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Abstract

This thesis mainly focuses on the sequential labeling problem. Sequential labeling is a

fundamental problem in computer vision and machine learning areas and has been researched

in many applications. The most popular model for sequential labeling is the hidden Markov

model where the sequence of class labels to be predicted is encoded as a Markov chain. In

recent years, other structural models, in particular, the extension of SVM to the classification

of sequences and other structures have benefited from minimum-loss training approaches

which in many cases lead to greater classification accuracy. However, SVM training requires

the choice of a suitable loss function. Common loss functions available for training are

restricted to decomposable cases such as the zero-one loss and the Hamming loss. Other

useful losses such as the F1 loss, average precision (AP) loss, equal error rates and others

are not available for sequential labeling. For the average precision, some results have been

proposed in the past, but our results are more general. On the other hand, classification

accuracy often suffers from the uncertainty of ground truth labeling and traditional structural

SVM only ensures that the ground-truth labeling of each sample receives a score higher than

that of any other labeling. However, no specific score ranking is imposed among the other

labelings.

For the loss functions problem, we propose a training algorithm that can cater for the F1

loss and any other loss function based on the contingency table. In our thesis, we propose

exact solutions for the F1 loss, precision/recall at fixed value of recall/precision, precision for

a fixed value of predicted positives ("precision at k"), precision/recall Break-Even Point and

a formulation of the Average Precision (AP loss). For further experiments, we not only apply

the AP loss in the training, but also in testing.

For the uncertainty in the ground-truth labeling problem, we extend the standard constraint

set of structural SVM with constraints between "almost-correct" labelings and less desirable

ones to obtain a partial ranking structural SVM (PR-SSVM) approach.

We choose different datasets to verify our approaches: human activity datasets including

the challenging TUM Kitchen dataset and CMU-MMAC dataset, and the Ozone Level

Detection dataset. The experimental results show the efficiency of our approaches on

different performance measurements, such as detection rate, false alarm rate and F1 measure,
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compared to the conventional SVM, HMM and structural SVM with decomposable losses

such as the 0-1 loss and Hamming loss.
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