κ) of (4.35) is feasible to (4.12). Therefore, analogously to

Proposition 4.1 the following result holds.

Proposition 4.2. Let V (κ) be a feasible point to (4.12). The optimal solution V (κ+1) of

convex quadratic maximin problem (4.35) is feasible to the nonconvex program (4.12)

and is better than V (κ), i.e.,

P2(V
(κ+1)) ≥ P2(V

(κ)). (4.36)

Consequently, initialized from a feasible point (V (0)) of (4.12), the κ-th QP iteration

(4.35) generates a sequence {V (κ)} of feasible and improved points toward the nonconvex

program (4.12), which converges to an optimal solution of (4.12). Under the stopping

criterion ∣∣(P2(V
(κ+1))− P2(V

(κ))
)
/P2(V

(κ))
∣∣ ≤ ε
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for a given tolerance ε > 0, the QP iterations will terminate after finitely many itera-

tions.

Algorithm 4 Proposed SCQP for minimum cell throughput maximization

Initialization: Set κ := 0, and choose a feasible point V (0) that satisfies (4.11b).
κ-th iteration: Solve (4.35) for an optimal solution V ∗ and set κ := κ+1, V (κ) := V ∗

and calculate P2(V
(κ)). Stop if

∣∣(P2(V
(κ))− P2(V

(κ−1))
)
/P2(V

(κ−1))
∣∣ ≤ ε.

The SCQP that solves problem (4.12) is summarized in Algorithm 4. Recall that

because problem (4.11) has nonconvex constraints, finding an initial feasible point V (0)

to (4.11) is not straightforward at all. In contrast, problem (4.12) has simple convex

constraints and its feasible point can be easily determined for use in Algorithm 4. The

initial equi-power points V
(0)
i,jD

=
√

Pmax
BS /N1d1ID1N1×d1 and V

(0)
i,jU

=
√

Pmax
UE /Nrd21Nr×d2

are used in our numerical examples.

Remark 4.2. The DL throughput can be improved by dirty-paper coding (DPC)

[Costa, 1983] in the DL channel. As such, the throughput fi,jD in (4.2) will be im-

proved to

f̂i,jD(V) � ln
∣∣∣INr +Hi,i,jDVi,jDV

H
i,jD

HH
i,i,jD

Ψ̂−1
i,jD

(V)
∣∣∣ , (4.37)

where

Ψ̂i,jD(V) � Ψi,jD(V)−
D∑

�=j+1

Hi,i,jDVi,�DV
H
i,�D

HH
i,i,jD

� Ψi,jD(V). (4.38)

In this case, it is straightforward to adjust Algorithms 3 and 4 to solve problems (4.11)

and (4.12) with fi,jD replaced by f̂i,jD . Implementation of DPC requires significant

complexity at both transmitter and receiver and there are no practical dirty paper codes

close to the capacity limit [Erez and ten Brink, 2005]. Coordinated linear precoding

as considered above is a low complexity, which is able to transmit the same number of

data streams as a DPC-based system and thus achieves the same multiplexing gain as

DPC.
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Remark 4.3. The FD BSs can be reconfigured to operate in the HD mode. Here, all

antennas N = N1 + N2 at each BS are used to serve all the DLUs in the downlink

and all the ULUs in the uplink, albeit in two separate resource blocks (e.g., time or

frequency). Suppose the achieved sum throughput for the downlink and the uplink are

rD and rU, respectively. The effective HD throughput per resource block is calculated

as rHD = 1
2
(rD + rU). In this case, the proposed Algorithm 3 also provides a new

computational solution that achieves rD and rU. In the next section, we will compare

the sum throughput performance under the FD mode with the optimized rHD.

4.1.5 Numerical Results

Table 4.1: Simulation parameters used in all numerical examples

Parameter Value

Carrier frequency 2GHz

System bandwidth 10MHz

Maximum BS transmit power, Pmax
BS 26dBm

Maximum user transmit power, Pmax
UE 23dBm

Noise power density −174dBm/Hz

Noise figure at a DLU receiver 9dB

Noise figure at a BS receiver 5dB

We use numerical examples to evaluate the performance of our proposed SCQP al-

gorithms. As will be described later, we consider several network scenarios to study

different aspects of the proposed algorithms. In all the considered scenarios, we gener-

ate the channel matrix between a BS and a user at a distance d according to the path

loss model for line-of-sight (LOS) communications as 10−PLLOS/20H̃. Here, PLLOS =

103.8 + 20.9 log10 d and each entry of H̃ is an independent circularly-symmetric Gaus-

sian random variable with zero mean and unit variance (denoted as CN (0, 1)) [3GPP

TS 36.814 V9.0.0, 2010]. We assume that the channel matrix from a ULU to a DLU at

a distance d follows the non-line-of-sight (NLOS) path loss model as 10−PLNLOS/20H̃,
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where PLNLOS = 145.4 + 37.5 log10 d [3GPP TS 36.814 V9.0.0, 2010]. We also model

the residual self-loop channel HSI
i as a complex Gaussian matrix random variable with

mean
√

K/(K + 1)H̃SI and covariance (1/(K + 1)) IN1N2 , where K is the Rician factor,

H̃SI is a deterministic matrix. For simplicity, we assume K = 1 and H̃SI = 1N2×N1 .

Unless stated otherwise, the number of transmit antennas and the number of receive

antennas at a BS are set as N1 = 4 and N2 = 2, respectively. Except simulation

scenario 4, we assume the numbers of concurrent downlink and uplink data streams are

equal to the number of antennas at a DLU/ULU, i.e., d1 = d2 = Nr. In other words,

the precoding matrices Vi,jD and Vi,jU in (4.1) and (4.6) are of dimension N1 ×Nr and

Nr ×Nr, respectively. To arrive at the final figures, we run each simulation 100 times

and average the result. For the ease of reference, we list in Table 4.1 other 3GPP LTE

network parameters that we use in all simulations [3GPP TS 36.814 V9.0.0, 2010].

4.1.5.1 Simulation Scenario 1

In this simulation study, we consider the sum throughput maximization problem (4.11a)-

(4.11b) (i.e., problem (4.11) without the rate constraint (4.11c)) so that the closed-form

solutions in (4.32) and (4.34) apply. We use the example network in Fig. 4.2 to study

the sum throughput performance of Algorithm 3 in the presence of SI. By considering

a single-cell network with fixed-location users, we can focus on the effect of SI while

isolating those of the intracell and intercell interferences.

For both Nr = 1 and Nr = 2, Fig. 4.3 shows that the performance of the proposed

Algorithm 3 almost coincides with its upper bound, which is the result of solving

(4.11) (without the rate constraint (4.11c)) in the rank-free covariance variables Wi,j

[see (4.13)]. This observation is significant because it means that our QPI solution

approaches the global optimum of problem (4.11a)-(4.11b) over all the considered SI

values. As mentioned at the end of Section 4.1.3, this ‘upper bound’ problem has

been addressed in [Huberman and Le-Ngoc, 2015] by using the DCI algorithm of [Kha
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Figure 4.2: Scenario 1: A single-cell network with 2 DLUs and 2 ULUs. The user
locations are fixed.

et al., 2012]. The specific case of Nr = 1 corresponds to the joint design of uplink

power allocation at ULUs and BS downlink beamforming towards DLUs, which has

been studied in [Nguyen et al., 2014] by using the DCI algorithm of [Kha et al., 2012]

to solve (4.11) (without the rate constraint (4.11c)) in the rank-free covariance variables

Wi,jD and scalar variables Wi,jU and then by employing randomization techniques to

find rank-one Wi,jD for satisfying (4.14). Fig. 4.3(a) shows that our QPI solution

handles the SI much better than that by [Nguyen et al., 2014]. An improvement of

almost 4 bps/Hz is achieved in the practical range of σ2
SI ≥ −80dB.

Fig. 4.4 further illustrates how Algorithm 3 distributes the total throughput into the

downlink and uplink channels. An important observation is that when the ratio σ2
SI

increases, the BS consistently decreases the throughput in the downlink so as to re-

duce the effect of SI to the uplink channel. Because the improvement in the uplink

throughput sufficiently compensates the reduction in the downlink throughput, the
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Figure 4.3: Effect of SI on the sum throughput performance of Algorithm 3.

overall FD throughput still outperforms the average HD throughput. As presented in

Fig. 4.3, although the achieved FD sum throughput does not double the effective HD

sum throughput, significant gains of up to 60% and 40% are offered by Algorithm 3 for

Nr = 1 and Nr = 2, respectively. When the residual SI becomes the dominant inter-

ference in (4.6), we have found that the BS optimal precoder matrices Vi,�D effectively

null out such SI. This explains why the performance of FD appears insensitive to the

increase of σ2
SI when σ2

SI is greater than −100dB for Nr = 1 and −90dB for Nr = 2.

On the other hand, whenever the entries of the self-loop channel HSI
i in (4.6) are

treated as independent circularly symmetric complex Gaussian random variables with

zero mean and unit variance, the residual SI in (4.10) becomes

σ2
SIE

{
HSI

i

(∑
�D∈D

Vi,�DV
H
i,�D

)
(HSI

i )H

}
= σ2

SI

〈 ∑
�D∈D

Vi,�DV
H
i,�D

〉
INr .

Such residual SI only depends on the BS transmit power and it cannot be mitigated by

precoder matrices Vi,�D . To avoid channel deactivation due to excessive SI σ2
SI , in the

simulation we impose the uplink and downlink QoS constraints as fi(V) ≥ 5bps/Hz

and
∑

jD
fi,jD(V) ≥ 5bps/Hz, respectively. For the network configuration in Fig. 4.2

where Nr = 2, d1 = d2 = 1, Fig. 4.5(a) shows that the FD sum throughput is always

78



4.1 Precoding Design for QoS Management in Full-Duplex MU-MIMO
Multicell Networks

−120 −100 −80 −60
7

8

9

10

11

12

13

14

15

σ
SI
2 (dB)

T
h

ro
u

g
h

p
u

t 
(b

p
s/

H
z)

 

 

FD−DL
HD−DL
FD−UL
HD−UL

(a) Nr = 1

−120 −100 −80 −60
13

14

15

16

17

18

19

20

21

σ
SI
2 (dB)

T
h

ro
u

g
h

p
u

t 
(b

p
s/

H
z)

 

 

FD−DL

HD−DL

FD−UL

HD−UL

(b) Nr = 2

Figure 4.4: Effect of SI on the DL and UL throughput performance of Algorithm 3.

degraded as σ2
SI increases. Still, whenever σ

2
SI ≤ −120dB it is higher than the HD sum

throughput. Fig. 4.5(b) further shows that the FD DL throughput is on the decreasing

trend when σ2
SI ≤ −110dB so as to avoid the excessive SI toward the UL receiver. After

σ2
SI = −110dB, it levels off due to the imposed downlink QoS constraint.

4.1.5.2 Simulation Scenario 2

In this simulation study, we use the example network in Fig. 4.6 to study the sum

throughput performance of Algorithm 3 in problem (4.11a)-(4.11b) when the intracell

interference changes. Here, we fix σ2
SI = −80dB and use a single-cell network to isolate

the effects of SI and intercell interference. To vary the intracell interference, we fix

the location of the DLU at a point B and change the location of the ULU. For each

position of the ULU at a point A on the circle of radius of 90m, we find the corresponding

throughput. Because we keep the small-scale fading parameter unchanged, a small angle

ÂOB in Fig. 4.6 means a small path loss and accordingly a large intracell interference

level.
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Figure 4.5: Effect of SI on the network throughput when SI is treated as white noise.

The results in Fig. 4.7 confirm that the proposed Algorithm 3 approaches the upper

bound in all the cases that we consider. For Nr = 1, our proposed solution also

outperforms the solution of [Nguyen et al., 2014] by around 1 bps/Hz as shown in

Fig. 4.7(a). It can also be observed from Fig. 4.7 that the FD transmission is always

more beneficial than the HD counterpart if the intracell interference is sufficiently small.

The most pronounced FD throughput gains of 75% and 65% are respectively achieved

by Algorithm 3 for Nr = 1 and Nr = 2 when the ULU-DLU distance is maximum (i.e.,

ÂOB = π), in which case the intracell interference is smallest.

4.1.5.3 Simulation Scenario 3

In this simulation study, we compare the throughput performance of Algorithm 3 in

problem (4.11a)-(4.11b) with that of Algorithm 4 in problem (4.12). Since a multicell

network is required in this case to realize the max-min solution in (4.12), we use the

3-cell network in Fig. 4.8. In each cell, we fix the positions of the ULU and the DLU

at a distance of 2r/3 = 66.67m and r/2 = 50m from their serving BS, respectively.

In terms of sum throughput, Fig. 4.9(a) shows that Algorithm 3 always outperforms
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Figure 4.6: Scenario 2: A single-cell network with one DLU and one ULU. The DLU
location is fixed at a point B, whereas the ULU is located at any point A on the circle
of radius of 90m.

Algorithm 4 by at least 5 bps/Hz. This is because Algorithm 3 is specifically designed

to maximize total network throughput. In doing so, it however allocates the available

radio resources to the cells with favorable link conditions, leaving the remaining cells

with a much lower throughput. From Table 4.2, the number of instances that a DLU in

the downlink or a BS in the uplink receives a zero data rate can be as high as 100 over

100 simulation runs. The max-min fairness Algorithm 4 resolves this issue, albeit at

the cost of a reduced total network throughput. Fig. 4.9(b) confirms that Algorithm 4

improves the throughput of the cell with the worst link conditions by up to 5 bps/Hz.

Table 4.2: The number of times that at least a DLU or a BS receives a zero data rate
in 100 simulation runs

σ2
SI(dB) −130 −110 −90 −70

d = 1 96 98 100 100

d = 2 33 42 44 72
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Figure 4.7: Effect of ULU-DLU distance (hence, intracell interference) on the sum
throughput performance of Algorithm 3.

4.1.5.4 Simulation Scenario 4

In this simulation study, we evaluate the performance of Algorithm 3 for the rate-

constraint problem (4.11a)-(4.11c) where the closed-form solutions in (4.32) and (4.34)

no longer apply. Here we examine the impacts of the required minimum rates and the

number of cells on the throughput performance. To this end, we fix the total number

of users as 12 and consider one-cell, two-cell and three-cell networks. By (I,D, U), we

mean there are I cells with radius of 100m in the network, each of which has D DLUs

and U ULUs randomly placed according to the uniform distribution within the cell

area. Fig. 4.10 presents a realization of such random user deployments. For simplicity,

we set d1 = d2 = 1, Nr = 2 and σ2
SI = −80dB. In this case, the precoding matrices Vi,jD

and Vi,jU in (4.1) and (4.6) reduce to beamforming vectors of dimension N1 and 2, re-

spectively. To the best of our knowledge, such FD beamforming optimization problems

have not been previously addressed. The approaches in [Nguyen et al., 2014; Che and

Tuan, 2014] do not apply because the rank of their optimal covariance matrices is often

two while a rank-one solution is strictly required here. To find the sum throughput

subject to the rate constraints, we initialize Algorithm 3 with the optimal solution of
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Figure 4.8: Scenario 3: A three-cell network with 1 DLU and 1 ULU. The cell radius
is r = 100m and the user locations are fixed.

the maximin problem (4.27).

To ensure the feasibility of problem (4.11a)-(4.11c), we first set the minimum rates

according to rmin
i,jD

= rU,min
i /U = α rmax,min, where α ∈ (0, 1) and rmax,min is the optimal

value of problem (4.27) given by Algorithm 4. As seen from Fig. 4.11, to achieve

a higher minimum rate, both the total throughput and the per-cell throughput by

Algorithm 3 drop since the feasible set gets more restricted. It is also clear from

Fig. 4.11(a) that by deploying more cells to serve the same number of users, a higher

total throughput is achieved because the network load per cell is reduced. However,

the per-cell throughput of such multicell deployment can be compromised due to the

growing intercell interference, as evident from Fig. 4.11(b).
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Figure 4.9: Comparing the throughput performance of Algorithms 3 and 4.

Finally, we demonstrate the convergence behavior of the proposed algorithms in Fig. 4.12,

where the error tolerance for convergence is set as ε = 10−3. Fig. 4.12(a) plots the con-

vergence of Algorithm 3 that solves problem (4.11) for α = 0.8, whereas Fig. 4.12(b) is

for Algorithm 4 that solves problem (4.27). It is observed that the proposed algorithms

monotonically improve the objective value after every iteration. Fig. 4.12 also confirms

that at least 95% of the final optimal throughput value is reached within 20 iterations.

Furthermore, Table 4.3 shows that while the convergence typically occurs well within

50 iterations, it can be as few as 15 iterations on average in one case. Note also that the

per-iteration computational complexity of our algorithms is low. Each iteration only

involves one simple convex QP, which is solved very efficiently by any available convex

solvers. In all the simulations, we resort to CVX, a package for specifying and solving

convex programs [Grant and Boyd, 2014].

Table 4.3: The average number of iterations required by Algorithms 3 and 4

(I,D, U) (1, 6, 6) (2, 3, 3) (3, 2, 2)

Algorithm 3 24.77 31.66 37.90

Algorithm 4 14.60 45.40 45.90
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Figure 4.10: Scenario 4: Three cellular network topologies that serve 12 users in total.
The cell radius is r = 100m and the users are placed randomly according to the uniform
distribution.

4.1.6 Conclusions

In this section, we have designed new linear precoders for large-scale MIMO multicell

networks, in which FD BSs simultaneously transmit to and receive from their HD users.

Specifically, we have considered two difficult nonconvex optimization problems: (i) sum

throughput maximization under rate constraints and (ii) maximization of minimum cell

throughput. We have proposed iterative low-complexity SCQP algorithms that require

solving only one simple convex quadratic program at each iteration. We have proved

that our path-following algorithms are guaranteed to monotonically converge to at least

a local optimum. Simulation results have been presented in various network scenarios

to demonstrate the advantages of our proposed SCQP solutions.
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Figure 4.11: Impact of the required minimum rates and the number of cells on through-
put performance of Algorithm 3.

4.2 Precoding Design for Han-Kobayashi’s Signal Splitting in

MIMO Interference Networks

4.2.1 Introduction

The interference management problem in the FD MU-MIMO multicell networks has

been investigated in the previous section. Based on the assumption that interference

is treated as white noise, the optimal precoding matrices designs has been proposed to

mitigate the interference and maximize the network utilities. Nevertheless, the network

performance based on this assumption will be significantly degraded if the interference

power is much larger than the power of desired signal (e.g. the interference source is too

close to the receiver). This section will investigate a H-K transmission strategy [Han

and Kobayashi, 1981] in which the most impactful interferer’s signal can be decoded

and then subtracted from the received signal to reduce the generated interference. The

algorithms to design optimal precoding matrices in the previous section will be adapted
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Figure 4.12: Convergence of Algorithms 3 and 4 for ε = 10−3 and α = 0.8.

for the designs under H-K transmission. To facilitate the analysis, this section only

considers HD transmission.

In literature, if the residual interference is treated as noise, the network capacity is

achieved only at low interference regime (see [Annapureddy and Veeravalli, 2011] and

references therein) for a general multi-user interference network (IN) or at certain suffi-

cient conditions in terms of matrix equations for two-user INs [Shang and Poor, 2013].

For a two-user two-cell IN (i.e., one user per cell), the H-K strategy [Han and Kobayashi,

1981] is known to give the best achievable rate region [Etkin et al., 2008; Karmakar and

Varanasi, 2013]. With the H-K strategy, the transmitted data information of both users

is split into two parts: a private message to be decoded at the intended receiver and a

common message that can be decoded at both receivers. A part of the interference is

thus cancelled off by decoding the common message, while the remaining private mes-

sage from the other user is treated as noise. Accordingly, it is challenging to perform

constructive optimization over such an achievable rate region to realize the potential of

H-K strategy [Shang et al., 2006; Etkin et al., 2008].

Jointly beamforming common and private messages to maximize the achievable rate
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across MU-MISO INs is first considered in [Dahrouj and Yu, 2011]. At discrete points

of the joint space of common and private rates, an ad-hoc intensive search is carried

by rank-one constrained SDP for the beamformer vectors. Still, the optimal rate is

not achieved. Furthermore, the search proposed by [Dahrouj and Yu, 2011] is not

suitable for the problem of sum-rate maximization, which is a more popular metric for

INs. Inspired by [Dahrouj and Yu, 2011], the works of [Che and Tuan, 2013a; Che

et al., 2015] design covariance matrices of the common and private messages in MU-

MIMO multicell INs and beamformers for such messages in MU-MISO multicell INs to

maximize either the sum-rate or the achievable rate across the networks.

This section aims to find optimal precoder matrices for the common and private mes-

sages of independent data streams. The objective is to maximize the sum-rate of an

MU-MIMO multicell network. The available solution approaches are not applicable,

e.g., [Christensen et al., 2008] for coordinated precoding private messages only and

[Che et al., 2015; Che and Tuan, 2013a] for covariance design. We propose a successive

optimization algorithm in which each iteration only solves a simple convex quadratic

program of low computational complexity. Once initialized from a feasible point, our

algorithm generates a sequence of monotonically improved points, which eventually

converge to at least a local maximum of the formulated nonconvex and nonsmooth

problem.

The rest of this section is organized as follows: Section 4.2.2 presents the system model

and formulates the precoder design problem. Section 4.2.3 proposes the successive

quadratic programming algorithm for solution. Section 4.2.4 verifies the advantages of

our devised solution by numerical examples.

4.2.2 System Model and Problem Formulation

Consider the downlink transmissions in a network consisting of N cells, where the base

station (BS) of each cell is equipped with Nt antennas and it serves K UEs within its
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cell. Each UE is equipped with Nr antennas. Upon denoting I � {1, 2, . . . , N} and

J � {1, 2, . . . , K}, the j-th UE in the i-th cell is referred as UE (i, j) ∈ S � I × J .

Signals are precoded at the BSs prior to transmitting to the UEs. To implement the

H-K strategy, where each user decodes the common message of at most one other user,

we follow [Dahrouj and Yu, 2011; Che et al., 2015] and introduce the pairing operator

a(i, j) to specify which other UE, beside UE (i, j) itself, decodes the common message

of UE (i, j). When UE (i, j) has no common message, we let a(i, j) be an empty

set. Formally, it is a mapping a : I × J → (I × J ) ∪ {∅} with the restriction that

a(i, j) = (̃i, j̃) always has ĩ �= i and a−1(̃i, j̃) has cardinality of no more than one. With

∅ �= a(i, j) = (̃i, j̃), ĩ �= i, UE (i, j) may split its L (≤ Nt) data streams into two

parts: the private message spi,j ∈ CL with E{spi,j(spi,j)H} = IL, and the common message

sci,j ∈ CL with E{sci,j(sci,j)H} = IL. The private and common messages are precoded

by matrices Vp
i,j ∈ CNt×L and Vc

i,j ∈ CNt×L, respectively. The common message sci,j of

UE (i, j) is to be decoded by UE (i, j)’s receiver and also by UE (̃i, j̃)’s receiver in a

different cell ĩ. On the other hand, if (i, j) = a(̂i, ĵ) for some î �= i, the receiver of UE

(i, j) also decodes the common message sc
î,ĵ

from UE (̂i, ĵ) in a different cell î �= i.

As in [Dahrouj and Yu, 2011; Che et al., 2015], each UE (i, j) successively decodes

the following messages (in the following strict order): (a) its common message sci,j

from its own transmitter; (b) the common message sc
î,ĵ

from UE (̂i, ĵ)’s transmitter

in the different cell î �= i for which a(̂i, ĵ) = (i, j); (c) the private message spi,j from

its own transmitter. Note that the decoded messages are also successively subtracted

from the received signal for interference mitigation. Intuitively, one’s own common

message is decoded first to help the decoding of the common information from the

other transmitter, while its own private message is decoded last to take advantage of

the reduced interference due to common message decoding.

For notational convenience, let us define

Vi,j � [Vp
i,j Vc

i,j],V � [Vi,j](i,j)∈S , si,j �

⎡
⎣spi,j
sci,j

⎤
⎦ .
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The received signal at UE (i, j) ∈ S is expressed as:

yi,j =
∑

(s,l)∈S
Hs,i,jVs,lss,l + ni,j,

where Hs,i,j ∈ CNr×Nt is the matrix of channel coefficients from BS s ∈ I to UE

(i, j) ∈ S. The entries of the additive noise ni,j ∈ CNr are independent and identically

distributed (i.i.d) noise samples with zero mean and variance σ2. The covariance of yi,j

is thus

Mi,j(V) =
∑

(s,l)∈S
Hs,i,jVs,lV

H
s,lH

H
s,i,j + σ2INr .

Under the successive decoding and interference cancellation scheme described above, it

follows that:

• UE (i, j) can decode its own common message sci,j with the achievable rate (ex-

pressed in nats/s/channel-use):

rci,j(V) = ln |IL + (Vc
i,j)

HHH
i,i,jM

c
i,j(V)−1Hi,i,jV

c
i,j|,

whereMc
i,j(V) � Mi,j(V)−Hi,i,jV

c
i,j(V

c
i,j)

HHH
i,i,j. Accordingly,V

c
i,j ≡ 0, rci,j(V) ≡

0 and Mc
i,j(V) ≡ Mi,j(V) if a(i, j) = ∅.

• UE (i, j) can decode the common message sc
î,ĵ

from the interfering user (̂i, ĵ) =

a−1(i, j) with the achievable rate:

rai,j(V) = ln |IL + (Vc
î,ĵ
)HHH

î,i,j
Ma

i,j(V)−1Hî,i,jV
c
î,ĵ
|,

where Ma
i,j(V) � Mc

i,j(V) − Hî,i,jV
c
î,ĵ
(Vc

î,ĵ
)HHH

î,i,j
. Accordingly, Ma

i,j(V) ≡
Mc

i,j(V) if a−1(i, j) = ∅.

• UE (i, j) can decode its own private message spi,j with the achievable rate:

rpi,j(V) = ln |IL + (Vp
i,j)

HHH
i,i,jM

p
i,j(V)−1Hi,i,jV

p
i,j|,

where Mp
i,j(V) � Ma

i,j(V)−Hi,i,jV
p
i,j(V

p
i,j)

HHH
i,i,j.
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Similar to [Dahrouj and Yu, 2011, (10)-(12)], the achievable rate region under the

successive decoding is given by:{
ννν � [νi,j](i,j)∈I×J = [νp

i,j + νc
i,j](i,j)∈I×J :

νp
i,j ≤ rpi,j(V), νc

i,j ≤ rci,j(V), νc
i,j ≤ raa(i,j)(V)

}
.

As raa(i,j)(V) is the achievable rate of decoding the common message sci,j of UE (i, j)

by UE (̃i, j̃) = a(i, j), the constraint νc
i,j ≤ raa(i,j)(V) arises only when a(i, j) �= ∅.

Therefore, by defining the nonsmooth functions

ri,j(V) = rpi,j(V) + min
{
rci,j(V), raa(i,j)(V)

}
, (4.39)

we formulate the problem of sum-rate maximization over the achievable rate region as:

max
V

P(V) �
∑

(i,j)∈S
ri,j(V) s.t. (4.40a)

∑
j∈J

〈Vi,jV
H
i,j〉 ≤ Pmax

i , ∀i ∈ I, (4.40b)

where Pmax
i is the maximum transmit power of BS i.

Problem (4.40) is a challenging nonconvex optimization problem because its objective

function is nonconvex and even nonsmooth. It should be emphasized that the available

sum-rate maximization solutions (see, e.g., [Christensen et al., 2008]) are only suitable

for the conventional coordinated precoding approach, which corresponds to ri,j(V) ≡
rpi,j(V) and V = [Vp](i,j)∈S (i.e., there is no split of UE’s data). On the other hand,

the covariance optimization approach in [Che et al., 2015; Che and Tuan, 2013a] is

applicable for the case of L = Nt only, i.e., one independent data stream is sent per one

transmit antenna. In this particular case, (4.40) can be equivalently transformed to the

optimization of a d.c. function in the rank-free outer products Qx
i,j = Vx

i,j(V
x
i,j)

H � 0,

x ∈ {p, c}. The computational complexity of each d.c. iteration in [Che et al., 2015]

is high, because it involves the maximization of a logarithmic-determinant function

under semi-definite constraints—a difficult convex optimization problem with unknown
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polynomial computational complexity. Whenever L < Nt, such a variable change leads

to the additional difficult rank constraints rank(Qx
i,j) ≤ L for which there is no available

solution method. Indeed, there is no effective d.c. representation of each rate function

in (4.39) even for the simplest case of L = 1.

In what follows, we will develop an efficient successive optimization algorithm of low

computational complexity to solve problem (4.40). Our solution works for both cases

of L = Nt and L < Nt.

Remark. We adopt the pairing rule proposed in [Dahrouj and Yu, 2011]. At the

receiver of each UE, the optimal solution of (4.40) for Vc
i,j ≡ 0 is used to identify the

interference power from the UEs of other cells. Then, each UE is paired with the UE

from a different cell that introduces the strongest interference.

4.2.3 Proposed Precoder Design

Suppose thatV(κ) � [V
p,(κ)
i,j V

c,(κ)
i,j ](i,j)∈S is a feasible point found at (κ−1)-th iteration.

Define the following quadratic functions:

r
c,(κ)
i,j (V) � rci,j(V

(κ)) + 2Re{〈Ac,(κ)
i,j ,Vc

i,j −V
c,(κ)
i,j 〉}

− 〈Mc
i,j(V

(κ))−1 −Mi,j(V
(κ))−1,

Mi,j(V)−Mi,j(V
(κ))〉,

r
a,(κ)
i,j (V) � rai,j(V

(κ)) + 2Re{〈Aa,(κ)

î,ĵ
,Vc

î,ĵ
−V

c,(κ)

î,ĵ
〉}

− 〈Ma
i,j(V

(κ))−1 −Mc
i,j(V

(κ))−1,

Mc
i,j(V)−Mc

i,j(V
(κ))〉,

r
p,(κ)
i,j (V) � rpi,j(V

(κ)) + 2Re{〈Ap,(κ)
i,j ,Vp

i,j −V
p,(κ)
i,j 〉}

− 〈Mp
i,j(V

(κ))−1 −Ma
i,j(V

(κ))−1,

Ma
i,j(V)−Ma

i,j(V
(κ))〉,
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where

Ac,(κ)
i,j � HH

i,i,jM
c
i,j(V

(κ))−1Hi,i,jV
c,(κ)
i,j ,

Aa,(κ)

î,ĵ
� HH

î,i,j
Ma

i,j(V
(κ))−1Hî,i,jV

c,(κ)

î,ĵ
,

Ap,(κ)
i,j � HH

i,i,jM
p
i,j(V

(κ))−1Hi,i,jV
p,(κ)
i,j .

Note that all the above functions are concave inV becauseMc
i,j(V

(κ))−1−Mi,j(V
(κ))−1 �

0, Ma
i,j(V

(κ))−1 −Mc
i,j(V

(κ))−1 � 0, Mp
i,j(V

(κ))−1 −Ma
i,j(V

(κ))−1 � 0.

The following result shows that the complicated function defined by (4.39) is lower

bounded by a concave quadratic function.

Corollary 4.1. For

r
(κ)
i,j (V) � r

p,(κ)
i,j (V) + min{rc,(κ)i,j (V), r

a,(κ)
a(i,j )(V)},

it is true that

ri,j(V
(κ)) = r

(κ)
i,j (V

(κ)) and ri,j(V) ≥ r
(κ)
i,j (V), ∀ V. (4.41)

Proof. The proof is given in Appendix F. �

In Algorithm 5, we propose a SCQP algorithm to solve problem (4.40). Given a feasible

point V(κ), this algorithm iteratively generates a feasible point V(κ+1) as the optimal

solution to the following optimization problem at the κ-th iteration:

max
V

P (κ)(V) �
∑

(i,j)∈S
r
(κ)
i,j (V) s.t. (4.40b). (4.42)

Problem (4.42) is a convex quadratic with m = N + 2KN quadratic constraints and

n = 2NKNtL+KN real decision variables. The complexity for computing its optimal

solution V(κ+1) is thus O(n2m2.5 +m3.5). Note that V(κ) is also feasible to (4.42) with

P(V(κ)) = P (κ)(V(κ)) by the equality in (4.41). It is then true that P (κ)(V(κ+1)) >

P (κ)(V(κ)) = P(V(κ)) whenever V(κ+1) �= V(κ). Together with P(V(κ+1)) ≥ P (κ)(V(κ))
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Algorithm 5 Proposed SCQP Algorithm

Initialization: Initialize a feasible point V(0) that satisfies power constraint (4.40b).
κ-th iteration: Solve convex quadratic program (4.42) to find an optimal solution
V∗. If |(P(V∗)−P(V(κ)))

/P(V(κ))| ≤ ε, terminate. Otherwise, set κ := κ+1,V(κ) :=
V∗ and continue.

according to the inequality in (4.41), we have that P(V(κ+1)) > P(V(κ)), i.e., the

optimal solution V(κ+1) of the convex quadratic problem (4.42) is a better point of

the nonconvex nonsmooth optimization problem (4.40) than V(κ). Therefore, once

initialized from an achievable sum-rate P(V(0)), the sequence {P(V(κ))} obtained by

solving (4.42) is guaranteed to improve at each iteration and it eventually converges to

at least a local optimum of (4.40)[Marks and Wright, 1978].

(a) N = 2,K = 1 (b) N = 3,K = 1

Figure 4.13: Network configurations used in the simulations.

4.2.4 Numerical Results

In our simulations, we assume Hi,s,l � √
ηi,s,lH̃i,s,l where H̃i,s,l ∈ CNt×Nr with Nt = 4

and Nr = 2 represents the normalized MIMO channel, the entries of which are inde-

pendent and identically distributed complex Gaussian variables with zero-mean and

unit variance. Following [Etkin et al., 2008; Blum, 2003] the direct channel powers

ηi,i,l are fixed, while the interfering channel powers ηi,j,� (i �= j) are varied to cover all

the environment-dependent channel effects, including path loss and shadowing. The
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simulation scenarios thus vary from weak MIMO INs to mixed MIMO INs, for which

the Han-Kobayashi strategy is advantageous. The notation ‘H-K’ refers to the Han-

Kobayashi strategy whereas ‘coordinated’ refers to the conventional coordinated pre-

coding approach which only involves private message precoding. It can be seen from

(4.40) that the IN sum rate monotonically increases in the number of involved data

streams L. Since the covariance optimization approach in [Che et al., 2015] is suitable

for L = Nt = 4, it is used for performance evaluation in this case. The comparison be-

tween the ‘H-K’ and ‘coordinated’ schemes is to show the capability of the H-K strategy

in mitigating the intercell interferences. Each result in the Monte-Carlo simulation is

obtained upon averaging over 100 random network realizations. We set the error toler-

ance as ε = 10−3 and σ2 = 1, Pmax
i = 103, ∀i in (4.40). We divide the achieved sum-rate

results by ln(2) to arrive at the unit of bps/channel-use for binary communications.

First, we consider the two-cell two-UE MIMO network depicted in Fig. 4.13(a). The val-

ues of direct channel gains η1,1,1 and η2,2,1 are indicated in the figure, while interference

channel gains η1,2,1 = η2,1,1 = η are varied from −40 dB to 20 dB. In this scenario, UEs

do not experience any intracell interference and the only UE pairing possibilities are

a(1, 1) = (2, 1) and a(2, 1) = (1, 1). Fig. 4.14 also includes the curve of the theoretical

lower bound and upper bound by solving the linear inequality [Karmakar and Varanasi,

2013, (52a)-(52i)] and [Karmakar and Varanasi, 2013, (11)-(17)], respectively. As seen,

the ‘H-K’ scheme offers a substantial performance gain over the ‘coordinated’ counter-

part, especially for large interference channel gain η. In particular, an improvement of

up to 30% is observed for L = 1 and η = 20 dB. More importantly, the H-K strategy in

all considered cases of L is able to achieve better sum rate performance even when the

interference channel gain increases. Table 4.4 shows the average number of iterations

required for Algorithm 5 to converge, which is similar to the convergence result in [Che

et al., 2015, Table IV] for the SDP-based covariance optimization algorithm.

Next, we consider the three-cell three-UE MIMO network depicted in Fig. 4.13(b).

The values of direct channel gains are indicated in the figure. Following [Che et al.,
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H−K,L=4 [Che et al., 2015]
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Figure 4.14: Performance results for the network in Fig. 4.13(a).

Table 4.4: Average number of iterations by Algorithm 5 for the network in Fig. 4.13(a).
η (dB)

−10 0 10 20
Coordinated, L = 1 5.47 2.515 2 2

H-K, L = 1 15.17 20.71 15.62 23.6
Coordinated, L = 2 23.88 15.48 10 7.13

H-K, L = 2 32.38 16.11 11.91 8.67

2015, Fig. 5(b)], we set η1,2,1 = η2,3,1 = η3,1,1 = 0, while varying other interfering chan-

nel gains η2,1,1 = η3,2,1 = η from −40 dB to 30 dB. In this case, the obvious choice for

UE pairing is a(1, 1) = (2, 1), a(2, 1) = (3, 1). Fig. 4.15 demonstrates the H-K strategy

is again able to improve the sum-rate performance under stronger channel interferences

for all cases of L. The performance gap between ‘H-K’ and ‘coordinated’ curves is

widened especially in the high interference region of η ≥ 20 dB.

It is worth noting that in both considered examples, the performances of ‘H-K’ scheme

are not much distinguishable for L = 2 and L = 4, although the optimal covariance
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matrices Qx
i,j ∈ C4×4, x ∈ {p, c} are not necessarily of rank Nr = 2 [Che et al., 2015].

This result implies that using L = 2 data streams gives a performance that is close to the

best sum-rate performance. For L = 1, an improvement is still observed in the region

η ∈ [−20,−10] dB, where the interference per antenna at each UE is at least 14.47 dB

and 8.27 dB for the networks in Fig. 4.13(a) and Fig. 4.13(b), respectively. These levels

of interference are well above the background noise power of 0 dB. It is sufficient for the

low interference regime condition to be satisfied only for the optimal input covariance

matrices (those that maximize the achievable sum rate assuming Gaussian inputs and

treating interference as noise) if they are full rank [Annapureddy and Veeravalli, 2011].
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Figure 4.15: Performance results for the network in Fig. 4.13(b).

4.2.5 Conclusions

This section has addressed the problem of precoder design for both common and private

messages in MU-MIMO multicell networks under the Han-Kobayashi strategy. Our aim

is to find the optimal precoding matrices for network sum-rate maximization. We have
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proposed a successive convex quadratic programming algorithm to solve the noncon-

vex optimization problem in the precoder matrices. Numerical results have confirmed

the potential advantages of our proposed approach and also the ability of the Han-

Kobayashi to mitigate the intercell interference, which leads to even better sum-rate

despite an increase in channel interference.
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Chapter 5

Full-Duplex MU-MIMO Networks and MIMO Energy Har-

vesting

5.1 Introduction

Recently, wireless energy harvesting (i.e. energy constrained devices scavenge energy

from the surrounding RF signals) is gaining more and more attraction from both in-

dustry and academia [Lu, Niyato, Wang and Kim, 2015; Lu et al., 2016]. Since the

amount of energy opportunistically harvested from the ambient/natural energy sources

is uncertain and cannot be controlled, BSs in small-cell networks can be configured to

become dedicated and reliable wireless energy sources [Buzzi et al., 2016]. The small

cell size not only gives the benefit of efficient resource reuse across a geographic area

[Andrews, Buzzi, Choi, Hanly, Lozano, Soong and Zhang, 2014] but also provides an

adequate amount of RF energy to battery powered UEs for practical applications [Ding

et al., 2015; Lu, Niyato, Wang and Kim, 2015; Lu et al., 2016] due to the close BS-UE

proximity. In order to transfer both energy and information by the same communi-

cation channel, UEs are equipped with both ID receiver and EH receiver. Since the

received signal cannot be used for energy harvesting after being decoded, there are two

available implementations for wireless energy harvesting and information decoding: (i)

PS in which receiver splits the received signal into two streams of different power for
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decoding information and harvesting energy separately and (ii) TS to enable the re-

ceiver decode information for a portion of a time frame and harvest energy for the

rest. Beamforming can be applied to focus the RF signal to EH receiver or enhance

throughput at ID receiver [Ding et al., 2015].

Most of previous works (see e.g. [Timotheou et al., 2014; Shi et al., 2014] and references

therein) only focus on beamforming power optimization subject to ID throughput and

EH constraints with PS in MISO networks. The ID throughput constraints are equiva-

lent to SINR constraints, which are indefinite quadratic in beamforming vectors. The

harvested energy constraints are also indefinite quadratic constraints. Thus, [Timo-

theou et al., 2014; Shi et al., 2014] used semi-definite relaxation (SDR) to relax such

indefinite quadratic optimization problems to SDP by dropping the matrix rank-one

constraints on the outer products of beamforming vectors. The variable dimension of

SDP is explosively large and the beamforming vectors that are recovered based on the

matrix solution of SDR perform poorly [Nasir et al., 2015]. Moreover, SDR cannot be

applied to throughput or EH maximization as the problems resultant by SDR are still

highly nonconvex. Only recently there was an effective development to address these

problems [Nasir et al., 2016].

Considering MIMO interference channels, information throughput and harvested en-

ergy, i.e., rate-energy (R-E) trade-off was investigated in [Park and Clerckx, 2014] and

[Park and Clerckx, 2015], assuming that any UE either acts as an ID receiver or an

EH receiver. In case that UEs can operate both as an ID receiver and EH receiver

(namely co-located cases), the R-E region of point-to-point MIMO channel was studied

in [Zhang and Ho, 2013]. Note that in MIMO networks, the information throughput

function is involved with the determinant operation of a matrix and can no longer be

expressed in the form of SINR. Consequently, the throughput constraints are always

very challenging in precoding signals. [Nguyen et al., 2013; Zong et al., 2016] used

zero-forcing or interference-alignment to cancel all interferences, making the through-

put functions concave in the signal covariance. The covariance optimization becomes
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convex but it is still computationally difficult with no available algorithm of polynomial

time. Moreover, there is no known method to recover the precoder matrices from the

signal covariance. Only recently, the MIMO throughput function optimization has been

successfully addressed for non-EH system in the previous Chapter 4 via a successive

convex quadratic programming. The result of Chapter 4 can be adapted to MIMO

networks that employ EH by PS approach. However, there is almost no serious research

for the systems employing TS in MIMO networks. Though, TS-based system is practi-

cally easier to implement, but the related formulated problem is quite complex because

the throughput function in such case is coupled with the TS variable that defines the

portion of time slot dedicated to EH and ID. This renders the aforementioned precoder

design [Nguyen et al., 2013; Zong et al., 2016; Tam et al., 2016] for PS inapplicable.

To the best of our knowledge, both the throughput maximization problem and the

harvested energy maximization problem with TS are still very open.

All aforementioned works only assume that UEs only harvest energy arriving from

BSs’ DL transmission. In reality, UEs can also opportunistically harvest energy from

other UEs’ signals during their UL transmission. Furthermore, by allowing the BSs to

simultaneously transmit and receive information, both the spectral efficiency and the

amount of transferred energy will be improved. With the recent advances in antenna

design and RF circuits in reducing SI [Everett et al., 2014; Duarte et al., 2014; Anttila

et al, 2014; Heino et al, 2015], which is the interference from a BS’s DL transmission to

its UL receiver, the FD technology is recently proposed as one of the key transceiving

techniques for the 5G networks [Duarte et al., 2012; Choi and Shirani-Mehr, 2013;

Sabharwal et al, 2014; Heino et al, 2015; DUPLO project, 2015]. In this chapter, we

are interested in a network in which each FD multi-antenna BS simultaneously serves

a group of ULUs and a group of DLUs. In the same time, the BS also transfers energy

to DLUs via TS or PS. FD transmission introduces even more interference into the

network by adding not only SI but also the interference from ULUs toward DLUs and

the interference from DL transmission of other BSs. Consequently, the UL and DL
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precoders are coupled in both DL and UL throughput functions, respectively, which

makes the optimization problems for UL transmission and DL transmission inseparable.

In literature, [Nguyen et al., 2013; Huberman and Le-Ngoc, 2015; Nguyen et al., 2014]

proposed covariance matrices design in (non-EH) FD MU-MIMO networks using D.C.

iterations [Kha et al., 2012], which are still very computationally demanding as they

require log-determinant function optimizations as mentioned above. Chapter 4 has

proposed a framework to directly find the optimal precoding matrices for the sum

throughput maximization under throughput constraints in FD MU-MIMO multi-cell

networks, which requires only a convex quadratic program of moderate size in each

iteration and thus is very computationally efficient.

In this chapter, we propose the design of efficient precoding matrices for the network

sum throughput maximization under QoS in terms of MIMO throughput constraints

and EH constraints in a FD EH-enabled multicell MU-MIMO network. Both PS and

TS are considered for the precoder design and called by PS problem and TS problem,

respectively. They are quite challenging computationally due to nonconcave objective

function and nonconvex constraints. However, we will see that the PS problem can be

efficiently addressed by adapting the algorithm in Chapter 4. On the other hand, the

TS problem is much more challenging because the TS variable ααα is not only coupled

with the DL throughput function but also coupled with the SI in the UL throughput

function. It is nontrivial to extend algorithms in Chapter 4 to solve the problem for the

TS problem. Toward this end, we develop a new inner approximation of the original

problem and solve the problem by a path-following algorithm. Finally, we also consider

the FD EH maximization problem with throughput QoS constraints with TS. This

problem also has a nonconvex objective function and nonconvex constraints and will

be addressed by applying an approach similar to that of proposed for the TS problem.

The rest of this chapter is organized as follows: Section II presents the system model the

SCP algorithm of the PS problem. The main contribution of the chapter is Section III

102



5.2 EH-enabled FD MU-MIMO Networks

and Section IV, which develop algorithms for the TS problem and FD EH maximization

problem. Section V evaluates the performance of our devised solutions by numerical

examples. Finally, Section VI concludes the chapter.

The following result of Chapter 4 is used.

Theorem 5.1. For function f(V,Y) = ln |In+VHY−1V| in matrix variable V ∈ Cn×m

and positive definite matrix variable Y ∈ Cm×m, the following quadratic function is its

minorant at (V̄ , Ȳ )

f̃(V,Y) = a+ 2Re{〈A,V〉} − 〈B,VVH +Y〉,

where 0 > a � f(V̄ , Ȳ )− 〈V̄ H Ȳ −1V̄ 〉, A = Ȳ −1V̄ and 0 � B = Ȳ −1 − (Ȳ + V̄ V̄ H)−1.

5.2 EH-enabled FD MU-MIMO Networks

We consider an MU-MIMO EH-enable network consisting of I cells. In cell i ∈
{1, . . . , I}, a group of D DLUs in the DL channel and a group of U ULUs in UL channel

are served by a BS i as illustrated in Fig. 5.1. Each BS operates in the FD mode and is

equipped with N � N1+N2 antennas, where N1 antennas are used to transmit and the

remaining N2 antennas to receive signals. In cell i, DLU (i, jD) and ULU (i, jU) operate

in the HD mode and each is equipped with Nr antennas. In the DL, let si,jD ∈ Cd1 be

the symbol intended for DLU (i, jD) where E
[
si,jD(si,jD)

H
]
= Id1 , d1 is the number of

concurrent data streams and d1 ≤ min{N1, Nr}. The vector of symbols si,jD is precoded

and transmitted to DLU (i, jD) through the precoding matrix Vi,jD ∈ CN1×d1 . Anal-

ogously, in the UL, si,jU ∈ Cd2 is the information symbols sent by ULU (i, jU) and is

precoded by the precoding matrix Vi,jU ∈ CNr×d2 , where E
[
si,jU(si,jU)

H
]
= Id2 , d2 is the

number of concurrent data streams and d2 ≤ min{N2, Nr}. For notational convenience,

103



5.2 EH-enabled FD MU-MIMO Networks

Figure 5.1: Interference scenario in an FD multicell network, where SI denotes the
self-interference and ITIi denotes the interference from the BS and ULUs of cell i.

let us define

I � {1, 2, . . . , I}; D � {1D, 2D, . . . , DD}; U � {1U, 2U, . . . , UU};
S1 � I × D; S2 � I × U ;

VD = [Vi,jD ](i,jD)∈S1 ;VU = [Vi,jU ](i,jU)∈S2 ;V � [VD VU];

In the DL channel, the received signal at DLU (i, jD) is expressed as:

yi,jD � Hi,i,jDVi,jDsi,jD︸ ︷︷ ︸
desired signal

+
∑

(m,�D)∈S1\(i,jD)
Hm,i,jDVm,�Dsm,�D︸ ︷︷ ︸

DL interference

+
∑
�U∈U

Hi,jD,�UVi,�Usi,�U︸ ︷︷ ︸
UL intracell interference

+ni,jD ,

(5.1)

where Hm,i,jD ∈ CNr×N1 and Hi,jD,�U ∈ CNr×Nr are the channel matrices from BS m to

DLU (i, jD) and from ULU (i, �U) to DLU (i, jD), respectively. Also, ni,jD is the additive

white circularly symmetric complex Gaussian noise with variance σ2
D. In this chapter,

the UL intercell interference is neglected since it is very small compared to the DL
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intercell interference due to the much smaller transmit power of ULUs. Nevertheless,

it can be incorporated easily in our formulation.

Assuming that DLUs are equipped by both devices for ID and EH, the power splitting

(PS) technique is applied at each DLU to simultaneously conduct information decoding

(ID) and energy harvesting (EH). The power splitter divides the received signal yi,jD

into two parts in the proportion of αααi,jD : (1 − αααi,jD) where αααi,jD ∈ (0, 1) is termed as

the PS ratio for DLU (i, jD). In particular, the signal split to the ID receiver of DLU

(i, jD) is given by
√
αααi,jDyi,jD + zci,jD , (5.2)

where each r-th element of zci,jD (i.e. |zci,jD,r|2 = σ2
c , r = 1, .., Nr) is additional noise

introduced by the ID receiver circuity. An EH receiver processes the second part of the

split signal
√
1−αααi,jDyi,jD for the harvested energy√

ζi,jD(1−αααi,jD)yi,jD ,

where ζi,jD ∈ (0.4, 0.6) is the efficiency of energy conversion. For more complex models

of energy harvesting, the reader is refer to [Liu, Zhou, Durrani and Popovski, 2016].

It follows from the receive equation (5.1) and the split equation (5.2) that the downlink

information throughput at DLU (i, jD) is

fi,jD(VD,VU,αααi,jD) � ln
∣∣INr + (Li,jD(Vi,jD))

2Ψ−1
i,jD

(VD,VU,αααi,jD)
∣∣ , (5.3)

where Li,jD(Vi,jD) � Hi,i,jDVi,jD and

Ψi,jD(VD,VU,αααi,jD) � Ψ̄i,jD(VD,VU) + (σ2
c/αααi,jD)INr (5.4)

with the downlink interference covariance mapping

Ψ̄i,jD(VD,VU) �
∑

(m,�D)∈S1\(i,jD)
(Hm,i,jDVm,�D)

2 +
∑
�U∈U

(Hi,jD,�UVi,�U)
2 + σDINr . (5.5)

The harvested energy at UE (i, jD) is

Ei,jD(VD,VU,αααi,jD) = ζi,jD(1−αααi,jD)〈Φi,jD(VD,VU)〉, (5.6)
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with the downlink signal covariance mapping

Φi,jD(VD,VU) �
∑

(m,�D)∈S1

(Hm,i,jDVm,�D)
2 +

∑
�U∈U

(Hi,iD,�UVi,�U)
2 + σ2

DINr . (5.7)

In the UL channel, the received signal at BS i is expressed as

yi �
∑
�U∈U

Hi,�U,iVi,�Usi,�U︸ ︷︷ ︸
desired signal

+
∑

m∈I\{i}

∑
�U∈U

Hm,�U,iVm,�Usm,�U︸ ︷︷ ︸
UL interference

+
∑

m∈I\{i}
HB

m,i

∑
jD∈D

Vm,jDsm,sD︸ ︷︷ ︸
DL intercell interference

+ nSI
i︸︷︷︸

residual SI

+ni, (5.8)

where Hm,�U,i ∈ CN2×Nr and HB
m,i ∈ CN2×N1 are the channel matrices from ULU (m, �U)

to BS i and from BSm to BS i, respectively; ni is the additive white circularly symmetric

complex Gaussian noise with variance σ2
U; n

SI
i is the residual SI (after self-interference

cancellation) at BS i and depends on the transmit power of BS i. Specifically, nSI
i

is modelled as the additive white circularly symmetric complex Gaussian noise with

variance σ2
SI

∑
�D∈D ||Vi,�D ||2 [Day et al., 2012], where the SI level σ2

SI is the ratio of the

average SI powers after and before the SI cancellation process.

Following [Nguyen et al., 2013, 2014; Tam et al., 2016], the optimal MMSE-SIC decoder

is applied at BSs. Therefore, the achievable uplink throughput at BS i is given as [Tse

and Viswanath, 2005]

fi(VD,VU) � ln
∣∣IN2 + (Li(VUi

))2Ψ−1
i (VD,VU)

∣∣ , (5.9)

whereVUi
� [Vi,�U ]�U∈U and Li(VUi) �

[
Hi,1U,iVi,1U , Hi,2U,iVi,2U , . . . , Hi,UU,iVi,UU

]
, which

means that (Li(VUi))
2 =

U∑
�=1

(Hi,�U,iVi,�U)
2, and

Ψi(VD,VU) � Ψ̄U
i (VU) + Ψ̄SI

i (VD) (5.10)

with uplink interference covariance mapping

Ψ̄U
i (VU) �

∑
m∈I\{i}

∑
�U∈U

(Hm,�U,iVm,�U)
2 +

∑
m∈I\{i}

HB
m,i

(∑
jD∈D

(Vm,jD)
2

)
(HB

m,i)
H + σ2

UIN2

(5.11)
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and SI covariance mapping

Ψ̄SI
i (VD) � σ2

SI

∑
�D∈D

||Vi,�D ||2IN2 . (5.12)

We consider the design problem

max
VD,VU,ααα

P1(VD,VU,ααα) �
∑

(i,jD)∈S1

fi,jD(VD,VU,αααi,jD) +
∑
i∈I

fi(VD,VU) s.t. (5.13a)

0 < αααi,jD < 1, (i, jD) ∈ S1, (5.13b)∑
(i,jD)∈S1

||Vi,jD ||2 +
∑

(i,jU)∈S2

||Vi,jU ||2 ≤ P, (5.13c)

∑
jD∈D

||Vi,jD ||2 ≤ Pi, ∀i ∈ I, (5.13d)

||Vi,jU ||2 ≤ Pi,jU , ∀(i, jU) ∈ S2, (5.13e)

〈Φi,jD(VD,VU)〉 ≥ emin
i,jD

/ζi,jD(1−αααi,jD), ∀(i, jD) ∈ S1, (5.13f)

fi(VD,VU) ≥ rU,min
i , ∀i ∈ I (5.13g)

fi,jD(VD,VU,αααi,jD) ≥ rD,min
i,jD

, ∀(i, jD) ∈ S1. (5.13h)

The convex constraints (5.13d) and (5.13e) specify the maximum transmit power avail-

able at the BSs and the ULUs whereas (5.13c) limits the total transmit power of the

whole network. The nonconvex constraints (5.13f), (5.13g) and (5.13h) represent QoS

guarantee, where emin
i,jD

, rU,min
i and rD,min

i,jD
are the minimum harvested energy required

by DLU (i, jD), the minimum data throughput required by BS i and the minimum

data throughput required by DLU (i, jD). In comparison to (4.7) in Chapter 4 for FD

non-EH-enable networks, the UL throughput function fi(VD,VU) in (5.9) is the same,

where the DL throughput function fi,jD(VD,VU,αααi,jD) is now additionally dependent

on the SP variable αααi,jD , is decoupled in (5.5) and thus does not add more difficulty as

we will show now. We also show that the nonconvex EH constraints (5.13f) can easily

be innerly approximated.
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Under the definitions,

Mi,jD(VD,VU,αααi,jD) � (Li,jD(Vi,jD))
2 +Ψi,jD(VD,VU,αααi,jD) (5.14)

� Ψi,jD(VD,VU,αααi,jD), (5.15)

Mi(VD,VU) � (Li(VUi))
2 +Ψi(VD,VU) (5.16)

� Ψi(VD,VU), (5.17)

by applying Theorem 5.1, we obtain the following concave quadratic minorants of

throughput functions fi,jD(VD,VU,αααi,jD) and fi(V
(κ)
D ,V

(κ)
U ) at (V

(κ)
D , V

(κ)
U , α(κ)) �

([V
(κ)
i,jD

](i,jD)∈S1 , [V
(κ)
i,�U

](i,�U)∈S2 , [α
(κ)
i,jD

](i,jD)∈S1):

Θ
(κ)
i,jD

(VD,VU,αααi,jD) � a
(κ)
i,jD

+ 2Re
{
〈A(κ)

i,jD
,Li,jD(Vi,jD)〉

}
− 〈B(κ)

i,jD
,Mi,jD(VD,VU,αααi,jD)〉

(5.18)

and

Θ
(κ)
i (VD,VU) � a

(κ)
i + 2Re

{
〈A(κ)

i ,Li(VUi
)〉
}
− 〈B(κ)

i ,Mi(VD,VU)〉, (5.19)

where

0 > a
(κ)
i,jD

= fi,jD(V
(κ)
D , V

(κ)
U , α

(κ)
i,jD

)− Re
{
〈Ψ−1

i,jD
(V

(κ)
D , V

(κ)
U )Li,jD(V

(κ)
i,jD

),Li,jD(V
(κ)
i,jD

)〉
}
,

A(κ)
i,jD

= Ψ−1
i,jD

(V
(κ)
D , V

(κ)
U , α

(κ)
i,jD

)Li,jD(V
(κ)
i,jD

),

0 � B(κ)
i,jD

= Ψ−1
i,jD

(V
(κ)
D , V

(κ)
U , α

(κ)
i,jD

)−M−1
i,jD

(V
(κ)
D , V

(κ)
U , α

(κ)
i,jD

),

(5.20)

and

0 > a
(κ)
i = fi(V

(κ)
D , V

(κ)
U )− Re

{
〈Ψ−1

i (V
(κ)
D , V

(κ)
U )Li(V

(κ)
i ),Li(V

(κ)
i )〉

}
,

A(κ)
i = Ψ−1

i (V
(κ)
D , V

(κ)
U )Li(V

(κ)
Ui

),

0 � B(κ)
i = Ψ−1

i (V
(κ)
D , V

(κ)
U )−M−1

i (V
(κ)
D , V

(κ)
U ).

(5.21)

To handle the nonconvex EH constraints (5.13f), we define an affine function

φ
(κ)
i,jD

(VD,VU) as the first-order approximation of the convex function 〈Φi,jD(VD,VU)〉
at (V

(κ)
D , V

(κ)
U ):

φ
(κ)
i,jD

(VD,VU) � −〈Φi,jD(V
(κ)
D , V

(κ)
U )〉+ 2Re{

∑
(m,�D)∈S1

〈Hm,i,jDV
(κ)
m,�D

Vm,�DH
H
m,i,jD

〉}

+2Re{∑�U∈U〈Hi,iD,�UV
(κ)
i,�U

VH
i,�U

HH
i,iD,�U

〉}+ 2σ2
DNr,

(5.22)
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which is an minorant of 〈Φi,jD(VD,VU)〉 at (V (κ)
D , V

(κ)
U ) [Tuy, 1998].

We now address the nonconvex problem (5.13) by successively solving its following inner

approximation:

max
VD,VU,ααα

∑
(i,jD)∈S1

P (κ)
1 (VD,VU,ααα) � Θ

(κ)
i,jD

(VD,VU,αααi,jD) +
∑
i∈I

Θ
(κ)
i (VD,VU) (5.23a)

s.t. (5.13b)− (5.13e) (5.23b)

φ
(κ)
i,jD

(VD,VU) ≥ emin
i,jD

/ζi,jD(1−αααi,jD), ∀(i, jD) ∈ S1, (5.23c)

Θ
(κ)
i (VD,VU) ≥ rU,min

i , ∀i ∈ I (5.23d)

Θ
(κ)
i,jD

(VD,VU,αααi,jD) ≥ rD,min
i,jD

, ∀(i, jD) ∈ S1. (5.23e)

Initializing from (V
(κ)
D , V

(κ)
U , α(κ)) being feasible point to (5.13), the optimal solution

(V
(κ+1)
D , V

(κ+1)
U , α(κ+1)) of convex program (5.23) is feasible to the nonconvex program

(5.13) and it is better than (V
(κ)
D , V

(κ)
U , α(κ)):

P1(V
(κ+1)
D , V

(κ+1)
U , α(κ+1)) ≥ P (κ)

1 (V
(κ+1)
D , V

(κ+1)
U , α(κ+1)) (5.24)

≥ P (κ)
1 (V

(κ)
D , V

(κ)
U , α(κ)) (5.25)

= P1(V
(κ)
D , V

(κ)
U , α(κ)), (5.26)

where the inequality (5.24) and the equality (5.26) follow from the fact that P (κ)
1 is a mi-

norant of P1 while the inequality (5.25) follows from the fact that (V
(κ+1)
D , V

(κ+1)
U , α(κ+1))

and (V
(κ)
D , V

(κ)
U , α(κ)) are the optimal solution and feasible point of (5.23), respectively.

This generates a sequence {(V (κ)
D , V

(κ)
U , α(κ))} of feasible and improved points which

converge to a local optimum of (5.13) after finitely many iterations.

Algorithm 6 Path-following algorithm for PS sum throughput maximization (5.13)

Initialization: Set κ := 0, and choose a feasible point (V
(0)
D , V

(0)
U , α(0)) that satisfies

(5.13b)-(5.13h).
κ-th iteration: Solve (5.23) for an optimal solution (V ∗

D , V
∗
U , α

∗) and set κ :=

κ + 1, (V
(κ)
D , V

(κ)
U , α(κ)) := (V ∗

D , V
∗
U , α

∗) and calculate P1(V
(κ)
D , V

(κ)
U , α(κ)). Stop if∣∣∣(P1(V

(κ)
D , V

(κ)
U , α(κ))− P1(V

(κ−1)
D , V

(κ−1)
U , α(κ−1))

)
/P1(V

(κ−1)
D , V

(κ−1)
U , α(κ−1))

∣∣∣ ≤ ε.
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The proposed path-following procedure that solves problem (5.13) is summarized in

Algorithm 6. To find a feasible initial point (V
(0)
D , V

(0)
U , α(0)) meeting the nonconvex

constraints (5.13f)-(5.13h) we consider the following problem:

max
VD,VU,ααα

P1,f (VD,VU,ααα) � min
(i,jD)∈S1

{
fi,jD(VD,VU,ααα)− rmin

i,iD
,

Φi,jD(VD,VU)− emin
i,jD

ζi,jD (1−αααi,jD
)
, fi(VD,VU)− rmin

i ,
}

s.t. (5.13b)− (5.13e).
(5.27)

Initialized by a (V
(0)
D , V

(0)
U , α(0)) feasible to the convex constraints (5.13b)-(5.13e), an

iterative point (V
(κ+1)
D , V

(κ+1)
U , α(κ+1)) for κ = 0, 1, . . . , is generated as the optimal

solution of the following convex maximin program:

max
VD,VU,ααα

P (κ)
1,f (VD,VU,ααα) � min

(i,jD)∈S1

{
〈Θ(κ)

i,jD
(VD,VU,ααα)− rmin

i,iD
,

Θ
(κ)
i (VD,VU)− rmin

i , φ
(κ)
i,jD

(VD,VU)− emin
i,jD

ζi,jD (1−αααi,jD
)

}
s.t (5.13b)− (5.13e).

(5.28)

which terminates upon reaching

fi,jD(V
(κ)
D , V

(κ)
U , α(κ)) ≥ rmin

i,iD
, fi(V

(κ)
D , V

(κ)
U ) ≥ rmin

i ,

〈Φi,jD(V
(κ)
D , V

(κ)
U )〉 ≥ emin

i,jD

ζi,jD(1−αααi,jD)
, ∀(i, jD) ∈ S1

to satisfy (5.13b)-(5.13h).

In parallel, we consider the following transmission strategy to configure FD BSs to

operate in the HD mode. Here, all antennas N = N1 + N2 at each BS are used to

serve all the DLUs in the downlink and all the ULUs in the uplink using half time slots,

where DLUs are allowed to harvest energy from ULUs. The problem can be formulated

as

max
VD,VU,ααα

1

2

⎡
⎣ ∑

(i,jD)∈S1

fi,jD(VD, 0U,αααi,jD) +
∑
i∈I

fi(0D,VU)

⎤
⎦ s.t. (5.29a)

(5.13b), (5.13c), (5.13d), (5.13e),

1

2
(Ei,jD(VD, 0U,αααi,jD) + Ei,jD(0D,VU, 0)) ≥ emin

i,jD
, ∀(i, jD) ∈ S1, (5.29b)

1

2
fi(0D,VU) ≥ rU,min

i , ∀i ∈ I (5.29c)

1

2
fi,jD(VD, 0U,αααi,jD) ≥ rD,min

i,jD
, ∀(i, jD) ∈ S1, (5.29d)
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where 0D and 0U are zero quantity of the same dimension with VD and VU. In (5.29),

DLU (i, jD) uses (1−αααi,jD) of the received signal during DL transmission and the whole

received signal during UL transmission for EH as formulated in (5.29b). The main

difference between (5.13) and (5.29) is in (5.29b) where the harvested energy from UL

transmission at DLU (i, jD) does not multiply with αααi,jD . The constraint (5.29b) can

be recast as

〈Φi,jD(VD, 0U)〉+ 〈Φi,jD(0D,VU)〉
(1−αααi,jD)

≥ 2emin
i,jD

ζi,jD(1−αααi,jD)
.

Define the following convex function:

Λi,jD(VU,αααi,jD) �
〈Φi,jD(0D,VU)〉

(1−αααi,jD)
=

〈∑�U∈U(Hi,iD,�UVi,�U)
2 + σ2

DINr〉
1−αααi,jD

, (5.30)

with its first-order approximation

Λ
(κ)
i,jD

(VU, 1−αααi,jD) �
2Re{〈∑�U∈U(Hi,iD,�UVi,�U)(Hi,iD,�UV

(κ)
i,�U

)H〉}
1− α

(κ)
i,jD

−〈∑�U∈U(Hi,iD,�UV
(κ)
i,�U

)2 + σ2
DINr〉

(1− α
(κ)
i,jD

)2
(1−αααi,jD) (5.31)

which is its minorant at (V
(κ)
D , V

(κ)
U , α(κ)).

Algorithm 6 can be used with the following convex program solved for κ-iteration:

max
VD,VU,ααα

1

2

⎡
⎣ ∑

(i,jD)∈S1

Θ
(κ)
i,jD

(VD, 0U,αααi,jD) +
∑
i∈I

Θ
(κ)
i (0D,VU, 0)

⎤
⎦ (5.32a)

s.t. (5.13b), (5.13c), (5.13d), (5.13e),

φ
(κ)
i,jD

(VD, 0U) + Λ
(κ)
i,jD

(VU, 1−αααi,jD) ≥ 2emin
i,jD

/ζi,jD(1−αααi,jD), ∀(i, jD) ∈ S1, (5.32b)

1

2
Θ

(κ)
i (0D,VU) ≥ rU,min

i , ∀i ∈ I (5.32c)

1

2
Θ

(κ)
i,jD

(VD, 0U,αααi,jD) ≥ rD,min
i,jD

, ∀(i, jD) ∈ S1, (5.32d)

where φ
(κ)
i,jD

(VD, 0U) and Θ
(κ)
i,jD

(VD, 0U,αααi,jD) are defined by (5.22) and (5.18) with both

VU and V
(κ)
U replaced by 0U, while Θ

(κ)
i (0D,VU) is defined by (5.19) with both VD and

V
(κ)
D replaced by 0D.
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5.3 EH-enabled FD MU-MIMO by Time Switching

A much easier implementation is time splitting 0 < ααα < 1 in downlink transmission

where (1−ααα) time is used for DL energy transfer and ααα time is used for DL information

transmission. In this section, we define VI
D � [VI

i,jD
](i,jD)∈S1 ,V

E
D � [VE

i,jD
](i,jD)∈S1 and

redefine the notation VD � [VI
D,V

E
D ] where VI

i,jD
and VE

i,jD
are the information pre-

coding matrix for ID and energy precoding matrix for EH, respectively. The received

signal at DLU (i, jD) for EH is

yEi,jD �
∑

(m,�D)∈S1

Hm,i,jDV
E
m,�D

sEm,�D
+
∑
�U∈U

Hi,iD,�UVi,�Usi,�U︸ ︷︷ ︸
UL intracell interference

+njD , (5.33)

where sEm,�D
is the energy signal sent for (1 − ααα) time. With the definition (5.6), the

harvested energy is

Ei,jD(V
E
D ,VU,ααα) = ζi,jD(1−ααα)〈Φi,jD(V

E
D ,VU)〉,

where the downlink signal covariance mapping Φi,jD(., .) is defined from (5.7).

Similarly to (5.1), the signal received at DLU (i, jD) during the information transmission

in time fraction ααα is

yIi,jD � Hi,i,jDVi,jDs
I
i,jD︸ ︷︷ ︸

desired signal

+
∑

(m,�D)∈S1\(i,jD)
Hm,i,jDVm,�Ds

I
m,�D︸ ︷︷ ︸

DL interference

+
∑
�U∈U

Hi,jD,�UVi,�Usi,�U︸ ︷︷ ︸
UL intracell interference

+ni,jD ,

(5.34)

where sIm,�D
is the information signal intended for DLU (m, �D). The ID throughput at

DLU (i, jD) is then given as αααfi,jD(V), where

fi,jD(V
I
D,VU) = ln

∣∣INr + (Li,jD(V
I
i,jD

))2Ψ̄−1
i,jD

(VI
D,VU)

∣∣ , (5.35)

with the downlink interference covariance mapping Ψ̄(., .) defined from (5.5).

The uplink throughput at the BS is

fi(VD,VU,ααα) � ln
∣∣IN2 + (Li(VUi

))2Ψ−1
i (VD,VU,ααα)

∣∣ , (5.36)
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where Li(VUi
) is already defined from (5.9) but

Ψi(VD,VU,ααα) � Ψ̄U
i (VU) + Ψ̄TSI

i (VD,ααα) (5.37)

with the uplink interference covariance mapping Ψ̄U
i (.) defined by (5.11) and the time-

splitting SI covariance mapping

Ψ̄TSI
i (VD,ααα) � σ2

SI

∑
jD∈D

(
(1−ααα)||VE

i,jD
||2 +ααα||VI

i,jD
||2
)
IN2 . (5.38)

The problem of maximizing the network total throughput under throughput QoS and

EH constraints is the following:

max
VD,VU,ααα

P2(VD,VU,ααα) �
∑

(i,jD)∈S1

(
αααfi,jD(V

I
D,VU) + fi(VD,VU,ααα)

)
s.t. (5.39a)

0 < ααα < 1, (5.39b)

||Vi,jU ||2 ≤ Pi,jU , ∀(i, jU) ∈ S2, (5.39c)∑
(i,jD)∈S1

(
(1−ααα)||VE

i,jD
||2 +ααα||VI

i,jD
||2
)
+

∑
(i,jU)∈S2

||Vi,jU ||2 ≤ P, (5.39d)

∑
jD∈D

(
(1−ααα)||VE

i,jD
||2 +ααα||VI

i,jD
||2
)
≤ Pi, ∀i ∈ I, (5.39e)

fi(VD,VU,ααα) ≥ rU,min
i , ∀i ∈ I, (5.39f)

αααfi,jD(V
I
D,VU) ≥ rD,min

i,jD
, ∀(i, jD) ∈ S1, (5.39g)

Ei,jD(V
E
D ,VU,ααα) ≥ emin

i,jD
, ∀(i, jD) ∈ S1. (5.39h)

Constraints (5.39c), (5.39d) and (5.39e) limits the transmit power of each ULU, the

whole network and each BS, respectively. Constraints (5.39h) ensures that each DLUs

harvest more than a threshold whereas constraints (5.39f) and (5.39g) guarantee the

throughput QoS at BSs and DLUs, respectively. The key difficulty in problem (5.39)

is to handle the time splitting factor ααα that is coupled with the objective functions

and other variables. Using the variable change ρρρ = 1/ααα, which satisfies the convex

constraint

ρρρ > 1, (5.40)
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problem (5.39) is equivalent to

max
VD,VU,ρρρ>0

P2(VD,VU, ρρρ) �
∑

(i,jD)∈S1

fi,jD(V
I
D,VU)/ρρρ+

∑
i∈I

fi(VD,VU, 1/ρρρ) (5.41a)

s.t. (5.40), (5.39c),∑
(i,jD)∈S1

(
||VE

i,jD
||2 + ||VI

i,jD
||2/ρρρ

)
+

∑
(i,jU)∈S2

||Vi,jU ||2

≤ P +
∑

(i,jD)∈S1

||VE
i,jD

||2/ρρρ, (5.41b)

∑
jD∈D

(
||VE

i,jD
||2 + ||VI

i,jD
||2/ρρρ

)
≤ Pi +

∑
jD∈D

||VE
i,jD

||2/ρρρ, ∀i ∈ I, (5.41c)

Ei,jD(V
E
D ,VU, 1/ρρρ) ≥ emin

i,jD
, ∀(i, jD) ∈ S1, (5.41d)

fi(VD,VU, 1/ρρρ) ≥ rU,min
i , ∀i ∈ I, (5.41e)

fi,jD(V
I
D,VU)/ρρρ ≥ rD,min

i,jD
, ∀(i, jD) ∈ S1. (5.41f)

Problem (5.41) is much more difficult computationally than (5.13). Firstly, the DL

throughput is now the multiplication of data throughput and the portion of time 1/ρρρ.

Secondly, the SI in UL throughput is also coupled with 1/ρρρ. Finally, the power con-

straints (5.41b), (5.41c) are also coupled with 1/ρρρ. Therefore, the objective function

(5.41a) and constraints (5.41b)-(5.41f) are all nonconvex and cannot be addressed as

in (5.13). In the following, we will develop the new minorants of the DL throughput

function and UL throughput function.

Firstly, we address a lower approximation for each fi,jD(V
I
D,VU)/ρρρ in (5.41a) and

(5.41f). Recalling the definition (5.35) of fi,jD(V
I
D,VU) we introduce

Mi,jD(V
I
D,VU) � (Li,jD(Vi,jD))

2 + Ψ̄i,jD(VD,VU),

to have its following minorant at (V
(κ)
D , V

(κ)
U ):

Θ
(κ)
i,jD

(VI
D,VU) � a

(κ)
i,jD

+ 2Re
{
〈A(κ)

i,jD
,Li,jD(V

I
i,jD

)〉
}
− 〈B(κ)

i,jD
,Mi,jD(V

I
D,VU)〉, (5.42)
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where similarly to (5.20)

0 > a
(κ)
i,jD

= fi,jD(V
(κ)
D , V

(κ)
U )− Re

{
〈Ψ̄−1

i,jD
(V

(κ)
D , V

(κ)
U )Li,jD(V

(κ)
i,jD

),Li,jD(V
(κ)
i,jD

)〉
}
,

A(κ)
i,jD

= Ψ̄−1
i,jD

(V
(κ)
D , V

(κ)
U )Li,jD(V

(κ)
i,jD

),

0 � B(κ)
i,jD

= Ψ̄−1
i,jD

(V
(κ)
D , V

(κ)
U )−M−1

i,jD
(V

(κ)
D , V

(κ)
U ).

(5.43)

A minorant of fi,jD(V
I
D,VU)/ρρρ is Θ

(κ)
i,jD

(VI
D,VU)/ρρρ but it is still not concave. As

fi,jD(V
I
D,VU) > 0 it is obvious that its lower bound Θ

(κ)
i,jD

(VI
D,VU) is meaningful for

(VI
D,VU) such that

Θ
(κ)
i,jD

(VI
D,VU) ≥ 0, (i, jD) ∈ S1 (5.44)

which particularly implies

Re
{〈

(A(κ)
i,jD

,Li,jD(V
I
i,jD

)
〉}

≥ 0, (i, jD) ∈ S1. (5.45)

Under (5.45), we have

Re
{
〈A(κ)

i,jD
,Li,jD(V

I
i,jD

)〉
}

ρρρ
≥ 2b

(κ)
i,jD

√
Re

{
〈A(κ)

i,jD
,Li,jD(V

I
i,jD

)〉
}
− c

(κ)
i,jD

ρρρ (5.46)

for

0 < b
(κ)
i,jD

=

√
〈A(κ)

i,jD
,Li,jD(V

I,(κ)
i,jD

)〉
ρ(κ)

, 0 < c
(κ)
i,jD

= (b
(κ)
i,jD

)2. (5.47)

Therefore, the following concave function

g
(κ)
i,jD

(VI
D,VU, ρρρ) �

a
(κ)
i,jD

ρρρ
+ 4b

(κ)
i,jD

√
Re

{
〈A(κ)

i,jD
,Li,jD(V

I
i,jD

)〉
}
− 2c

(κ)
i,jD

ρρρ

−〈B(κ),Mi,jD(V
I
D,VU)〉

ρρρ
(5.48)

is a minorant of fi,jD(V
I
D,VU)/ρρρ at (V

I,(κ)
D , V

(κ)
U , ρ(κ)).

Next, we address a lower approximation of fi(VD,VU, 1/ρρρ) in (5.41a), (5.41e). Recalling

the definition (5.36) of fi(VD,VU, 1/ρρρ) we introduce

Mi(VD,VU, ρρρ) � (Li(VUi))
2 + Ψ̄U

i (VU) + Ψ̄TSI
i (VD, 1/ρρρ),
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for Ψ̄TSI
i (VD, 1/ρρρ) defined from (5.38) as

Ψ̄TSI
i (VD, 1/ρρρ) = σ2

SI

∑
jD∈D

(
||VE

i,jD
||2 + 1

ρρρ
||VI

i,jD
||2 − 1

ρρρ
||VE

i,jD
||2
)
IN2 , (5.49)

to have its following minorant at (V
(κ)
D , V

(κ)
U , ρ(κ)):

Θ
(κ)
i (VD,VU, ρρρ) � a

(κ)
i + 2Re

{
〈A(κ)

i ,Li(VUi
)〉
}
− 〈B(κ)

i ,Mi(VD,VU, ρρρ)〉, (5.50)

where similarly to (5.21)

0 > a
(κ)
i = fi(V

(κ)
D , V

(κ)
U )− Re

{
〈Ψ−1

i (V
(κ)
D , V

(κ)
U )Li(V

(κ)
i ),Li(V

(κ)
i )〉

}
,

A(κ)
i = Ψ−1

i (V
(κ)
D , V

(κ)
U )Li(V

(κ)
Ui

),

0 � B(κ)
i = Ψ−1

i (V
(κ)
D , V

(κ)
U )−M−1

i (V
(κ)
D , V

(κ)
U ).

(5.51)

Function Θ
(κ)
i (VD,VU, ρρρ) is not concave due to the term Ψ̄TSI

i (VD, 1/ρρρ) defined by

(5.49). However, the following matrix inequality holds true:

1

ρρρ
||VE

i,jD
||2IN2 � (

2

ρ(κ)
Re{〈V E,(κ)

jD
,VE

jD
〉} − ||V E,(κ)

jD
||2

(ρ(κ))2
ρρρ)IN2 , (5.52)

which yields the matrix inequality

Mi(VD,VU, ρρρ) � M(κ)
i (VD,VU, ρρρ)

� (Li(VUi))
2 + Ψ̄U

i (VU) + σ2
SI

(
||VE

i,jD
||2 + 1

ρρρ
||VI

i,jD
||2

− 2

ρ(κ)
Re{〈V E,(κ)

jD
,VE

jD
〉}+ ||V E,(κ)

jD
||2

(ρ(κ))2
ρρρ

)
IN2 .

As B(κ)
i � 0 by (5.51), we then have

〈B(κ)
i ,Mi(VD,VU, ρρρ)〉 ≥ 〈B(κ)

i ,M(κ)
i (VD,VU, ρρρ)〉

so a concave minorant of both fi(VD,VU, 1/ρρρ) and Θ(κ)(VD,VU, ρρρ) is

Θ̃
(κ)
i (VD,VU, ρρρ) � a

(κ)
i + 2Re

{
〈A(κ)

i ,Li(VUi
)〉
}
− 〈B(κ)

i ,M(κ)
i (VD,VU, ρρρ)〉. (5.53)

Concerned with ||VE
i,jD

||2/ρρρ in the right hand side (RHS) of (5.41b) and (5.41c), it

follows from (5.52) that

||VE
i,jD

||2/ρρρ ≥ γ
(κ)
i,jD

(VE
i,jD

, ρρρ)

� 2Re{〈V E,(κ)
i,jD

,VE
i,jD

〉}/ρ(κ) − ρρρ||V E,(κ)
i,jD

||2/(ρ(κ))2.

116
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We also have φ
(κ)
i,jD

(VE
D ,VU) defined in (5.22) as a minorant of 〈Φi,jD(V

E
D ,VU)〉. We

now address the nonconvex problem (5.41) by successively solving its following innerly

approximated convex program at κ-iteration:

max
VD,VU,ρρρ>0

P (κ)
2 (VD,VU, ρρρ) �

∑
(i,jD)∈S1

g
(κ)
i,jD

(VI
D,VU, ρρρ) +

∑
i∈I

Θ̃
(κ)
i (VD,VU, ρρρ) (5.54a)

s.t. (5.40), (5.39c), (5.54b)∑
(i,jD)∈S1

(
||VE

i,jD
||2 + 1

ρρρ
||VI

i,jD
||2
)
+

∑
(i,jU)∈S2

||Vi,jU ||2

≤ P +
∑

(i,jD)∈S1

γ
(κ)
i,jD

(VE
i,jD

, ρρρ), (5.54c)

∑
jD∈D

(
||VE

i,jD
||2 + 1

ρρρ
||VI

i,jD
||2
)
≤ Pi +

∑
jD∈D

γ
(κ)
i,jD

(VE
i,jD

, ρρρ), ∀i ∈ I, (5.54d)

φ
(κ)
i,jD

(VE
D ,VU) ≥ emin

i,jD
(1 +

1

ρρρ− 1
)/ζi,jD , ∀(i, jD) ∈ S1, (5.54e)

Θ̃
(κ)
i (VD,VU, ρρρ) ≥ rU,min

i , ∀i ∈ I, (5.54f)

g
(κ)
i,jD

(VI
D,VU, ρρρ) ≥ rD,min

i,jD
.∀(i, jD) ∈ S1. (5.54g)

A path-following procedure similar to Algorithm 6 can be applied to solve (5.41) as

summarized in Algorithm 7. Thanks to the following relation, which is similar to

(5.26):

P2(V
(κ+1)
D , V

(κ+1)
U , ρ(κ+1)) ≥ P2(V

(κ)
D , V

(κ)
U , ρ(κ)), (5.55)

Algorithm 7 improves feasible point at each iteration and then brings a local optimum

after finitely many iterations.

Algorithm 7 Path-following algorithm for TS optimization problem (5.41)

Initialization: Set κ := 0, and choose a feasible point (V
(0)
D , V

(0)
U , α(0)) that satisfies

(5.39b)-(5.39g). Set ρ(0) := 1/α(0).
κ-th iteration: Solve (5.54) for an optimal solution (V ∗

D , V
∗
U , ρ

∗) and set κ := κ + 1,

(V
(κ)
D , V

(κ)
U , ρ(κ)) := (V ∗

D , V
∗
U , ρ

∗) and calculate P2(V
(κ)
D , V

(κ)
U , 1/ρ(κ)). Stop if∣∣∣(P2(V

(κ)
D , V

(κ)
U , 1/ρ(κ))− P2(V

(κ−1)
D , V

(κ−1)
U , 1/ρ(κ−1))

)
/P2(V

(κ−1)
D , V

(κ−1)
U , 1/ρ(κ−1))

∣∣∣ ≤
ε.
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To find an initial feasible point for Algorithm 7, we consider the following problem:

max
VD,VU,ρρρ

min
(i,jD)∈S1

{
fi,jD(V

I
D,VU)/ρρρ− rmin

i,iD
,

fi(VD,VU, 1/ρρρ)− rmin
i , Ei,jD(V

E
D ,VU, 1/ρρρ)− emin

i,jD

}
: (5.41b)− (5.41c)

(5.56)

which can be addressed by successively solving the following convex maximin program:

max
VD,VU,ρρρ

min
(i,jD)∈S1

{
g
(κ)
i,jD

(VI
D,VU, ρρρ)− rmin

i,iD
, Θ̃

(κ)
i (VD,VU, ρρρ)− rmin

i ,

φ
(κ)
i,jD

(VE
D ,VU)− emin

i,jD
(1 +

1

ρρρ− 1
)/ζi,jD

}
: (5.54b)− (5.54d),

(5.57)

upon reaching

fi,jD(V
I,(κ)
D , V

(κ)
U , α(κ)) ≥ rmin

i,iD
, fi(V

(κ)
D , V

(κ)
U , α(κ)) ≥ rmin

i ,

Ei,jD(V
E,(κ)
D , V

(κ)
U , 1/ρ(κ)) ≥ emin

i,jD
, ∀(i, jD) ∈ S1.

(5.58)

For the system operating in HD mode, we apply the same transmission strategy as in

Section 5.2. Specifically, we consider the following problem:

max
VD,VU,ρρρ

1

2
[
∑

(i,jD)∈S1

1

ρρρ
fi,jD(VD, 0U) +

∑
i∈I

fi(0D,VU, 1)] (5.59a)

s.t. (5.39b)− (5.39e)

1

2
(Ei,jD(VD, 0U, 1/ρρρ) + Ei,jD(0D,VU, 1)) ≥ emin

i,jD
, (i, jD) ∈ S1, (5.59b)

1

2ρρρ
fi,jD(VD, 0U) ≥ rD,min

i,jD
, ∀(i, jD) ∈ S1, (5.59c)

1

2
fi(0D,VU, 1) ≥ rU,min

i , ∀i ∈ I. (5.59d)

In (5.59), DLUs harvest energy for (1 − ααα) of 1/2 time slot during DL transmission

and for the whole 1/2 time slot during UL transmission as formulated in (5.59b). The

constraint (5.59b) can be written by

Ξi,jD(VD,VU, ρρρ) ≥
2emin

i,jD

ζi,jD
(1 +

1

ρρρ− 1
), (5.60)

for

Ξi,jD(VD,VU, ρρρ) � 〈Φi,jD(VD, 0U)〉+ 〈Φi,jD(0D,VU)〉+ 〈Φi,jD(0D,VU)〉
ρρρ− 1

.
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As Ξi,jD is convex, its minorant is its first-order approximation at (V
(κ)
D , V

(κ)
U , ρ(κ)):

Ξ
(κ)
i,jD

(VD,VU, ρρρ) = φ
(κ)
i,jD

(VD, 0U) + φ
(κ)
i,jD

(0D,VU) + Λ
(κ)
i,jD

(VU, ρρρ− 1),

for Λ
(κ)
i,jD

(., .) defined by (5.31) and φ
(κ)
i,jD

(0D,VU) defined from (5.22) with both VU and

V
(κ)
U replaced by 0U.

The problem (5.39) thus can be addressed via a path-following procedure similar to

Algorithm 7 where the following convex program is solved for κ-iteration:

max
VD,VU,ρρρ

1

2
[
∑

(i,jD)∈S1

g
(κ)
i,jD

(VI
D, 0U, ρρρ) +

∑
i∈I

Θ̃
(κ)
i (0D,VU, 1)] (5.61a)

s.t. (5.39b)− (5.39e)

Ξ
(κ)
i,jD

(VD,VU, ρρρ) ≥
2emin

i,jD

ζi,jD
(1 +

1

ρρρ− 1
), (i, jD) ∈ S1, (5.61b)

1

2
g
(κ)
i,jD

(VD, 0U, ρρρ) ≥ rD,min
i,jD

, ∀(i, jD) ∈ S1, (5.61c)

1

2
Θ̃

(κ)
i (0D,VU, 1) ≥ rU,min

i , ∀i ∈ I, (5.61d)

where g
(κ)
i,jD

(VI
D, 0U, ρρρ) is defined by (5.48) with both VU and V

(κ)
U replaced by 0U, while

Θ̃
(κ)
i (0D,VU, 0) is defined by (5.53) with both VD and V

(κ)
D replaced by 0D and both ρρρ

and ρ(κ) replaced by 1.

5.4 Throughput QoS Constrained Energy-Harvesting Optimiza-

tion

We will justify numerically that TS is not only easier implemented but performs better

than PS for FD EH-enabled MU MIMO networks. This motivates us to consider the

following EH optimization with TS, which has not been previously considered at all:

max
VD,VU,ααα

P3(V,ααα) �
∑

(i,jD)∈S1

Ei,jD(V
E
D ,VU,ααα) s.t. (5.39b)− (5.39g). (5.62)

By defining ρρρ = 1/ααα, we firstly recast Ei,jD(V
E
D ,VU, 1/ρρρ) as

Ei,jD(V
E
D ,VU, 1/ρρρ) = ζi,jD

(
〈Φi,jD(V

E
D ,VU)〉 −Qi,jD(V

E
D ,VU, ρρρ)

)
, (5.63)
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where Qi,jD(V
E
D ,VU, ρρρ) � 1

ρρρ
〈Φi,jD(V

E
D ,VU)〉 is a convex function. Recalling that

φ
(κ)
i,jD

(VE
D ,VU) defined in (5.22) is a minorant of 〈Φi,jD(V

E
D ,VU)〉, we can now address

the nonconvex problem (5.62) by successively solving the following convex program at

κ-iteration:

max
V,ρρρ

∑
(i,jD)∈S1

ζi,jD

(
φ
(κ)
i,jD

(VE
D ,VU)−Qi,jD(V

E
D ,VU, ρρρ)

)
s.t. (5.39b), (5.39c), (5.54c), (5.54d), (5.54f), (5.54g).

(5.64)

A path-following procedure similar to Algorithm 7 can be applied to solve (5.62).

For the system operating in HD mode, the same transmission strategy as in Section 5.2

is applied. Specifically, we consider the following problem:

max
V,ρρρ

∑
(i,jD)∈S1

1

2
(Ei,jD(V

E
D , 0U, 1/ρρρ) + Ei,jD(0D,VU, 0))

s.t. (5.39b), (5.39c), (5.39d), (5.39e), (5.59c), (5.59d).

(5.65)

The problem (5.65) can be addressed via a path-following procedure similar to Algo-

rithm 7 where the following convex program is solved for κ-iteration:

max
V,ρρρ

∑
(i,jD)∈S1

ζi,jD
2

(
φ
(κ)
i,jD

(VE
D , 0U)−Qi,jD(V

E
D , 0U, ρρρ) + φ

(κ)
i,jD

(0D,VU)
)

s.t. (5.39b), (5.39c), (5.39d), (5.39e), (5.61c), (5.61d),

(5.66)

where φ
(κ)
i,jD

(VE
D , 0U) (φ

(κ)
i,jD

(0D,VU), resp.) is defined by (5.22) with both VU and V
(κ)
U

(both VD and V
(κ)
D , resp.) replaced by 0U (0D, resp.).

5.5 Numerical Results

In this simulation study, we use the example network in Fig. 5.2 to study the total

network throughput in the presence of SI. The HD system is also implemented as a

base line for both time splitting mechanism and power splitting mechanism. DLUs

are randomly located on the circles with radius of r1 = 20 m centered at their serving

BSs whereas ULUs are uniformly distributed within the cell of their serving BSs whose
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Figure 5.2: A three-cell network with 3 DLUs and 3 ULUs. DLUs are randomly lo-
cated on the circles with radius of r1 centered at their serving BS. ULUs are uniformly
distributed within the cell of their serving BS.

radius are r2 = 40 m. There are two DLUs and two ULUs within each cell. We set

the path loss exponent β = 4. For small-scale fading, we generate the channel matrices

Hm,i,jD from BS m to UE (i, jD), matrices Hi,jD,�U from ULU (i, �U) to DLU (i, jD),

matrices Hm,�U,i from ULU (m, �U) to BS i and matrices HB
m,i from BS m to BS i using

the Rician fading model as follows:

H =

√
KR

1 +KR

HLOS +

√
1

1 +KR

HNLOS, (5.67)

where KR = 10 dB is the Rician factor, HLOS is the line-of-sight (LOS) deterministic

component and each element of Rayleigh fading component HNLOS is the circularly-

symmetric complex Gaussian random variable CN (0, 1). Here, we use the far-field
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uniform linear antenna array model [Cho et al., 2010] with

HLOS = [1, ejθr , ej2θr , . . . , ej(Nr−1)θr ]× [1, ejθt , ej2θt , . . . , ej(N1−1)θt ]H , (5.68)

for θr =
2πd sin(φr)

λ
, θt =

2πd sin(φt)
λ

, where d = λ/2 is the antenna spacing, λ is the carrier

wavelength and φr, φt is the angle-of-arrival, the angle-of-departure, respectively. In

our simulations, φr and φt are randomly generated between 0 and 2π. Unless stated

otherwise, the number of transmit antennas and the number of receive antennas at a

BS are set as N1 = N2 = 4. The numbers of concurrent downlink data streams and the

numbers of concurrent uplink data streams are equal and d1 = d2 = Nr. To arrive at

the final figures, we run each simulation 100 times and average out the result. In all

simulations, we set P = 23 dBW, Pi = 16 dBW ∀i ∈ I, Pi,jU = 10 dBW ∀(i, jU) ∈ S2,

∀i ∈ I ,ζ = 0.5, σ2
c = −90 dBW, σ2 = −90 dBW, rmin

i,jD
= rD = 1 bps/Hz and

rmin
i = rU = UrD bps/Hz. We further assume that the required harvested energy of all

DLUs are the same and emin
i,jD

= emin, ∀(i, jD). Unless stated otherwise, we set emin = −20

dBm. The SI level σ2
SI is choosen within the range of [−150,−90] dB 1 as in [Nguyen

et al., 2013, 2014; Tam et al., 2016] where σ2
SI = −150 dB represents the almost perfect

SI cancellation.

5.5.1 Single Cell Network

Firstly, we consider the sum throughput maximization problem and the total harvested

energy in the single cell networks. This will facilitate the analysis of the impact of SI

to the network performance since there is no intercell interference. The network setting

in Fig. 5.2 is used but only one cell is considered.

Fig. 5.3 illustrates the comparison of total network throughput between the power

splitting mechanism and the time splitting mechanism in both FD and HD systems.

Though FD provides a substantial improvement in comparison to HD in both power

1At σ2
SI = −90 dB, if a BS transmits at full power (i.e. 16 dBW), the SI power is 16 dB stronger than the background

AWGN.
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splitting mechanism (25.8%) and time splitting mechanism (26.1%) for Nr = 2 at σ2
SI =

−150 dB. Note that we cannot expect a FD system to achieve twice the throughput

of that is achieved by a HD system. This is because even when the SI cancellation is

perfect, DLUs in FD are still vulnerable to the intracell interference from the ULUs of

the same cell. Moreover, DLUs and ULUs in HD are served with more BS’s antennas,

resulting in a larger spatial diversity. Consequently, FD cannot double HD’s throughput

even with the almost perfect SI cancellation.

When we reduce the number of antennas at UEs from Nr = 2 to Nr = 1, the total

network throughput of FD is significantly reduced by 42% for the time splitting mech-

anism and by 41% for the power splitting mechanism at σ2
SI = −150 dB. Notably, since

UEs in FD are exposed to more sources of interference than UEs in HD, reducing the

number of antennas of UEs degrades the performance of FD more than the counterpart

of HD. Consequently, the improvement of FD in comparison to HD reduces to 16% at

σ2
SI = −150 dB for both time splitting mechanism and power splitting mechanism.
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Figure 5.3: Effect of SI on the sum throughput performance in the single-cell networks.

Fig. 5.4 further illustrates how the total throughput is distributed into the downlink

and uplink channels in the time splitting mechanism. The behaviour of the power

splitting mechanism is similar and omitted here for brevity. With the increase of

σ2
SI , the UL throughput consistently decreases. Moreover, since the UL transmission
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becomes less efficient, ULUs reduce their transmission power to reduce the interference

toward DLUs. Consequently, a slight increase in FD DL throughput is observed as σ2
SI

increases. Another note is that since the distance between ULU-DLU in small cell can

be quite small due to the random deployment of ULUs and DLUs, DLUs’ throughput

can be severely degraded by the interference from ULUs. In fact, the FD DL throughput

is 60% less than the counterpart of HD at Nr = 1, σ2
SI = −150 dB. By implementing

multiple antenna at UEs (i.e. Nr = 2), DLUs in FD can handle the interference better

and the FD DL throughput at σ2
SI = −150 dB is only 10% less than the counterpart of

HD.
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Figure 5.4: Effect of SI on the UL/DL throughput performance in the single-cell net-
works.

To analyze the effect of energy harvesting constraint, we fix Nr = 2, σ2
SI = −110 dB

and vary emin. Fig. 5.5 illustrates a consistent decreasing trend of all schemes as emin

increases. The time splitting scheme outperforms the power splitting scheme in the

considered range of emin for both FD and HD. A similar conclusion can be drawn from

Fig. 5.3. By using two different precoder matricesVI andVE for data transmission and

energy transferring, the time splitting scheme can exploit the spatial diversity better

than the power splitting scheme which only uses one type of precoder matrix for both

purposes. Thus, the time splitting scheme is more efficient than the power splitting

scheme in term of performance.

124



5.5 Numerical Results

−20 −17.5 −15 −12.5 −10 −7.5
34

36

38

40

42

44

46

48

emin (dBm)

S
u

m
 t

h
ro

u
g

h
p

u
t 

(b
p

s/
H

z)

 

 

FD − TS
FD − PS
HD − TS
HD − PS

Figure 5.5: Effect of energy harvesting constraints on the total harvested energy per-
formance in the single-cell networks.

The comparison of maximum harvested energy of time splitting scheme in both FD

and HD systems is studied in Fig. 5.6. Interestingly, in case of Nr = 1, FD roughly

harvests as much as HD. The reason of this is two folds. Firstly, it has been reported

in [Nguyen et al., 2014; Mohammadi et al., 2015; Tam et al., 2016] that FD not always

harnesses performance gain over HD if the distance between ULUs and DLUs are not

large enough. Since we consider small cell networks with randomly deployed ULUs and

DLUs, the ULU-DLU distance can be very small, which creates significant interference

to DLUs. Secondly, with Nr = 1, DLUs can not exploit the spatial diversity to mitigate

the interference from ULUs. Consequently, ULUs must reduce its transmit power to

ensure the QoS at the DLUs, which lowers the amount of harvested energy at DLUs. In

contrast, the results show that FD harvests more energy than HD given that σ2
SI ≤ −90

dB for Nr = 2. All this implies that having multiple antennas at UEs is important to

combat with extra interferences in FD.
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Figure 5.6: Effect of SI on the total harvested energy performance in the single-cell
networks.

5.5.2 Three-cell Network

Now, we consider the sum throughput maximization problem and the total harvested

energy in the three-cell networks as depicted in Fig. 5.2. In this scenario, DLUs and BSs

are exposed to additional intercell interferences. According to Fig. 5.7, FD now only

provides a marginal improvement regarding HD in both power splitting scheme (11.7%)

and time splitting scheme (11.8%) for Nr = 2, σ2
SI = −150 dB. For Nr = 1, σ2

SI = −150

dB, the improvement is even lower with 4.1% in case of the power splitting scheme and

4.4% in case of time splitting scheme. Therefore, FD can give marginal gains compared

to HD in the multi-cell networks with high level of interference.

The effect of energy harvesting constraint to the network sum throughput is also inves-

tigated in Fig. 5.8 for the three-cell networks with Nr = 2, σ2
SI = −110 dB. As in Fig.

5.5, a consistent decreasing trend of all schemes is observed as emin increases. Since

DLUs can also harvest energy from the signals arriving from other BSs in multicell

126



5.5 Numerical Results

−150 −140 −130 −120 −110 −100 −90
52

54

56

58

60

62

64

66

68

σ
SI
2  (dB)

S
u

m
 t

h
ro

u
g

h
p

u
t 

(b
p

s/
H

z)

 

 

FD − TS
FD − PS
HD − TS
HD − PS

(a) Nr = 1

−150 −140 −130 −120 −110 −100 −90
85

90

95

100

105

110

σ
SI
2  (dB)

S
u

m
 t

h
ro

u
g

h
p

u
t 

(b
p

s/
H

z)

 

 

FD − TS
FD − PS
HD − TS
HD − PS

(b) Nr = 2

Figure 5.7: Effect of SI on the sum throughput performance in the three-cell networks.

networks, the FD network throughput only decreases by about 3% for both harvesting

scheme when emin increases from -20 dBm to -7.5 dBm. The counterpart throughput

decrease in single-cell scenarios was about 8%.

Fig. 5.9 also illustrates the comparison of total harvested energy per cell of the EH

maximization problem in both FD and HD systems in three-cell network. For Nr = 1,

FD even harvests lesser amount of energy than HD given σ2
SI > −150 dB due to the

increasing level of interference when compared to a single-cell network. Similar to

the single-cell network, FD outperforms HD for σ2
SI ≤ −90 dB if more antennas are

equipped at UEs (i.e. Nr = 2). This observation again emphasizes the importance of

having multiple antenna at UEs in FD to mitigate interference. Another note is that

given Nr = 2 the amount of energy harvested per cell in three-cell networks (i.e. 10.09

dBm at σ2
SI = −150 dB) is much higher than the harvested energy of single cell in Fig.

5.6 (i.e. 8.5 dBm at σ2
SI = −150 dB), thanks to the extra energy harvested from the

intercell interference.
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Figure 5.8: Effect of energy harvesting constraints on the total harvested energy per-
formance in the three-cell networks.

5.5.3 Convergence Behavior

Finally, the convergence behavior of the proposed Algorithm 6 is illustrated in Fig. 5.10.

For brevity, we only present the case of the three-cell network at σ2
SI = −110 dB

and Nr = 2. Fig. 5.10(a) plots the convergence of the objective functions of the

sum throughput maximization problem for the time splitting scheme and the power

splitting scheme, whereas Fig. 5.10(b) plots the convergence of the objective function

of the EH maximization problem. As can be seen, the sum throughput maximization

problem achieve 90% of its final optimal value within 40 iterations whereas the EH

maximization problem needs 10 iterations. Table 5.1 shows the average number of

iterations required to solve each program. Note that each iteration of all programs

only involves with a convex problem with polynomial complexity which can be solved

efficiently by any available convex solvers such as CVX [Grant and Boyd, 2014].
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Figure 5.9: Effect of SI on the total harvested energy performance in the three-cell
networks.

Table 5.1: The average number of iterations required by Algorithm 6
Programs Throughput max., TS Throughput max., PS EH max.

FD 74 65.4 24.1
HD 67.5 50.6 20.2

5.6 Conclusion

In this chapter, we have proposed new optimal precoding matrix designs for EH-enabled

FD multicell MU-MIMO networks. Specifically, the sum throughput maximization un-

der throughput QoS constraints and energy harvesting (EH) constraints for energy-

constrained devices under either TS or PS have been considered. The FD EH max-

imization problem under throughput QoS constraints in TS has also been addressed.

Toward this end, we develop new path-following algorithms for their solution, which re-

quire a convex quadratic program for each iteration and is guaranteed to monotonically

converge to at least a local optimum. In the end, we show the merits of our proposed

129



5.6 Conclusion

0 20 40 60 80 100
65

70

75

80

85

90

95

100

105

110

Number of iterations

S
u

m
 t

h
ro

u
g

h
p

u
t 

(b
p

s/
H

z)

 

 

FD−TS
FD−PS
HD−TS
HD−PS

(a) Sum throughput maximization

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Number of iterations

T
o

ta
l h

ar
ve

st
ed

 e
n

er
g

y 
(m

W
)

 

 

FD
HD

(b) EH maximization

Figure 5.10: Convergence of Algorithm 6 for ε = 10−4.

algorithms through extensive simulations.
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Chapter 6

Conclusions

6.1 Summary

To realize the ever increasing demand for high data throughput, massive user con-

nectivity and extended device battery life, this dissertation considers three disruptive

technologies in the 5G cellular network. Firstly, by densely deploying BSs of various

sizes and types, HetNet provides better coverage and services for a large number of UEs

in comparison to traditional cellular networks. Secondly, FD radio technology enables

devices to simultaneously transmit and receive signals on the same frequency band,

resulting in the potential of doubling the throughput. Thirdly, the new EH technol-

ogy allows BSs to transmit both information and energy toward devices on the same

channel, which potentially prolongs the battery life or even eliminates the need for a

battery via wireless charging. However, the major obstacle preventing the successful

implementation of these technologies is that they introduce even more sources of in-

terference into the traditional network where the interference management has already

been complicated. Managing interference under these technologies raises an inevitable

demand for new resource allocation schemes (i.e., power allocation policy, BS-UE as-

sociation policy and precoding matrix designs) to maximize the network performance

while meeting the QoS requirements.
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6.1 Summary

Since all the considered interference management problems are challenging nonconvex

optimization problems, this dissertation has provided novel minorants/majorants of

the nonconvex functions which are then used for the successive convex approximation

framework. Consequently, the original optimization problems can be addressed via

successively solving a low-complexity convex problem at each iteration. In Chapter 3,

the joint design of BS-UE associations and transmit power control to maximize network

total throughput or fairness among UEs in the downlink of a HetNet has been proposed.

The nonconvex backhaul constraints are considered to represent the practical low-cost

backhaul solutions of small cells. The considered problems belong to the class of mixed

integer nonconvex optimization and have been addressed by the proposed iterative

algorithms based on alternating descent and successive convex programming. Numerical

results have illustrated the effect of backhaul capacity on the BS-UE associations and

power control policy.

In Chapter 4, we firstly considered the joint design of UL and DL linear precoders in

an FD MU-MIMO multicell network to maximize the total network throughput or the

UE’s fairness. The effect of the two new additional sources of interference in an FD

network (i.e. SI and the cross interference of UL and DL transmission) on the network

throughput was also analyzed. To prevent either side of the transmission from shutting

down due to the excessive incurring interference, the throughput constraints that have

not been efficiently handled before were applied. The considered problem is nonconvex

and has been addressed by the proposed successive convex quadratic programming.

Extensive numerical results demonstrated the advantages of the proposed algorithms

over existing solutions. The FD system also has been verified to provide better spectral

efficiency than the HD system.

The proposed framework can then be extended for the optimal precoding matrices de-

sign in an HD MU-MIMO multicell network with the H-K transmission strategy. The

transmitted data information of users in this strategy is split into two parts: a pri-

vate message to be decoded at the intended receiver and a common message that can
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be decoded at both intended receiver and shared receiver. Under this strategy, the

throughput maximization problem is nonconvex since the throughput function is non-

smooth and nonconvex. The optimal precoder matrices under H-K strategy are found

via a successive convex quadratic programming algorithm that generates a sequence of

improved points. As expected, the H-K strategy offers higher performance in compar-

ison to the conventional approach where the intercell interference is treated as noise,

especially in the medium to strong interference channels.

In Chapter 5, the efficient design of precoding matrices for the network sum through-

put maximization with QoS constraints in an FD EH-enabled multicell MU-MIMO net-

work has been proposed. EH constraints were considered to guarantee a reliable wireless

charging. The considered problem with either PS or TS is challenging computationally

due to nonconcave objective function and nonconvex constraints. By adapting the al-

gorithms for the FD problem in Chapter 4, the problem with PS has been efficiently

addressed. On the other hand, it is nontrivial to extend the same algorithm to solve the

problem with TS due to the coupling of the TS variable with both the DL throughput

function and the SI in the UL throughput function. A new inner approximation of

the original problem has been proposed to solve the problem iteratively in a succes-

sive convex programming framework. Finally, the FD EH maximization problem with

throughput QoS constraints with TS has also been addressed by applying an approach

similar to that proposed for the TS problem.

6.2 Future Research Directions

All the results presented in this PhD dissertation have illustrated that the considered

technologies in 5G provide the enhancement of network performance in terms of total

network throughput or UE’s fairness in comparison to traditional networks. However,

we have assumed here that all the control information is delivered to a central processing

unit (CPU) to do all the computation. This design creates a central point of failure.
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In addition, since all the control information is gathered at the CPU, the capacity of

backhaul links connected to the CPU must be sufficiently high. Otherwise, there will

be delay/jitter in the service. It is of great interest to investigate algorithms that allow

BS to decide their resource allocation strategy based on just local information or with

minimum information exchange among the BSs. In addition, considering imperfect CSI

is also an important future research direction.

In Chapter 3, we have assumed that all BSs and UEs are equipped with single antenna

only. It would be more efficient to consider multiple antennas at BSs and UEs. In fact,

MIMO setting will help to combat interference better with optimal precoding matrix

designs. Thanks to spatial multiplexing gain, more UEs can be simultaneously served

on the same channel. Although it is interesting to consider such MIMO HetNets, the

throughput function is involved with the determinant operation, rendering the whole

problem even more challenging. Another potential extension is to allow some small

cells to temporally turn off if they serve no UEs to reduce the interference. In this case,

since the throughput offered by a BS is divided by a number of UEs served by that BS,

a new expression of throughput function is required to accommodate the deactivation

of a BS. The structure of this new function might be very complicated to deal with

compared to that considered in this dissertation.

Finally, the power consumption problem in the future cellular network design is receiv-

ing significant attention from both industry and academia [Li et al., 2011; Han et al.,

2016; Zarakovitis et al., 2016]. Since the total energy consumed by the worldwide cel-

lular networks and wireline communications is more than 3% of global electric energy

consumption [Fettweis and Zimmermann, 2008], improving the efficiency of the energy

usage reduces both the energy expense for the operators and the carbon footprint toward

the environment. The energy efficiency utility which is a fraction of total throughput

over total consumed energy has been proposed so that maximizing this utility will im-

prove both the spectral efficiency and the energy usage [Wang et al., 2013; Zarakovitis

et al., 2016]. The optimization problem involved with such a complicated fractional
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function as the energy efficiency utility is a challenging and interesting problem for

future research.
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Appendix A

Proof of Proposition 3.2

Firstly, notice that functions

fnk(xnk,yk) �
rnk(p)xxx

2
nk

yk

, k = 1, . . . , K

are jointly convex in xnk and yk. Therefore, fnk(xnk,yk) admits its first order approx-

imation at (x
(κ)
nk , y

(κ)
k ) as a lower bound [Tuy, 1998] as follows

fnk(xnk,yk) ≥ fnk(x
(κ)
nk , y

(κ)
k ) +

2rnk(p)x
(κ)
nk

(
xnk − x

(κ)
nk

)
y
(κ)
k

− rnk(p)(x
(κ)
nk )

2

(y
(κ)
k )2

(
yk − y

(κ)
k

)
.

By replacing yk := 〈x2
k〉 > 0, ∀k = 1, . . . , K, we have

fnk(xnk, [〈x2
k〉]k=1,...,K) =

rnk(p)xxx
2
nk

〈xxx2
k〉

≥ α
(κ)
nk (x, p).

Secondly, since x2
nk − xnk is a convex quadratic function, it also admits its first order

approximation at x(κ) as a lower bound as

x2
nk − xnk ≥(x

(κ)
nk )

2 − x
(κ)
nk +

(
2x

(κ)
nk − 1

)(
xnk − x

(κ)
nk

)
= γ

(κ)
nk (x).

Therefore, we have

P1(x, p) ≥ P̃(κ)
1 (x, p)

at a point (x(κ), p). This completes the proof.
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Appendix B

Proof of Proposition 3.3

To prove Proposition 3.3, we need some preliminary results first. Let us define

gn(x1, . . . , xn) �
(

n∑
i=1

x−1
i

)−1

. (2.1)

Theorem B.1. For x1 > 0, x2 > 0, g2(x1, x2) is a concave and monotonically increas-

ing function in (x1, x2).

Proof. One has

g2(x1, x2) = x1 − x2
1/(x1 + x2)

which is concave in x1 > 0, x2 > 0. Moreover, as x−1
1 +x−1

2 is monotonically decreasing

in x1 > 0, x2 > 0, g2(x1, x2) = 1/(x−1
1 + x−1

2 ) is monotonically increasing in x1 > 0,

x2 > 0. �

Theorem B.2. The function gn(x1, . . . , xn) =
(∑n

i=1 x
−1
i

)−1
is concave in xi > 0, i =

1, . . . , n, ∀n ≥ 1.

Proof. In Theorem B.1, we have proved that g2(x1, x2) is concave in x1 > 0, x2 > 0.

Assuming that gn−1(x1, . . . , xn−1) is concave in xi > 0, i = 1, . . . , n− 1 for some n, we
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now show that gn(x1, . . . , xn) is also concave. Firstly, one has

gn(x1, . . . , xn) =

(
n∑

i=1

x−1
i

)−1

= xn − x2
n (xn + gn−1(x1, . . . , xn−1))

−1

= g2 (xn, gn−1(x1, . . . , xn−1)) .

Since g2(x, y) is a concave and monotonically increasing function in (x, y) and gn−1(x1, . . . , xn−1)

is assumed to be concave, we have

gn(α(x1, . . . , xn) + β(y1, . . . , yn))

= g2 (αxn + βyn, gn−1(α(x1, . . . , xn−1) + β(y1, . . . , yn−1)))

≥ g2 (αxn + βyn, αgn−1(x1, . . . , xn−1) + βgn−1(y1, . . . , yn−1))

≥ αg2(xn, gn−1(x1, . . . , xn−1)) + βg2(yn, gn−1(y1, . . . , yn−1))

= αgn(x1, . . . , xn) + βgn(y1, . . . , yn)

for α ≥ 0, β ≥ 0, α + β = 1 and ∀xi > 0, yi > 0, i = 1, . . . , n > 0. Thus, gn(x1, . . . , xn)

is also concave in xi > 0, i = 1, . . . , n, ∀n ≥ 2. �

Theorem B.3. The function ln
(∑n

i=1 x
−1
i

)
is convex in xi > 0, i = 1, . . . , n, ∀n ≥ 1.

Proof. Let us define f(x) � ln(x). Then ln
(∑n

i=1 x
−1
i

)
= −f(gn(x1, . . . , xn)). Since

gn(x1, . . . , xn) is a concave function in xi > 0, i = 1, . . . , n, according to Theorem B.2

we have

gn(α(x1, . . . , xn) + β(y1, . . . , yn)) ≥ αgn(x1, . . . , xn) + βgn(y1, . . . , yn),

with α ≥ 0, β ≥ 0, α + β = 1 and ∀xi > 0, yi > 0, i = 1, . . . , n > 0. Moreover, since

f(x) is a concave and monotonically increasing function, we have

f(gn(α(x1, . . . , xn) + β(y1, . . . , yn)))

≥ f(αgn(x1, . . . , xn) + βgn(y1, . . . , yn))

≥ αf(gn(x1, . . . , xn)) + βf(gn(y1, . . . , yn)).
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This shows the concavity of f(gn(x1, . . . , xn)). Therefore, −f(gn(x1, . . . , xn)) is a convex

function. �

We are now ready to prove Proposition 3.3. One can write

rnk(p) � ln

(
K∑
j=1

gnjpj + σ2

)
− ln

(
K∑

j �=k,j=1

gnjpj + σ2

)
.

Since ln(x) is a concave function with x > 0, it is true that

ln

(
K∑
j=1

gnjpj + σ2

)
≤ ln

(
K∑
j=1

gnjp
(κ)
j + σ2

)
+

∑K
j=1 gnj(pj − p

(κ)
j )∑K

j=1 gnjp
(κ)
j + σ2

, (2.2)

at some point p(κ).

In addition, upon defining f(x) � ln
(∑n

i=1 x
−1
i

)
with x = [x1, . . . , xn], xi > 0, ∀i, one

has

f(x) ≥ ln

(
n∑

i=1

(x
(κ)
i )−1

)
− 1∑n

i=1(x
(κ)
i )−1

n∑
i=1

(
xi − x

(κ)
i

(x
(κ)
i )2

)

at some x(κ), due to the convexity of f(x) by Theorem B.3. Thus, one also has the

following bound

ln

(
n∑

i=1

xi

)
≥ ln

(
n∑

i=1

x
(κ)
i

)
− 1∑n

i=1 x
(κ)
i

n∑
i=1

(x
(κ)
i )2

(
1

xi

− 1

x
(κ)
i

)
.

It follows that

ln

(
K∑

j �=k,j=1

gnjpj + σ2

)
≤ ln

(
K∑

j �=k,j=1

gnjp
(κ)
j + σ2

)

− 1∑K
j �=k,j=1 gnjp

(κ)
j + σ2

K∑
j �=k,j=1

(
gnjp

(κ)
j

)2
(

1

gnjpj

− 1

gnjp
(κ)
j

)
.

(2.3)

By combining (2.2) and (2.3), (3.20) follows. Similarly, (3.21) can be proved with minor

modifications to (2.2) and (2.3).
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Appendix C

Quadratic Forms

From (4.5) and (4.10), it is straightforward to see that

Mi,jD(V) �
∑

(m,�D)∈S1

Hm,i,jDVm,�DV
H
m,�D

HH
m,i,jD

+
∑
�U∈U

Hi,jD,�UVi,�UV
H
i,�U

HH
i,jD,�U

+ σ2
DINr ,

(3.1)

Mi(V) =
∑

(m,�U)∈S2

Hm,�U,iVm,�UV
H
m,�U

HH
m,�U,i

+ σ2
SIH

SI
i

(∑
�D∈D

Vi,�DV
H
i,�D

)
(HSI

i )H

+
∑

m∈I\{i}
HB

m,i

(∑
jD∈D

Vm,jDV
H
m,jD

)
(HB

m,i)
H + σ2

UIN2 . (3.2)

Then,

Θ
(κ)
i,jD

(V) = fi,jD(V
(κ)) + 2Re

{
〈(Ã(κ)

i,jD
)H ,Vi,jD − V

(κ)
i,jD

〉
}

−
∑

(m,�D)∈S1

(〈(Vm,�D)
HB̃(κ)

i,jD
(m)Vm,�D〉 − 〈(V (κ)

m,�D
)HB̃(κ)

i,jD
(m)V

(κ)
m,�D

〉)

−
∑
�U∈U

(〈(Vi,�U)
H C̃(κ)

i,jD
(�U)Vi,�U〉 − 〈(V (κ)

i,�U
)H C̃(κ)

i,jD
(�U)V

(κ)
i,�U

〉), (3.3)

with

Ã(κ)
i,jD

� (V
(κ)
i,jD

)HHH
i,i,jD

Ψ−1
i,jD

(V (κ))Hi,i,jD , (3.4a)

D̃(κ)
i (�U) � (V

(κ)
i,�U

)HHH
i,�U

Ψ−1
i (V (κ))Hi,�U , �U ∈ U , (3.4b)
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and

B̃(κ)
i,jD

(m) � HH
m,i,jD

[
Ψ−1

i,jD
(V (κ))−M−1

i,jD
(V (κ))

]
Hm,i,jD � 0, (3.5a)

C̃(κ)
i,jD

(�U) � HH
i,jD,�U

[
Ψ−1

i,jD
(V (κ))−M−1

i,jD
(V (κ))

]
Hi,jD,�U � 0, �U ∈ U . (3.5b)

Also,

Θ
(κ)
i (V) =fi(V

(κ)) + 2
∑
�U∈U

Re
{
〈(D̃(κ)

i (�U))
H ,Vi,�U − V

(κ)
i,�U

〉
}

−
∑

(m,�U)∈S2

(〈(Vm,�U)
H Ẽ (κ)

i (m, �U)Vm,�U〉 − 〈(V (κ)
m,�U

)H Ẽ (κ)
i (m, �U)V

(κ)
m,�U

〉)

− σ2
SI

∑
�D∈D

(〈(Vi,�D)
HF̃ (κ)

i Vi,�D〉 − 〈(V (κ)
i,�D

)HF̃ (κ)
i V

(κ)
i,�D

〉)

−
∑

m∈I\{i}

∑
jD∈D

(〈(Vm,jD)
H G̃(κ)

i (m)Vm,jD〉 − 〈(V (κ)
m,jD

)H G̃(κ)
i (m)V

(κ)
m,jD

〉) (3.6)

with

Ẽ (κ)
i (m, �U) � HH

m,�U,i

[
Ψ−1

i (V (κ))−M−1
i (V (κ))

]
Hm,�U,i � 0, (m, �U) ∈ S2, (3.7a)

F̃ (κ)
i � (HSI

i )H
[
Ψ−1

i (V (κ))−M−1
i (V (κ))

]
HSI

i � 0, (3.7b)

G̃(κ)
i (m) � (HB

m,i)
H
[
Ψ−1

i (V (κ))−M−1
i (V (κ))

]
HB

m,i � 0, m ∈ I \ {i}. (3.7c)
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Appendix D

Proof of Theorem 4.1

Let L(V) be a linear mapping in the form (4.4) or (4.8). Now introduce the intermediate

matrix variable Y, which satisfies the following matrix inequality:

Y � L(V)LH(V). (4.1)

Let us define

g(V,Y) � ln
∣∣IN2 − L(V)LH(V)Y−1

∣∣ , (4.2)

which is well-posed in the domain (4.1).

To prove Theorem 4.1, the following theorem is needed.

Theorem D.1. In the domain constrained by (4.1), function g(V,Y) is jointly concave

in (V,Y) with its differential at point (V (κ), Y (κ)) (which is also its super-differentials

Tuy [1998]) given by

〈∇g(V (κ), Y (κ)), (V,Y)− (V (κ), Y (κ))〉 =

−2Re
{
〈(Y (κ) − L(V (κ))LH(V (κ))

)−1 L(V (κ)),L(V)− L(V (κ))〉
}

+〈(Y (κ) − L(V (κ))LH(V (κ))
)−1 − (Y (κ))−1,Y − Y (κ)〉. (4.3)

In particular, the following global upper bound holds on the domain constrained by (4.1):

g(V,Y) ≤ g(V (κ), Y (κ)) + 〈∇g(V (κ), Y (κ)), (V,Y)− (V (κ), Y (κ))〉. (4.4)
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To prove Theorem D.1, the following auxiliary lemmas are needed.

Lemma D.1 (Convex matrix inequality Rashid et al. [2014]). For the matrix-valued

mapping

h (V,Y) � L(V)Y−1LH(V), (4.5)

the following matrix inequality holds for all V(1), V(2) and Y(1) � 0, Y(2) � 0 and

λ ∈ [0, 1]:

h
(
λ(V(1),Y(1)) + (1− λ)(V(2),Y(2))

) � λh(V(1),Y(1)) + (1− λ)h(V(2),Y(2)). (4.6)

Lemma D.2. On the domain 0 � S ≺ Id, the function

ϕ(S) � ln |Id − S|

is concave and monotonically decreasing in the sense that

ϕ(S1) ≤ ϕ(S2), ∀ Id � S2 � S1 � 0. (4.7)

Proof of Lemma D.2 The fact that ϕ is concave is well known. Also (4.7) follows from

Id − S2 � Id − S1 � 0 that yields |Id − S2| ≥ |Id − S1|. �

With the above lemmas, we prove Theorem D.1 as follows. Proof of Theorem D.1 Note

that g(V,Y) = ϕ(h(V,Y)). Therefore, whenever λ ∈ [0, 1], it is true that

g(λ(V(1),Y(1)) + (1− λ)(V(2),Y(2))) = ϕ(h(λ(V(1),Y(1)) + (1− λ)(V(2),Y(2))))

≥ ϕ(λh(V(1),Y(1)) + (1− λ)h(V(2),Y(2)))

≥ λϕ(h(V(1),Y(1))) + (1− λ)ϕ(h(V(2),Y(2)))

= λg(V(1),Y(1)) + (1− λ)g(V(2),Y(2)),

which shows the concavity of g(·). To show (4.3), rewrite g(·) as

g(V,Y) = ln
∣∣Y − L(V)LH(V)

∣∣− ln |Y| (4.8)
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and apply the standard differential rule for each natural logarithmic functions.

Finally, (4.4) follows from the concavity of g Tuy [1998]. �

Proof of Theorem 4.1. Upon substituting

L(V) ∈ {Li,jD(Vi,jD),Li(VUi)},Y ∈ {Mi,jD(V),Mi(V)},
Y (κ) ∈ {Mi,jD(V

(κ)),Mi(V
(κ))}

(4.9)

into (4.4), (4.23) and (4.24) follow with the notice that

fi,jD(V) ≡ −g(Vi,jD ,Y) or fi(V) ≡ −g(VUi,Y)

under the substitution (4.9). �
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Appendix E

Proof of Proposition 4.1

Due to (4.23) and (4.24), any V feasible to (4.25) is also feasible to the nonconvex

program (4.11). Moreover, (4.25) is a minorant maximization of (4.11). As V (κ) is

feasible to (4.25), it follows that

P1(V
(κ+1)) ≥ P (κ)

1 (V (κ+1)) > P (κ)
1 (V (κ)) = P1(V

(κ))

as far as V (κ+1) �= V (κ). Hence, (4.26) is shown.

Furthermore, the sequence {V (κ)} is bounded by constraint (4.11b). By Cauchy theo-

rem, there is a convergent subsequence {V (κν)}, so lim
ν→+∞

[P1(V
(κν+1))− P1(V

(κν))
]
= 0.

For every κ, there is ν such that κν ≤ κ and κ+ 1 ≤ κν+1. By (4.26), it is true that

0 ≤ lim
κ→+∞

[P1(V
(κ+1))− P1(V

(κ))] ≤ lim
ν→+∞

[P1(V
(κν+1))− P1(V

(κν))] = 0, (5.1)

which shows that lim
κ→+∞

[P1(V
(κ+1))− P1(V

(κ))
]
= 0. Therefore, for a given tolerance

ε > 0, the QPI will terminate after finitely many iterations under the stopping criterion

∣∣(P1(V
(κ+1))− P1(V

(κ))
)
/P1(V

(κ))
∣∣ ≤ ε. (5.2)

Each accumulation point V̄ of the sequence {V (κ)} obviously satisfies the minimum

principle necessary condition for optimality Marks and Wright [1978].
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Appendix F

Proof of Corollary 4.1

We only provide an outline of this proof since it is based on Appendix D. The equality

in (4.41) is obvious because rxi,j(V
(κ)) = r

x,(κ)
i,j (V(κ)) for x ∈ {c, a, p}. To prove the

inequality in (4.41), it suffices to show that

rxi,j(V) ≥ r
x,(κ)
i,j (V) ∀ V, x ∈ {c, a, p}. (6.1)

We will prove (6.1) for x = c only, as the proof for x = a and x = p is similar. Rewrite

rci,j(V) as −g(Vc
i,j,Mi,j(V)) for g(Vc

i,j,M) � ln |IL − h(Vc
i,j,M)| and h(Vc

i,j,M) �
(Vc

i,j)
HHH

i,i,jM
−1Hi,i,jV

c
i,j in the domain

U � {(Vc
i,j,M) : M � Hi,i,jV

c
i,j(V

c
i,j)

HHH
i,i,j}.

By [Rashid et al., 2014, Appendix C], h(., .) is convex-valued in U , i.e.,

αh(Vc
i,j,M) + βh(V

c,(κ)
i,j ,M(κ))

� h(α(Vc
i,j,M) + β(V

c,(κ)
i,j ,M(κ))),

for all α ≥ 0, β ≥ 0, α + β = 1. It follows that

g(α(Vc
i,j,M) + β(V

c,(κ)
i,j ,M(κ)))

≥ ln |INr − αh(Vc
i,j,M)− βh(V

c,(κ)
i,j ,M(κ))|

≥ α ln |INr − h(Vc
i,j,M)|+ β ln |INr − h(V

c,(κ)
i,j ,M(κ))|

= αg(Vc
i,j,M) + βg(V

c,(κ)
i,j ,M(κ)),
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i.e. g(., .) is concave in U . And therefore, we have [Tuy, 1998]

g(Vc
i,j,M)− g(V

c,(κ)
i,j ,M(κ))

≤ 〈∇g(V
c,(κ)
i,j ,M(κ)), (Vc

i,j,M)− (V
c,(κ)
i,j ,M(κ))〉

= −2Re{〈HH
i,i,j(M

(κ))−1V
c,(κ)
i,j Hi,i,j,Vi,j −V

c,(κ)
i,j 〉}

+ 〈(M(κ) −Hi,i,jV
c,(κ)
i,j (V

c,(κ)
i,j )HHH

i,i,j)
−1

− (M(κ))−1,M−M(κ)〉,

which is (6.1) for M = Mi,j(V) and M(κ) = Mi,j(V
(κ)).
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