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Abstract

Given a weighted graph, graph transduction aims to assign unlabeled

examples explicit class labels rather than build a general decision function

based on the available labeled examples. Practically, a dataset usually

contains many noisy data, such as the “bridge points” located across

different classes, and the “outliers” that incur abnormal distances from the

normal examples of their classes. The labels of these examples are usually

ambiguous and also difficult to decide. Labeling them incorrectly may

further bring about erroneous classifications on the remaining unlabeled

examples. Therefore, their accurate classifications are critical to obtaining

satisfactory final performance.

Unfortunately, current graph transduction algorithms usually fall short of

tackling the noisy but critical examples, so they may become fragile and

produce imperfect results sometimes. Therefore, in this thesis we aim to

develop a series of robust graph transduction methodologies via iterative

or non-iterative way, so that they can perfectly handle the difficult noisy

data points. Our works are summarized as follows:

In Chapter 2, we propose a robust non-iterative algorithm named “Label

Prediction via Deformed Graph Laplacian” (LPDGL). Different from

the existing methods that usually employ a traditional graph Laplacian

to achieve label smoothness among pairs of examples, in LPDGL we

introduce a deformed graph Laplacian, which not only induces the existing

pairwise smoothness term, but also leads to a novel local smoothness

term. This local smoothness term detects the ambiguity of each example

by exploring the associated degree, and assigns confident labels to the

examples with large degree, as well as allocates “weak labels” to the

uncertain examples with small degree. As a result, the negative effects

of outliers and bridge points are suppressed, leading to more robust

transduction performance than some existing representative algorithms.

Although LPDGL is designed for transduction purpose, we show that it

can be easily extended to inductive settings.

In Chapter 3, we develop an iterative label propagation approach, called

“Fick’s Law Assisted Propagation” (FLAP), for robust graph transduction.



To be specific, we regard label propagation on the graph as the practical

fluid diffusion on a plane, and develop a novel label propagation algorithm

by utilizing a well-known physical theory called Fick’s Law of Diffusion.

Different from existing machine learning models that are based on some

heuristic principles, FLAP conducts label propagation in a “natural” way,

namely when and how much label information is received or transferred

by an example, or where these labels should be propagated to, are

naturally governed. As a consequence, FLAP not only yields more robust

propagation results, but also requires less computational time than the

existing iterative methods.

In Chapter 4, we propose a propagation framework called “Teaching-

to-Learn and Learning-to-Teach” (TLLT), in which a “teacher” (i.e. a

teaching algorithm) is introduced to guide the label propagation. Different

from existing methods that equally treat all the unlabeled examples, in

TLLT we assume that different examples have different classification

difficulties, and their propagations should follow a simple-to-difficult

sequence. As such, the previously “learned” simple examples can

ease the learning for the subsequent more difficult examples, and thus

these difficult examples can be correctly classified. In each iteration

of propagation, the teacher will designate the simplest examples to

the “learner” (i.e. a propagation algorithm). After “learning” these

simplest examples, the learner will deliver a learning feedback to the

teacher to assist it in choosing the next simplest examples. Due to the

collaborative teaching and learning process, all the unlabeled examples

are propagated in a well-organized sequence, which contributes to the

improved performance over existing methods.

In Chapter 5, we apply the TLLT framework proposed in Chapter 4

to accomplish saliency detection, so that the saliency values of all the

superpixels are decided from simple superpixels to more difficult ones.

The difficulty of a superpixel is judged by its informativity, individuality,

inhomogeneity, and connectivity. As a result, our saliency detector

generates manifest saliency maps, and outperforms baseline methods on

the typical public datasets.
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