
Robust Graph Transduction

Chen Gong

Centre for Quantum Computation & Intelligent Systems

University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

May, 2016

I would like to dedicate this thesis to my loving parents and wife.

Acknowledgements

I would like to express my gratitude to all those who helped me during the

writing of this thesis.

My deepest gratitude goes first and foremost to my supervisor Prof.

Dacheng Tao, for his patient and valuable guidance. I knew little

about research when I began my PhD study in UTS. It was Prof.

Dacheng Tao who taught me how to find interesting ideas, how to

develop solid algorithms, and how to write technical papers all from

scratch. He was always ready to help, and was very willing to teach

everything he knows to me. Without his illuminating instructions,

insightful inspiration, consistent encouragement, and expert guidance, I

would not have published papers on the leading journals or conferences in

my research field. Therefore, I feel extremely grateful for Prof. Dacheng

Tao’s effort.

I am also greatly indebted to the Centre for Quantum Computation &

Intelligent Systems (QCIS) directed by Prof. Chengqi Zhang. In QCIS,

I got the opportunities to learn from many world-famous experts; I met

many colleagues with great enthusiasm for scientific research; and I was

also permitted to attend many prestigious international conferences related

to my research. Studying in QCIS and also UTS will be a fantastic memory

that I will never forget.

I would also like to thank Prof. Jie Yang from Shanghai Jiao Tong

University. Without his introduction, I would not have the opportunity

to study in UTS under the supervision of Prof. Dacheng Tao.

Last but not the least, my gratitude also extends to my family who have

been consistently supporting, encouraging and caring for me all of my life!

Abstract

Given a weighted graph, graph transduction aims to assign unlabeled

examples explicit class labels rather than build a general decision function

based on the available labeled examples. Practically, a dataset usually

contains many noisy data, such as the “bridge points” located across

different classes, and the “outliers” that incur abnormal distances from the

normal examples of their classes. The labels of these examples are usually

ambiguous and also difficult to decide. Labeling them incorrectly may

further bring about erroneous classifications on the remaining unlabeled

examples. Therefore, their accurate classifications are critical to obtaining

satisfactory final performance.

Unfortunately, current graph transduction algorithms usually fall short of

tackling the noisy but critical examples, so they may become fragile and

produce imperfect results sometimes. Therefore, in this thesis we aim to

develop a series of robust graph transduction methodologies via iterative

or non-iterative way, so that they can perfectly handle the difficult noisy

data points. Our works are summarized as follows:

In Chapter 2, we propose a robust non-iterative algorithm named “Label

Prediction via Deformed Graph Laplacian” (LPDGL). Different from

the existing methods that usually employ a traditional graph Laplacian

to achieve label smoothness among pairs of examples, in LPDGL we

introduce a deformed graph Laplacian, which not only induces the existing

pairwise smoothness term, but also leads to a novel local smoothness

term. This local smoothness term detects the ambiguity of each example

by exploring the associated degree, and assigns confident labels to the

examples with large degree, as well as allocates “weak labels” to the

uncertain examples with small degree. As a result, the negative effects

of outliers and bridge points are suppressed, leading to more robust

transduction performance than some existing representative algorithms.

Although LPDGL is designed for transduction purpose, we show that it

can be easily extended to inductive settings.

In Chapter 3, we develop an iterative label propagation approach, called

“Fick’s Law Assisted Propagation” (FLAP), for robust graph transduction.

To be specific, we regard label propagation on the graph as the practical

fluid diffusion on a plane, and develop a novel label propagation algorithm

by utilizing a well-known physical theory called Fick’s Law of Diffusion.

Different from existing machine learning models that are based on some

heuristic principles, FLAP conducts label propagation in a “natural” way,

namely when and how much label information is received or transferred

by an example, or where these labels should be propagated to, are

naturally governed. As a consequence, FLAP not only yields more robust

propagation results, but also requires less computational time than the

existing iterative methods.

In Chapter 4, we propose a propagation framework called “Teaching-

to-Learn and Learning-to-Teach” (TLLT), in which a “teacher” (i.e. a

teaching algorithm) is introduced to guide the label propagation. Different

from existing methods that equally treat all the unlabeled examples, in

TLLT we assume that different examples have different classification

difficulties, and their propagations should follow a simple-to-difficult

sequence. As such, the previously “learned” simple examples can

ease the learning for the subsequent more difficult examples, and thus

these difficult examples can be correctly classified. In each iteration

of propagation, the teacher will designate the simplest examples to

the “learner” (i.e. a propagation algorithm). After “learning” these

simplest examples, the learner will deliver a learning feedback to the

teacher to assist it in choosing the next simplest examples. Due to the

collaborative teaching and learning process, all the unlabeled examples

are propagated in a well-organized sequence, which contributes to the

improved performance over existing methods.

In Chapter 5, we apply the TLLT framework proposed in Chapter 4

to accomplish saliency detection, so that the saliency values of all the

superpixels are decided from simple superpixels to more difficult ones.

The difficulty of a superpixel is judged by its informativity, individuality,

inhomogeneity, and connectivity. As a result, our saliency detector

generates manifest saliency maps, and outperforms baseline methods on

the typical public datasets.

Contents

Contents v

List of Figures viii

List of Tables xiii

1 Introduction 1
1.1 Background . 1

1.2 Related Work . 5

1.2.1 Non-iterative Methods . 6

1.2.2 Iterative Methods . 8

1.3 Motivations and Contributions . 9

1.4 Thesis Structure . 13

1.5 Publications during PhD Study . 14

2 Label Prediction Via Deformed Graph Laplacian 16
2.1 Transduction In Euclidean Space . 18

2.1.1 Sensitivity of γ . 21

2.1.2 Sensitivity of β . 22

2.2 Induction In RKHS . 22

2.2.1 Robustness Analysis . 23

2.2.2 Generalization Risk . 26

2.2.3 Linearization of Kernelized LPDGL 27

2.3 Relationship Between LPDGL and Existing Methods 29

2.4 Experiments . 31

2.4.1 Toy Data . 31

2.4.1.1 Transduction on 3D Data 31

2.4.1.2 Visualization of Generalizability 32

2.4.2 Real Benchmark Data . 33

2.4.3 UCI Data . 34

2.4.4 Handwritten Digit Recognition 39

v

CONTENTS

2.4.5 Face Recognition . 40

2.4.5.1 Yale . 40

2.4.5.2 LFW . 42

2.4.6 Violent Behavior Detection 43

2.5 Summary of This Chapter . 45

3 Fick’s Law Assisted Propagation 46
3.1 Model Description . 47

3.2 Convergence Analysis . 50

3.3 Interpretation and Connections . 53

3.3.1 Regularization Networks . 53

3.3.2 Markov Random Fields . 54

3.3.3 Graph Kernels . 56

3.4 Experimental Results . 56

3.4.1 Synthetic Data . 57

3.4.2 Real Benchmarks Data . 59

3.4.3 UCI Data . 61

3.4.4 Handwritten Digit Recognition 62

3.4.5 Teapot Image Classification 64

3.4.6 Face Recognition . 64

3.4.7 Statistical Significance . 65

3.4.8 Computational Cost . 66

3.4.9 Parametric Settings . 67

3.4.9.1 Choosing η . 67

3.4.9.2 Choosing K . 69

3.5 Summary of This Chapter . 70

4 Label Propagation Via Teaching-to-Learn and Learning-to-Teach 74
4.1 A Brief Introduction to Machine Teaching 75

4.2 Overview of the Proposed Framework 76

4.3 Teaching-to-Learn Step . 77

4.3.1 Curriculum Selection . 78

4.3.2 Optimization . 81

4.4 Learning-to-Teach Step . 83

4.5 Efficient Computations . 86

4.5.1 Commute Time . 86

4.5.2 Updating Σ−1
L,L . 87

4.6 Robustness Analysis . 88

4.7 Physical Interpretation . 92

4.8 Experimental Results . 94

4.8.1 Synthetic Data . 94

vi

CONTENTS

4.8.2 UCI Benchmark Data . 96

4.8.3 Text Categorization . 97

4.8.4 Object Recognition . 98

4.8.5 Fine-grained Image Classification 99

4.8.6 Parametric Sensitivity . 100

4.9 Summary of This Chapter . 101

5 Teaching-to-Learn and Learning-to-Teach For Saliency Detection 103
5.1 A Brief Introduction to Saliency Detection 103

5.2 Saliency Detection Algorithm . 105

5.2.1 Image Pre-processing . 106

5.2.2 Coarse Map Establishment 107

5.2.3 Map Refinement . 107

5.3 Teaching-to-learn and Learning-to-teach For Saliency Propagation . . 108

5.3.1 Teaching-to-learn . 108

5.3.2 Learning-to-teach . 111

5.3.3 Saliency Propagation . 113

5.4 Experimental Results . 114

5.4.1 Experiments on Public Datasets 114

5.4.2 Parametric Sensitivity . 117

5.4.3 Failed Cases . 117

5.5 Summary of This Chapter . 119

6 Conclusion and Future Work 120
6.1 Thesis Summarization . 120

6.2 Relationship and Differences among Algorithms 121

6.3 Future Work . 122

References 124

vii

List of Figures

1.1 The illustration of graph, where the circles represent the vertices x1 ∼
x7 and the lines are edges. The red circle denotes the positive example

with label 1, while blue circle denotes the negative example with label

-1. The numbers near the edges are weights evaluating the similarity

between the two connected vertices. 3

1.2 The transductive results of some representative methods on the Dou-
bleMoon dataset. (a) is the initial state with marked labeled examples

and difficult bridge points. (b), (c), (d), (e), (f) are incorrect results

produced by Zhu and Ghahramani [2002], Zhou and Bousquet [2003],

Wang et al. [2009b], Wang et al. [2013] and Wang et al. [2008a],

respectively. 10

1.3 The structure of this thesis. 14

2.1 The illustration of local smoothness constraint on DoubleLine dataset.

A k-NN graph with k = 2 is built and the edges are shown as

green lines in (a). (b) shows the result without incorporating the

local smoothness, and (c) is the result produced by the proposed

LPDGL. The labels of “bridge point” under two different simulations

are highlighted in (b) and (c), respectively. 17

2.2 The evolutionary process from LPDGL to other typical SSL methods.

The dashed line means “infinitely approach to”. Note that our LPDGL

is located in the central position and other algorithms are derived from

LPDGL by satisfying the conditions alongside the arrows. 29

2.3 Transduction on two 3D datasets: (a) and (d) show the initial states

of Cylinder&Ring and Knot, respectively, in which the red triangle

denotes a positive example and the blue circle represents a negative

example. (b) and (e) are the transduction results of developed LPDGL

on these two datasets. (c) and (f) present the results of LPDGL (Linear). 32

viii

LIST OF FIGURES

2.4 Induction on DoubleMoon and Square&Ring datasets. (a) and (d)

show the initial states with the marked labeled examples. (b) and (e)

are induction results, in which the decision boundaries are plotted. (c)

and (f) are induction performances produced by LPDGL (Linear). . . 33

2.5 Experimental results on four UCI datasets. (a) and (e) are Iris, (b) and

(f) are Wine, (c) and (g) are BreastCancer, and (d) and (h) are Seeds.

The sub-plots in the first row compare the transductive performance

of the algorithms, and the sub-plots in the second row compare their

inductive performance. 34

2.6 Empirical studies on the parametric sensitivity of LPDGL. (a) and (e)

are Iris, (b) and (f) are Wine, (c) and (g) are BreastCancer, and (d)

and (h) are Seeds. The sub-plots in the first row show the transductive

results, and the sub-plots in the second row display the inductive results. 37

2.7 Experimental results on USPS dataset. (a) shows the transductive

results, and (b) shows the inductive results. 39

3.1 The parallel between fluid diffusion and label propagation. The left

cube with more balls is compared to the example with more label

information. The right cube with fewer balls is compared to the

example with less label information. The red arrow indicates the

diffusion direction. 48

3.2 The propagation results on Square&Ring dataset. (a), (b), (c) are

propagation processes of FLAP, LGC and LNP, respectively. (d), (e),

(f) present the classification results brought by MinCut, HF and NTK. 58

3.3 The propagation results on DoubleMoon dataset. (a), (b), (c) are

propagation processes of FLAP, LGC and LNP, respectively. (d), (e),

(f) present the classification results brought by MinCut, HF and NTK. 59

3.4 The comparison of convergence curves. (a) is the result on Square&Ring
and (b) is that on DoubleMoon. 60

3.5 Classification outputs on imbalanced DoubleMoon. (a), (b), (c) and (d)

are results of 1:2, 1:5, 1:10 and 1:25 situations, respectively. 61

3.6 Comparison of accuracy and iteration times. (a) (b) denote Iris, (c) (d)

denote Wine, (e) (f) denote BreastCancer, and (g) (h) denote CNAE-9. 63

3.7 Comparison of accuracy and iteration times on digit recognition

dataset. (a), (b) are the curves of accuracy and iteration times with

the growing of the labeled examples, respectively. 64

3.8 Experiment on Teapot dataset. (a) shows some typical images. (b) is

the accuracy curve for comparison. 65

3.9 Experimental results on LFW face dataset. (a) shows some representa-

tive images, and (b) compares the recognition accuracy. 66

ix

LIST OF FIGURES

3.10 Distribution of eigenvalues on Iris. (a) denotes LNP, (b) denotes LGC

and (c) denotes FLAP. Note that the ranges of the three x-axes are

different. 70

3.11 The impact of parametric settings on accuracy and iteration times. (a),

(b) investigate η, and (c), (d) evaluate K. 71

4.1 The TLLT framework for label propagation. The labeled examples,

unlabeled examples, and curriculum are represented by red, grey, and

green balls, respectively. The steps of Teaching-to-Learn and Leaning-

to-Teach are marked with blue and black dashed boxes. 76

4.2 The toy example to illustrate our motivation. The orientation (left

or right) of the spout in each image is to be determined. Labeled

positive and negative examples are marked with red and blue boxes,

respectively. The difficulties of these examples are illustrated by the

two arrows below the images. The propagation sequence generated

by the conventional methods Gong et al. [2014b]; Zhou and Bousquet

[2003]; Zhu and Ghahramani [2002] is {1, 6} → {2, 3, 4, 5}, while

TLLT operates in the sequence {1, 6} → {2, 5} → {3} → {4}. As a

consequence, only the proposed TLLT can correctly classify the most

difficult images 3 and 4. 77

4.3 The physical interpretation of our TLLT label propagation algorithm.

(a) compares the propagation between two examples with equal

difficulty to the fluid diffusion between two cubes with same altitude.

The left cube with more balls is compared to the examples with

larger label value. The right cube with fewer balls is compared to

the examples with less label information. The red arrow indicates

the diffusion direction. (b) and (c) draw the parallel between fluid

diffusion with different altitudes and label propagation guided by

curriculums. The lowland “C”, highland “B”, and source “A” in (b)

correspond to the simple vertex xC , difficult vertex xB, and labeled

vertex xA in (c), respectively. Like the fluid can only flow from “A”

to the lowland “C” in (b), xA in (c) also tends to transfer the label

information to the simple vertex xC 92

x

LIST OF FIGURES

4.4 The propagation process of the methods on the DoubleMoon dataset.

(a) is the initial state with marked labeled examples and difficult bridge

point. (b) shows the imperfect edges during graph construction caused

by the bridge point in (a). These unsuitable edges pose a difficulty for

all the compared methods to achieve accurate propagation. The second

row (c)∼(i) shows the intermediate propagations of TLLT (Norm),

TLLT (Entropy), GFHF, LGC, LNP, DLP, and GTAM. The third row

(j)∼(p) compares the results achieved by all the algorithms, which

reveals that only the proposed TLLT achieves perfect classification

while the other methods are misled by the ambiguous bridge point. . . 95

4.5 Example images of COIL20 dataset. 98

4.6 Example images of UT Zappos dataset. 99

4.7 Parametric sensitivity of TLLT. The first, second and third rows

correspond to RCV1, COIL20 and UT Zappos datasets, respectively.

(a), (c) and (e) show the variation of accuracy w.r.t. the kernel width ξ
when α is fixed to 1, and (b), (d) and (f) evaluate the influence of the

trade-off α to final accuracy under ξ = 10. 102

5.1 The results achieved by typical propagation methods and our method

on two example images. From left to right: input images, results of

Yang et al. [2013b], Jiang et al. [2013], and our method. 104

5.2 The diagram of our detection algorithm. The magenta arrows anno-

tated with numbers denote the implementations of teaching-to-learn

and learning-to-teach propagation shown in Fig. 5.3. 106

5.3 An illustration of our teaching-to-learn and learning-to-teach paradigm.

In the teaching-to-learn step, based on a set of labeled superpixels (ma-

genta) in an image, the teacher discriminates the adjacent unlabeled

superpixels as difficult (blue superpixels) or simple (green superpixels)

by fusing their informativity, individuality, inhomogeneity, and con-

nectivity. Then simple superpixels are learned by the learner, and the

labeled set is updated correspondingly. In the learning-to-teach step,

the learner provides a learning feedback to the teacher to help decide

the next curriculum. 109

5.4 The illustrations of individuality (a) and inhomogeneity (b). The

region s1 in (a) obtains larger individuality than s2, and s3 in (b) is

more inhomogeneous than s4. 112

xi

LIST OF FIGURES

5.5 Visualization of the designed propagation process. (a) shows the input

image with boundary seeds (yellow). (b) displays the propagations

in several key iterations, and the expansions of labeled set L are

highlighted with light green masks. (c) is the final saliency map. The

curriculum superpixels of the 2nd iteration decided by informativity,

individuality, inhomogeneity, connectivity, and the final integrated

result are visualized in (d), in which the magenta patches represent

the learned superpixels in the 1st propagation, and the regions for the

2nd diffusion are annotated with light green. 113

5.6 Comparison of different methods on two saliency detection datasets.

(a) is MSRA 1000, and (b) is ECSSD. 115

5.7 Visual comparisons of saliency maps generated by all the methods on

some challenging images. The ground truth (GT) is presented in the

last column. 116

5.8 Parametric sensitivity analyses: (a) shows the variation of Fw
β w.r.t. θ

by fixing N = 400; (b) presents the change of Fw
β w.r.t. N by keeping

θ = 0.25. 117

5.9 Failed cases of our method. (a) shows an example that the object is

very similar to the background, in which the correct seed superpixels

are marked with magenta. (b) is the imperfect saliency map corre-

sponding to the image in (a). In (c), the targets are completely missed

by the convex hull (blue polygon), which leads to the detection failure

as revealed by (d). 118

xii

List of Tables

2.1 Experimental results on the benchmark datasets for the variety of

transduction algorithms. (The values in the table represent the error

rate (%). The best three results for each dataset are marked in red,

blue, and green, respectively.) . 35

2.2 Summary of four UCI datasets . 36

2.3 F-statistics values of inductive algorithms versus LPDGL on UCI

datasets. (The records smaller than 4.74 are marked in red, which mean

that the null hypothesis is accepted.) 38

2.4 Transductive comparison on Yale dataset 41

2.5 Inductive comparison on Yale dataset 41

2.6 Transductive comparison on LFW dataset 42

2.7 Inductive comparison on LFW dataset 43

2.8 Transductive results on HockeyFight dataset 44

2.9 Inductive results on HockeyFight dataset 44

3.1 FLAP vs. popular graph transduction algorithms. 55

3.2 Performances of all the methods on two synthetic datasets. Each record

follows the format ”iteration time/CPU seconds/accuracy”. 57

3.3 Experimental results on the benchmark datasets for the variety of graph

transduction algorithms. (The values in the table represent accuracy (%).) 62

3.4 F-statistics values of baselines versus FLAP on four UCI datasets.

(The records smaller than 4.74 are marked in red, which mean that

1) the null hypothesis is accepted, and 2) the corresponding baseline

algorithm performs comparably to FLAP.) 72

3.5 CPU time (unit: seconds) of various methods. (For each l, the smallest

record among iterative methods is marked in red, while the smallest

record among non-iterative methods is highlighted in blue.) 73

xiii

LIST OF TABLES

4.1 Experimental results of the compared methods on four UCI benchmark

datasets. (Each record in the table represents the “accuracy ± standard

deviation”. The highest result obtained on each dataset is marked in

bold.) . 97

4.2 Accuracy of all methods on the RCV1 dataset (the highest records are

marked in bold). 98

4.3 Accuracy of all methods on the COIL20 dataset (the highest records

are marked in bold). 99

4.4 Accuracy of all methods on UT Zappos dataset (highest records are

marked in bold). 100

5.1 Average CPU seconds of all the approaches on ECSSD dataset 116

xiv

Chapter 1

Introduction

The notion of transduction was originally proposed by Gammerman et al. [1998],

which means that we are interested in the classification of a particular set of examples

rather than a general decision function for classifying the future unseen examples. In

other words, if we know the examples to be classified in advance, and do not care about

the explicit decision function, then transduction is an ideal mathematical tool to solve

the related problem.

A critical issue in transductive algorithms is how to exploit the relationship among

different examples to aid the classifications on the unlabeled examples. One feasible

solution suggested by Zhu et al. [2003a] is to use graph to model the similarity between

pairs of examples, and the corresponding technique is called graph transduction.

In this chapter, we briefly introduce the background of graph transduction,

thoroughly review the related literatures, clearly elaborate our motivations and con-

tributions, and finally present the organization of the entire thesis.

1.1 Background
Formally, we use the notations X and Y to denote the example space and label space,

respectively. Given a set of examples Ψ = {xi ∈ X ⊂ R
d, i = 1, 2, · · · , n, n = l+u},

in which the first l elements are examples with the labels {yi}li=1 ∈ Y ∈ {1,−1},

and the rest are u unlabeled examples. We use L = {(x1, y1), (x2, y2), · · · , (xl, yl)}
to denote the labeled set drawn from the joint distribution P defined on X × Y, and

U = {xl+1,xl+2, · · · ,xl+u} to represent the unlabeled set drawn from the unknown

marginal distribution PX of P . Then the target of a transductive algorithm is to find

the labels yl+1, yl+2, · · · , yl+u of every unlabeled examples xl+1,xl+2, · · · ,xl+u in U

based on Ψ. For graph transduction, a graph G = 〈V,E〉 is usually built where V is

the vertex set composed of all the examples in Ψ, and E is the edge set recording

1

the relationship among all the vertices1. Wn×n is the adjacency matrix of graph G, in

which the element ωij encodes the similarity between vertices xi and xj . The degree of

the i-th vertex is defined by dii =
∑n

j=1 ωij , and D is a diagonal matrix with (D)ii =
dii for 1 ≤ i ≤ n. Therefore, the volume of graph G can be further formulated as

v =
∑n

i=1 dii. Based on the adjacency matrix W and the degree matrix D, we further

define the graph Laplacian as L = D − W, which will play an important role in the

following chapters.

An illustration of graph G consisted of seven vertices is presented in Fig. 1.1, of

which the associated adjacency matrix W, degree matrix D, and graph Laplacian L
are

W =

x1 x2 x3 x4 x5 x6 x7

x1

x2

x3

x4

x5

x6

x7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.7 0.8 0 0 0 0
0.7 0 0 0 0 0 0
0.8 0 0 0.1 0 0 0
0 0 0.1 0 0.6 0 0
0 0 0 0.6 0 0.5 0.6
0 0 0 0 0.5 0 0.9
0 0 0 0 0.6 0.9 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.5 0 0 0 0 0 0
0 0.7 0 0 0 0 0
0 0 0.9 0 0 0 0
0 0 0 0.7 0 0 0
0 0 0 0 1.7 0 0
0 0 0 0 0 1.4 0
0 0 0 0 0 0 1.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.1)

and

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.5 −0.7 −0.8 0 0 0 0
−0.7 0.7 0 0 0 0 0
−0.8 0 0.9 −0.1 0 0 0
0 0 −0.1 0.7 −0.6 0 0
0 0 0 −0.6 1.7 −0.5 −0.6
0 0 0 0 −0.5 1.4 −0.9
0 0 0 0 −0.6 −0.9 1.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From this example, we know that two questions should be answered to establish

a graph, namely: 1) how to decide the existence or absence of an edge between two

vertices, and 2) how to compute the edge weight (i.e. the similarity between the two

examples) given an edge. Based on the different ways for generating the edges, we list

some commonly adopted graphs as follows:

1We use “examples” and “vertices” interchangeably in this thesis for different explanation purpose.

2

x2
x4

x1

x3

x5
x7

x60.1

Figure 1.1: The illustration of graph, where the circles represent the vertices x1 ∼ x7

and the lines are edges. The red circle denotes the positive example with label 1, while

blue circle denotes the negative example with label -1. The numbers near the edges are

weights evaluating the similarity between the two connected vertices.

• Fully connected graph. In this graph, all pairs of vertices are connected by an

edge, so there are totally n(n− 1)/2 edges in the graph.

• ε-neighborhood graph. Two vertices xi and xj is connected by an edge if and

only if the Euclidean distance between them satisfies ‖xi − xj‖ ≤ ε where ε is

a predefined threshold.

• K-nearest neighbourhood (KNN) graph. Two vertices xi and xj should be

linked if xi is among the K nearest neighbours of xj or xj belongs to the K
nearest neighbours of xi. This is the most popular graph widely adopted by

massive existing algorithms.

• Mutual KNN graph. Two vertices xi and xj should be connected by an edge

if xi is among the K nearest neighbours of xj , and simultaneously xj is one of

the K neighbours of xi. Note that mutual KNN graph slightly differs from KNN

graph in that an edge exists when both xi and xj are neighbors of each other,

therefore mutual KNN graph is usually sparser than then KNN graph under the

same choice of K.

After edge establishment, the next step is to compute the weights of these edges.

There are three traditional approaches to determine the edge weights:

• Binary 0-1 weight. The weight is 1 as long as there is an edge between two

vertices, and 0 otherwise.

• Gaussian kernel function. The weight ωij between xi and xj is computed by

the Gaussian kernel function, namely

ωij = exp

(
−‖xi − xj‖2

2σ2

)
, (1.2)

3

where σ is the kernel width. The weight ωij is large if xi and xj are close in the

Euclidean space.

• Locally linear embedding. By assuming that the central vertex xi can be

linearly reconstructed by its K neighbors N(xi), the weights are decided by

solving the following optimization problem:

minωij

∥∥∥xi −
∑

j:xj∈N(xi)
ωijxj

∥∥∥2

s.t.
∑

j ωij = 1, ωij ≥ 0
. (1.3)

Though above weighting methods are different, they produce the weights that are

in the range [0, 1]. Apart from above traditional graph construction techniques, more

advanced approaches have been proposed in recent years to improve the scalability Liu

et al. [2010]; Wang and Xia [2012]; Zhang and Wang [2010]; Zhu and Lafferty [2005]

or robustness Chen et al. [2013]; Jebara et al. [2009]; Karasuyama and Mamitsuka

[2013a,b]; Li and Fu [2013]. We refer the readers to D. Sousa et al. [2013] for more

insightful studies and comparisons on various graph construction strategies.

Based on the established graph G, the labeled examples in L are regarded as

seed vertices, and they will spread their label information to the remaining unlabeled

vertices via the edges in G. For example, in Fig. 1.1 the vertices x2 and x7 are labeled

examples with labels 1 and -1, respectively, while the remaining vertices are originally

unlabeled. Then graph transduction aims to diffuse the label information carried by x2

and x7 to the unlabeled x1, x3, x4, x5, and x6, so that they are accurately classified as

positive or negative.

Graph transduction belongs to the scope of Semi-Supervised Learning (SSL)

Chapelle et al. [2006]; Zhu and Goldberg [2009], which aims to predict the labels

of a large amount of unlabeled examples given only a few labeled examples (namely

l � u). The key motivation of SSL is to elaborately exploit the data structure revealed

by both scarce labeled examples and the massive unlabeled examples. Though these

unlabeled examples do not have explicit labels, they often reflect the structure of the

entire data distribution. Apart from the transductive semi-supervised methods Azran

[2007]; Blum et al. [2004]; Chang and Yeung [2004]; Liu et al. [2010]; Wang et al.

[2008b, 2009b]; Wu and Schölkopf [2007]; Zhou and Bousquet [2003]; Zhou and

Schölkopf [2004]; Zhu et al. [2003a], there also exist a variety of inductive SSL

methods, such as Belkin et al. [2006]; Ji et al. [2012]; Li and Zhou [2011, 2015]; Li

et al. [2009]; Quang et al. [2013]; Vapnik [1998]; Wang and Chen [2013]; Wang et al.

[2012]. Different from transduction, an inductive algorithm takes Ψ as the training set

to train a suitable f : X → Y, which is able to predict the label f(xt) ∈ Y ∈ R of an

unseen test example xt ∈ X ∈ R
d. In this thesis, we mainly focus on developing the

transductive algorithms based on an undirected graph as shown by Fig. 1.1.

4

As an important branch of SSL, graph transduction inherits many ideal properties

of SSL, such as the capability of handling insufficient labeled examples. Therefore,

graph transduction can be utilized for solving various practical problems such as:

• Interactive image segmentation. Interactive image segmentation requires the

user to annotate a small number of “seed pixels” as foreground or background,

and then the segmentation algorithm will automatically segment the foreground

region out of the irrelevant background. In this application, it is intractable to

manually annotate a large amount of seed pixels, because such annotation is

time-consuming when the input image contains hundreds of thousands of pixels.

• Web-scale image/text annotation. Recent years have witnessed the vigourous

development of the industry of Internet. There are numerous new image/text

data uploaded to the Internet everyday. Current search engines such as Google

and Baidu largely depend on the annotated tags to provide users useful search

results. However, annotating all the new image/text data manually is infeasible

because of the unacceptable human labor cost. Therefore, graph transduction

can be employed to annotate the massive unlabeled new data based on the small

amount of previously annotated data.

• Protein structure prediction. In protein 3D structure prediction, a DNA

sequence is an example and its label is the 3D protein folding structure. It often

takes months of laboratory work for researchers to identify a single protein’s 3D

structure, so it is impossible to prepare sufficient labeled examples for predicting

the structure of an unseen DNA sequence. By building a graph over all the

labeled and unlabeled protein examples, we may fully exploit the limited labeled

examples and the relationship among examples, making it possible to infer the

structures of new DNA sequences.

• Social network analysis. In recent years, various social websites such as

Twitter and Facebook have gained much popularity among the people all over

the world. The social network is a natural graph in which each user is a vertex

and their interactions are edges reflecting the closeness of their interpersonal

relationship. Therefore, graph transduction can be used to discover the implicit

social behaviours, such as community establishment, user influence, and rumor

spreading, etc.

1.2 Related Work
Due to the extensive applications and solid mathematical foundations, graph transduc-

tion has been investigated by many researchers and various transductive algorithms

5

have been developed as a result. The existing graph transduction methodologies can

be divided into iterative methods and non-iterative methods. This section will review

the related literatures according to this taxonomy.

1.2.1 Non-iterative Methods
A non-iterative method usually fit into an optimization framework. The unlabeled

examples are then classified by directly minimizing an objective function on the graph.

For example, Joachims [2003] classifies unlabeled examples by finding the best

graph partition to minimize a pre-defined energy function. They leverage the theory

of graph cut Shi and Malik [2000] and solve the problem via utilizing the spectral

property of the graph. Zhu et al. [2003a] regard the graph as a Gaussian random

field, where the mean is characterized by harmonic functions. The most important

contribution of this work is that they propose a smoothness regularizer based on the

graph Laplacian L, which enforces the nearby examples to obtain similar labels on a

graph. The authors also elegantly related their algorithm with random walks, electric

networks, and spectral graph theory. This work was extended to large-scale situations

by incorporating the generative mixture models to construct a much smaller “backbone

graph” with vertices induced from the mixture components Zhu and Lafferty [2005].

Another method that is applicable to large datasets is proposed by Fergus et al. [2009],

in which the spectral graph theory is adopted to efficiently construct accurate numerical

approximations to the eigenvectors of the normalized graph Laplacian. As a result,

their method achieves linear complexity w.r.t. the number of examples.

Inspired by Zhu et al. [2003a], a variety of regularizers were developed afterwards

according to different heuristics. Belkin et al. [2004a,b] deployed the Tikhonov

regularization for graph transduction which requires that the sum of assigned labels

equal to 1. Belkin et al. [2006] also proposed the manifold regularization to regulate

the variations of examples’ labels to vary smoothly along the manifold. They explore

the geometry of the data distribution by postulating that its support has the geometric

structure of a Riemannian manifold. They extend the traditional Regularized Least

Squares (RLS) method and Support Vector Machines (SVM) by utilizing the properties

of Reproducing Kernel Hilbert Spaces (RKHS). The proved new Representer theorem

provides both solutions and theoretical basis to their algorithms. Furthermore, Belkin

and Niyogi [2005] and Belkin and Niyogi [2008] showed the theoretical foundation

about manifold regularization and proved that the manifold assumption can reliably

tackle some situations that the fully supervised learning would fail. The scalability

of Belkin et al. [2006] was improved by Chen et al. [2012b] via an introduced

intermediate decision variable, which avoids the computation of the inverse of a large

matrix appeared in Belkin et al. [2006]. Karlen et al. [2008] also proposed a large-

scale manifold regularization method based on SVM, which is solved via stochastic

gradient descend. The effectiveness of manifold regularization has been demonstrated

6

in feature selection Xu et al. [2010] and dimensionality reduction Huang et al. [2012].

Different from Belkin et al. [2006] that assumes single manifold is embedded in the

dataset, Goldberg et al. [2009] consider that there are multiple manifolds hidden in the

dataset and present a “cluster-then-label” method to solve the transduction problem.

Apart from the regularizers mentioned above, Wu and Schölkopf [2007] developed

the local learning regularizer to predict each example’s label from those of its

neighbors. Wang et al. [2008a] extends this work by further incorporating a global

regularizer. Orbach and Crammer [2012] utilized the degree information to evaluate

the quality of different vertices, based on which they cast transduction as a convex

optimization problem that is able to assign confident labels to the unlabeled examples.

The importance of local regularizer is also observed by Xiang et al. [2010], which

developed the local splines in Sobolev space so that the examples can be directly

mapped to their class labels. They also prove that the designed objective function

has a globally optimal solution.

Another trend for non-iterative graph transduction is to use the information theory

to model the relationship among different examples. Szummer and Jaakkola [2002b]

propose an information theoretic regularization framework for combining conditional

and marginal densities in a semi-supervised estimation setting. The framework admits

both discrete and continuous densities. Subramanya and Bilmes [2011] minimize

the Kullback-Leibler divergence (also known as “relative entropy”) between discrete

probability measures that encode class membership probabilities. They show that

the adopted alternating optimization process has a closed-form solution for each

subproblem and converges to the correct optima. Grandvalet and Bengio [2004]

discover that the unlabeled examples are mostly beneficial when classes have small

overlap, and they use the conditional entropy to assess the usefulness of unlabeled

examples. By introducing the entropy regularization, Grandvalet and Bengio [2004]

transform the graph transduction problem into a standard supervised learning problem.

There also exist numerous algorithms that extend the conventional graph trans-

duction to different settings. For example, Goldberg et al. [2007], Ma and Jan

[2013] and Gong et al. [2014a] develop various transductive algorithms when the

“must-links” and “cannot-links” between examples are available. Ding et al. [2009]

generalize the Laplacian embedding to K-partite graph rather than the traditional

graphs introduced in Section 1.1. Cai et al. [2013] and Karasuyama and Mamitsuka

[2013b] associate each view with a graph, and build multiple graphs to deal with multi-

view graph transduction. Liu and Chang [2009] develop multi-class graph transduction

by incorporating class priors, and obtain a simple closed-form solution. For multi-label

situations, Kong et al. [2013] build a graph on all the examples and conduct multi-

label transduction by assuming that the labels of a central example can be linearly

reconstructed by its neighbors’ labels. Differently, Wang et al. [2009a] and Chen et al.

[2008] establish two graphs in example space and label space, and use Green’s function

and Sylvester equation respectively to capture the dependencies between different

7

examples and labels.

Other representative non-iterative methods include Erdem and Pelillo [2012];

Goldberg et al. [2010]; Kim and Theobalt [2015]; Li and Zemel [2014]; Niu et al.

[2014]; Sinha and Belkin [2009]; Zhu et al. [2005].

1.2.2 Iterative Methods
Iterative methods conduct graph transduction by gradually propagating the labels of

seed vertices to the unlabeled vertices. The algorithms of this type usually establish an

iterative expression, based on which the label information is diffused on the graph

in an iterative way. Therefore, the iterative graph transduction is also known as

label propagation. In each propagation, the labels of all the examples are updated

by considering both their previous states and the influence of other examples. The

entire iteration process can be proved to converge to a stationary state, which conveys

the labels of originally unlabeled examples.

The notion of “label propagation” was introduced by Zhu and Ghahramani [2002],

which proposed to iteratively propagate class labels on a weighted graph by executing

random walks with clamping operations. This algorithm was successfully applied

to shape retrieval by Yang et al. [2008] and Bai et al. [2010]. Similarly to Zhu

and Ghahramani [2002], Szummer and Jaakkola [2002a] combine a limited number

of labeled examples with a Markov random walk representation over the unlabeled

examples. The random walk process exploits low-dimensional structure of the dataset

in a robust and probabilistic manner. Azran [2007] associates each vertex with a

particle that moves on the graph according to a transition probability matrix. By

treating the labeled vertices as absorbing states of the Markov random walk, the

probability of each particle to be absorbed by the different labeled points is then

employed to derive a distribution over the labels of unlabeled examples. Furthermore,

Wu et al. [2012] proposed partially absorbing random walks, in which a random walk

is with probability pi being absorbed at current state i, and with probability 1 − pi
follows a random edge out of the state i. When the walking process is completed, the

probability of each particle to be absorbed by the labeled examples can be determined,

which helps to estimate the labels of all the examples.

Unlike Szummer and Jaakkola [2002a]; Wu et al. [2012]; Zhu and Ghahramani

[2002] which work on asymmetric normalized graph Laplacians I−D−1W (I denotes

the identity matrix in this thesis), Zhou and Bousquet [2003]; Zhou et al. [2004b]

deployed a symmetric normalized graph Laplacian I − D−1/2WD−1/2 to implement

propagation. However, the computational burden of this method is heavy, so Fujiwara

et al. Fujiwara and Irie [2014] proposed the efficient label propagation by iteratively

computing the lower and upper bounds of labeling values to prune unnecessary label

computations. Lin and Cohen [2011] also proposed a “path-folding trick” to adapt

Zhou and Bousquet [2003] to large-scale text data. In order to address the problem

8

that Zhou and Bousquet [2003] is sensitive to the initial set of labels provided by

the user, Wang et al. [2008b] introduced a node normalization terms to resist the

label imbalance. They provide an alternating minimization scheme that incrementally

adjusts the objective function and the labels towards a reliable local minimum. Besides,

inspired by Zhou and Bousquet [2003], Wang and Zhang [2006, 2008]; Wang et al.

[2009b] established a graph by assuming that an example can be linearly reconstructed

by its neighbours, and adopted the similar iterative expression to Zhou and Bousquet

[2003] for label propagation.

Considering that the fixed adjacency matrix of a graph cannot always faithfully

reflect the similarities between examples during propagation, Wang et al. [2013]

developed dynamic label propagation to update the edge weights dynamically by

fusing available multi-label and multi-class information. Wang and Tu [2012]

proposed to learn an accurate adjacency matrix via self-diffusion, in which the

optimal iteration number t� is heuristically determined based on the defined “degree of

freedom”.

Other representative iterative methods include the mixed label propagation for

handling the pair-wise constraints Tong and Jin [2007], label propagation on directed

graph Zhou et al. [2004a], graph-based propagation under probabilistic point-wise

smoothness Fang et al. [2014], and Wasserstein propagation for diffusing the prob-

ability distributions and histograms Solomon et al. [2014].

It is worth emphasizing that some iterative methods also have a closed convergent

result, so they can also be attributed to non-iterative category, such as Wang and Zhang

[2006]; Zhou and Bousquet [2003]; Zhou et al. [2004b]; Zhu and Ghahramani [2002].

We classify them into iterative category because they are originally derived for iterative

label propagation, even though each of them also has a closed-form solution that can

be understood as the optimizer of a regularization framework.

1.3 Motivations and Contributions
Although the existing graph transduction algorithms mentioned above have obtained

encouraging results to some extent, they may become fragile under certain circum-

stances. Specifically, the practical data are usually “dirty”, which means that there are a

considerable amount of “bridge points” located across different classes, and the outliers

that incur abnormal distances from the normal examples of their classes. The labels

of these examples are usually ambiguous and also difficult to decided. As a result,

they are very likely to mislead the transduction and result in error-prone classifications.

Therefore, the robustness of current transductive methods should be improved to better

handle such difficult or abnormal examples.

Fig. 1.2 shows an example that some of the existing algorithms are misled by the

difficult bridge point located between the two classes. Fig. 1.2(a) presents the adopted

9

(f)(d) (e)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

2

Positive
Negative
Unlabeled

(a)

Difficult
bridge point

(b) (c)

0 2 4 6-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.2: The transductive results of some representative methods on the

DoubleMoon dataset. (a) is the initial state with marked labeled examples and

difficult bridge points. (b), (c), (d), (e), (f) are incorrect results produced by Zhu and

Ghahramani [2002], Zhou and Bousquet [2003], Wang et al. [2009b], Wang et al.

[2013] and Wang et al. [2008a], respectively.

two-dimensional DoubleMoon dataset, which consists of 640 examples that are equally

divided into two moons. This dataset is contaminated by the Gaussian noise with

standard deviation 0.15, and each class has only one initial labeled example. The

classification results produced by Zhu and Ghahramani [2002], Zhou and Bousquet

[2003], Wang et al. [2009b], Wang et al. [2013] and Wang et al. [2008a] are illustrated

in (b), (c), (d), (e), (f), respectively. From Fig. 1.2(a), we observe that the distance

between the two classes is very small, and thus a difficult bridge point is distributed

among the intersection region between the two moons. As a result, some representative

existing methods cannot perfectly deal with this ambiguous bridge point and thus

generate unsatisfactory results.

The main motivation of this thesis is to design novel robust graph transduction

algorithms so that they can resist the adverse impact of the ambiguous “dirty examples”

such as outliers and bridge points. Specifically, three robust transduction algorithms

are proposed in this thesis, which are Label Prediction via Deformed Graph Laplacian

(LPDGL), Fick’s Law Assisted Propagation (FLAP), and label propagation via

Teaching-to-Learn and Learning-to-Teach (TLLT). Of these, the first one is non-

10

iterative, and the rest are iterative methods.

In LPDGL, we extend the traditional graph Laplacian L to the deformed graph

Laplacian to define a novel smoothness term, and propose an optimization framework

based on the new smoothness term. The unlabeled examples are then assigned accurate

labels by solving this optimization problem. We prove that the proposed optimization

problem has a closed-form solution, which is also globally optimal. Compared with

existing popular transduction methods which simply exploit the smoothness between

pairs of examples (i.e. pairwise smoothness), a novel local smoothness term is

introduced “naturally”, which is critical for our model to better deal with ambiguous

examples. This local smoothness term considers the examples and their neighbours

as a whole, and regulates the labels of uncertain examples to small values in order to

suppress their negative influence on other examples. Furthermore, we show that the

proposed LPDGL can be easily extended to inductive cases even though it is originally

designed for the transductive purpose. Theoretical studies reveal that the incorporated

free parameters are easy to tune because the result of LPDGL is not sensitive to

the variations of these free parameters. We also theoretically analyse the robustness

of LPDGL, based on which the generalization bound is derived. Experiments on a

variety of real-world datasets demonstrate that LPDGL achieves top level performance

on both transductive and inductive settings by comparing it with popular graph-based

algorithms.

In FLAP, we utilize the well-known physical theory, Fick’s First Law of Diffusion,

to guide the label propagation. As a result, FLAP is more lifelike because it is

straightforwardly derived from statistical physics. Therefore, when and how much

label information is received or transferred by an example, or where these labels

should be propagated to, are directly governed by the well-known Fick’s law, which

is better than decided via some heuristic and ad hoc requirements or criteria exploited

in conventional machine learning algorithms. This is beneficial for FLAP to obtain

robust performance. In particular, FLAP simulates the diffusion of fluid for label

propagation, thus the labeled examples can be regarded as the diffusive sources

with high concentration of label information. When the diffusion process starts,

the flux of label information will be transferred from the labeled examples to the

remaining unlabeled examples. When the diffusion process is completed, all the

examples on the graph will receive a certain concentration of label information,

providing the foundation for final classification. Another merit by using Fick’s

First Law of Diffusion is that FLAP makes eigenvalues of the iteration matrix

distributed regularly, leading to faster convergence rate than the traditional propagation

algorithms such as Zhu and Ghahramani [2002], Zhou and Bousquet [2003] and Wang

et al. [2009b]. We conduct the experiments on several computer vision and pattern

recognition repositories, including handwritten digit recognition, face recognition and

teapot image classification. Comprehensive experimental evaluations on synthetic

and practical datasets reveal that FLAP obtains encouraging results in terms of both

11

accuracy and efficiency.

In TLLT, we propose a novel teaching-to-learn and learning-to-teach framework

for robust label propagation. Existing graph-based propagation algorithms usually

treat unlabeled examples equally, and transmit seed labels to the unlabeled examples

that are directly connected to the labeled examples in a graph. Such a popular

propagation scheme is very likely to yield inaccurate propagation, because it falls

short of tackling ambiguous but critical data points (e.g., outliers). To this end,

TLLT treats the unlabeled examples in different levels of difficulties by assessing

their reliability and discriminability, and explicitly optimizes the propagation quality

by manipulating the propagation sequence to move from simple to difficult examples.

Specifically, we employ the method of Zhu and Ghahramani [2002] as a “learner”, and

introduce a “teacher” to guide the entire propagation process. In each propagation, the

proposed method alternates between two paradigms, teaching-to-learn and learning-

to-teach. In the teaching-to-learn step, the learner conducts the propagation on the

simplest unlabeled examples designated by the teacher. In the learning-to-teach

step, the teacher incorporates the learner’s feedback to adjust the choice of the

subsequent simplest examples. The TLLT strategy critically improves the accuracy of

label propagation, making our algorithm substantially robust to the values of tuning

parameters such as the Gaussian kernel width used in graph construction. To the

best of our knowledge, this method is the first work to model label propagation as

a teaching and learning framework, so that abundant unlabeled examples are activated

to receive the propagated labels in a well-organized sequence. Furthermore, we show

that TLLT is related to FLAP if the difficult unlabeled examples and simple examples

are respectively regarded as the highlands and lowlands in the diffusive simulation.

The merits of our algorithm are theoretically justified and empirically demonstrated

through experiments performed on both synthetic and real-world datasets.

Moreover, since label propagation has achieved very encouraging performance

on salient object detection (or “saliency detection”) in recent years, it is natural to

apply the TLLT framework to saliency detection for obtaining improved results. A

saliency detection algorithm aims to identify the most attractive object in an image,

and meanwhile outputs a grey-scale saliency map to indicate the saliency degree of

different regions. Saliency propagation refers to the detection method that is based

on the label propagation strategy. The propagation sequence generated by existing

saliency detection methods is governed by the spatial relationships of image regions,

i.e., the saliency value is transmitted between two adjacent regions. However, for

the inhomogeneous difficult adjacent regions, such a sequence may incur wrong

propagations. Therefore, we attempt to manipulate the propagation sequence for

optimizing the propagation quality by using the TLLT algorithm. Intuitively, we

postpone the propagations to difficult regions and meanwhile advance the propagations

to simple regions. The difficulty of a region is evaluated by its informativity,

individuality, inhomogeneity, and connectivity. In the teaching-to-learn step, a teacher

12

is designed to arrange the regions from simple to difficult and then assign the simplest

regions to the learner. In the learning-to-teach step, the learner delivers its learning

confidence to the teacher to assist the teacher to choose the subsequent simple regions.

Due to the interactions between the teacher and learner, the uncertainty of original

difficult regions is gradually reduced, yielding manifest salient objects with optimized

background suppression. Extensive experimental results on benchmark saliency

datasets demonstrate the superiority of the proposed algorithm over several existing

representative saliency detectors.

In summary, the main contributions of this thesis lie in the following four aspects:

1. We propose a novel non-iterative graph transduction algorithm called “LPDGL”,

which deploys the deformed graph Laplacian to generate a local smoothness

term. As a result, the ambiguous data points with uncertain labels are assigned

small soft labels, and the examples with definite labels are assigned trustable and

confident labels.

2. We propose a novel label propagation algorithm termed “FLAP” from the

perspective of physical theory, so that the propagation follows the practical

fluid-spreading way. As a consequence, the unlabeled examples are propagated

naturally and thus receive more precise label information than using other ad

hoc methods. Therefore, the robustness of the entire propagation process is

guaranteed.

3. We design a novel framework for accurate label propagation called “TLLT”,

which requires the interactions between a teacher and a learner. We assume that

different examples have different levels of difficulty, and invoke the unlabeled

examples to be propagated from a simple-to-difficult sequence. Consequently,

the previously learned simple knowledge eases the learning burden of the

difficult examples afterwards, leading to the improved accuracy and robustness

of our propagation approach.

4. We apply the proposed TLLT methodology to saliency detection in the natural

image. By comprehensively evaluating the difficulty scores of different regions,

we decide the saliency values of simple regions ahead of more difficult ones, so

that all the regions in an image can get confident and accurate saliency values.

1.4 Thesis Structure
To achieve robust graph transduction, this thesis proposes three algorithms LPDGL,

FLAP and TLLT based on different motivations, and then applies TLLT to saliency

detection tasks. The remaining parts of this thesis are organized as follows:

13

Robust Graph
Transduction

Non-iterative Method: LPDGL (Chapter 2)

Iterative Methods

FLAP (Chapter 3)

TLLT (Chapter 4)
Application Saliency Detection

(Chapter 5)

Figure 1.3: The structure of this thesis.

Chapter 2 introduces the LPDGL algorithm for both transductive and inductive

purposes.

Chapter 3 introduces the FLAP algorithm for iterative label propagation.

Chapter 4 introduces the TLLT framework for robust label propagation.

Chapter 5 introduces an application of TLLT to saliency detection.

Chapter 6 concludes this thesis and also presents the possible future works.

The structure of the entire thesis is illustrate in Fig. 1.3.

1.5 Publications during PhD Study
1. Chen Gong, Dacheng Tao, Keren Fu, Jie Yang. ReLISH: Reliable Label

Inference via Smoothness Hypothesis. AAAI, 2014. (oral)

2. Chen Gong, Dacheng Tao, Keren Fu, Jie Yang. Signed Laplacian Embedding

for Supervised Dimension Reduction. AAAI, 2014.

3. Chen Gong, Keren Fu, Artur Loza, Qiang Wu, Jia Liu, Jie Yang. PageRank

Tracker: From Ranking To Tracking. IEEE Transactions on Cybernetics

(TCYB), 2014, 44(6): 882-893.

4. Chen Gong, Dacheng Tao, Keren Fu, Jie Yang. Fick’s Law Assisted Propaga-

tion for Semisupervised Learning. IEEE Transactions on Neural Networks and

Learning Systems (TNNLS), 2015, 26(9): 2148-2162.

5. Chen Gong, Dacheng Tao, Keren Fu, Jie Yang. Deformed Graph Laplacian for

Semisupervised Learning. IEEE Transactions on Neural Networks and Learning

Systems (TNNLS), 2015, 26(10): 2261-2274.

6. Chen Gong, Dacheng Tao, Wei Liu, S.J. Maybank, Meng Fang, Keren Fu,

Jie Yang. Saliency Propagation From Simple To Difficult. IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

14

7. Chen Gong, Dacheng Tao, Jie Yang. Teaching-to-Learn and Learning-to-Teach

for Multi-label Propagation. AAAI, 2016. (oral)

8. Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, Jie Yang. Label Propagation

via Teaching-to-Learn and Learning-to-Teach. IEEE Transactions on Neural

Networks and Learning Systems (TNNLS), 2016. (accepted)

15

Chapter 2

Label Prediction Via Deformed Graph
Laplacian

This chapter aims to develop a graph transduction algorithm under the manifold

assumption, which assumes that there exists a C
∞ smooth manifold M without

boundary and with an infinitely differentiable embedding in the ambient example space

X. Specifically, we aim to use the limited number of labeled examples {xi}li=1 ∈ R
d

and the abundant unlabeled examples {xi}l+u
i=l+1 ∈ R

d to approximate the embedded

manifold. This discovered manifold carries critical information for the distribution of

the dataset, which can be utilized to accurately classify the unlabeled examples.

As mentioned in the Chapter 1, graph transduction methods usually deploy a

smoothness term to penalize the variation of labels along the manifold. To design

such a smoothness term, existing methods usually adopt a standard graph Laplacian

to constrain the labels of every pair of examples according to their similarities.

The smoothness term defined by the standard graph Laplacian in this case is called

a pairwise smoothness term. Although this pairwise smoothness term achieves

promising performance in both transductive and inductive learning, it is not effective

for handling ambiguous examples (shown in Fig. 2.1). Therefore, different from the

traditional methods, here we use the deformed graph Laplacian Morbidi [2013] to

define a novel smoothness term, and propose an algorithm called Label Prediction via

Deformed Graph Laplacian (LPDGL). Compared with other popular methods, LPDGL

has the following three advantages as a result of the deformed graph Laplacian:

1. A novel local smoothness term is introduced “naturally”, which is critical for our

model to better deal with ambiguous examples;

2. LPDGL is able to achieve higher classification accuracy than some state-of-the-

art methods for both transductive and inductive settings;

3. LPDGL can be regarded as a unified framework of many popular graph

16

0 2 4 6 8 10 12-1

0

1

2

3

4

Label=0.1737

0 2 4 6 8 10 12-1

0

1

2

3

4

Label=0.0352

0 2 4 6 8 10 12-1

0

1

2

3

4

Bridge
point

(b) (c)(a)

d1

d2

Figure 2.1: The illustration of local smoothness constraint on DoubleLine dataset. A

k-NN graph with k = 2 is built and the edges are shown as green lines in (a). (b) shows

the result without incorporating the local smoothness, and (c) is the result produced by

the proposed LPDGL. The labels of “bridge point” under two different simulations are

highlighted in (b) and (c), respectively.

transduction algorithms.

The local smoothness term mentioned in 1 considers the label smoothness of

examples with their neighbors as a whole, and heavily regularizes the example that

corresponds to a low degree. This is because an example that has weak edges with its

neighbors often confuses the classifier significantly. Such examples can be outliers,

or points that are located very close to the decision boundary. These ambiguous

examples cannot be reliably classified because there is very little information provided

by other examples. Similar idea can be found in Li and Guo [2013], which uses

the informative examples in dense regions to conduct active learning. The incorrect

classification of ambiguous examples is likely to bring about disastrous results. Taking

the DoubleLine dataset for example (Fig. 2.1), the red, blue and black circles in (a)

represent positive examples, negative examples, and unlabeled examples, respectively.

The examples with y-coordinate 3 form the negative class and the points with y-

coordinate 0 correspond to the positive class. The point at (6, 1.5) lies exactly in

the middle of the two classes (d1 = d2), and can be attributed to an arbitrary class.

We call this point “bridge point” because it will probably serve as a bridge for the

mutual transmission of positive and negative labels. In Fig. 2.1 (b), which does not

incorporate the local smoothness term, the positive label is mistakenly propagated to

the negative class through the “bridge point”. This is because the labeled positive

example (the red circle in Fig. 2.1 (a)) is closer to the “bridge point” than the labeled

negative example (blue circle), so it imposes more effects on the “bridge point”. As

a consequence, the label of the “bridge point” is +0.1737 (see Fig. 2.1 (b)), which

strongly influences the point at (6, 3), and leads to the incorrect classification of more

17

than half of the negative examples. By comparison, Fig. 2.1 (c) shows that the proposed

LPDGL equipped with the local smoothness constraint successfully prohibits the label

information from passing through it, and achieves a reasonable result. We observe

that the label of “bridge point” is “suppressed” to a very small number (+0.0352),

significantly weakening the “strength” of the positive label propagating to the negative

points.

LPDGL is formulated as a regularization framework, through which the globally

optimal solution is obtained. LPDGL deals with the transductive situations in

Euclidean space, and handles the inductive tasks in reproducing kernel Hilbert space

(RKHS). Theoretical analyses illustrate that LPDGL is very robust to the choice of

training examples, and the probability of the generalization risk being larger than any

positive constant is bounded. Therefore, LPDGL performs accurately and reliably.

Moreover, the parametric sensitivity is investigated based on the stability theory of

solution of equations, from which we find that the classification performance is very

robust to a wide choice of parameters. Therefore, the parameters in LPDGL are easy

to tune.

LPDGL is demonstrated to be effective in many tough real-world applications, such

as handwritten digit recognition, unconstrained face recognition and the detection of

violent behaviors. Therefore, the proposed algorithm has high practical value.

2.1 Transduction In Euclidean Space
Given a graph G = 〈V,E〉 as introduced in the Chapter 1, the existing graph

transduction algorithms Belkin et al. [2006]; Zhou and Bousquet [2003]; Zhu et al.

[2003a] usually adopt the traditional graph Laplacian L = D − W, to model

the smoothness relationship between examples. Specifically, if we use the vector

f = (f1, f2, · · · , fn)� to record the determined soft labels of all the examples {xi}ni=1

in Ψ, then the smoothness term is formulated as

1

2

∑n

i=1

∑n

j=1
ωij(fi − fj)

2 = f�Lf . (2.1)

However, the pairwise smoothness (2.1) cannot effectively handle the ambiguous

“bridge point” as shown by Fig. 2.1, so we proposes a novel smoothness regularizer

defined as

Ω(f) = βf�Lf + γf�(I−D/v)f , (2.2)

in which β and γ are non-negative parameters balancing the weights of the above two

terms. The first term f�Lf is the traditional pairwise smoothness defined by (2.1).

It evaluates the smoothness between pairs of xi and xj over the entire dataset. The

second term is the local smoothness term mentioned at the beginning of this chapter,

18

which can be reformulated as

f�(I−D/v)f =
∑n

i=1
(1− dii/v)f

2
i . (2.3)

On a k-NN graph G, dii records the connective strength among xi and its neighbors,

so minimizing (2.3) enforces the example with large dii to obtain a confident soft

label fi, while the example with low degree dii to receive a relatively weak label.

Therefore, minimizing (2.3) requires that the label of each example satisfies a sufficient

smoothness with its neighbors.

Actually, a deformed graph Laplacian formulated as L̂ = I−κW−κ2(I−D) has

been shown in Morbidi [2013], where κ is a free parameter and I is an n×n identity

matrix. This deformed graph Laplacian is an instance of a more general theory of

deformed differential operators developed in mathematical physics Hislop and Sigal

[1996]. The deformation technique was initially proposed for the dilation group,

and was applied to many situations afterwards such as Schrödinger operation theory,

quantum field theory, and plasma stability theory. Note that the deformed Laplacian

L̂ will degenerate to the standard graph Laplacian L if κ is set to 1. Next we will

shed light upon that the proposed smoothness term (2.2) is related to L̂. By denoting

L̃=βL+γ(I−D/v), Eq. (2.2) can be expressed as Ω(f) = f�L̃f and L̃ here plays an

equivalent role as L in (2.1). Considering that L=D−W, we have

L̃ = γI− βW + (β − γ/v)D

= (γ + β − γ/v)

[
I− βv

γv + βv − γ
W − βv − γ

γv + βv − γ
(I−D)

]
,

(2.4)

which equals to L̂ when γ
β
= v(v−2)

v−1
, and followed by the division by the coefficient

γ+β−γ/v.

Based on the novel smoothness term, we derive the transductive model of LPDGL

in the Euclidean space. Suppose y= (y1, y2, · · · yn)� is a vector indicating the initial

states of all examples, in which yi = 1,−1, 0 when xi is a positive example, negative

example and unlabeled example, respectively. Moreover, we define a diagonal matrix

Jn×n with the i-th (1≤ i≤n) diagonal element 1 if xi is labeled and 0 otherwise, then

the regularization framework of transductive LPDGL is

min
f

Q(f) =
1

2

[
βf�Lf + γf�(I−D/v)f + ‖J(f − y)‖22

]
. (2.5)

The first term in the bracket of (2.5) is the pairwise smoothness term, which indicates

that if two examples x1,x2 ∈ X distribute nearby in the example space X, then their

labels y1 and y2 should be also very similar in the label space Y. Compared to the

first term that simply evaluates the smoothness between two examples simultaneously,

the second local smoothness term, which has been introduced above, considers the

19

smoothness of examples and their k neighbors in a local region at the same time. If an

example xi has very small edge weights ωij (j = 1, 2, · · · , k) with its k neighbors,

it should not receive a confident label fi because it corresponds to a low degree

dii. As already revealed by Fig. 2.1(c), this manipulation makes the “bridge point”

obtain a less reliable soft label, which effectively prevents the mutual transmission

of labels belonging to different classes. The third term is a fidelity function which

guarantees that the labels of initially labeled examples {xi}li=1 keep consistent with its

initial conditions {yi}li=1 after transduction. To find the minimizer of (2.5), we set the

derivative of Q(f) w.r.t f to 0, and obtain

βLf + γ(I−D/v)f + Jf − Jy = 0. (2.6)

Therefore, the optimal f is expressed as

f = [J+ βL+ γ (I−D/v)]−1y. (2.7)

Based on (2.7), the label of xi ∈ U is further determined as 1 if fi > 0, and -1

otherwise.

Theorem 2.1. The optimization problem (2.5) is convex and the solution is globally
optimal.

Proof. The Hessian matrix of (2.5) is formulated as

B = J+ βL+ γ(I−D/v), (2.8)

which is diagonally dominant, so it is a positive definite matrix. Therefore, (2.5)

defines a convex optimization problem and the decision function derived from (2.7)

is globally optimal.

Next we investigate the parametric sensitivity of the proposed LPDGL. Parametric

sensitivity evaluates the impact of a parameter on the final output of the model. If the

output remains substantially unchanged with the wide range of a parameter, we say

that the output is insensitive to the choice of this parameter.

In the proposed LPDGL, β and γ are two critical parameters to be tuned. This

section aims to verify that the classification results of LPDGL are insensitive to the

variation of either of them. The theoretical results provided here will be empirically

demonstrated in the experimental Section 2.4.3. Since B = J + βL + γ (I−D/v),
then the impacts of β and γ on f are studied by investigating the equations Bf = y
about how f is affected when the coefficient matrix B is slightly disturbed. Before

discussing the parametric sensitivity of β and γ, we first provide a useful lemma:

20

Lemma 2.2. Lancaster and Tismenetsky [1969] Given a set of linear equations Bf =
y, where B ∈ Cn×n is the coefficient matrix and f is the solution. Suppose y at the
right-hand side of equations is accurate and B is slightly disturbed by δB, then the
deviation δf from the accurate f satisfies

‖δf‖
‖f‖ ≤ Cond(B) (‖δB‖/‖B‖)

1-Cond(B) (‖δB‖/‖B‖) , (2.9)

where ‖·‖ denotes the Euclidean norm and Cond(B) = ‖B‖ ‖B−1‖ is the associated
condition number.

2.1.1 Sensitivity of γ
Suppose a small deviation δγ is added to the parameter γ, then δB in (2.9) is δB =
δγ (I−D/v), which leads to the departure δf from the accurate solution f . Therefore,

we have

‖δB‖
‖B‖ =

δγ ‖I−D/v ‖
‖J+ βL+ γ (I−D/v)‖

=
δγ

√∑n
i=1 (1− dii/v)2√

β2
n∑

i=1

n∑
j=1,j �=i

ω2
ij +

n∑
i=1

[βdii + γ (1− dii/v)]2 + ξ

=
δγ

√∑n
i=1 (1− dii/v)2√

β2
∑
i

∑
j

ω2
ij + β

∑
i

dii [(β − 2γ/v)dii + 2γ] + ξ + γ2
∑
i

(1− dii/v)
2
,

(2.10)

where ξ = 2
∑l

i=1 [βdii + γ (1− dii/v)] + l > 0. Note that the numerator in (2.10) is

the same as the last term of denominator except the coefficient, and it is a small number

compared to the denominator if γ is slightly disturbed, so ‖δB‖/‖B‖ in (2.10) is very

close to 0. Moreover, it is clear that B is a positive definite matrix which is invertible,

so Cond(B) will not be overly large. Therefore, the value of the right-hand side of

(2.9) is small, which suggests that the performance of LPDGL is not sensitive to the

choice of γ.

21

2.1.2 Sensitivity of β
Suppose a small bias δβ is added to β, then δB in (2.9) is δB = δβL. Therefore, we

compute the value of ‖δB‖/‖B‖, and obtain

‖δB‖
‖B‖ =

δβ ‖L‖
‖J+ βL+ γ (I−D/v)‖

=

δβ

√
n∑

i=1

d2ii +
n∑

i=1

n∑
j=1,j �=i

ω2
ij√

β2
n∑

i=1

n∑
j=1,j �=i

ω2
ij +

n∑
i=1

[βdii + γ (1− dii/v)]2 + ξ

=

δβ

√
n∑

i=1

d2ii+
n∑

i=1

n∑
j=1,j �=i

ω2
ij√√√√γ2

∑
i

(1− dii
v
)
2
+γ

∑
i

{(
1− dii

v

) [
(2β− γ

v
)dii+γ

]}
+ξ+β2

(∑
i

d2ii+
∑
i

∑
j

ω2
ij

) .

(2.11)

Similar to (2.10), the numerator in (2.11) is very small compared with the

denominator, so ‖δB‖/‖B‖ is very close to 0. As a result, according to (2.9) we

know that ‖δf‖ is negligible in the presence of ‖f‖, which indicates that the result of

LPDGL is also very robust to the variation of β.

2.2 Induction In RKHS
Note that f = (f1, f2, · · · , fn)� in (2.7) only encodes the soft labels of examples that

are used to construct the graph G during the training phase, so it cannot predict the

labels of test examples that are unseen in the training phase. Therefore, this section

adapts the proposed LPDGL to inductive settings, which requires the decision function

f trained on Ψ = L ∪ U to perfectly handle the out-of-sample data, and the predicted

label for example x is f(x) ∈ R.

In this work, we build the LPDGL model for prediction in the reproducing kernel

Hilbert space (RKHS). An RKHS HK is a Hilbert space H of functions on a set X

with the property that for all x ∈ X and f ∈ H, the point evaluations f → f(x) are

continuous linear functionals Hofmann et al. [2005]. The Moore-Aronszajn theorem

Aronszajn [1950] indicates that for every RKHS, there exists a unique positive definite

kernel on X×X. Therefore, by adopting the Riesz representation theorem, the unique

reproducing kernel can always be constructed as K(·, ·) : X × X → R, which has an

22

important property that ∀x1, x2∈X, K(x1, x2) = 〈K(·, x1), K(·, x2)〉H, from the point

evaluation functional.

Suppose K(·, ·) is a Mercer kernel associated with RKHS, and the corresponding

norm is ‖·‖H, then we have the following regularization framework of LPDGL defined

in RKHS:

min
f∈HK

Q(f) =
1

2

[
α ‖f‖2H + βf�Lf + γf�(I−D/v)f +

∑l

i=1
(f(xi)− yi)

2
]
.

(2.12)

In (2.12), the trade-off among the four terms is captured by three non-negative

parameters α, β and γ. Compared with the expression (2.5) for transduction, Eq. (2.12)

contains one more induction term ‖f‖2H that controls the complexity of f . This

term enhances the generalizability of LPDGL by effectively preventing the overfitting

problem.

The extended representer theorem Belkin et al. [2006] states that the minimizer of

(2.12) can be decomposed as an expansion of kernel functions over both labeled and

unlabeled examples, i.e.,

f(x) =
∑n

i=1
siK(x,xi). (2.13)

Therefore, by plugging (2.13) into (2.12) we obtain a novel objective function with

respect to S = (s1, · · · , sn)�:

min
S∈Rn

Q̃(S) =
1

2

[
αS�KS+ βS�KLKS+ γS�K(I−D/v)KS +‖y − JKS‖2] ,

(2.14)

where K is an n×n Gram matrix over all the training examples, with elements Kij =
K(xi,xj) for 1 ≤ i, j ≤ n. It can be easily proved that the objective function in (2.14)

is convex, so we can find the globally optimal S by calculating the derivative of Q̃(S)
to S, and then setting the result to 0, which is expressed as

S = [αI+ βLK+ γ(I−D/v)K+ JK]−1y. (2.15)

Finally, we substitute (2.15) into (2.13), and obtain the function f for predicting the

label of x.

2.2.1 Robustness Analysis
Robustness is a desirable property for a learning algorithm because it reflects the

sensitivity of the algorithm to the disturbances of training data. Xu and Mannor [2012]

state that an algorithm is robust if its solution achieves “similar” performances on a

test set and a training set that are “close”. Based on the notion introduced by Xu and

Mannor [2012], this section studies the robustness of LPDGL. The whole sample space

23

is represented by Z = X × Y, where X is the input example space and Y is the output

label space. Furthermore, we use zi = (xi, yi) ∈ Z to denote the example-label pair,

where xi ∈ X and yi ∈ Y = {−1, 1}. Therefore, the task of LPDGL is to learn a

function f : X → Y that maps the elements in the input space X to the output space Y.

Definition 2.3. (covering number, Xu and Mannor [2012]) For a metric space Sρ

with a metric ρ, where T, T̂ ⊂ Sρ are two sets in Sρ, we say that T̂ is an ε-cover of T ,
if ∀t ∈ T , ∃t̂ ∈ T̂ , such that ρ(t, t̂) ≤ ε. The ε-covering number of T is

N(ε, T, ρ) = min{
∣∣∣T̂ ∣∣∣ : T̂ is an ε− cover of T}. (2.16)

Definition 2.4. (robustness, Xu and Mannor [2012]) Let Ψ, L(·) denote the training
set and loss function of an algorithm A, respectively, then A is (θ, ε(Ψ))-robust if Z
can be partitioned into θ disjoint sets, denoted as {Ci}θi=1, such that ∀x1,x2 ∈ Ψ,

z1, z2 ∈ Ci ⇒ |L(AΨ, z1)− L(AΨ, z2)| ≤ ε(Ψ). (2.17)

Based on the Definitions 2.3 and 2.4 provided above, we have the following

theorem:

Theorem 2.5. Let X denote the input space, and ∀xi,xj ∈ X, ‖xi − xj‖ ≤ ε. A
k-NN graph is built with the edge weights represented by Gaussian kernel ωij =
exp

(−‖xi − xj‖2/(2σ2)
)
. Under N(ε/2,X, ‖·‖2) < ∞, the proposed LPDGL is√

8l
α

(
1 +

√
l
α

)√
1− exp

(− ε2

2σ2

)
-robust.

Proof. Suppose S in (2.14) is set to S0 = (0, · · · , 0)�, then we have Q̃(S0) =
‖y‖2/2 = l/2. Moreover, note that all the terms in the bracket in (2.14) are non-

negative, so we obtain 1
2
αS�KS ≤ Q(S) ≤ Q(S0) = l/2, which reveals that

S�KS ≤ l/α. (2.18)

For binary classification, we can partition Z into θ = 2N(ε/2,X, ‖·‖2) disjoint sets

with a margin ε Xu and Mannor [2012]. Therefore, according to Definition 2.3 we

know that if z1 and z2 belong to the same set Ci (1 ≤ i ≤ θ), then ‖x1 − x2‖ ≤ ε and

‖y1 − y2‖ = 0 Xu and Mannor [2012]. We also know that the loss function of LPDGL

is

L(f) = (f(x)− y)2, (2.19)

so according to Definition 2.4 the difference between the losses of f on z1 and z2 is

|L(f, z1)− L(f, z2)| =
∣∣(y1 − f(x1))

2 − (y2 − f(x2))
2
∣∣ . (2.20)

24

By plugging (2.13) into (2.20), we obtain

|L(f, z1)− L(f, z2)|
=

∣∣∣∣[y1 −∑n

i=1
siK(x1,xi)

]2
−

[
y2 −

∑n

i=1
siK(x2,xi)

]2∣∣∣∣
≤

∣∣∣y1 + y2 −
∑n

i=1
si (K(x1,xi) +K(x2,xi))

∣∣∣∣∣∣y1 − y2 −
∑n

i=1
si (K(x1,xi)−K(x2,xi))

∣∣∣
= |B1| |B2| ,

(2.21)

in which B1 = y1 + y2 − ∑n
i=1 si (K(x1,xi) +K(x2,xi)) and B2 = y1 − y2 −∑n

i=1 si (K(x1,xi)−K(x2,xi)) . In the following derivations, we aim to find the

upper bounds of |B1| and |B2|, respectively. It is easy to show that

|B1| ≤ |y1|+ |y2|+ |f(x1) + f(x2)|
≤ 2 + 2 max

x∈{x1,x2}
〈f,K(x, ·)〉H

≤ 2 + 2 max
x∈{x1,x2}

‖f‖H
√
K(x, ·)

≤ 2 + 2 max
x∈{x1,x2}

∥∥∥∑n

i=1
siK(xi, ·)

∥∥∥
H

√
K(x, ·)

≤ 2 + 2

√〈∑n

i=1
siK(xi, ·),

∑n

i=1
sjK(xj, ·)

〉
H

= 2 + 2

√∑n

i,j=1
sisjK(xi, ·)K(xj, ·)

= 2 + 2

√∑n

i,j=1
siK(xi,xj)sj

= 2 + 2
√
S�KS

≤ 2 + 2

√
l

α
,

(2.22)

in which the notation 〈·, ·〉H denotes the inner product defined in H. Note that in

the derivation of (2.22), we employed the reproducing property of RKHS f(x) =
〈f,K(x, ·)〉H in the second line, the Cauchy-Schwarz inequality 〈f,K(x, ·)〉H ≤
‖f‖H

√
K(x, ·) in the third line, and the results of (2.18) in the last line.

Moreover, since ‖f‖2H=S�KS≤ l
α

, we have ‖f‖H ≤
√

l
α

. By further considering

25

that ‖y1 − y2‖ = 0 and ‖x1 − x2‖ ≤ ε, we immediately obtain

|B2| = |f(x1)− f(x2)|
= |〈f,K(x1, ·)−K(x2, ·)〉H|
≤ ‖f‖H ‖K(x1, ·)−K(x2, ·)‖H
= ‖f‖H

√
K(x1,x1) +K(x2,x2)− 2K(x1,x2)

≤
√
l/α

√
K(x1,x1) +K(x2,x2)− 2K(x1,x2)

≤
√
l/α

√
2− 2 exp

[−‖x1 − x2‖2/(2σ2)
]

=
√
l/α

√
2− 2 exp [−ε2/(2σ2)].

(2.23)

Finally, we substitute (2.22) and (2.23) into (2.21), and have

|L(f, z1)− L(f, z2)| ≤
√

8l

α

(
1 +

√
l

α

)√
1− exp

(
− ε2

2σ2

)
, (2.24)

which indicates that LPDGL is

(
θ,
√

8l
α

(
1 +

√
l
α

)√
1− exp

(−ε2

2σ2

))
-robust.

2.2.2 Generalization Risk
Based on the robustness analysis in Section 2.2.1, we derive the generalization bound

for LPDGL. The empirical error Lemp(AΨ) is the error of algorithm A on the training

set Ψ. The generalization error L̃(·) is the expectation of error rate produced by f
on the whole sample space Z. Suppose all the examples are i.i.d, and are generated

from an unknown distribution P , then the above two errors are defined by L̃(AΨ) =
Ex∼P [L(AΨ,x)] and Lemp(AΨ) =

1
n

∑
xi∈Ψ L(AΨ,xi), respectively.

Theorem 2.6. (generalization bound, Xu and Mannor [2012]): If the training set Ψ
consists of n i.i.d. samples, and the algorithm A is (θ, ε(Ψ))-robust, then for any δ > 0,
with probability at least 1− δ

∣∣∣L̃(AΨ)− Lemp(AΨ)
∣∣∣ ≤ ε(Ψ) +M

√
2θ ln 2 + 2 ln(1/δ)

n
, (2.25)

where M is the upper bound of loss function L(·, ·).
According to Theorem 2.6, the generalization bound of inductive LPDGL is

provided in Theorem 2.7:

26

Theorem 2.7. Let L(f,Ψ) = (f(x)− y)2 be the loss function of LPDGL, than for any
δ > 0, with probability at least 1− δ, the generalization error of LPDGL is

∣∣∣L̃(Aψ)− Lemp(Aψ)
∣∣∣ ≤ √

8l

α

(
1 +

√
l

α

)√
1− exp

(−ε2

2σ2

)

+ 2

(
1 +

l

α

)√
2θ ln 2 + 2 ln (1/δ)

n
.

(2.26)

Proof. To obtain the generalization bound of LPDGL, we need to compute ε(Ψ), θ
and M that appear in (2.25). Note that ε(Ψ) and θ have been already worked out in

Section 2.2.1, so our target is to find the upper bound M of the loss function L(f,Ψ).
Therefore, we compute

L(f,Ψ) = (y − f(x))2 = y2 − 2yf(x) + f 2(x)

≤ 2y2 + 2f 2(x) ≤ 2 + 2l/α.
(2.27)

As a result, the upper bound of the adopted loss function is

M = 2 + 2l/α. (2.28)

Finally, by putting (2.24) and (2.28) into (2.25), we complete the proof.

Theorem 2.7 reveals that the our LPDGL has a profound generalizability with

convergence rate of order O(
√

1
n
), which means that the more training examples are

available, the lower generalization bound of LPDGL we have, so LPDGL can predict

the label of a test example reliably.

2.2.3 Linearization of Kernelized LPDGL
Although the inductive LPDGL is designed in RKHS, its linear counterpart can

be easily derived by using the linear prediction function f(x) = ωTx, and then

substitute f = XTω into (2.5), where ω is the weight vector to be optimized and

X = (x1,x2, · · ·xn) is the data matrix with each column representing an example.

Next we show that LPDGL in RKHS includes the linear LPDGL as a special case,

and in particular, LPDGL in RKHS degenerates to the linear LPDGL when the linear

kernel K(xi,xj) = x�
i xj is adopted.

LPDGL in RKHS is Eq. (2.14), and the corresponding minimizer is Eq. (2.15).

According to the representer theorem Eq. (2.13), the soft label of a test example x0 is

given by

f1(x0) = k̄S = k̄

[
αI+ βLK+ γ(I− 1

v
D)K+ JK

]−1

y, (2.29)

27

where K is an n × n kernel matrix with elements Kij = K(xi,xj), and k̄ =
(K(x0,x1), K(x0,x2), · · · , K(x0,xn)) is an n-dimensional row vector.

Given the linear prediction function f(x0) = ω�x0 and the data matrix X =
(x1,x2, · · ·xn), the linear LPDGL is given by

min
ω

Q(ω)

=
1

2

[
α‖ω‖2 + βω�XLX�ω + γω�X(I− 1

v
D)X�ω +

∥∥y − JX�ω
∥∥2

2

]
,

(2.30)

of which the optimal solution is

ω =

[
αI+ βXLX� + γX

(
I− 1

v
D

)
X� +XJX�

]−1

Xy. (2.31)

Then, the soft label of a test example x0 is

f2(x0) = x�
0 ω = x�

0

[
αI+ βXLX� + γX

(
I− 1

v
D

)
X� +XJX�

]−1

Xy.

(2.32)

We then need to prove f1(x0) = f2(x0) if the linear kernel K(x1,x2) = x�
1 x2 is

applied to Eq. (2.29).

Given the linear kernel K(x1,x2) = x�
1 x2, it is straightforward that K = X�X.

Then, after plugging K = X�X into Eq. (2.29) and denoting M = βL+γ
(
I− 1

v
D
)
+

J, we have

f1(x0) = x�
0 X

(
αI+MX�X

)−1
y. (2.33)

By using the Woodbury matrix identity Petersen and Pedersen, f1(x0) can be

further derived as

f1(x0) = x�
0 X

(
αI+MX�X

)−1
y

= x�
0 X

[
1

α
I− 1

α2
M

(
I+

1

α
X�XM

)−1

X�X

]
y

= x�
0 X

[
1

α
I− 1

α2

(
M−1 +

1

α
X�X

)−1

X�X

]
y.

(2.34)

Similarly, we rewrite f2(x0) in Eq. (2.32) as

f2(x0) = x�
0

(
αI+XMX�)−1

Xy

= x�
0

[
1

α
I− 1

α2
X

(
M−1 +

1

α
X�X

)−1

X�
]
Xy

= x�
0 X

[
1

α
I− 1

α2

(
M−1 +

1

α
X�X

)−1

X�X

]
y,

(2.35)

28

Inductive
LPDGL

Transductive
LPDGL

HF

MinCut

GTAM

LGC

LNP

LapRLS

LapSVM

0

0
Hinge loss

0

Linear neighbor
graph

0

0
Normalized

graph Laplacian

0

{ 1}if

Tikhonov
regularization

1
0n

ii
f

0

0
LGReg

0

Node
normalization

Replace I-D/v
with M defined
in Wang et al.

[2008a]

0

Figure 2.2: The evolutionary process from LPDGL to other typical SSL methods.

The dashed line means “infinitely approach to”. Note that our LPDGL is located in

the central position and other algorithms are derived from LPDGL by satisfying the

conditions alongside the arrows.

which is exactly same as Eq. (2.34). Therefore, LPDGL in RKHS with linear kernel is

equivalent to linear LPDGL.

2.3 Relationship Between LPDGL and Existing Meth-
ods

This section relates the proposed LPDGL to several typical semi-supervised learning

(SSL) algorithms. SSL has attracted considerable interest since it was developed.

Various SSL algorithms have been proposed for different purposes and applications.

As mentioned in the Chapter 1, existing SSL algorithms can be divided into a

transductive approach or inductive approach.

Typical transductive methods include Tikhonov regularization Belkin et al. [2004b],

harmonic functions (HF, Zhu et al. [2003a]), local and global consistency (LGC,

Zhou and Bousquet [2003]), minimum cut (MinCut, Joachims [2003]), local learning

29

regularization (LLReg) Wu and Schölkopf [2007], local and global regularization

(LGReg) Wang et al. [2008a], path-based SSL (PBSSL) Chang and Yeung [2004],

transductive SVMs (S3VM, Vapnik [1998]), safe semi-supervised learning (S4VM,

Li and Zhou [2011]), AnchorGraph regularization (AGR, Liu et al. [2010]), graph

transduction via alternating minimization (GTAM, Wang et al. [2008b]), Laplacian

embedded support vector regression (LapESVR, Chen et al. [2012a]), semi-supervised

classification based on class membership (SSCCM, Wang et al. [2012]), and safety-

aware SSCCM (SA-SSCCM, Wang and Chen [2013]).

Representative inductive SSL algorithms include harmonic mixtures Zhu and

Lafferty [2005], Laplacian Support Vector Machines (LapSVM, Belkin et al. [2006]),

Laplacian Regularized Least Squares (LapRLS, Belkin et al. [2006]), linear neighbor-

hood propagation (LNP, Wang et al. [2009b]), simple semi-supervised learning (SSSL,

Ji et al. [2012]), and vector-valued manifold regularization Quang et al. [2013]. For

more detailed explanations about SSL algorithms, the reader is referred to the surveys

Zhu and Goldberg [2009] and Chapelle et al. [2006].

All the above methods are formulated as a regularization framework, the same

as the proposed LPDGL. The main difference between them is how to design the

regularizer. In this sense, most of the above SSL algorithms can be derived from

LPDGL by choosing different regularizers or incorporating other constraints, as

illustrated in Fig. 2.2. For example, if the local smoothness term of LPDGL is removed

(i.e. γ is set to 0) and let β → 0, the result of LPDGL will get arbitrarily close to HF1.

If we further require the obtained discrete labels belong to {±1}, we reach the MinCut

algorithm. In addition, LGC can be derived from LPDGL by adopting the normalized

graph Laplacian. LGReg, GTAM and Tikhonov regularization can also be easily

derived by employing the techniques alongside the arrows. Some inductive algorithms,

including LNP, LapRLS and LapSVM are also related to inductive LPDGL. If we set

γ=0 and adopt the hinge loss instead of the squared loss incorporated by LPDGL, we

immediately obtain LapSVM. Similarly, if γ = 0 and a linear neighborhood graph in

Wang et al. [2009b] is constructed, the proposed LPDGL will have the same formation

as LNP. Of particular note is that the only difference between LapRLS and inductive

LPDGL lies in the local smoothness term, of which the significance for boosting the

accuracy will be demonstrated in the experimental section (Section 2.4). Therefore,

the proposed LPDGL has a strong relationship with other popular SSL methodologies,

and they can be viewed as special cases of LPDGL.

1The precise solution of HF can be obtained by further relaxing the HF model derived from LPDGL

as minf f
TLf , s.t. fi = yi for i = 1, 2, · · · , l. The detailed relaxation process is referred to Zhu and

Goldberg [2009].

30

2.4 Experiments
In this section, we validate the proposed LPDGL on several synthetic toy datasets,

and compare LPDGL with some state-of-the-art graph transduction algorithms on a

number of real-world collections. HF Zhu et al. [2003a], LGC Zhou and Bousquet

[2003], AGR Liu et al. [2010], LNP Wang et al. [2009b], LapRLS Belkin et al. [2006],

LapSVM Belkin et al. [2006], LLReg Wu and Schölkopf [2007], PBSSL Chang and

Yeung [2004], S4VM (RBF kernel) Li and Zhou [2011] and S4VM (linear kernel)

Li and Zhou [2011] were adopted as baselines to evaluate the transductive ability

of LPDGL. LNP Wang et al. [2009b], LapRLS Belkin et al. [2006] and LapSVM

Belkin et al. [2006] were used for the inductive performance comparison because

other algorithms do not have inductive ability. For fair comparison, HF, LGC, LLReg,

PBSSL, LapRLS, LapSVM and LPDGL were trained by the same k-NN graph1 for

each of the datasets, and all the algorithms were conducted 10 times independently

under each l (l represents the size of the labeled set) with randomly selected labeled

set L. However, at least one labeled example was selected in each class when

L was generated. The reported accuracies and standard deviations of algorithms

were calculated as the mean value of the outputs of these runs. To demonstrate the

superiority of the proposed LPDGL over linear LPDGL mentioned in Section 2.2, we

also compared the performances of these two models on various datasets.

2.4.1 Toy Data
Synthetic 2D and 3D data was adopted in this section to visualize the transductive and

inductive performance of LPDGL.

2.4.1.1 Transduction on 3D Data

Two 3D datasets, Cylinder&Ring and Knot, were used to test the transductive ability

of LPDGL. The Cylinder&Ring dataset (see Figs. 2.3 (a), (b) and (c)) forms like a

cylinder surrounded by a ring, in which the cylinder with radius 0.2 represents the

positive class and the ring with radius 0.8 constitutes the negative class. The Knot
dataset is shaped like a knot composed of two crossing rings with radiuses 0.8, and each

ring represents a class (see Figs. 2.3 (d), (e) and (f)). Both datasets are contaminated

by the Gaussian noise of variance 0.1, and each class only has one labeled example, as

shown in Figs. 2.3 (a) and (d).

We adopted Eq. (2.5) and the linear model f(x) = ω�x, respectively, to train a

transductive LPDGL to classify all the examples, given very few labeled examples.

1AGR builds a hyper-graph that is different from other algorithms. The k-NN graph in LNP is not

symmetrical, which is different from that in HF, LGC, LLReg, PBSSL, LapRLS, LapSVM and LPDGL.

S3VM and S4VM are not graph-based methods, so graph is not needed to train the classifier.

31

(a) (b)

(d) (e) (f)

(c)

Figure 2.3: Transduction on two 3D datasets: (a) and (d) show the initial states of

Cylinder&Ring and Knot, respectively, in which the red triangle denotes a positive

example and the blue circle represents a negative example. (b) and (e) are the

transduction results of developed LPDGL on these two datasets. (c) and (f) present

the results of LPDGL (Linear).

The parameters in LPDGL were σ = 2, k = 5, β = 1, γ = 0.001 for Cylinder&Ring,

and σ = 0.5, k = 5, β = 1, γ = 1 for Knot. From Figs 2.3 (b) and (e), we observe that

LPDGL can effectively detect the geometric structure of the data distribution, which

leads to encouraging performances on both synthetic datasets. Therefore, the proposed

algorithm has a satisfactory transductive ability. Comparatively, the LPDGL (Linear)

generates disastrous results (see Figs. 2.3 (c) and (f)) because both datasets are highly

non-linear.

2.4.1.2 Visualization of Generalizability

LPDGL can not only handle the transductive problems, but also shows great potential

for dealing with inductive tasks. The DoubleMoon dataset contains 400 examples

which are equally divided into two moons centered at (0, 0) and (10, 0), respectively.

Each moon represents a class. The data distribution is displayed in Fig 2.4 (a), in

which the labeled examples are marked in color. In Square&Ring, a square centered at

(0.5, 0.5) is surrounded by a ring with the same center. The radius of the outer ring is

1.3, and the length of each side of the inner square is 1 (see Fig. 2.4 (d)).

In these two datasets, only one labeled example was selected for each class. The

training set Ψ was made up of these few labeled examples and the abundant unlabeled

examples, based on which Eq. (2.14) was utilized to train an inductive LPDGL. In

LPDGL, we set σ=5 and α = β = γ = 1 for both datasets, and established the 9-NN

32

-20 -10 0 10 20 30
-15

-10

-5

0

5

10

15

(b)
-20 -10 0 10 20 30

-15

-10

-5

0

5

10

15

Positive
Negative
Unlabeled

(a)

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative
Unlabeled

(d)
-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

(e)
-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

(f)

-20 -10 0 10 20 30
-15

-10

-5

0

5

10

15

(c)

Figure 2.4: Induction on DoubleMoon and Square&Ring datasets. (a) and (d) show

the initial states with the marked labeled examples. (b) and (e) are induction results,

in which the decision boundaries are plotted. (c) and (f) are induction performances

produced by LPDGL (Linear).

and 7-NN graphs for DoubleMoon and Square&Ring, respectively. Figs. 2.4 (b) and

(e) reveal that the white and green regions partitioned by the learned decision boundary

are consistent with the geometry of the training examples. Consequently, the proposed

LPDGL correctly classifies all the training examples, and good generalizability is also

guaranteed.

Besides, we provide the empirical illustrations on both synthetic datasets to show

that the inductive LPDGL derived in RKHS performs better than the linear LPDGL.

Figs. 2.4 (c) and (f) present the transductive results and the decision boundaries on each

dataset, which clearly reveal that the linear function f(x) = ω�x cannot obtain as good

performance as the LPDGL in RKHS for nonlinear datasets. Therefore, we suggest

using Eq. (2.7) to implement transduction, and adopting Eq. (2.13) for induction.

2.4.2 Real Benchmark Data
This section compares the transductive accuracy of LPDGL with the results reported

in Chapelle et al. [2006] on six real benchmark datasets, including USPS Imbalanced,

BCI, g241c, g241d, Digit1, and COIL. The detailed information about these datasets

and the performances of different algorithms are provided in Chapelle et al. [2006].

All the algorithms are implemented under l = 10 and l = 100 for each data set,

and the reported accuracies are the mean values of the outputs of 12 independent runs.

33

10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Labeled Examples

A
cc

ur
ac

y

LNP
LapSVM
LapRLS
LPDGL(Linear)
LPDGL

6 12 18 24 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Labeled Examples

A
cc

ur
ac

y

LNP
LapSVM
LapRLS
LPDGL(Linear)
LPDGL

4 8 12 16 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Labeled Examples

A
cc

ur
ac

y

LNP
LapSVM
LapRLS
LPDGL(Linear)
LPDGL

6 12 18 24 30
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Labeled Examples

A
cc

ur
ac

y

LNP
LapSVM
LapRLS
LPDGL(Linear)
LPDGL

6 12 18 24 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Labeled Examples

A
cc

ur
ac

y

LGC
HF
AGR
LNP
LapRLS
LapSVM
S4VM(RBF)
S4VM(Linear)
LLReg
PBSSL
LPDGL(Linear)
LPDGL

6 12 18 24 30
0.5

0.6

0.7

0.8

0.9

1

Labeled Examples
A

cc
ur

ac
y

LGC
HF
AGR
LNP
LapRLS
LapSVM
S4VM(RBF)
S4VM(Linear)
LLReg
PBSSL
LPDGL(Linear)
LPDGL

4 8 12 16 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Labeled Examples

A
cc

ur
ac

y

LGC
HF
AGR
LNP
LapRLS
LapSVM
S4VM(RBF)
S4VM(Linear)
LLReg
PBSSL
LPDGL(Linear)
LPDGL

6 12 18 24 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Labeled Examples

A
cc

ur
ac

y

LGC
HF
AGR
LNP
LapRLS
LapSVM
S4VM(RBF)
S4VM(Linear)
LLReg
PBSSL
LPDGL(Linear)
LPDGL

(b) (c) (d)

(e) (f) (g) (h)

(a)

Figure 2.5: Experimental results on four UCI datasets. (a) and (e) are Iris, (b) and (f)

are Wine, (c) and (g) are BreastCancer, and (d) and (h) are Seeds. The sub-plots in the

first row compare the transductive performance of the algorithms, and the sub-plots in

the second row compare their inductive performance.

In each run, the labeled and unlabeled examples are randomly generated. However,

the 12 different partitions of labeled and unlabeled sets in each dataset are identical

for all the compared algorithms. The parameters of LPDGL are optimally tuned to

obtain the best performance. We set the number of neighbors of every data point

k = 10, 8, 40, 30, 20, 7 for USPS Imbalanced, BCI, g241c, g241d, Digit1, and COIL,

respectively, and the widths of RBF kernel are σ=2, 1, 1, 1, 5, 2 correspondingly. Table

2.1 shows the error rates of different algorithms, which reveals that LPDGL achieves

comparable performances with the typical state-of-the-art algorithms. Specifically, we

observe that the linear LPDGL is outperformed by non-linear model in all the datasets

except BCI. We also want to mention that the relative size of positive and negative

classes in USPS Imbalanced is 1:4, so the experimental results on USPS Imbalanced
demonstrate that LPDGL can perfectly handle the situations when the examples of

different classes are imbalanced.

2.4.3 UCI Data
We chose four UCI Machine Learning Repository datasets Frank and Asuncion [2010],

Iris, Wine, BreastCancer and Seeds, to compare the performance of LPDGL with other

baselines. The detailed information of the four datasets is summarized in Table 2.2.

Throughout this chapter, we adopt the “one-versus-rest” strategy to deal with multi-

class classifications.

We first evaluated the transductive abilities of HF, LGC, AGR, LNP, LLReg,

PBSSL, LapRLS, LapSVM, S4VM and LPDGL by observing the classification

34

Table 2.1: Experimental results on the benchmark datasets for the variety of transduction algorithms. (The values in the

table represent the error rate (%). The best three results for each dataset are marked in red, blue, and green, respectively.)

Datasets USPS Imbalanced BCI g241c g241d Digit1 COIL
l(#Labeled Examples) 10 100 10 100 10 100 10 100 10 100 10 100

1NN 16.66 5.81 49.00 48.67 47.88 43.93 46.72 42.45 13.65 3.89 63.36 17.35

SVM 20.03 9.75 49.85 34.31 47.32 23.11 46.66 24.64 30.60 5.53 68.36 22.93

MVU+1NN 23.34 6.50 47.95 47.89 47.15 43.01 45.56 38.20 14.42 2.83 62.62 28.71

LEM+1NN 19.82 7.64 48.74 44.83 44.05 40.28 43.22 37.49 23.47 6.12 65.91 23.27

QC+CMN 13.61 6.36 50.36 46.22 39.96 22.05 46.55 28.20 9.80 3.15 59.63 10.03

Discrete Reg. 16.07 4.68 49.51 47.67 49.59 43.65 49.05 41.65 12.64 2.77 63.38 9.61

TSVM 25.20 9.77 49.15 33.25 24.71 18.46 50.08 22.42 17.77 6.15 67.50 25.80

SGT 25.36 6.80 49.59 45.03 22.76 17.41 18.64 9.11 8.92 2.61 - -

Cluster-Kernel 19.41 9.68 48.31 35.17 48.28 13.49 42.05 4.95 18.73 3.79 67.32 21.99

Data-Dep. Reg. 17.96 5.10 50.21 47.47 41.25 20.31 45.89 32.82 12.49 2.44 63.65 11.46

LDS 17.57 4.96 49.27 43.97 28.85 18.04 50.63 23.74 15.63 3.46 61.90 13.72

Laplacian RLS 18.99 4.68 48.97 31.36 43.95 24.36 45.68 26.46 5.44 2.92 54.54 11.92

CHM (normed) 20.53 7.65 46.90 36.03 39.03 24.82 43.01 25.67 14.86 3.79 - -

LPDGL(Linear) 19.77 13.44 43.50 24.90 44.15 34.04 45.11 33.62 38.11 10.19 73.21 70.64

LPDGL 17.88 5.09 48.17 34.52 42.73 21.54 42.01 23.90 5.37 2.23 61.69 7.27

3
5

Table 2.2: Summary of four UCI datasets

Iris Wine BreastCancer Seeds
#Instances 150 178 683 210

#Attributes 4 13 10 7

#Classes 3 3 2 3

accuracies with respect to different l for each dataset. The reported results are averaged

over the outputs of 10 independent runs under each l. In AGR, we chose the number

of anchor points s = 40, 40, 30, 50 for Iris, Wine, BreastCancer and Seeds datasets,

respectively, and 5-NN graphs were constructed on these anchor points. The regression

matrix in AGR was established by Local Anchor Embedding (LAE), which was

recommended by the authors Liu et al. [2010]. The parameter λ in LLReg was set

to 1 for all the UCI datasets. In Iris, Wine, BreastCancer and Seeds, we constructed

identical 8-NN, 6-NN, 7-NN and 9-NN graphs correspondingly for HF, LGC, LLReg,

PBSSL, LapRLS, LapSVM and LPDGL. Parameters β and γ in LPDGL were set to

1, and two simulations of S4VM with RBF kernel and linear kernel were conducted

on the four UCI datasets. The transductive results are presented in Figs. 2.5 (a)-

(d). We observe that some of the baselines achieve very encouraging performances

on these datasets, e.g. LGC on Iris, S4VM on Wine, and AGR on BreastCancer,

etc. However, the accuracies obtained by these baselines can still be improved by the

proposed LPDGL, which demonstrates the strength of our algorithm.

To test inductive ability, we adopted LNP, LapRLS and LapSVM as baselines

because they are state-of-the-art inductive algorithms. We not only compared the

classification accuracies of LPDGL and other baselines, but also used the 5×2 cross-

validation F-test (5×2 cv F-test) proposed by Alpaydin [1999] to make statistical

comparisons. The F-statistics value produced by the 5×2 cv F-test is to identify

whether two algorithms achieve the same performance on the test set. The null

hypothesis is that they do obtain the same test accuracy, and we reject this hypothesis

with 95% confidence if the F-statistics value is greater than 4.74. For conducting

the 5×2 cv F-test, five replications of twofold cross-validation were performed, and

the four datasets were equally split randomly into training and test sets in each

replication; however, the splits in the five replications were identical for all the

compared algorithms. In the training and test sets, the number of examples belonging

to a certain class is proportional to the number of examples of this class in the entire

dataset. Given m
(j)
i as the difference of error rates generated by two algorithms on fold

j (j=1, 2) of replication i (i = 1, 2, · · ·, 5), then the mean error rate and the variance of

replication i are m̄i=(m
(1)
i +m

(2)
i)/2 and s2i =(m

(1)
i −m̄i)

2
+(m

(2)
i −m̄i)

2
, respectively.

36

10-2 10-1 100 101 102
0.8

0.85

0.9

0.95

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.6

0.7

0.8

0.9

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.9

0.92

0.94

0.96

0.98

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.7

0.75

0.8

0.85

0.9

0.95

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.8

0.85

0.9

0.95

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.8

0.85

0.9

0.95

1

Parameters
A

cc
ur

ac
y

10-2 10-1 100 101 102
0.8

0.85

0.9

0.95

1

Parameters

A
cc

ur
ac

y

10-2 10-1 100 101 102
0.8

0.85

0.9

0.95

1

Parameters

A
cc

ur
ac

y

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6: Empirical studies on the parametric sensitivity of LPDGL. (a) and (e) are

Iris, (b) and (f) are Wine, (c) and (g) are BreastCancer, and (d) and (h) are Seeds. The

sub-plots in the first row show the transductive results, and the sub-plots in the second

row display the inductive results.

Therefore, according to Alpaydin [1999], the F-statistics value F =
∑5

i=1

∑2
j=1 (m

(j)
i)

2

2
∑5

i=1 s
2
i

obeys the F-distribution with 10 and 5 degrees of freedom.

In the four datasets, the established graphs for induction were the same as those

for transduction. The weight α of the inductive term in Eq. (2.14) was set to 1 on all

UCI datasets, and the parameters in LapRLS and LapSVM were also tuned properly

to achieve the best performance. We reported the test accuracies as the mean outputs

of 5 replications of twofold cross-validation in every dataset, and they are plotted in

Figs. 2.5 (e)-(h). We observe that LPDGL outperforms LNP, LapRLS and LapSVM

significantly on the UCI datasets with the exception of Wine. On the Wine dataset,

LPDGL achieves comparable performance with LapRLS. The F-statistics values of

baselines versus LPDGL are listed in Table 2.3. The acceptable cases are marked in

color, which means that the performance of the two algorithms is comparable. Note

that the null hypothesis is rejected in most cases, so the superiority of LPDGL to the

compared algorithms is statistically demonstrated. However, the null hypothesis is

accepted on Wine for LapRLS, because there is no significant difference between the

error rates of LPDGL and LapRLS, as revealed by Fig. 2.5 (f), so the performances of

the two algorithms on the Wine dataset are considered to be essentially identical.

We studied the parametric sensitivity for both transductive and inductive tasks in

particular. We observed accuracies under l = 30 on Iris, Wine, Seeds, and l = 20 on

BreastCancer, with a wide choice of parameters α, β and γ (see Fig. 2.6). Recall

that we have theoretically proved that the transductive performance of LPDGL is very

robust to the variations of β and γ. Here, we empirically verify this point by examining

the accuracies with one parameter changed and the other fixed to 1. Figs. 2.6 (a)-(d)

37

Table 2.3: F-statistics values of inductive algorithms versus LPDGL on UCI datasets.

(The records smaller than 4.74 are marked in red, which mean that the null hypothesis

is accepted.)

l LNP LapSVM LapRLS

Iris

6 16.69 26.31 6.53

12 17.23 160.72 19.69

18 8.0 132.11 28.17

24 9.7 120.23 30.68

30 5.5 343.85 19.01

Wine

6 13.87 23.12 2.94

12 12.70 14.81 1.94

18 19.18 49.67 2.67

24 12.89 22.38 1.13

30 11.25 43.12 1.74

BreastCancer

4 4.91 2.52 999.31

8 1.81 11.99 384.48

12 6.08 24.06 121.20

16 2.40 24.51 23.79

20 4.03 16.57 24.21

Seeds

6 20.85 36.36 8.80

12 19.62 7.03 24.95

18 32.18 31.78 52.62

24 7.61 7.56 73.38

30 8.76 12.01 33.81

suggest that these two parameters have little impact on the transductive performance,

which is consistent with our theoretical understanding in Sections 2.1.1 and 2.1.2. The

parametric sensitivity under the inductive case was also investigated by varying one

of α, β and γ, and fixing the remaining two parameters to 1. Figs. 2.6 (e)-(h) reveal

that although the parameters cover a wide range, i.e. 10−2-102, the accuracy remains

substantially unchanged on the four datasets. Therefore, we conclude that LPDGL

shows profound parametric sensitivity for both transductive and inductive settings.

38

100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Labeled Examples

A
cc

ur
ac

y

LGC
HF
AGR
LNP
LapRLS
LapSVM
S4VM(RBF)
S4VM(Linear)
LLReg
PBSSL
LPDGL(Linear)
LPDGL

100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Labeled Examples

A
cc

ur
ac

y

LNP
LapSVM
LapRLS
LPDGL(Linear)
LPDGL(a) (b)

Figure 2.7: Experimental results on USPS dataset. (a) shows the transductive results,

and (b) shows the inductive results.

2.4.4 Handwritten Digit Recognition
The USPS dataset1 was adopted to assess the ability of algorithms to recognize

handwritten digits. This dataset contains 9298 digit images belonging to 10 classes,

i.e. digits 0-9. The resolution of all images is 16×16, so the pixel-wise feature we

adopted was 256 dimensions, in which every dimension represents the gray value of

corresponding pixels.

We used the whole dataset to test the transductive performances of various

algorithms. A number of the examples were selected as a labeled set, and the rest

were taken as the unlabeled examples. The classification accuracies were particularly

observed when l changed from 100 to 500. The 10-NN graph was established, and

the parameter σ for computing the edge weights was set to 5. For AGR, 300 anchor

points were automatically generated by K-means clustering, and a 7-NN graph was

constructed on these anchor points. In addition, β and γ in LPDGL were tuned to 10

and 1, and we used the default parameter settings in S4VM.

Fig. 2.7 (a) shows the transductive results. It is observed that LPDGL achieves

higher classification accuracy than other baselines. By comparison, LGC and HF

achieve slight lower accuracies than LPDGL, i.e. 95% approximately. LapSVM and

LapRLS achieve similar results. The performances of LNP, LLReg, PBSSL, S4VM

and AGR are not as satisfactory as the other five methods. Therefore, the proposed

LPDGL is very effective on handwritten digit recognition, though only a small number

of labeled examples are given.

To test the inductive abilities of algorithms, we split the original dataset into a

training set and a test set. 600 examples per class were extracted to form the training

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

39

set, and the remaining 3298 examples served as the test set. The weight α of the

inductive term in (2.14) was tuned to 1 to extend LPDGL to out-of-sample data.

Fig. 2.7 (b) reveals that LPDGL is superior to LNP, LapRLS and LapSVM in terms

of inductive accuracy. Moreover, it can be observed that the inductive performance

of LPDGL does not decrease the transductive settings too much. The reason is that

LPDGL has successfully discovered the manifold from the training set in advance,

so even though the test data are previously unseen, LPDGL can precisely predict

their labels according to their locations on the manifold. Therefore, LPDGL achieves

similar performances on transductive and inductive settings, which again demonstrates

generalizability. Comparatively, the LPDGL (Linear) is significantly outperformed by

the kernerlized LPDGL for both transductive and inductive settings, which also shows

the strength of the developed non-linear model.

2.4.5 Face Recognition
Face recognition has been widely studied as a traditional research area of computer

vision because of the extensive practical demands. LPDGL was performed on two

face datasets: Yale1 and Labeled Face in the Wild (LFW)2 Gary et al. [2007]. The face

images in Yale are collected in a laboratory environment. In contrast, the images in

LFW are directly downloaded from the web, and faces are presented in natural scenes.

2.4.5.1 Yale

The Yale face dataset contains 165 grayscale images of 15 individuals. Each individual

has 11 face images covering a variety of facial expressions and configurations

including: center-light, wearing glasses, happy, left-light, wearing no glasses, normal,

right-light, sad, sleepy, surprised, and wink. The resolution of every image is 64×64,

so we directly rearranged each image to a 4096-dimensional long vector as input for

all the algorithms.

The transductive abilities of LPDGL and other baselines were first evaluated. In

this experiment, we chose σ = 10 and k = 5 for graph construction, and other

parameters for LPDGL were β = γ = 1. In AGR, a 7-NN graph was built on the 35

anchor points. In LNP, we established a 9-NN graph to achieve the best performance.

In LLReg, λ was optimally tuned to 1. The accuracies of algorithms with different

l are listed in Table 2.4, in which the best record under each l is marked in red.

The proposed LPDGL is able to achieve the highest accuracy, and the small standard

deviations suggest that LPDGL is very robust to the choice of labeled examples.

Inductive performance was also studied on the Yale dataset. We chose the first 6

examples of every individual to establish the training set, and the other 5 examples

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://vis-www.cs.umass.edu/lfw/

40

Table 2.4: Transductive comparison on Yale dataset

l = 30 l = 60

LGC 0.66± 0.06 0.76± 0.02
HF 0.65± 0.04 0.79± 0.01
AGR 0.50± 0.03 0.64± 0.02
LNP 0.32± 0.05 0.34± 0.04
LapRLS 0.63± 0.05 0.71± 0.03
LapSVM 0.63± 0.05 0.72± 0.03
S4VM(Linear) 0.27± 0.07 0.52± 0.06
S4VM(RBF) 0.11± 0.02 0.23± 0.04
LLReg 0.65± 0.08 0.79± 0.09
PBSSL 0.51± 0.05 0.67± 0.02
LPDGL(Linear) 0.65± 0.04 0.79± 0.01
LPDGL 0.67± 0.03 0.81± 0.01

Table 2.5: Inductive comparison on Yale dataset

l = 30 l = 60

LNP 0.10± 0.04 0.15± 0.05
LapSVM 0.69± 0.01 0.77± 0.01
LapRLS 0.68± 0.01 0.79± 0.01
LPDGL(Linear) 0.58± 0.06 0.80± 0.01
LPDGL 0.69± 0.04 0.83± 0.03

made up the test set; the sizes of the training and test sets were 6 × 15 = 90
and 5 × 15 = 75, respectively. Labeled sets of size l = 30 and 60 were then

randomly generated in the training set. The main difficulty for induction on Yale is

that the expressions or appearances of test faces are never observed in the training

set, which requires the classifiers to be immune to illumination or changes in facial

expression. The inductive accuracies are compared in Table 2.5 and suggest that

LPDGL outperforms other baselines when l varies from small to large. In particular,

LPDGL achieves 83% accuracy when l = 60, which is a very encouraging result. It

is widely acknowledged that although faces have different expressions or observation

angles, they are actually embedded in a potential manifold Roweis and Saul [2000].

Fortunately, LPDGL is exactly developed on the manifold assumption, so it is able

to recognize faces accurately even though their appearance differs dramatically. It is

41

Table 2.6: Transductive comparison on LFW dataset

l = 50 l = 100 l = 150 l = 200

LGC 0.50± 0.07 0.60± 0.05 0.65± 0.08 0.69± 0.06
HF 0.66± 0.03 0.78± 0.02 0.83± 0.01 0.87± 0.01
AGR 0.60± 0.03 0.71± 0.01 0.76± 0.02 0.80± 0.01
LNP 0.32± 0.07 0.38± 0.16 0.57± 0.12 0.59± 0.11
LapRLS 0.48± 0.03 0.62± 0.04 0.71± 0.03 0.75± 0.03
LapSVM 0.57± 0.02 0.70± 0.03 0.74± 0.03 0.76± 0.03
S4VM(Linear) 0.56± 0.05 0.68± 0.03 0.73± 0.03 0.77± 0.02
S4VM(RBF) 0.45± 0.06 0.61± 0.02 0.70± 0.02 0.73± 0.02
LLReg 0.52± 0.04 0.69± 0.02 0.86± 0.02 0.88± 0.01
PBSSL 0.33± 0.03 0.46± 0.02 0.58± 0.02 0.68± 0.02
LPDGL(Linear) 0.43± 0.02 0.59± 0.04 0.64± 0.02 0.71± 0.02
LPDGL 0.71± 0.02 0.81± 0.02 0.86± 0.01 0.90± 0.01

also worth pointing out that we have only adopted the simple pixel-wise gray values of

images as features. If more high level features are utilized, the performance of LPDGL

is expected to be further improved.

2.4.5.2 LFW

LFW is a gigantic collection of face images gathered directly from the web. The

facial expressions, observation angle, illumination conditions and background setting

are not intentionally controlled for recognition, therefore identifying faces in such

unconstrained situations is a big challenge. This dataset contains more than 13000

face images, and each face is labeled with the name of the person. The faces in all the

images are detected by the Viola-Jones detector Viola and Jones [2001].

Most people in the original LFW have fewer than 5 images, which is insufficient

for splitting into training and test sets, so we used a subset of LFW by choosing persons

who have more than 30 face images. We chose the images of politicians Toledo,

Sharon, Schwarzenegger, Powell, Rumsfeld, Bush, and Arroyo, and the images of

sports stars Agassi, Beckham and Hewitt. There were thus 392 examples belonging to

10 people in total in the subset. We adopted the 73-dimensional feature developed by

Kumar et al. [2009], which describes the biometrics traits of visual appearance, such

as gender, race, age, and hair color.

To test the transductive performance, a 6-NN graph with σ = 5 was built on the

entire dataset. Other parameters in LPDGL were β = γ = 1. Algorithms are compared

in Table 2.6, in which the best performance under each l is marked in color. It is

42

Table 2.7: Inductive comparison on LFW dataset

l = 50 l = 100 l = 150 l = 200

LNP 0.30± 0.07 0.38± 0.09 0.45± 0.13 0.45± 0.09
LapSVM 0.65± 0.01 0.69± 0.03 0.75± 0.02 0.76± 0.01
LapRLS 0.67± 0.04 0.73± 0.02 0.78± 0.01 0.79± 0.01
LPDGL(Linear) 0.68± 0.04 0.78± 0.03 0.81± 0.03 0.83± 0.01
LPDGL 0.70± 0.03 0.78± 0.03 0.80± 0.02 0.83± 0.02

observed that LPDGL achieves very satisfactory results and significantly outperforms

other methods. In particular, the proposed LPDGL obtains very high accuracy under

relatively small l, e.g. 71% under l = 50 and 81% under l = 100, which further

demonstrates the effectiveness of LPDGL.

Inductive experiments were conducted by separating the dataset into a training set

of 250 examples and a test set of 142 examples. The inductive results of algorithms

under different l are listed in Table 2.7, from which we find that the proposed LPDGL

achieves the best performance compared to other baselines. Table 2.7 also reveals that

the accuracy of LPDGL exceeds 80% when l is larger than 150, so LPDGL has strong

potential for successful unconstrained face recognition.

2.4.6 Violent Behavior Detection
In recent years, various intelligent surveillance techniques have been applied to ensure

public safety. One desirable application is to permit computers automatically detect

violent behavior, such as fighting and robbery, in surveillance videos. In this section,

we utilize the proposed LPDGL to detect fight behavior. The HockeyFight1 dataset is

made up of 1000 video clips collected in ice hockey competitions, of which 500 contain

fight behavior and 500 are non-fight sequences. The task is to identify the clips with

fighting. As with Nievas et al. [2011], we adopted the space-time interest points (STIP)

and motion SIFT (MoSIFT) as action descriptors, and used the Bag-of-Words (BoW)

approach to represent each video clip as a histogram over 100 visual words. Every clip

in the dataset was therefore characterized by a 100-dimensional feature vector.

A 5-NN graph was exploited to evaluate the transductive performance of HF, LGC,

LLReg, PBSSL, LapRLS, LapSVM and LPDGL. In LNP and AGR, we chose 20 and 5

neighbors respectively for graph construction. Transductive accuracies with different

l are listed in Table 2.8. We observe that HF, S4VM and LPDGL already achieve

1http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.
html

43

Table 2.8: Transductive results on HockeyFight dataset

l = 40 l = 80 l = 120 l = 160

LGC 0.80± 0.03 0.82± 0.02 0.83± 0.02 0.84± 0.01
HF 0.80± 0.02 0.84± 0.01 0.86± 0.01 0.87± 0.01
AGR 0.79± 0.02 0.82± 0.01 0.83± 0.01 0.83± 0.01
LNP 0.61± 0.08 0.65± 0.10 0.65± 0.09 0.67± 0.11
LapRLS 0.72± 0.02 0.76± 0.01 0.79± 0.01 0.79± 0.01
LapSVM 0.67± 0.03 0.66± 0.02 0.70± 0.02 0.71± 0.01
S4VM(Linear) 0.80± 0.05 0.84± 0.02 0.84± 0.03 0.86± 0.01
S4VM(RBF) 0.81± 0.03 0.84± 0.01 0.86± 0.01 0.87± 0.01
LLReg 0.78± 0.04 0.79± 0.01 0.82± 0.01 0.82± 0.01
PBSSL 0.74± 0.02 0.76± 0.01 0.78± 0.01 0.78± 0.01
LPDGL(Linear) 0.81± 0.02 0.84± 0.02 0.87± 0.00 0.87± 0.02
LPDGL 0.81± 0.03 0.85± 0.01 0.87± 0.01 0.88± 0.01

Table 2.9: Inductive results on HockeyFight dataset

l = 40 l = 80 l = 120 l = 160

LNP 0.58± 0.12 0.58± 0.08 0.58± 0.10 0.59± 0.11
LapSVM 0.59± 0.02 0.61± 0.01 0.61± 0.01 0.65± 0.01
LapRLS 0.70± 0.01 0.73± 0.01 0.73± 0.01 0.74± 0.01
LPDGL(Linear) 0.75± 0.04 0.76± 0.01 0.76± 0.01 0.76± 0.01
LPDGL 0.71± 0.02 0.73± 0.03 0.74± 0.02 0.75± 0.01

more than 80% accuracy, which is a very encouraging result. Of particular note is

that LPDGL can still improve the performances of S4VM and HF, so its superiority is

demonstrated.

Inductive experiments were performed by splitting the original dataset into a

training set of 600 examples and a test set of 400 test examples. Fight clips and non-

fight clips constituted 50% for each of both the training set and the test set. The results

of the algorithms are displayed in Table 2.9, in which the best performance under each

l is marked in red. We find that LPDGL obtains very impressive inductive results.

44

2.5 Summary of This Chapter
This chapter has proposed a manifold-based graph transduction algorithm called

Label Prediction via Deformed Graph Laplacian (LPDGL). By adopting the deformed

graph Laplacian, a local smoothness term was naturally incorporated. This term can

effectively prevent erroneous label propagation between classes by suppressing the

labels of ambiguous examples, such as the “bridge point” mentioned above. Fig. 2.2

implies that the only difference between LapRLS and inductive LPDGL is that LPDGL

has the local smoothness term but LapRLS does not, so the better performances of

LPDGL over LapRLS in experiments also validates the importance of this term.

The proposed method has several profound properties, which lead to the superiority

of LPDGL over other representative algorithms. Firstly, LPDGL is formulated as a

convex optimization framework, so the obtained decision function is globally optimal.

Secondly, the classification performance is insensitive to the change of parameters,

which indicates that the parameters in LPDGL are very easy to tune. Thirdly, there

exists a theoretical bound for the generalization error, so the test examples can be

classified reliably and accurately. Fourthly, LPDGL can be regarded as a unified

framework of various SSL algorithms, so it combines the advantages of different

methodologies. Finally, the standard deviations of LPDGL listed in Tables 2.4-2.9

are very small, which reflects that the selection of initially labeled examples will not

influence the final results significantly.

45

Chapter 3

Fick’s Law Assisted Propagation

This chapter develops an iterative label propagation approach for robust graph

transduction. In contrast to existing graph transduction algorithms that are derived

from the perspective of statistical learning, this chapter explains label propagation

by Fick’s First Law of Diffusion in fluid mechanics and presents a new scheme

named “Fick’s Law Assisted Propagation” (FLAP). In particular, FLAP simulates the

diffusion of fluid for label propagation, thus the labeled examples can be regarded

as the diffusive source with a high concentration of label information. When the

diffusion process starts, the flux of label information will be transferred from the

labeled examples to the remaining unlabeled examples. When the diffusion process

is completed, all the examples on the graph will receive a certain concentration of

label information, providing the foundation for final classification.

Note that FLAP is more lifelike because it is straightforwardly derived from

statistical physics. As a result, when and how much label information is received

or transferred by an example, or where these labels should be propagated to, are

directly governed by the well-known Fick’s law, which is better than decided via

some heuristic and ad hoc requirements or criteria exploited in conventional machine

learning algorithms. As a result, FLAP yields more robust propagation result than the

existing methods.

It is proven that FLAP can converge more quickly than other iterative methods

by analyzing the relationship between the convergence rate and the eigenvalues of

the iteration matrix. We show that eigenvalues of the iteration matrix in FLAP

are close to 1, while those in other methods may scatter in a wide range. This

difference makes FLAP is superior to other iterative methods in terms of convergence

speed. We conduct the experiments on several computer vision and pattern recognition

repositories, including handwritten digit recognition, face recognition and teapot

image classification. Thorough empirical studies show FLAP obtains promising

performance by comparing with HF Zhu et al. [2003a], LGC Zhou and Bousquet

[2003], LNP Wang et al. [2009b], MinCut Joachims [2003], and NTK Zhu et al.

46

[2005].

3.1 Model Description
Fick’s First Law of Diffusion governs mass transfer through diffusive means and

has been widely used to understand the diffusion in solids, liquids, and gases. It

postulates that the flux diffuses from regions of high concentration to regions of low

concentration, with a magnitude that is proportional to the concentration gradient.

Along one diffusion direction, the law is

J = −γ
∂f

∂d̃
, (3.1)

where γ is the diffusion coefficient, d̃ is the diffusion distance, f is the concentration

that evaluates the density of molecules of fluid, and J is the diffusion flux that measures

the quantity of molecules flowing through the unit area per unit time.

It is natural to draw a parallel between this label propagation in the dataset

Ψ = L
⋃

U and the molecule diffusion in the fluid. In particular, the label information

propagating from L to U can be compared to the molecule diffusing from high

concentration regions to low concentration regions; each labeled example can be

compared to a high concentration region, and each unlabeled example can be compared

to a low concentration region. By treating γ as the propagation coefficient, d as the

propagation distance, and f as the label information, Eq. (3.1) explains the process of

label propagation:

J = −γ
f
(t)
j − f

(t)
i

d̃ij
. (3.2)

Eq. (3.2) informs us that xi propagates its label information to xj at the diffusion

distance d̃ij = 1

exp(−‖xi−xj‖2/(2σ2))
, and their soft labels at time t are f

(t)
i andf

(t)
j ,

respectively. Here soft label means that f takes a value from a real range [−1, 1].
Fig. 3.1 shows the propagation process from a labeled example xi to an unlabeled

example xj , where each example is modeled by a cube. The volume of both cubes is

equal to V , and the area of their interface is A. Therefore, after a short time Δt from t,
the amount of label information (i.e. the number of molecules) received by xj satisfies

the following equation:

f
(t+Δt)
j − f

(t)
j

Δt
V = JA, (3.3)

where the variable J can be exactly expressed by Fick’s First Law of Diffusion (3.2).

Because the label fj varies in a discrete manner with respect to the iteration time t,

Δt in Eq. (3.3) can be simply set to 1. Note that V = d̃ijA and substituting Eq. (3.2)

47

A
J

V

ix jx

V
if jf

ijdiji

Figure 3.1: The parallel between fluid diffusion and label propagation. The left cube

with more balls is compared to the example with more label information. The right

cube with fewer balls is compared to the example with less label information. The red

arrow indicates the diffusion direction.

into Eq. (3.3), we have

f
(t+1)
j = f

(t)
j − γ

f
(t)
j − f

(t)
i

d̃2ij
. (3.4)

By taking the initial state of xj into account, Eq. (3.4) is modified to

f
(t+1)
j = α(f

(t)
j − γ

f
(t)
j − f

(t)
i

d̃2ij
) + (1− α)yj, (3.5)

where yj = f
(0)
j and it takes a value of 1,-1 or 0, if xj is a positive, negative or

unlabeled example, respectively. α ∈ (0, 1) is the trade off between the received

information from xi and the initial state of xj . Eq. (3.5) models the label propagation

process between two examples. However in practice, one example receives the label

information from all the other examples in the dataset. Therefore, if Jk→j is used to

represent the propagation flux from xk to xj , then the following equation holds:

(f
(t+1)
j − f

(t)
j)V =

∑n

k=1
Jk→jAk. (3.6)

We assume that ∀k ∈ {1, 2 · · ·, n} , Jk→j = J and Ak = A. Then similar to

the derivation of Eq. (3.5), after substituting Fick’s First Law of Diffusion (3.2) into

48

Eq. (3.6) and including yj , the propagation process in the whole dataset is given by

f
(t+1)
j = α(f

(t)
j −

∑n

k=1
γ
f
(t)
j − f

(t)
k

d̃2kj
) + (1− α)yj. (3.7)

Eq. (3.7) explains the propagation process between one example and the other

examples in the dataset, and indicates that the received label information of an

unlabeled example can be understood as an integration of the information emitted by

the other examples.

According to Fick’s First Law of Diffusion, we update the labels of all examples

simultaneously by denoting the label vector f (t) =
(
f
(t)
1 f

(t)
2 · · · f

(t)
n

)�
, and the

initial state vector y=
(
y1 y2 · · · yn

)�
, and then at time t, we have

f (t+1) = αPf (t) + (1− α)y, (3.8)

where the iteration matrix P is defined by

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− γ
n∑

k=1,k �=1

d−2
1k γd−2

12 · · · γd−2
1n

γd−2
21 1−γ

n∑
k=1,k �=2

d−2
2k · · · γd−2

2n

...
...

. . .
...

γd−2
n1 γd−2

n2 · · · 1− γ
n∑

k=1,k �=n

d−2
nk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.9)

To guarantee that P is a non-negative stochastic matrix and the summation of elements

in every row is 1, we set 0 < γ <

(
max

j

∑n
k=1,k �=j d

−2
jk

)−1

. Eq. (3.8) reveals that the

soft label of an example is the linear combination of its initial state and the labels of all

the examples including itself. We conduct Eq. (3.8) iteratively until convergence, i.e.∥∥f (t+1) − f (t)
∥∥
2
< ε, (3.10)

where ε is a pre-defined small positive number. The converged vector f∗ can then

be obtained after the iteration process. Given a hard threshold 0, xj is determined as

positive if f ∗
j > 0 (f ∗

j is the j-th element in the vector f∗) and negative otherwise.

Though Eq. (3.8) is derived for binary classification, it can be straightforwardly

extended to multi-class classification by replacing the label vector f and the initial

state vector y with the label matrix F and the initial state matrix Y, respectively,

F(t+1) = αPF(t) + (1− α)Y, (3.11)

49

where matrices F and Y are of size n×C, and C denotes the total number of categories.

We follow the conventional notation that Yjc′ = 1 if xj is labeled as yj = c′, and

Yjc′ =0 otherwise. If xj is unlabeled, then Yjc′ =0 for 1≤ c′≤C. Finally, xj belongs

to the class cj = arg max
1≤c′≤C

Fjc′ . The stopping criterion for propagation is modified

accordingly ∥∥F(t+1) − F(t)
∥∥
F
< ε, (3.12)

where ‖·‖F denotes the Frobenius norm. Because Eq. (3.11) is a propagation model

which simply transmits the label information according to the similarity between pairs

of examples, so it can handle any kinds of data distributions. Moreover, FLAP is a

graph-based algorithm, thus it can effectively exploit the manifold structure hidden in

the dataset Chapelle et al. [2006]; Zhu and Goldberg [2009], which explains why it

always obtains encouraging classification results.

3.2 Convergence Analysis
This section will show that FLAP (3.11) converges at linear rate. This result is directly

applicable to Eq. (3.8).

Theorem 3.1. The sequence
{
F(t)

}
, t = 1, 2, · · · generated by Eq. (3.11) eventually

converges to
F∗ = lim

t→∞
F(t) = (1− α)(I− αP)−1Y (3.13)

linearly, i.e.

lim
t→∞

∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F
= θ < 1, (3.14)

where θ denotes the convergence rate.

Proof. Without loss of generality, the convergence of FLAP is studied for multi-class

classification. By iteratively using Eq. (3.11), F(t) is given by

F(t) = (αP)tY + (1− α)
∑t−1

i=0
(αP)iY. (3.15)

Note that P is a stochastic matrix (Pij > 0 and
∑

j Pij = 1), then according to the

Perron-Frobenius Theorem Golub and Loan [1996], the spectral radius of P satisfies

ρ(P) ≤ 1, and thus we have

lim
t→∞

(αP)t = 0, lim
t→∞

∑t−1

i=0
(αP)i = (I− αP)−1.

Therefore, the sequence
{
F(t)

}
will finally converge to (3.13).

50

To prove that FLAP converges at linear rate, we need to demonstrate Eq. (3.14)

holds. Considering that

F(t+1) = (αP)t+1Y + (1− α)
∑t

i=0
(αP)iY, (3.16)

we have Eq. (3.17) by plugging Eqs. (3.13), (3.15) and (3.16) into Eq. (3.14),∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F

=

∥∥∥[(αP)t+1 + (1− α)
∑t

i=0 (αP)
i − (1− α)(I− αP)−1

]
Y
∥∥∥
F∥∥∥[(αP)t + (1− α)

∑t−1
i=0 (αP)i − (1− α)(I− αP)−1

]
Y
∥∥∥
F

.

(3.17)

Since P is symmetric, it can be decomposed into

P = UΛU�, (3.18)

where U is an unitary matrix and Λ = diag(λ1, λ2, · · · , λn) is a diagonal matrix

containing eigenvalues of P. According to (3.18) and the Woodbury matrix identity
Higham [1996], we have

(I− αP)−1 = I+ αU
(
Λ−1 − αI

)−1
U�. (3.19)

By substituting Eq. (3.18) and Eq. (3.19) into Eq. (3.17), we obtain∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F

=

∥∥∥{U(αΛ)t+1U� + (1− α)
∑t

i=0U(αΛ)iU� − F∗
}
Y
∥∥∥
F∥∥∥{U(αΛ)tU� + (1− α)

∑t−1
i=0 U(αΛ)iU� − F∗

}
Y
∥∥∥
F

=

∥∥{U (αt+1Λt+1 +M)U�}Y
∥∥
F

‖{U (αt+1Λt +M)U�}Y‖F
,

(3.20)

where M = (1−α)
[∑t

i=1 (αΛ)i−α(Λ−1−αI)
−1

]
. From Eq. (3.20) we can easily

observe that the only difference between the denominator and numerator is that one

more diagonal matrix Λ is multiplied to the first term in the bracket of numerator.

Thus Eq. (3.20) can be rewritten as

∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F
=

∥∥{Uαt+2diag
(
κ1 κ2 · · · κn

)
U�}Y

∥∥
F∥∥{Uαt+1diag

(
π1 π2 · · · πn

)
U�}Y

∥∥
F

, (3.21)

51

in which κi =
λt+1
i (1−λi)

1−αλi
and πi =

λt
i(1−λi)

1−αλi
. If we denote

UJAU
� � A, UJBU

� � B,

where JA = αt+2diag
(
κ1 κ2 · · · κn

)
and JB = αt+1diag

(
π1 π2 · · · πn

)
that

contain the eigenvalues of A and B, respectively, then Eq. (3.21) is simplified as∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F
=

‖AY‖F
‖BY‖F

. (3.22)

Moreover, since P is a stochastic matrix with all its eigenvalues λi ∈ [−1, 1] (In fact,

1 is the single eigenvalue of P according to the Perron-Frobenius Theorem Golub and

Loan [1996]) and α ∈ (0, 1), so all the eigenvalues of A and B are non-negative,

and the eigenvalues of A are smaller than those of B in the corresponding position

expressed in JA and JB. Therefore,

‖AY‖F
‖BY‖F

=

∥∥UJAU
�Y

∥∥
F

‖UJBU�Y‖F
=

√
tr

(
Y�UJA

2U�Y
)

tr
(
Y�UJB

2U�Y
) , (3.23)

where tr(·) is the symbol of trace. Let Q = UJU� where J = JB
2 − JA

2 ≥ 0, then

we obtain the margin between the denominator and numerator in Eq. (3.23) as

tr
(
Y�UJB

2U�Y
)−tr

(
Y�UJA

2U�Y
)
= tr

[
Y�U

(
JB

2 − JA
2
)
U�Y

]
= tr

(
Y�QY

)
.

(3.24)

Note that Q = U
√
J
(
U
√
J
)�

and U
√
J are invertible (det(U

√
J) = det(U) ·

det(
√
J) �= 0), so Q is a positive definite matrix. Furthermore, if Y is partitioned

by columns as Y=
(
Y1 Y2 · · · Yn

)
, then

tr
(
Y�QY

)
= tr

(∑n

i=1
Y �
i QYi

)
. (3.25)

Because Q is positive definite and Y1, Y2 · · ·Yn are non-zero vectors (this is

guaranteed, because each class should has at least one labeled example), the result

of Eq. (3.25) is definitely above zero. Therefore, the denominator of Eq. (3.23) is

larger than the numerator, which indicates that

0 <

∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F
< 1. (3.26)

According to Eq. (3.26), we can conclude

lim
t→∞

∥∥F(t+1) − F∗∥∥
F

‖F(t) − F∗‖F
= θ < 1. (3.27)

Thus the linear convergence rate of FLAP for multi-class classification is proved.

52

3.3 Interpretation and Connections
In this section, we will first build the relationship between our FLAP and other existing

methods by reformulating FLAP into the traditional regularization theory, and then

elaborate that FLAP can be understood from the perspective of Markov random fields

and graph kernels.

3.3.1 Regularization Networks
To straightforwardly compare FLAP with other graph transduction algorithms and

show its superiority, we reformulate FLAP in the context of the classical regularization

theory:

min
f∈Rn

Q(f) =
1

2

[
n∑

k=1

n∑
j=1

pkj(fk−fj)
2+τ

n∑
k=1

(fk−yk)
2

]
, (3.28)

where pkj is the (k, j)-th element in the matrix P. The first term in the right-hand side

of Eq. (3.28) forms a specific prior knowledge and enforces the labels in f varying

smoothly. It indicates that the soft labels of similar examples should not differ too

much from one another. The second fitting term means that the decided labels should

be consistent with the examples’ original states well1. The regularization parameter

τ >0 controls the trade-off between smoothness term and fitting term.

It is straightforward to show that the optimal solution of Eq. (3.28) equals the

iterative result of Eq. (3.8). The derivative of Q(f) with respect to f is

∂Q/∂f = 2 (I−P) f + τ (f − y) . (3.29)

Set the right-hand side of Eq. (3.29) to 0 and let α = 2
2+τ

, β = τ
2+τ

so that α + β = 1,

then Eq. (3.29) is reformulated as

f − αPf − βy = 0, (3.30)

which leads to the same closed-form solution as Eq. (3.13):

f = β(I− αP)−1y. (3.31)

Theorem 3.2. The regularization form (3.28) is a convex optimization problem.

1Similar to LGC Zhou and Bousquet [2003], LNP Wang et al. [2009b] and GTAM Wang et al.

[2008b], we penalize the deviations of the labels of all the examples from their initial states. This

formulation prefers the consistency for labeled data, and the compromise in assigning the labels to the

unlabeled data Wang et al. [2009b].

53

Proof. By denoting dk =
∑n

j=1,j �=k pkj and calculating the Hessian matrix H0 of

Eq. (3.28), we have

H0 =

⎛⎜⎜⎜⎝
2d1 + τ −2p12 · · · −2p1n
−2p21 2d2 + τ · · · −2p2n

...
...

. . .
...

−2pn1 −2pn2 · · · 2dn + τ

⎞⎟⎟⎟⎠ . (3.32)

From Gerschgorin circle theorem Golub and Loan [1996] we know that all the

eigenvalues of H0 belong to [τ, 4 max
1≤k≤n

(dk) + τ], which reveals that H0 is positive

definite. Therefore, the optimization problem (3.28) is convex and the convergent

result is globally optimal.

Theorem 3.2 also implies that the convergent point of FLAP (3.31) corresponds

to the global optimal solution. Given Eq. (3.28), Table 3.1 compares FLAP with

representative algorithms in a straightforward way, in which N(xk) denotes the

neighbors of the example xk and ωkj=exp
(−‖xk − xj‖2/ (2σ2)

)
. It can be observed

that the main difference between these methods is the definition of smoothness. FLAP

uses the matrix P to describe the smoothness, while Mincut, HF, LNP and LGC adopt

the (normalized) graph Laplacian to define the smoothness. This difference leads to

the faster convergence rate achieved by FLAP.

The regularization framework of FLAP is also much related to the semi-supervised

formulation of binary kernel spectral clustering (BKSC) Alzate and Suykens [2012].

Suppose the adjacency matrix of a graph is W, and the diagonal matrix D is defined

by Dkk=
∑

j Wkj , ∀k = 1, 2, · · · , n, then BKSC is

min
ω,b

1

2

[
ω�ω − γ1f

�D−1f + γ2
∑l

i=1
(fi − yi)

2
]
. (3.33)

In Eq. (3.33), f = Θω + bel, where el is an all-one l-dimensional column vector,

and Θ is the kernelized data matrix with each row representing an example. ω
and b are unknown vectors to be optimized, and γ1, γ2 are non-negative parameters

balancing the three terms. BKSC (3.33) differs from FLAP (3.28) regarding the prior

knowledge. FLAP prefers the solution to be smooth, while BKSC emphasizes the

examples corresponding to large Dkk.

3.3.2 Markov Random Fields
Markov Random Fields (MRF) are a set of random variables having the Markov

property described by an undirected graph. First Order Intrinsic Gaussian Markov

Random Fields (FO-IGMRF) is an MRF in which the joint distribution is Gaussian

and the precision matrix Q is rank reduced and meanwhile satisfies Qe = 0 (e is

54

Table 3.1: FLAP vs. popular graph transduction algorithms.

Algorithm Regularization Framework
Mincut min

f :f{j,k}∈{−1,1}
Q(f) =

∑n
k=1

∑n
j=1 ωkj(fk − fj)

2
+ θ

∑n
k=1 (fk − yk)

2

HF min
f :f{j,k}∈R

Q(f) =
∑n

k=1

∑n
j=k ωkj(fk − fj)

2
+ θ

∑n
k=1 (fk − yk)

2

LNP min
f :f{j,k}∈R

Q(f) =
∑n

k=1

∑
j:xj∈N(xk)

ωkj(fk − fj)
2
+ θ

∑n
k=1 (fk − yk)

2

LGC min
f :f{j,k}∈R

Q(f) = 1
2

[∑n
k=1

∑n
j=1 ωkj

(
1√
Dkk

fk − 1√
Djj

fj

)2

+ θ
∑n

k=1 (fk − yk)
2

]
FLAP min

f :f{j,k}∈R

Q(f) = 1
2

[∑n
k=1

∑n
j=1 pkj(fk − fj)

2
+ θ

∑n
k=1 (fk − yk)

2
]

a vector of all ones) Rue and Held [2005]. Similar to other propagation algorithms,

e.g. Wang et al. [2009b], FLAP can also be cast into the framework of FO-IGMRF.

Defining the increment along the edge in a graph as

Δdkj = fk − fj. (3.34)

Suppose Δdkj fits the Gaussian distribution with Δdkj ∼ N(0, d2kj/γ), then we

have

p(Δdkj) ∝ exp

[
− γ

2d2kj
(fk − fj)

2

]
. (3.35)

Assuming that all the increments along the edges are conditionally independent,

the joint probability over f is calculated as the product of the probabilities over all the

increments:

p(f) ∝
∏

p(Δdkj) = exp

[
−1

2
γ
∑ 1

d2kj
(fk − fj)

2

]
. (3.36)

Suppose the adjacency matrix W of a graph is

Wkj =

{
γd−2

kj k �= j

0 k = j
, (3.37)

then Eq. (3.36) is reformulated as

p(f) ∝ exp

[
−1

2
γf�(D−W)f

]
= exp

[
−1

2
γf�Lf

]
, (3.38)

where L = D −W is the graph Laplacian. Since Le = 0, L is exactly the precision

matrix Q in FO-IGMRF.

55

3.3.3 Graph Kernels
Because of the popularity of graph-based methods for data analyses, many diffusion

kernels on graph vertices have been developed, such as exponential diffusion kernel

Kondor and Lafferty [2002] and Von Neumann diffusion kernel Shawe-Taylor and

Cristianini [2004]. This section examines the relationship between the proposed FLAP

and these popular diffusion kernels.

If we ignore the manually incorporated initial state term yi in Eq. (3.7), and only

focus on the propagation process itself, Eq. (3.7) reduces to

f
(t+1)
j = f

(t)
j + γ

∑n

k=1
d−2
kj f

(t)
k − γ

∑n

k=1
d−2
kj f

(t)
j . (3.39)

By regarding fj as a variable w.r.t. the time t, we have

dfj
dt

= γ
∑n

k=1

[
(1− δkj)d

−2
kj fk − δkj

∑n

i=1
d−2
ij fj

]
= γ

∑n

k=1

[
(1− δkj)d

−2
kj − δkj

∑n

i=1
d−2
ij

]
fk

, (3.40)

where δkj is the Kronecker delta with δkj = 1 if k = j, and 0 otherwise. Therefore, we

can write the variables fj (j = 1, · · · , n) as Eq. (3.40) into a compact matrix form:

df/dt = (P− I)f , (3.41)

where P is the iteration matrix defined by Eq. (3.9), and f = (f1, · · · fn)� is an n-

dimensional variable vector of time t. By denoting H = P− I, the above differential

equation leads to the solution f = exp(Ht)f (0), which results in the graph kernel

related to FLAP:

KFLAP = exp(σ̃H) =
∑∞

i=0

σ̃iHi

i!
, (3.42)

where σ̃ is a real parameter. Since H is a positive semi-definite matrix, KFLAP can be

regarded as an exponential diffusion kernel according to Kondor and Lafferty [2002].

FLAP is also related to the Von Neumann diffusion kernel, which has the formation

of KV ND = (I−α̃A)−1 =
∑∞

i=0 α̃
iAi with 0 < α̃ < ρ(A)−1 Shawe-Taylor and

Cristianini [2004]. For FLAP, since P’s spectral radius ρ(P) = 1, and α ∈ (0, 1) as

explained in Section 3.1, the term (I−αP)−1 in Eq. (3.13) is actually a Von Neumann

diffusion kernel and encodes the similarities of pairs of examples.

3.4 Experimental Results
In this section, FLAP will be evaluated on typical synthetic and vision datasets. Several

popular graph transduction algorithms serve as baselines for comparison, including

56

Table 3.2: Performances of all the methods on two synthetic datasets. Each record

follows the format ”iteration time/CPU seconds/accuracy”.

Type Algorithms Square&Ring DoubleMoon

Iterative

LGC Zhou and Bousquet [2003] 68/0.436/54.2% 880/4.488/100.0%

LNP Wang et al. [2009b] 235/1.685/79.3% 156/1.044/91.8%

FLAP 114/0.658/100.0% 20/0.338/100.0%

Non-iterative

MinCut Joachims [2003] -/-/100.0% -/-/89.6%

HF Zhu et al. [2003a] -/-/100.0% -/-/100.0%

NTK Zhu et al. [2005] -/-/24.7% -/-/99.6%

HF Zhu et al. [2003a], LGC Zhou and Bousquet [2003], LNP Wang et al. [2009b],

NTK Zhu et al. [2005] and MinCut Joachims [2003]. We focus on two issues of these

algorithms: one is the classification accuracy on unlabeled examples given very few

labeled examples for every dataset, and the other is the efficiency such as CPU seconds

and iteration times. In all the experiments below, the parameters of FLAP are set to

α = 0.99, and γ = η

(
max

j

∑n
k=1,k �=j d

−2
jk

)−1

where η is chosen within [0, 1]. In HF,

LGC and LNP, the parameter α is also set to 0.99. For fair comparison, we construct

the identical K-NN graph for all the algorithms, and the σ in the expression of the

diffusion distance has been also respectively adjusted to achieve the best performance

for different datasets.

3.4.1 Synthetic Data
Square&Ring and DoubleMoon datasets are used to visualize the propagation pro-

cesses of three iterative methods, including LGC, LNP and the proposed FLAP. The

results of the three non-iterative methods, i.e. MinCut, HF, and NTK, are also reported.

The Square&Ring dataset contains a square and a ring, both of which are centered

at (0.5,0.5). The radius of the outer ring is 1.3, and the length of each side of the inner

square is 1 (see Fig. 3.2). In the DoubleMoon dataset, 500 examples are equally divided

into two moons that are centered at (0, 0) and (6, 0), respectively. The width of each

moon is set to 6 to make the moons “fatter”. Compared with other literatures Wang

and Zhang [2006]; Zhou and Bousquet [2003] that use the DoubleMoon dataset for

illustration, we reduce the inter-class distance to increase the classification difficulty

(see Fig. 3.3). Note that there is only one labeled example in each class for both

datasets (see t = 0 in every subplot).

For implementing FLAP on the Square&Ring dataset, we set K = 5, σ = 0.2

57

-1 0 1 2
-1

0

1

2

Positive
Negative

-1 0 1 2
-1

0

1

2

Positive
Negative

-1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative
Unlabeled

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negaive
Unlabeled

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Unlabeled
Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Unlabeled
Positive
Negative

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Positive
Negative
Unlabeled

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Unlabeled
Positive
Negative

t=0

t=35

t=0

t=20

t=1 t=2

t=68

t=0

t=96t=30

t=5

t=235(a) (b) (c)

(d) (f)(e)

Figure 3.2: The propagation results on Square&Ring dataset. (a), (b), (c) are

propagation processes of FLAP, LGC and LNP, respectively. (d), (e), (f) present the

classification results brought by MinCut, HF and NTK.

and η = 0.95. Fig. 3.2 reveals that LGC wrongly propagates positive labels to the

outer ring. Part of the unlabeled examples cannot receive label information through

LNP until convergence. Most negative examples are classified as positive by NTK. By

contrast, FLAP, MinCut and HF are able to correctly classify all the examples. The

parameter settings of FLAP on DoubleMoon are K = 5, σ = 0.2 and η = 0.6. The

results are displayed in Fig. 3.3. It can be observed that LNP propagates the positive

label to the upper moon by mistake in about t = 27. Mincut and NTK also fail to obtain

the perfect results. Comparatively, LGC, HF and FLAP perform better than the above

methods. For quantitative comparison, we also report the classification accuracies of

these methods on Square&Ring and DoubleMoon in Table 3.2.

Moreover, to validate the efficiency of FLAP, we record both iteration times and

CPU seconds of the three iterative methods. In this work, all the algorithms are con-

ducted on a work station with 2.40GHz Intel Xeon CPU and 24G memory. Table 3.2

suggests FLAP achieves comparable time costs with LGC on the Square&Ring dataset.

However, the convergent result of LGC is incorrect shown by Fig. 3.2, and this can be

the reason why it converges quickly in this dataset. The convergence curves are also

shown in Fig. 3.4 and demonstrate that FLAP converges very quickly on both datasets.

We further use the DoubleMoon dataset to test the ability of FLAP for handling

58

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative
Unlabeled

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative
Unlabeled

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Unlabeled
Negative
Positive

-10 -5 0 5 10 15
-10

-5

0

5

10

Unlabeled
Negative
Positive

-10 -5 0 5 10 15
-10

-5

0

5

10

Unlabeled
Negative
Positive

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative
Unlabeled

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative
Unlabeled

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative
Unlabeled

t=15

t=0 t=10

t=27 t=156

t=0

t=20

t=0 t=2t=1

t=3 t=880

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

-10 -5 0 5 10 15
-10

-5

0

5

10

Positive
Negative

(a) (b) (c)

(d) (e) (f)

Figure 3.3: The propagation results on DoubleMoon dataset. (a), (b), (c) are

propagation processes of FLAP, LGC and LNP, respectively. (d), (e), (f) present the

classification results brought by MinCut, HF and NTK.

the problem of imbalanced data. The number of negative examples is fixed to 250,

while we randomly sample 125, 50, 25, 10 positive examples from the bottom moon,

so the relative ratio of positive examples to negative examples are 1:2, 1:5, 1:10 and

1:25, respectively. The initial labeled examples for this experiment are identical to

Fig. 3.3, and the propagation results are presented in Fig. 3.5. It can be observed that

FLAP can successfully classify all the examples except 1:25 situation. In Fig. 3.5

(d), two positive examples are mistakenly classified into the negative class. This is

mainly because 1) the positive examples are so scarce that they fail to represent the

underlying manifold of the real distribution of the positive examples (i.e. the moon

shaped by positive points); 2) the two mistakenly classified examples are closer to the

upper moon, so the negative labels can be more conveniently propagated to them than

the positive labels. This experiment well demonstrates that FLAP is insensitive to the

problem of imbalanced data.

3.4.2 Real Benchmarks Data
In this section, the performances of FLAP, LGC, LNP, HF, NTK and MinCut are

evaluated by testing on the two public datasets USPS and BCI in Chapelle’s book

59

(a)
0 50 100 150 200 250

10-4

10-2

100

102

Iteration

||F
(t+

1)
-F

(t)
||

LGC
LNP
FLAP

0 200 400 600 800
10-4

10-2

100

102

Iteration

||F
(t+

1)
-F

(t)
||

LGC
LNP
FLAP

(b)

Figure 3.4: The comparison of convergence curves. (a) is the result on Square&Ring
and (b) is that on DoubleMoon.

Chapelle et al. [2006].

The USPS dataset contains ten digits, each with 150 images. We combine digits

2 and 5 as the positive class, and form all the others as the negative class. Therefore,

the two classes are imbalanced and the relative size of the two classes is 1:4. The

BCI dataset is used to study the brain-computer interface. It contains 400 imagined

movements (examples) with 200 using the left hand (negative class) and 200 using the

right hand (positive class).

In each dataset, we implement all the algorithms under l = 10 and l = 100,

and the final results are averaged over 12 independent runs with different partitions

of labeled and unlabeled subsets. We built 9-NN and 8-NN graphs with σ = 0.2
for USPS and BCI respectively, and η in FLAP is set to 0.1 and 0.01 for these

two datasets. The number of principal components in NTK is set to m = 100
to achieve the optimal performance. Table 3.3 shows the accuracies of different

algorithms, in which the highest and the second highest records are marked with red

and blue color, respectively. We observe that compared with all the baselines, the

proposed FLAP obtains encouraging performance generally. An exceptional case is

that FLAP performs slightly worse than LGC on USPS when l = 100. Specifically,

the experimental results on USPS also demonstrate that FLAP is not sensitive to the

problem of the imbalanced data.

60

-10 -5 0 5 10 15
-10

-5

0

5

10

-10 -5 0 5 10 15
-10

-5

0

5

10

-10 -5 0 5 10 15
-10

-5

0

5

10

-10 -5 0 5 10 15
-10

-5

0

5

10

(a) (b)

(c) (d)

Incorrect

Figure 3.5: Classification outputs on imbalanced DoubleMoon. (a), (b), (c) and (d) are

results of 1:2, 1:5, 1:10 and 1:25 situations, respectively.

3.4.3 UCI Data
We adopt four UCI Machine Learning Repository datasets1, Iris, Wine, BreastCancer,

and CNAE-9 to compare FLAP with the other graph-based algorithms. The classifica-

tion accuracy and iteration times under different sizes of the labeled set l, in particular,

are evaluated. Algorithms are implemented 30 times independently under each l
with randomly selected examples, and the reported accuracy and iteration times are

calculated as the mean value of the outputs of these runs. Note that at least one labeled

example is guaranteed in each class when the labeled sets are generated. Five state-of-

the-art graph transduction algorithms are adopted for baselines, including LGC, LNP,

1http://archive.ics.uci.edu/ml/.

61

Table 3.3: Experimental results on the benchmark datasets for the variety of graph

transduction algorithms. (The values in the table represent accuracy (%).)

Datasets USPS BCI
l(#Labeled Examples) 10 100 10 100

LGC Zhou and Bousquet [2003] 85.90 94.96 51.40 59.85

LNP Wang et al. [2009b] 77.75 79.98 50.85 56.73

HF Zhu et al. [2003a] 86.39 93.64 49.64 53.78

NTK Zhu and Lafferty [2005] 79.57 87.65 49.29 48.97

MinCut Joachims [2003] 80.21 94.21 51.88 66.35

FLAP 88.31 94.24 53.40 66.90

MinCut, HF and NTK.

We built 10-NN, 6-NN, 7-NN, and 10-NN graphs for Iris, Wine, BreastCancer,

and CNAE-9, respectively. Other parameters of FLAP are σ = 0.2, η = 0.1 for Iris,

σ=0.5, η=0.01 for Wine, σ=0.5, η=0.001 for BreastCancer, and σ=1, η=0.1 for

CNAE-9. The m in NTK is set to 50 for all the four UCI datasets. Figs. 3.6 (a) (c) (e)

(g) demonstrate that FLAP is generally able to reach the highest accuracy among the

comparators when l changes from small to large.

Moreover, Figs. 3.6 (b) (d) (f) (h) present the iteration times of all the iterative

methods (LGC, LNP and FLAP) on four UCI datasets, respectively. Other baselines

including HF, MinCut and NTK are not compared here because they are not iteration-

based. It can be observed that FLAP requires the least iteration times in most cases.

An exceptional case is that LNP is more efficient than FLAP on the Wine dataset.

However, the accuracy of LNP is not as high as that of FLAP shown by Fig. 3.6 (c),

so the results obtained by FLAP are encouraging.

3.4.4 Handwritten Digit Recognition
Handwritten digit recognition is a branch of optical character recognition (OCR).

We compare FLAP with baselines on the Optical Recognition of Handwritten Digits
Dataset1, (abbreviated as “Digits”) in which numbers 0∼9 are considered as different

classes. This dataset contains 5620 digital images and the resolution of each image is

8×8. The pixel-wise feature is described by a 64-dimensional vector with elements

representing the gray values. Labeled examples are randomly selected from the whole

dataset. We built a 10-NN graph for all the methods, and choose σ = 7, η = 0.01 for

1http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+
Handwritten+Digits

62

6 12 18 24 30
0.75

0.8

0.85

0.9

0.95

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

4 8 12 16 20
0.75

0.8

0.85

0.9

0.95

1

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

6 12 18 24 30

0.65

0.75

0.85

0.95

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

6 12 18 24 30
100

200

300

400

500

600

Labeled Examples

Ite

ra
tio

ns

LGC
LNP
FLAP

6 12 18 24 30
0

200

400

600

800

1000

Labeled Examples

Ite

ra
tio

ns

LGC
LNP
FLAP

4 8 12 16 20
100

200

300

400

500

600

700

Labeled Examples

Ite

ra
tio

ns

LGC
LNP
FLAP

(a) (b)

(c) (d)

18 36 54 72 90
0

0.2

0.4

0.6

0.8

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

20 40 60 80
300

400

500

600

700

800

900

1000

Labeled Examples

Ite

ra
tio

ns

LGC
LNP
FLAP

(g) (h)

(f)(e)

Figure 3.6: Comparison of accuracy and iteration times. (a) (b) denote Iris, (c) (d)

denote Wine, (e) (f) denote BreastCancer, and (g) (h) denote CNAE-9.

63

(a) (b)
60 80 100 120 140

0.8

0.85

0.9

0.95

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

60 80 100 120 140
50

100

150

200

250

300

Labeled Examples

Ite

ra
tio

ns

LGC
LNP
FLAP

Figure 3.7: Comparison of accuracy and iteration times on digit recognition dataset.

(a), (b) are the curves of accuracy and iteration times with the growing of the labeled

examples, respectively.

FLAP.

When l varies from small to large, the accuracy and iteration times of the methods

are plotted in Figs. 3.7 (a) and (b), respectively. This figure indicates that FLAP

achieves the highest accuracy with the least iteration times.

3.4.5 Teapot Image Classification
The Teapot dataset Zhu and Lafferty [2005] contains 365 images of a teapot, and the

angle of the spout in every image is different (see Fig. 3.8 (a)). The goal is to determine

whether the orientation of the spout is right or left. The resolution of each image is

12×16, and hence the pixel-wise feature adopted is a 192-dimensional vector.

A 10-NN graph with σ=30 was established for every algorithm. η for FLAP was

set to 0.01 to get the optimal performance. Fig. 3.8 (b) shows the accuracy curve of

several algorithms when the size of the labeled data varies from 4 to 20, which reveals

that FLAP performs better than other algorithms.

3.4.6 Face Recognition
We tested the ability of FLAP on face recognition by using the challenging dataset

Labeled Face In the Wild (LFW)1. The face images in this dataset are directly collected

under natural scenes, so the facial expressions, observation angle, illumination

1http://vis-www.cs.umass.edu/lfw/

64

4 8 12 16 20
0.8

0.85

0.9

0.95

1

Labeled Examples

Ac
cu

ra
cy

LGC
LNP
MinCut
HF
NTK
FLAP

(a) (b)

Figure 3.8: Experiment on Teapot dataset. (a) shows some typical images. (b) is the

accuracy curve for comparison.

conditions and background setting are not intentionally controlled for recognition. The

faces in all the images are detected by the well-known Viola-Jones detector Viola and

Jones [2001].

In this experiment, we used a subset of LFW by choosing the persons who have

more than 30 face images. We chose the images of Toledo, Sharon, Schwarzenegger,

Powell, Rumsfeld, Bush, Arroyo, Agassi, Beckham and Hewitt for recognition, which

leads to totally 392 examples belonging to 10 people in the subset (see Fig. 3.9 (a) for

some examples). We adopted the 73-dimensional feature developed by Kumar et al.
Kumar et al. [2009], which describes some biometrics traits such as gender, race, age,

and hair color. A 10-NN graph with σ=1 was built on the entire dataset, and η was set

to 0.5. The recognition rates of algorithms are compared in Fig. 3.9 (b). We observe

that HF and MinCut perform comparably to FLAP, while NTK and LNP are inferior

to FLAP notably. Generally, FLAP achieves very satisfactory results and outperforms

other methods with l changing from 20 to 100.

3.4.7 Statistical Significance
Above experiments have empirically shown the superiority of FLAP to other baselines

in terms of classification accuracy. In this section we use the 5×2 cross-validation F-

test (5×2 cv F-test) Alpaydin [1999] introduced in Section 2.4.3 to show the statistical

significance of FLAP over the other methods. Table 3.4 lists the F-statistics values of

baselines versus FLAP, which suggests that the hypothesis is rejected in most cases.

Therefore, the superiority of FLAP to other baselines is statistically verified. Besides,

we observe that the null hypothesis is often accepted by MinCut on Wine, and LNP on

65

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Labeled Examples

A
cc

ur
ac

y

LGC
LNP
MinCut
HF
NTK
FLAP

Figure 3.9: Experimental results on LFW face dataset. (a) shows some representative

images, and (b) compares the recognition accuracy.

Teapot, which suggest that they achieve comparable performances with FLAP on the

corresponding datasets. Fig. 3.6 (c) and Fig. 3.8 (b) also show this point.

3.4.8 Computational Cost
To further evaluate the computational efficiency of baselines and the proposed FLAP,

this section compares the CPU seconds of all the algorithms on all the adopted vision

datasets. The results are presented in Table 3.5. It can be observed that HF is the most

efficient algorithm among the non-iterative methods, and the proposed FLAP generally

needs the least CPU time compared with other iteration-based approaches. By properly

setting the parameter η, FLAP can perfectly control the distribution of eigenvalues of

its iteration matrix, so it achieves the fastest convergence speed among the compared

iterative algorithms. The detailed reason will be explained in the next section. Besides,

we note that the non-iterative methods are more efficient than the iterative algorithms

when the dataset is small (e.g. Iris and Wine datasets). However, when the database

contains a large number of examples, e.g. Digits with 5620 examples, the proposed

iterative FLAP begins to show its strength in terms of efficiency. Compared with non-

iterative methods (MinCut, HF, and NTK) that take more than 30 seconds to complete

one implementation, FLAP requires only less than 20 CPU seconds. The reason is that

non-iterative methods usually need to invert a large matrix when massive examples

exist, while FLAP successfully avoids this inversion by conducting in an iterative way,

so FLAP is more suitable for dealing with relatively large data collections.

66

3.4.9 Parametric Settings
Two parameters, K and η, are critical for FLAP to obtain satisfying results. K controls

the sparsity of an established graph, and η plays an important role in balancing the

accuracy and efficiency.

3.4.9.1 Choosing η

The impacts of η for FLAP’s performance are twofold. Intuitively, from (3.15) we

observe that a diagonally dominant iteration matrix (such as P in FLAP) leads to higher

convergence rate. In other words, a small η helps to reduce the iteration times. The

following analyses will elaborate this point strictly.

Lemma 3.3. Suppose Gn×n is the iteration matrix of an iterative algorithm, e.g. FLAP
defined in Eq. (3.11), of which the eigenvalues are ξ1, ξ2 · · · ξn, and then the upper
bound of the iteration times tmax satisfies∑n

i=1
(αξi)

2tmax(ξi − 1)2 = ε2/(lα2), (3.43)

where ε, l and α are the same as those defined above.

Proof. Suppose the general iterative expression of graph-based label propagation is

F(t+1) = αGF(t) + (1− α)Y, (3.44)

where G is the iteration matrix, then according to the stopping criterion∥∥F(t+1) − F(t)
∥∥
F
< ε, (3.45)

we have the following inequality:∥∥F(t+1) − F(t)
∥∥
F
= αt+1

∥∥(G− I)GtY
∥∥
F

≤ αt+1
∥∥(G− I)Gt

∥∥
F
‖Y‖F ≤ ε,

(3.46)

where ‖Y‖F =
√
l. Similarly, G can also be decomposed as G = VD̃V�, where

V is an unitary matrix and D̃ = diag(ξ1, ξ2 · · · ξn) is a diagonal matrix containing n
eigenvalues of G. If V is partitioned by columns as V =

(
V1 V2 · · · Vn

)
, then

G =
∑n

i=1 ξiViV
�
i . Moreover, considering that the identity matrix I = VV� =∑n

i=1ViV
�
i , we have

∥∥(G− I)Gt
∥∥
F
=

∥∥∥∥∥
(

n∑
i=1

ξiViV
�
i − I

)(
n∑

i=1

λt
iViV

�
i

)∥∥∥∥∥
F

=

√√√√ n∑
i=1

ξ2ti (ξi − 1)2tr(ViV�
i).

(3.47)

67

Because ‖Vi‖2 = 1, so tr(ViV
�
i) = 1 for 1 ≤ i ≤ n. Hence (3.47) can be further

simplified as ∥∥(G− I)Gt
∥∥
F
=

√∑n

i=1
ξ2ti (ξi − 1)2. (3.48)

Finally, by substituting (3.48) into (3.46) we have∑n

i=1
(αξi)

2tmax(ξi − 1)2 =
ε2

lα2
. (3.49)

This reveals the relationship between the upper bound of iteration times tmax and the

eigenvalues of the iteration matrix G.

According to Lemma 3.3, we investigate what requirement of the eigenvalues of

the iteration matrix should meet to obtain the minimum tmax. In fact, this question is

equal to the following optimization problem

min tmax

s.t.
∑n

i=1 (αξi)
2tmax(ξi − 1)2 = ε2

lα2

, (3.50)

which can be rewritten as

min tmax + ρ0

(∑n

i=1
(αξi)

2tmax(ξi − 1)2 − ε2

lα2

)
, (3.51)

where ρ0 is the Lagrange multiplier. If we denote

F (ξ1, · · · , ξn, ρ0) = tmax + ρ0

(
n∑

i=1

(αξi)
2tmax(ξi − 1)2− ε2

lα2

)
, (3.52)

then solving (3.50) equals to finding the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂F
∂ρ0

=
∑n

i=1 (αξi)
2tmax(ξi − 1)2 − ε2

lα2 = 0
∂F
∂λ1

= 4ρ0tmaxα
2tmaxξ2tmax−1

1 (ξ1 − 1) = 0
...

∂F
∂λn

= 4ρ0tmaxα
2tmaxξ2tmax−1

n (ξn − 1) = 0

. (3.53)

It can be concluded that Eq. (3.53) is maximally satisfied if ξi equals to 0 or 1 (note

that ε2/lα2 ≈ 0). Fortunately, Theorem 3.4 below guarantees that all the eigenvalues

of FLAP’s iteration matrix P are almost equivalent to 1 by choosing a small η:

Theorem 3.4. Let λi (1 ≤ i ≤ n) be the eigenvalues of FLAP’s iteration matrix,
then 1 − 2η ≤ λi ≤ 1 where η = γmax

j

∑n
k=1,k �=j d

−2
kj as defined in the beginning of

Section 3.4.

68

Proof. To prove Theorem 3.4, we need a lemma from Huang and Yang [2007].

Lemma 3.5. Huang and Yang [2007] Suppose A = (aij) is a stochastic matrix, q =
min {aii, i ∈ N}, then all the eigenvalues of A satisfy |λi − q| ≤ 1− q.

Now we begin to prove the Theorem 3.4. Since the iteration matrix P of FLAP

is a symmetric stochastic matrix, all its eigenvalues are in the real range [−1, 1], so

according to Lemma 3.5, q in our case satisfies q = 1 − γmax
j

∑n
k=1,k �=j d

−2
kj = 1 −

η

(
max

j

∑n
k=1,k �=j d

−2
kj

)−1

max
j

∑n
k=1,k �=j d

−2
kj = 1− η. By substituting the expression

of q into Lemma 3.5, we complete the proof.

Above analyses explain why we set the parameter η (or γ) to a relatively small

positive number (e.g. η = 0.1 in Iris, η = 0.01 in Wine, and η = 0.001 in

BreastCancer, etc.). By choosing a small η, P can be diagonally dominant and its

eigenvalues λi(1 ≤ i ≤ n) will be distributed very close to 1. Fig. 3.10 shows that the

eigenvalues of the FLAP iteration matrix are only slight smaller than 1. In contrast,

the eigenvalues of the iteration matrices in LNP and LGC are widely scattered in the

range [−1, 1]. Therefore, FLAP is able to converge relatively more quickly than LGC

and LNP as Table 3.5 illustrates.

On the other hand, if η is set to an extremely small value, then P will be very close

to an identity matrix. Eq. (3.13) reveals that under this situation, the convergence result

is almost the same as the initial state Y, which means the label information cannot

be thoroughly propagated from initially labeled examples to other unlabeled ones.

Therefore, an extremely small η will damage the classification accuracy significantly.

In short, a small η leads to higher convergence rate, but decreases the classification

accuracy; a large η can boost the accuracy at the cost of high computational time.

Therefore, η should be chosen by trading off the accuracy and efficiency. By fixing

l = 12 on the Iris dataset, we plot the accuracy and iteration times of FLAP w.r.t. the

variations of η in Figs. 3.11 (a) and (b). These two figures also indicate that both the

accuracy and iteration times will rise by gradually increasing η. In the Iris dataset,

we set η to 0.1 because the accuracy is relatively high and the iteration times are also

acceptable under this setting.

3.4.9.2 Choosing K

A suitable graph is very important for improving the performance. As mentioned

above, K is a critical parameter determining the number of neighborhoods and

the sparsity of an established graph. This section studies how K influences the

classification accuracy and iteration times. In Figs. 3.11 (c) and (d), we fix η = 0.1
and change the value of K from small to large. It can be observed that if the graph

is too sparse (e.g. K = 2), FLAP will not achieve satisfying performance. However,

69

(c)

(b)

(a)

Figure 3.10: Distribution of eigenvalues on Iris. (a) denotes LNP, (b) denotes LGC

and (c) denotes FLAP. Note that the ranges of the three x-axes are different.

when K is larger than a certain value (e.g. K = 6), FLAP functions properly and

produces encouraging results. Besides, Fig. 3.11 (d) reveals that the choice of K
will not influence the iteration times significantly. Therefore, both the accuracy and

iteration times are not sensitive to the choice of K if K is not too small. In other

words, this parameter can be easily tuned.

3.5 Summary of This Chapter
We presented the FLAP algorithm to propagate labels by adopting Fick’s First

Law of Diffusion in fluid mechanics. We showed FLAP can also be derived

in the context of the traditional regularization theory, which not only relates the

FLAP algorithm to existing algorithms but also implies that the convergent point

of FLAP is globally optimal. It was also demonstrated that the parameter η
played an important role in determining classification performance and iteration

times. Comprehensive experimental results suggest that FLAP obtains competitive

performance when compared with state-of-the-art transduction algorithms.

70

2 6 10 14 18
0.8

0.85

0.9

0.95

1

K

Ac
cu

ra
cy

10-5 10-4 10-3 10-2 10-1 100
0.84

0.86

0.88

0.9

0.92

0.94

Ac
cu

ra
cy

10-5 10-4 10-3 10-2 10-1 1000

50

100

150

200

250

300

Ite

ra
tio

ns

2 6 10 14 18
200

220

240

260

280

300

K

Ite

ra
tio

ns

(a) (b)

(c) (d)

Figure 3.11: The impact of parametric settings on accuracy and iteration times. (a), (b)

investigate η, and (c), (d) evaluate K.

71

Table 3.4: F-statistics values of baselines versus FLAP on four UCI datasets. (The

records smaller than 4.74 are marked in red, which mean that 1) the null hypothesis is

accepted, and 2) the corresponding baseline algorithm performs comparably to FLAP.)

l LGC LNP MinCut HF NTK

Iris

6 1.28 3.84 1.25 1.84 8.23

12 20.71 12.93 5.69 6.76 12.46

18 18.05 5.02 5.06 4.80 9.76

24 13.77 7.17 2.14 4.60 13.08

30 14.42 11.49 2.57 2.92 10.91

Wine

6 4.99 41.65 3.56 9.21 39.99

12 3.29 16.81 3.13 5.58 208.63

18 1.52 55.17 2.93 2.61 192.36

24 1.51 24.65 2.74 2.77 222.16

30 5.55 26.33 8.50 7.23 864.96

BreastCancer

4 2.64 14.39 2.08 8.13 37.77

8 4.21 13.88 9.58 22.92 701.85

12 6.86 27.37 6.80 18.29 939.93

16 7.89 8.22 78.31 27.53 8132.42

20 5.25 7.00 3.78 6.86 2747.30

CNAE-9

18 44.70 98.95 100.32 13.59 1434.33

36 8.27 102.22 42.59 61.96 10596.37

54 20.88 54.82 21.22 24.10 2107.28

72 14.29 94.07 58.05 28.98 7535.61

90 10.14 103.75 68.64 32.27 3852.48

Digits

60 101.51 14.53 7.14 6.12 153.55

80 78.99 41.57 13.05 4.06 2211.52

100 63.08 21.67 8.27 7.34 503.88

120 73.60 118.29 7.13 7.68 438.75

140 24.31 19.33 8.36 8.52 672.71

Teapot

4 2.94 7.39 16.51 8.41 9.54

8 3.89 4.49 9.07 10.76 10.37

12 4.23 3.81 18.65 31.21 12.98

16 10.89 1.61 7.82 7.05 2.21

20 8.40 2.42 7.66 5.91 3.48

LFW

20 17.41 267.00 3.20 7.07 1252.94

40 33.76 410.25 8.99 12.16 5420.41

60 28.69 129.32 6.08 11.84 3327.88

80 18.23 106.75 19.82 7.34 4424.79

100 24.00 113.43 4.02 12.09 2139.00

72

Table 3.5: CPU time (unit: seconds) of various methods. (For each l, the smallest

record among iterative methods is marked in red, while the smallest record among

non-iterative methods is highlighted in blue.)

Non-iterative methods Iterative methods

l MinCut HF NTK LGC LNP FLAP

Iris

6 0.006 0.002 0.324 0.023 0.025 0.021

12 0.008 0.002 0.356 0.034 0.040 0.024

18 0.009 0.002 0.356 0.034 0.046 0.026

24 0.008 0.002 0.412 0.038 0.062 0.029

30 0.008 0.002 0.416 0.048 0.056 0.029

Wine

6 0.012 0.004 0.395 0.102 0.019 0.038

12 0.015 0.002 0.313 0.105 0.016 0.040

18 0.010 0.003 0.377 0.110 0.020 0.043

24 0.023 0.002 0.386 0.111 0.018 0.045

30 0.017 0.002 0.426 0.111 0.031 0.045

BreastCancer

4 0.122 0.059 0.422 0.254 0.746 0.226

8 0.111 0.078 0.507 0.330 0.827 0.310

12 0.109 0.061 0.493 0.376 1.156 0.373

16 0.122 0.057 0.544 0.401 1.771 0.405

20 0.123 0.057 0.542 0.422 1.768 0.420

CNAE-9

18 0.352 0.151 1.207 3.877 3.904 2.967

36 0.380 0.147 1.689 4.015 6.148 3.146

54 0.381 0.147 2.752 4.156 6.622 3.235

72 0.379 0.149 1.717 4.209 6.844 3.369

90 0.318 0.150 2.112 4.218 7.120 3.484

Digits

60 40.659 33.811 35.057 41.903 38.486 12.124

80 39.154 34.344 34.268 45.747 41.473 14.490

100 40.027 34.086 38.052 48.374 43.471 16.658

120 40.006 34.117 37.615 50.508 46.011 18.518

140 42.180 33.902 40.585 52.173 47.958 19.757

Teapot

4 0.026 0.011 0.422 0.088 0.481 0.010

8 0.027 0.014 0.473 0.106 0.477 0.031

12 0.027 0.013 0.450 0.118 0.488 0.043

16 0.029 0.012 0.461 0.115 0.493 0.049

20 0.028 0.012 0.468 0.124 0.506 0.058

LFW

20 0.050 0.012 0.993 0.295 0.180 0.169

40 0.036 0.015 1.110 0.213 0.202 0.209

60 0.060 0.014 1.751 0.219 0.219 0.213

80 0.036 0.012 2.780 0.228 0.239 0.245

100 0.038 0.015 4.261 0.235 0.252 0.269

73

Chapter 4

Label Propagation Via
Teaching-to-Learn and
Learning-to-Teach

In this chapter, we aim to design a robust iterative label propagation approach for graph

transduction. Existing graph-based propagation algorithms usually treat unlabeled

examples equally, and transmit seed labels to the unlabeled examples as long as

they are connected to the labeled examples. However, such a popular propagation

scheme is very likely to yield inaccurate propagation, because it falls short of tackling

ambiguous but critical data points (e.g., outliers). To address this shortcoming, in this

chapter we treat the unlabeled examples in different levels of difficulties by assessing

their reliability and discriminability, and explicitly optimize the propagation quality by

manipulating the propagation sequence to move from simple to difficult examples.

So far, machine learning has been studied from different aspects for a long history,

and numerous learning algorithms have been developed to tackle different types

of problems. However, as an important counterpart of machine learning, machine

teaching has been largely ignored by the majority of researchers. Therefore, we

incorporate a “teacher” (i.e. a teaching algorithm) and a “learner” (i.e. a learning

algorithm) into one framework to achieve accurate propagation.

Specifically, we propose a novel iterative label propagation algorithm in which

each propagation alternates between two paradigms, teaching-to-learn and learning-to-

teach. In the teaching-to-learn step, the teacher picks up a set of the simplest examples

for the learner to conduct the propagation. In the learning-to-teach step, the teacher

absorbs the learner’s learning feedback to adjust the choice of the simplest examples

for the next learning round. The proposed Teaching-to-Learn and Learning-to-Teach

(TLLT) strategy has two major advantages: 1) it helps to boost the accuracy of label

propagation, and 2) TLLT makes the entire propagation process very robust to the

disturbance of the Gaussian kernel width for graph construction.

74

4.1 A Brief Introduction to Machine Teaching
The early works related to machine teaching mainly focus on the “teaching dimension”

theoryBalbach and Zeugmann [2006]; Goldman and Kearns [1995]; Shinohara and

Miyano [1991]. Recently, some teaching algorithms have been developed such as

Dekel et al. [2012]; Mei and Zhu [2015]; Patil et al. [2014]; Singla et al. [2014]; Zhu

[2013, 2015]; Zilles et al. [2011] . In above literatures, a teacher is supposed to know

the exact labels of a curriculum. However, in our case a teacher is assumed to only

know the difficulties of examples without accessing their real labels, which poses a

great challenge to teaching and learning. Besides, different from Dekel and Shamir

[2009] that considers the teachers may be malicious, the teacher incorporated by our

algorithm is supposed to be always helpful.

In 2009, Bengio et al. Bengio et al. [2009] proposed “curriculum learning”,

which treats available examples as curriculums with different levels of difficulties

in running a stepwise learner. In each step, the simplest set of examples should be

“taught” to the learner. Therefore, we also regard curriculum learning as a branch

of machine teaching, even though the teacher does not care about explicit labels of

the training examples. Instead, the teacher only knows the difficulty of the available

examples. Actually, the argument of learning from simple to difficult levels has been

broadly acknowledged in the human cognitive domain Elman [1993]; Khan et al.

[2011], and also gradually applied to advance the existing machine learning algorithms

in recent years. For example, Kumar et al. [2010] proposed “self-paced learning”,

which adaptively decides which and how many examples are taken as the curriculum

according to the learner’s ability. The self-paced learning can be regarded as an

implementation of the curriculum learning. This learning strategy has been applied

to visual category discovery Lee and Grauman [2011], object tracking Supancic and

Ramanan [2013], detection Tang et al. [2012], and multimedia retrieval Jiang et al.

[2014a]. By introducing the anti-group-sparsity term, Jiang et al. Jiang et al. [2014b]

picked up curriculums that are not only simple but also diverse. Jiang et al. Jiang

et al. [2015] also combined curriculum learning with self-paced learning so that the

proposed model can exploit both the estimation of example difficulty before learning

and information about the dynamic difficulty rendered during learning.

Although various teaching algorithms have been proposed in recent years, none of

them focus on the graph transduction problem. To the best of our knowledge, this is

the first work to model label propagation as a teaching and learning framework, so

that abundant unlabeled examples are activated to receive the propagated labels in a

well-organized sequence. We employ the state-of-the-art label propagation algorithm

Zhu and Ghahramani [2002] as the learner, because it is naturally incremental without

retraining when a new curriculum comes.

75

(a) (b) (c)

,G V E

ix

jx ijW

Figure 4.1: The TLLT framework for label propagation. The labeled examples,

unlabeled examples, and curriculum are represented by red, grey, and green balls,

respectively. The steps of Teaching-to-Learn and Leaning-to-Teach are marked with

blue and black dashed boxes.

4.2 Overview of the Proposed Framework
The framework of our proposed TLLT is shown in Fig. 4.1. In the teaching-to-learn

step, a teaching model that serves as a “teacher” is established to select the simplest

examples (i.e., a curriculum, see green balls) from the pool of unlabeled examples

(grey balls) for the current propagation. This selection is performed by solving

an optimization problem that integrates the reliability and discriminability of each

unlabeled example. In the learning-to-teach step, a “learner” activates the simplest

examples to conduct label propagation using the classical method presented in Zhu

and Ghahramani [2002], and meanwhile delivers its learning confidence to the teacher

in order to assist the teacher in deciding the subsequent simplest examples. Such a

two-step procedure iterates until all the unlabeled examples are properly handled. As

a result of the interactions between the teacher and learner, the originally difficult (i.e.,
ambiguous) examples are handled at a late time, so that they can be reliably labeled

via leveraging the previously learned knowledge.

We provide a toy example to further illustrate the propagation strategy of our

algorithm. In Fig. 4.2, we aim to identify whether the orientation of the spout in

each image is right or left Weinberger et al. [2004]. According to the labeled positive

(red box) and negative (blue box) images, the classification difficulty increases as

the spout gradually turns towards the middle. We observe the propagation process

76

DifficultSimple Simple

1 32 4 5 6

Figure 4.2: The toy example to illustrate our motivation. The orientation (left or right)

of the spout in each image is to be determined. Labeled positive and negative examples

are marked with red and blue boxes, respectively. The difficulties of these examples are

illustrated by the two arrows below the images. The propagation sequence generated

by the conventional methods Gong et al. [2014b]; Zhou and Bousquet [2003]; Zhu

and Ghahramani [2002] is {1, 6} → {2, 3, 4, 5}, while TLLT operates in the sequence

{1, 6} → {2, 5} → {3} → {4}. As a consequence, only the proposed TLLT can

correctly classify the most difficult images 3 and 4.

from the beginning to the situation where all the images are exactly propagated. Our

TLLT differs from existing methods Gong et al. [2014b]; Zhou and Bousquet [2003];

Zhu and Ghahramani [2002] in this process, which brings about completely different

final iterative results from Gong et al. [2014b]; Zhou and Bousquet [2003]; Zhu and

Ghahramani [2002]. Working on a fully connected graph, Gong et al. [2014b]; Zhou

and Bousquet [2003]; Zhu and Ghahramani [2002] activate and immediately transmit

the seed labels to all the unlabeled images {2, 3, 4, 5} in once propagation, as these

images are directly linked to the labeled images 1 and 6 in the graph. In contrast,

TLLT activates the unlabeled images in a three-stage sequence {2, 5}→{3}→{4} so

that the ambiguous images 3 and 4 are handled later with a low error risk. As a result,

the accuracy generated by TLLT is 100%, while the traditional methods Gong et al.

[2014b]; Zhu and Ghahramani [2002] incorrectly classify the ambiguous 4th images,

and Zhou and Bousquet [2003] fails to make accurate classifications on both the 3rd

and 4th images.

4.3 Teaching-to-Learn Step
Suppose that a set of n= l+u examples Ψ={x1,· · ·,xl,xl+1,· · · ,xn} are given, where

the first l elements constitute the labeled set L and the remaining u examples form the

unlabeled set U with typically l�u. The purpose of label propagation is to iteratively

propagate the label information from L to U. In a generic multi-class setting, the label

matrix is defined as F =
(
F�
1 , · · · ,F�

l ,F
�
l+1, · · · ,F�

n

)�
, where the i-th row vector Fi ∈

{1, 0}1×c
(c is the number of classes) satisfying

∑c
j=1 Fij =1 denotes xi’s soft labels

with Fij being the probability of xi belonging to the j-th class Cj . In addition, we

77

define a set S to denote the curriculum which contains s unlabeled examples selected

in one propagation iteration. When one iteration of label propagation is completed, L

and U are updated by L :=L ∪ S and U :=U−S, respectively1.

The adjacency (or affinity) matrix W of the graph G showed in Fig. 4.1(a) is formed

by Wij = exp
(−‖xi−xj‖2/(2ξ2)

)
(ξ is the Gaussian kernel width) if xi and xj are

linked by an edge in G, and Wij = 0 otherwise. Based upon W, we introduce the

diagonal degree matrix Dii=
∑n

j=1 Wij and graph Laplacian matrix L = D−W.

4.3.1 Curriculum Selection
This section introduces a “teacher”, which is essentially a teaching model, to decide

the curriculum S for each iteration of propagation.

Above all, we define a random variable yi associated with each example xi,

and view the propagations on the graph as a Gaussian process Zhu et al. [2003b],

which is modeled as a multivariate Gaussian distribution over the random variables

y = (y1, · · · , yn)�, that is

p(y) ∝ exp

(
−1

2
y�(L+ I/κ2

)
y

)
. (4.1)

In Eq. (4.1), L+ I/κ2 (κ2 is fixed to 100) is the regularized graph Laplacian Zhu et al.

[2003b]. The modeled Gaussian process has a concise form y ∼ N(0,Σ) with its

covariance matrix being Σ = (L+ I/κ2)
−1

.

Then, we define reliability and discriminability to assess the difficulty of the

examples selected in S ⊆ U.

Definition 4.1. (Reliability) A curriculum S ⊆ U is reliable with respect to the labeled
set L if the conditional entropy H(yS|yL) is small, where yS and yL represent the
subvectors of y corresponding to the sets S and L, respectively.

Definition 4.2. (Discriminability) A curriculum S ⊆ U is discriminative if ∀xi ∈ S,
the value of

min
j′∈{1,··· ,c}\{q}

T̄ (xi,Cj′)− min
j∈{1,··· ,c}

T̄ (xi,Cj)

is large, where T̄ (xi,Cj) denotes the average commute time between xi and all the
labeled examples in class Cj , and q = argminj∈{1,··· ,c} T̄ (xi,Cj).

In Definition 4.1, we use reliability to measure the correlation between a curriculum

S and the labeled set L. The curriculum examples highly correlated to the labeled set

1Note that the notations such as l, u, s, L, U, S, and Cj are all related to the iteration number t. We

drop the superscript (t) for simplicity if no confusion is incurred.

78

are obviously simple and reliable to classify. Such reliability is modeled as the entropy

of S conditioned on L, which implies that the simple examples in S should have

small conditional entropy since they come as no “surprise” to the labeled examples.

In Definition 4.2, we introduce the discriminability to investigate the tendency of

xi ∈ S belonging to certain classes. An example xi is easy to classify if it is

significantly inclined to a category. Generally speaking, Definition 4.1 considers the

hybrid relationship between S and L, while Definition 4.2 associates the examples in

S with the concrete class information, so they complement to each other in optimally

selecting the simplest examples.

According to Definition 4.1, we aim to find a reliable set S such that it is most

deterministic with respect to the labeled set L, which is formulated as

S∗ = argmin
S⊆U

H(yS|yL) := H(yS∪L)−H(yL). (4.2)

Using the Gaussian process model in Eq. (4.1), we deduce Eq. (4.2) as follows

S∗ =argmin
S⊆U

(
s+ l

2

(
1 + ln 2π

)
+

1

2
ln

∣∣ΣS∪L,S∪L
∣∣)

−
(
l

2

(
1 + ln 2π

)
+

1

2
ln

∣∣ΣL,L

∣∣)
=argmin

S⊆U

s

2

(
1 + ln 2π

)
+

1

2
ln

∣∣ΣS∪L,S∪L
∣∣∣∣ΣL,L

∣∣ ,

where ΣL,L, ΣS∪L,S∪L are submatrices of Σ associated with the corresponding

subscripts. By further partitioning ΣS∪L,S∪L =
(

ΣS,S ΣS,L

ΣL,S ΣL,L

)
, we have

|ΣS∪L,S∪L|
|ΣL,L| =

|ΣL,L|
∣∣ΣS,S−ΣS,LΣ

−1
L,LΣL,S

∣∣
|ΣL,L| =

∣∣ΣS|L
∣∣ ,

where ΣS|L is the covariance matrix of the conditional distribution p(yS|yL) and

is naturally positive semidefinite. Therefore, minimizing ln
∣∣ΣS|L

∣∣ = ln
∣∣ΣS,S −

ΣS,LΣ
−1
L,LΣL,S

∣∣ is equivalent to minimizing tr
(
ΣS,S − ΣS,LΣ

−1
L,LΣL,S

)
. Given a fixed

s (we defer its determination to Section 4.4), the most reliable curriculum S is then

found by

S∗ = argmin
S⊆U

tr
(
ΣS,S −ΣS,LΣ

−1
L,LΣL,S

)
. (4.3)

In Definition 4.2, the commute time between two examples xi and xj is the

expected number of steps starting from xi, reaching xj , and then returning to xi again,

79

which is computed by Qiu and Hancock [2007]1:

T (xi,xj) =
n∑

k=1

h(λk)
(
uki − ukj

)2
. (4.4)

In Eq. (4.4), 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L, and u1, · · · ,un are the

associated eigenvectors; uki denotes the i-th element of uk; h(λk) = 1/λk if λk �= 0
and h(λk) = 0 otherwise. Based on Eq. (4.4), the average commute time between xi

and the examples in the j-th class Cj is calculated as

T̄ (xi,Cj) =
1

|Cj|
∑

xi′∈Cj

T (xi,xi′). (4.5)

Definition 4.2 characterizes the discriminability of an unlabeled example xi ∈ U

as the average commute time difference between xi’s two closest classes Cj1 and Cj2 ,

that is, M(xi) = T̄ (xi,Cj2) − T̄ (xi,Cj1). xi is thought of as discriminative if it is

significantly inclined to a certain class, namely it has a large M(xi). From Definition

4.2, the most discriminative curriculum that consists of s discriminative examples is

equivalently found by

S∗ = arg min
S={xik

∈ U}sk=1

s∑
k=1

1/M(xik). (4.6)

Now, we propose that the simplest curriculum is not only reliable but also

discriminative. Hence, we combine Eqs. (4.3) and (4.6) to arrive at the following

curriculum selection criterion:

S∗ = arg min
S={xik

∈ U}sk=1

tr
(
ΣS,S −ΣS,LΣ

−1
L,LΣL,S

)
+ α

s∑
k=1

1/M(xik),

where α > 0 is the trade-off parameter.

Considering that the seed labels will be first propagated to the unlabeled examples

which are direct neighbors of the labeled examples in L, we collect such unlabeled

examples in a set B with cardinality b. Since only s (s < b) distinct examples from B

are needed, we introduce a binary selection matrix S ∈ {1, 0}b×s such that S�S = Is×s

(Is×s denotes the s × s identity matrix). The element Sik = 1 means that the i-th
example in B is selected as the k-th example in the curriculum S. The orthogonality

constraint S�S = Is×s imposed on S ensures that no repetitive example is included in

S.

1Strictly, the original commute time is T (xi,xj) = vol(G)
∑n

k=1 h(λk)(uki−ukj)
2, where vol(G)

is a constant denoting the volume of graph G. Here we drop this term since it will not influence our

derivations.

80

We then reformulate problem (4.7) in the following matrix form:

S∗ =argmin
S

tr
(
S�ΣB,BS− S�ΣB,LΣ

−1
L,LΣL,BS

)
+ αtr

(
S�MS

)
,

s.t. S ∈ {1, 0}b×s, S�S = Is×s, (4.7)

where M ∈ R
b×b is a diagonal matrix whose diagonal elements are Mii = 1/M(xik)

for k = 1, · · · , b. We notice that problem (4.7) falls into an integer program and is

generally NP-hard. To make problem (4.7) tractable, we relax the discrete constraint

S ∈ {1, 0}b×s to be a continuous nonnegative constraint S ≥ O. By doing so, we

pursue to solve a simpler problem:

S∗ =argmin
S

tr
(
S�RS

)
,

s.t. S ≥ O, S�S = Is×s, (4.8)

where R = ΣB,B −ΣB,LΣ
−1
L,LΣL,B + αM is a positive definite matrix.

4.3.2 Optimization
Note that Eq. (4.8) is a nonconvex optimization problem because of the orthogonal

constraint. In fact, the feasible solution region is on the Stiefel manifold, which makes

conventional gradient methods easily trapped into local minima. Instead, we adopt

the method of partial augmented Lagrangian multiplier (PALM) Bertsekas [2014] to

solve problem (4.8). Specifically, only the nonnegative constraint is incorporated into

the objective function of the augmented Lagrangian expression, while the orthogonal

constraint is explicitly retained and imposed on the subproblem for updating S. As

such, the S-subproblem is a Stiefel-manifold constrained optimization problem, and

can be efficiently solved by the curvilinear search method Wen and Yin [2013].

Updating S: By degenerating the nonnegative constraint and preserving the

orthogonal constraint in problem (4.8), the partial augmented Lagrangian function is

L(S,Λ,T, σ) :=tr
(
S�RS

)
+tr

(
Λ�(S−T)

)
+
σ

2

∥∥S−T
∥∥2

F
, (4.9)

where Λ ∈ R
b×s is the Lagrangian multiplier, T ∈ R

b×s is a nonnegative matrix, and

σ > 0 is the penalty coefficient. Therefore, S is updated by minimizing Eq. (4.9)

subject to S�S = Is×s using the curvilinear search method Wen and Yin [2013] (see

Algorithm 1).

In Algorithm 1, ∇L(S) = 2RS +Λ + σ(S − T) is the gradient of L(S,Λ,T, σ)
w.r.t. S, and L′(P̄(τ)

)
= tr

(∇L(S)�P̄′(τ)
)

calculates the derivate of L(S,Λ,T, σ)

w.r.t. the step size τ , in which P̄′(τ)=−(
I+ τ

2
A
)−1

A
(

S+P̄(τ)
2

)
. Algorithm 1 works

by finding the gradient of L in the tangent plane of the manifold at the point S(iter)

81

Algorithm 1 A curvilinear search method for solving S-subproblem

1: Input: S satisfying S�S = I, ε = 10−5, τ = 10−3, ϑ = 0.2, η = 0.85, Q = 1,

ν = L(S), iter = 0
2: repeat
3: // Define searching path P̄(τ) and step size on the Stiefel manifold

4: A = ∇L(S) · S� − S · (∇L(S))�;

5: repeat
6: P̄(τ) =

(
I+ τ

2
A
)−1 (

I− τ
2
A
)
S;

7: τ := ϑ · τ ;

8: // Check Barzilai-Borwein condition

9: until L(P̄(τ)) ≤ ν − τL′(P̄(0))
10: // Update variables

11: S := P̄(τ);
12: Q := ηQ+ 1; ν := (ηQν + L(S))/Q;

13: iter := iter + 1;

14: until ‖∇L(S)‖F < ε
15: Output: S

(Line 4), based on which a curve is obtained on the manifold that proceeds along the

projected negative gradient (Line 6). A curvilinear search is then made along the curve

towards the optimal S(iter+1).

Algorithm 1 preserves the orthogonal constraint through the skew-symmetric

matrix A based Cayley transformation
(
I+ τ

2
A
)−1(

I− τ
2
A
)
, which transforms S to

P̄(τ) to guarantee that P̄(τ)�P̄(τ) = I always holds. The step size τ is adaptively

determined by the Barzilai-Borwein method Fletcher [2005].

Updating T: In Eq. (4.9), T is the auxiliary variable to enforce S nonnegative,

whose update is the same as that in the traditional augmented Lagrangian multiplier

(ALM) method, namely Tik = max(0, Sik +Λik/σ).
We summarize the complete optimization procedure of PALM in Algorithm 2,

by which a local minimizer can be efficiently obtained. PALM inherits the merits

of conventional ALM such as the non-necessity for driving the penalty coefficient to

infinity, and is also guaranteed to be convergent Conn et al. [1996].

Note that the solution S∗ generated by Algorithm 2 is continuous, which does not

comply with the original binary constraint in problem (4.7). Therefore, we discretize

S∗ to binary values via a simple greedy procedure. In detail, we find the largest element

in S∗, and record its row and column; then from the unrecorded columns and rows we

search the largest element and mark it again; this procedure repeats until s elements

are found. The rows of these s elements indicate the selected simplest examples to be

propagated.

82

Algorithm 2 PALM for solving problem (4.8)

1: Input: R, S satisfying S�S = I, Λ = O, σ = 1, ρ = 1.2, iter = 0
2: repeat
3: // Compute T
4: Tik = max(0, Sik +Λik/σ);
5: // Update S by minimizing Eq. (4.9) using Algorithm 1

6: S :=argminS�S=Is×s
tr(S�RS)+tr

[
Λ�(S−T)

]
+ σ

2
‖S−T‖2F;

7: // Update variables

8: Λik := max(0,Λik − σSik); σ := min(ρσ, 1010); iter := iter + 1;

9: until Convergence

10: Output: S∗

In Algorithm 1, the complexities for obtaining A, inverting I+ τ
2
A, and computing

the value of objective function L(S,Λ,T, σ) are O(b2s), O(b3), and O(bs2), respec-

tively. Therefore, suppose the Lines 5∼9 are repeated T1 times, and the Lines 2∼14 are

iterated T2 times, then the complexity of Algorithm 1 is O ([b2s+ (b3 + bs2)T1]T2). As

a result, the entire PALM takes O ([b2s+ (b3 + bs2)T1]T2T3) complexity where T3 is

the iteration times of Lines 2∼9 in Algorithm 2. Because the established k-NN graph

G is very sparse, the amount of examples directly linked to the labeled set (i.e., b) will

not be extremely large. Besides, s will also be very small since we only select a small

proportion of unlabeled examples in each propagation. Therefore, the computational

cost is acceptable though the complexity of our optimization is approximately cubic to

b and quadric to s.

4.4 Learning-to-Teach Step
This section first introduces a “learner”, which is a propagation model, and then

elaborates how the learning feedback is established for the subsequent teaching.

Suppose that the curriculum in the t-th propagation iteration is S(t). The learner

“learns” (i.e., labels) the s(t) examples in S(t) by propagating the labels of the labeled

examples in L(t) to S(t). We adopt the following iterative propagation model Zhu and

Ghahramani [2002]:

F
(t)
i :=

{
F

(0)
i , xi ∈ L(0)

Pi·F(t−1), xi ∈ S(1:t−1) ∪ S(t)
(4.10)

where Pi· represents the i-th row of the transition matrix P calculated by P = D−1W,

and S(1:t−1) denotes the set S(1) ∪ · · · ∪ S(t−1). Eq. (4.10) reveals that the labels of the

t-th curriculum S(t) along with the previously learned examples S(1:t−1) will change

during the propagation, while the labels of the initially labeled examples in L(0) are

83

clamped, as suggested by Zhu and Ghahramani [2002]. The initial state for xi’s label

vector F
(0)

i is

F
(0)

i :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1/c, · · · , 1/c)︸ ︷︷ ︸
c

, xi ∈ U(0)

⎛⎝0, · · · , 1
↓

j−th element

, · · · , 0
⎞⎠ , xi∈Cj∈L(0)

(4.11)

The formulations of Eqs. (4.10) and (4.11) maintain the probability interpretation∑c
j=1 F

(t)
ij = 1 for any example xi and all iterations t = 0, 1, 2, · · · .

After the t-th propagation iteration, the learner should deliver a learning feedback

to the teacher and assist the teacher to determine the (t+1)-th curriculum S(t+1). If

the t-th learning result is correct, the teacher may assign a “heavier” curriculum to

the learner for the next propagation. In this sense, the teacher should also “learn” the

learner’s feedback to arrange the proper (t+1)-th curriculum, which is a “learning-to-

teach” mechanism. However, the correctness of the propagated labels generated by the

t-th iteration remains unknown to the teacher, so the learning confidence is explored to

blindly evaluate the t-th learning performance.

To be specific, we restrict the learning confidence to the range [0, 1], in which 1

is achieved if all the curriculum examples in S(t) obtain definite label vectors, and 0

is reached if the curriculum examples are assigned similar label values over all the

possible classes. For example, suppose we have c = 3 classes in total, then for a

single example xi, it is “well-learned” if it has a label vector Fi = [1, 0, 0], [0, 1, 0], or

[0, 0, 1] which means that xi definitely belongs to the class 1, 2 or 3, respectively. In

contrast, if xi’s label vector is Fi = [1
3
, 1
3
, 1
3
], it will be an “ill-learned” example because

[1
3
, 1
3
, 1
3
] cannot provide any cue for determining its class. Therefore, we integrate

the learning confidence of all the examples in S(t) and define a Learning Evaluation
Function g(FS(t)) : R

s(t)×c→R to assess the t-th propagation quality, based on which

the number of examples s(t+1) for the (t+1)-th iteration can be adaptively decided. Here

FS(t) denotes the obtained label matrix of the t-th curriculum S(t). A valid g(FS(t)) is

formally described by Definition 4.3.

Definition 4.3. (Learning Evaluation Function) A learning evaluation function
g(FS(t)) : R

s(t)×c → R assesses the t-th learning confidence revealed by the label
matrix FS(t) , which satisfies: 1) 0 ≤ g(FS(t)) ≤ 1; 2) g(FS(t)) → 1 if ∀xi ∈ S(t),
Fij → 1 while Fik → 0 for k �= j; and g(FS(t)) → 0 if Fij → 1/c for i = 1, · · · , s(t),
j = 1, · · · , c.

Definition 4.3 suggests that a large g(FS(t)) can be achieved if the label vectors Fik

(k = 1, 2, · · · , s(t)) in FS(t) are almost binary. In contrast, the ambiguous label vectors

Fik with all entries around 1/c cause FS(t) to obtain a rather low confidence evaluation

84

g(FS(t)). According to Definition 4.3, we propose two learning evaluation functions by

respectively utilizing FS(t)’s norm and entropy:

g1(FS(t))=
2

1+exp
[−γ1

(‖FS(t)‖2F−s(t)/c
)]−1, (4.12)

g2(FS(t)) = exp

[
−γ2

1

s(t)
H (FS(t))

]

= exp

⎡⎣ γ2
s(t)

s(t)∑
k=1

c∑
j=1

(
FS(t)

)
kj
logc

(
FS(t)

)
kj

⎤⎦ ,

(4.13)

where γ1 and γ2 are the parameters controlling the learning rate. Increasing γ1 in

Eq. (4.12) or decreasing γ2 in Eq. (4.13) will incorporate more examples into one

curriculum. However, the complexity analysis in Section 4.3.2 reveals that including

too many examples in one curriculum (i.e. increasing s) will make solving problem

(4.8) very inefficient.

It can be easily verified that both (4.12) and (4.13) satisfy the two requirements in

Definition 4.3. For (4.12), we may write g1(FS(t)) as g1(FS(t)) = 2ḡ1(FS(t))− 1 where

ḡ1(FS(t)) =
1

1+exp
[
−γ1

(‖F
S(t)‖2

F
−s(t)/c

)] is a monotonically increasing logistic function

with respect to ‖FS(t)‖F. Therefore, ḡ1(FS(t)) reaches its minimum value 1/2 when

‖FS(t)‖2F = s(t)/c, which means that all the elements in FS(t) equal to 1/c. The value of

ḡ1(FS(t)) gradually approaches 1 when ‖FS(t)‖F becomes larger, which requires that all

the row vectors in FS(t) are almost binary. Therefore, ḡ1(FS(t)) ∈ [1/2, 1) and g1(FS(t))
maps ḡ1(FS(t)) to [0, 1) so that the two requirements in Definition 4.3 are satisfied.

For (4.13), it is evident that the entropy H (FS(t)) = −∑
k

∑
j (FS(t))kjlogc(FS(t))kj

falls into the range [0, 1], where 0 is obtained when each row of FS(t) is a {0,1}-binary

vector with only one element 1, and 1 is attained if every element in FS(t) is 1/c. As a

result, g2(FS(t)) is valid as a learning evaluation function.

Based on a defined learning evaluation function, the number of examples included

in the (t+ 1)-th curriculum is:

s(t+1) =
⌈
b(t+1) · g(FS(t))

⌉
, (4.14)

where b(t+1) is the size of set B(t+1) in the (t+1)-th iteration, �·� rounds up the element

to the nearest integer, and g(·) can be either g1(·) or g2(·). Note that g(·) is simply

set to a very small number, e.g. 0.05, for the first propagation, because no feedback is

available at the beginning of the propagation process.

TLLT proceeds until all the unlabeled examples are learned, and the obtained label

matrix is denoted as F̄. Then we set F̄(0) := F̄ and use the following iterative formula

to drive the entire propagation process to the steady state:

F̄(t) = θPF̄(t−1) + (1− θ)F̄, (4.15)

85

where θ > 0 is the weighting parameter balancing the labels propagated from other

examples, and F̄ that is produced by the teaching-to-learn and learning-to-teach

process. We set θ=0.05 to enforce the final result to maximally preserve the labels

generated by teaching and learning. By employing the Perron-Frobenius Theorem

Golub and Loan [1996], we take the limit of F̄(t) as follows

F̄∗ = lim
t→∞

F̄(t) = lim
t→∞

(θP)tF̄+ (1− θ)
∑t−1

i=0
(θP)iF̄

= (1− θ)(I− θP)−1F̄. (4.16)

Eventually, xi is assigned to the j∗-th class such that j∗ = argmaxj∈{1,··· ,c} F̄∗
ij .

4.5 Efficient Computations
The computational bottlenecks of TLLT are the calculation of pairwise commute time

in Eq. (4.4) and the updating of Σ−1
L,L in Eq. (4.3) for each propagation. The former

can be accelerated by applying the Nyström approximation Fowlkes et al. [2004] to

efficiently compute L’s eigenvectors, while the latter can be efficiently implemented

via matrix permutation and blockwise inversion Hager [1989].

4.5.1 Commute Time
Note that the Eq. (4.4) involves computing the eigenvectors of L, which is time-

consuming when n is large. Here we apply the Nyström approximation to reduce the

computational burden. Specifically, we uniformly sample q (q = 10% · n throughout

this chapter) rows/columns of the original L to form a submatrix Lq,q, and then L can

be approximated by L̃ = Ln,qL
−1
q,qLq,n, where Ln,q represents the n× q block of L and

Lq,n = L�
n,q. By defining V ∈ R

q×q as an orthogonal matrix, Θ̃ as a q × q diagonal

matrix, and

U =

(
Lq,q

Ln−q,q

)
L−1/2

q,q VΘ̃−1/2, (4.17)

we have (4.18) according to Fowlkes et al. [2004]:

L̃ = Ln,qL
−1
q,qLq,n =

(
Lq,q

Ln−q,q

)
L−1

q,q

(
L�

q,q L�
n−q,q

)
=

(
Lq,q

Ln−q,q

)
L−1/2

q,q VΘ̃−1/2Θ̃Θ̃−1/2V�L−1/2
q,q

(
L�

q,q L�
n−q,q

)
= UΘ̃U�

. (4.18)

86

Since L̃ is positive semi-definite, then according to Eq. (4.17), we require

I = U�U

= Θ̃−1/2V�L−1/2
q,q

(
L�

q,q L�
n−q,q

) · (Lq,q

Ln−q,q

)
L−1/2

q,q VΘ̃−1/2.
(4.19)

Multiplying from the left by VΘ̃1/2 and from the right by Θ̃1/2V�, we have

VΘ̃V� = L−1/2
q,q

(
L�

q,q L�
n−q,q

) · (Lq,q

Ln−q,q

)
L−1/2

q,q

= Lq,q + L−1/2
q,q L�

n−q,qLn−q,qL
−1/2
q,q .

(4.20)

Therefore, by comparing (4.18) and (4.20) we know that the matrix U containing

all the eigenvectors ui (i = 1, · · · , n) can be obtained by conducting singular value

decomposition (SVD) on Lq,q +L
−1/2
q,q L�

n−q,qLn−q,qL
−1/2
q,q , and then plugging V and Θ̃

to (4.17).

The complexity for computing the commute time between examples via Nyström

approximation is O(q3), which is caused by finding L
−1/2
q,q in (4.20) and the SVD on

Lq,q + L
−1/2
q,q L�

n−q,qLn−q,qL
−1/2
q,q . This significantly reduces the cost of directly solving

the original eigen-system that takes O(n3) (n � q) complexity.

4.5.2 Updating Σ−1
L,L

It is very inefficient if Σ−1
L,L in Eq. (4.3) is computed from scratch in each propagation,

so we develop an incremental way to update the inversion based on the blockwise

inversion equation Hager [1989] and matrix permutation technique.

Suppose the updated kernel matrix on the labeled set ΣL,L is permuted by
�

ΣL,L, namely
�

ΣL,L = perm(ΣL,L) = ΔΣL,LΔ
� and Δ is the orthogonal binary

permutation matrix producing the permutation on the rows or columns of the matrix

ΣL,L Petersen and Pedersen, then we have the following lemma:

Lemma 4.4. The inverse of the updated ΣL,L equals to the inverse of its permu-

tation
�

ΣL,L = ΔΣL,LΔ
� followed by the reversed permutation, namely Σ−1

L,L =

perm−1(
�

Σ
−1

L,L) where perm−1(
�

Σ
−1

L,L) = Δ��

Σ
−1

L,LΔ.

Proof. Note that Δ is an orthogonal matrix, so it is easy to verify that perm−1(
�

Σ
−1

L,L) =

Δ�(ΔΣL,LΔ
�)−1

Δ = Σ−1
L,L. This completes the proof.

Therefore, we permute the new kernel matrix on the labeled set after each

propagation, so that the submatrices corresponding to the previous labeled set L

87

and the current curriculum S are respectively arranged together, which is formally

represented as

perm(ΣL,L) = ΔΣL,LΔ
� =

�

ΣL,L :=

(
ΣL,L ΣL,S

ΣS,L ΣS,S

)
. (4.21)

The permutation on Σ−1
L,L aims to reformat Σ−1

L,L so that its rows/columns are arranged

according to the ascending order of the indices of the updated labeled examples. If we

do not permute Σ−1
L,L and directly plug the un-permuted Σ−1

L,L into Eq. (4.7) for the next

propagation, the generated S∗ will not render the real indices of curriculum examples

in the entire dataset Ψ = L∪U. This permutation renders the matrix
�

ΣL,L, of which the

inverse can be easily computed via Eq. (4.22) as suggested by the blockwise inversion

equation Hager [1989].

�

Σ
−1

L,L :=

(
Σ−1

L,L +Σ−1
L,LΣL,S(ΣS,S −ΣS,LΣ

−1
L,LΣL,S)

−1
ΣS,LΣ

−1
L,L −Σ−1

L,LΣL,S(ΣS,S −ΣS,LΣ
−1
L,LΣL,S)

−1

−(ΣS,S −ΣS,LΣ
−1
L,LΣL,S)

−1
ΣS,LΣ

−1
L,L (ΣS,S −ΣS,LΣ

−1
L,LΣL,S)

−1

)
.

(4.22)

Therefore, according to Lemma 4.4 we can compute the inverse of the new kernel

matrix on the labeled set by Σ−1
L,L = Δ��

Σ
−1

L,LΔ.

In the above manipulations, we only need to invert an s× s matrix in (4.22), which

is much more efficient than inverting the original l × l (l � s in later propagations)

matrix. Moreover, s will not be quite large since only a small proportion of unlabeled

examples are incorporated into the curriculum per propagation. Therefore, the Σ−1
L,L

can be updated efficiently.

4.6 Robustness Analysis
For graph-based learning algorithms, the choice of the Gaussian kernel width ξ is

critical to achieving good performance. Unfortunately, tuning this parameter is usually

nontrivial because a slight perturbation of ξ will lead to a big change in the model

output. Several methods Karasuyama and Mamitsuka [2013a]; Zhu et al. [2003a] have

been proposed to decide the optimal ξ via entropy minimization Zhu et al. [2003a] or

local reconstruction Karasuyama and Mamitsuka [2013a]. However, they are heuristic

and not guaranteed to always obtain the optimal ξ. Here we demonstrate that TLLT

is very robust to the variation of ξ, which implies that ξ in our method can be easily

tuned.

Theorem 4.5. Suppose that the adjacency matrix W̃ of graph G is perturbed from W
due to the variation of ξ, such that for some δ > 1, ∀i, j, Wij/δ≤ W̃ij ≤ δWij . The
deviation of the t-th propagation result on the initial unlabeled examples F̃(t)

U from the

88

accurate F
(t)
U

1 is bounded by
∥∥∥F̃(t)

U − F
(t)
U

∥∥∥
F
≤ O(δ2 − 1).

Proof. Given Wij/δ ≤ W̃ij ≤ δWij for δ > 1, the bound for the (i, j)-th element in

the perturbed transition matrix P̃ is Pij/δ
2 ≤ P̃ij ≤ δ2Pij . Besides, by recalling that

Pij≤1 as P has been row normalized, so the difference between Pij and P̃ij satisfies∣∣∣P̃ij −Pij

∣∣∣ ≤ (δ2 − 1)Pij ≤ δ2 − 1. (4.23)

For the ease of analysis, we rewrite the learning model (4.10) in a more compact

form. Suppose QS(1:t) ∈ {0, 1}u(0)×u(0)

(S(1:t) = S(1) ∪ · · · ∪ S(t) as defined in

Section 4.4) is a binary diagonal matrix where the diagonal elements are set to 1 if

they correspond to the examples in the set S(1:t), then Eq. (4.10) can be reformulated

as

F
(t)
U = QS(1:t)PU,·F(t−1) + (I−QS(1:t))F

(t−1)
U , (4.24)

where PU,· =
(
PU,L PU,U

)
denotes the rows in P corresponding to U. Similarly, the

perturbed F̃
(t)
U is

F̃
(t)
U = QS(1:t)P̃U,·F(t−1) + (I−QS(1:t))F

(t−1)
U . (4.25)

As a result, the difference between F
(t)
U and F̃

(t)
U is computed by∥∥∥F̃(t)

U − F
(t)
U

∥∥∥
F
=

∥∥∥QS(1:t)(P̃U,· −PU,·)F(t−1)
∥∥∥
F

≤
∥∥∥QS(1:t)(P̃U,· −PU,·)

∥∥∥
F

∥∥F(t−1)
∥∥
F

(4.26)

By employing (4.23), we arrive at∥∥∥QS(1:t)(P̃U,·−PU,·)
∥∥∥
F
≤ (δ2 − 1)

√
n
∑t

i=1
s(i) (4.27)

Additionally, since the sum of every row in F(t−1) ∈ [0, 1]n×c
is 1, we know that∥∥F(t−1)

∥∥
F
≤ √

n. (4.28)

Finally, by plugging (4.27) and (4.28) into (4.26) and noting that
∑t

i=1 s
(i) ≤ u(0),

we obtain ∥∥∥F̃(t)
U − F

(t)
U

∥∥∥
F
≤ (δ2 − 1)

√
n
∑t

i=1
s(i) ≤ (δ2 − 1)n

√
u(0). (4.29)

Since n
√
u(0) is a constant, Theorem 4.5 is proved, which reveals that our algorithm

is insensitive to the perturbation of Gaussian kernel width ξ in one propagation.

1For ease of explanation, we slightly abuse the notations in this section by using L and U to represent

the initial labeled set L(0) and unlabeled set U(0). They are not time-varying variables as previously

defined. Therefore, the notation F
(t)
U represents the labels of initial unlabeled examples produced by the

t-th propagation.

89

However, one may argue that the error introduced in every propagation will

accumulate and degrade the final parametric stability of TLLT. To show that the error

will not be significantly amplified, the error bound between successive propagations is

presented in Theorem 4.6.

Theorem 4.6. Let F̃(t−1)
U be the perturbed label matrix F(t−1)

U generated by the (t−1)-th
propagation, which satisfies

∥∥∥F̃(t−1)
U − F

(t−1)
U

∥∥∥
F
≤ O(δ2 − 1) . Let P̃ be the perturbed

transition matrix P. Then after the t-th propagation, the inaccurate output F̃(t)
U will

deviate from its real value F
(t)
U by

∥∥∥F̃(t)
U − F

(t)
U

∥∥∥
F
≤ O(δ2 − 1).

Proof. Theorem 4.6 can be proved based on the following existing result:

Lemma 4.7. Taylor and Thompson [1998]: Suppose p1 and p2 are two uncertain vari-
ables with possible errors Δp1 and Δp2, then the deviation Δp3 of their multiplication
p3 = p1 · p2 satisfies Δp3 = p1 ·Δp2 +Δp1 · p2.

Based on above lemma, next we bound the error accumulation between successive

propagations under the perturbed Gaussian kernel width ξ. The Eq. (4.24) can be

rearranged as:

F
(t)
U = QS(1:t)PU,·F(t−1) + (I−QS(1:t))F

(t−1)
U

= QS(1:t)(PU,LF
(t−1)
L +PU,UF

(t−1)
U) + (I−QS(1:t))F

(t−1)
U

= QS(1:t)PU,LF
(t−1)
L + (QS(1:t)PU,U + I−QS(1:t))F

(t−1)
U

=
(
QS(1:t)PU,L QS(1:t)PU,U + I−QS(1:t)

)(F
(t−1)
L

F
(t−1)
U

)
= Φ(t)F(t−1),

(4.30)

where Φ(t) =
(
QS(1:t)PU,L QS(1:t)PU,U + I−QS(1:t)

)
and F(t−1) =

(
F

(t−1)�
L F

(t−1)�
U

)�
.

Therefore, by leveraging Lemma 4.7, we know that

F̃
(t)
U − F

(t)
U = (Φ̃(t) −Φ(t))F(t−1) +Φ(t)(F̃(t−1) − F(t−1)), (4.31)

where Φ̃(t) =
(
QS(1:t)P̃U,L QS(1:t)P̃U,U + I−QS(1:t)

)
is the imprecise Φ(t) induced

by P̃. Consequently, we obtain∥∥∥F̃(t)
U − F

(t)
U

∥∥∥
F
=

∥∥∥(Φ̃(t) −Φ(t))F(t−1) +Φ(t)(F̃(t−1) − F(t−1))
∥∥∥
F

≤
∥∥∥Φ̃(t) −Φ(t)

∥∥∥
F

∥∥F(t−1)
∥∥
F
+

∥∥Φ(t)
∥∥
F

∥∥∥F̃(t−1) − F(t−1)
∥∥∥
F

. (4.32)

90

Next we investigate the upper bounds of
∥∥∥Φ̃(t) −Φ(t)

∥∥∥
F

,
∥∥F(t−1)

∥∥
F

,
∥∥Φ(t)

∥∥
F

, and∥∥∥F̃(t−1) − F(t−1)
∥∥∥
F

. Of these,
∥∥F(t−1)

∥∥
F

has been bounded in (4.28).

It is also straightforward that∥∥∥Φ̃(t) −Φ(t)
∥∥∥
F

=
∥∥(QS(1:t)(P̃U,L −PU,L) QS(1:t)(P̃U,U −PU,U)

)∥∥
F

=
∥∥∥QS(1:t)(P̃U,· −PU,·)

∥∥∥
F

1≤(δ2 − 1)

√
n
∑t

i=1
s(i)

2≤(δ2 − 1)
√
nu(0)

, (4.33)

where the inequality 1 is given by (4.27), and the inequality 2 holds because∑t
i=1 s

(i) ≤ u(0).

By further investigating the structure of the u(0)×n matrix Φ(t) in (4.30), it is easy

to find that the i-th row of Φ(t) (i.e. Φ(t)
i·) is

Φ
(t)
i· :=

⎧⎪⎪⎨⎪⎪⎩
Pi·, xi ∈ S(1:t)⎛⎝0, · · · , 1
↓

i−th element

, · · · , 0
⎞⎠ , xi /∈ S(1:t)

, (4.34)

where Pi· denotes the i-th row of P. Therefore, the sum of every row in Φ(t) is not

larger than 1, leading to ∥∥Φ(t)
∥∥
F
≤

√
u(0), (4.35)

where we again use the fact that 0 ≤ Pij ≤ 1.

Recalling that the labels of the original labeled examples are clamped after every

propagation (please see Eq. (4.10)), the bound obtained in Theorem 4.5 also applies to∥∥∥F̃(t−1) − F(t−1)
∥∥∥
F

, which is∥∥∥F̃(t−1) − F(t−1)
∥∥∥
F
=

∥∥∥F̃(t−1)
U − F

(t−1)
U

∥∥∥
F
≤ O(δ2 − 1). (4.36)

Because u(0) and n are constants for a given problem, Theorem 4.6 is finally proved

by substituting (4.28), (4.33), (4.35) and (4.36) into (4.32). Theorem 4.6 implies

that under the perturbed P̃ and F̃(t−1), the error bound after the t-th propagation∥∥∥F̃(t)
U − F

(t)
U

∥∥∥
F

is the same as that before the t-th propagation
∥∥∥F̃(t−1)

U − F
(t−1)
U

∥∥∥
F

.

Therefore, the labelling error will not be significantly accumulated when the propa-

gations proceed.

91

jid jij

A
J

V V

jx

jf

(a) (b) (c)
simple difficult

highland

lowland

source

if

ix

Ax

BxCx

Figure 4.3: The physical interpretation of our TLLT label propagation algorithm. (a)

compares the propagation between two examples with equal difficulty to the fluid

diffusion between two cubes with same altitude. The left cube with more balls is

compared to the examples with larger label value. The right cube with fewer balls is

compared to the examples with less label information. The red arrow indicates the

diffusion direction. (b) and (c) draw the parallel between fluid diffusion with different

altitudes and label propagation guided by curriculums. The lowland “C”, highland

“B”, and source “A” in (b) correspond to the simple vertex xC , difficult vertex xB, and

labeled vertex xA in (c), respectively. Like the fluid can only flow from “A” to the

lowland “C” in (b), xA in (c) also tends to transfer the label information to the simple

vertex xC .

Taking into account Theorems 4.5 and 4.6 together, we conclude that a small

variation of ξ will not greatly influence the performance of TLLT, so the robustness of

the entire propagation algorithm is guaranteed. Accordingly, the parameter ξ used in

our method can be easily tuned. An empirical demonstration of parametric insensitivity

can be found in the Section 4.8.6.

4.7 Physical Interpretation
A key factor to the effectiveness of our TLLT method is the well-ordered learning

sequence from simple to difficult, which is also considered by curriculum learning

Bengio et al. [2009] and self-paced learning Kumar et al. [2010]. Recall that in

Chapter 3, we draw an analogy between label propagation on the graph and the fluid

diffusion on a plane, and apply the Fick’s First Law of Diffusion to design a “natural”

graph transduction algorithm. The diffusion between a pair of examples is illustrated

in Fig. 4.3(a) for the ease of the following explanations.

Similar to Chapter 3, we also regard the labeled examples as sources to emit the

fluid, and the remaining unlabeled examples are to be diffused. Differently, here

the simple and difficult unlabeled examples are compared to lowlands and highlands,

respectively (see Figs. 4.3(b)(c)). There are two obvious facts here: 1) the lowlands

92

will be propagated prior to the highlands, and 2) fluid cannot be transmitted from

lowlands to highlands. Therefore, by treating γ of Eq. (3.2) as the propagation

coefficient, f as the label, and d̃ as the propagation distance defined by d̃ji = 1/
√
ωji,

Eq. (3.2) explains the process of label propagation from xj to xi as

Jji = −miγ
f
(t)
i − f

(t)
j

d̃ji
= −miγ

√
ωji(f

(t)
i − f

(t)
j). (4.37)

The parameter mi in (4.37) denotes the “altitude” of xi, which is different from

Eq. (3.2) in Chapter 3. It equals to 1 if xi corresponds to a lowland, and 0 if xi

represents a highland. Note that if xi is higher than xj , the flux Jji = 0 because the

fluid cannot transfer from lowland to highland. Given (4.37), we have the following

theorem:

Theorem 4.8. Suppose all the examples x1, · · · ,xn are modeled as the cubes with
volume V , and the area of their interface is A (see Fig. 4.3(a)). By using mi to
indicate the altitude of xi and setting the propagation coefficient γ = 1, the proposed
propagation process can be derived from the fluid transmission modeled by Fick’s Law
of Diffusion.

Proof. The propagation process from example xj to xi is illustrated in Fig. 4.3(a).

Since both examples are regarded as cubes with volume V , and the area of their

interface is A, so during an unit time from t to t + 1, the label information (similar

to the number of molecules in fluids) received by xi satisfies Eq. (3.3). By replacing

Jji with the Eq. (4.37) and considering V = A/
√
ωji, we have the basic propagation

model between two examples expressed as

f
(t+1)
i − f

(t)
i = −γmiωji(f

(t)
i − f

(t)
j). (4.38)

Practically, an example receives the labels from all its neighbors rather than only

one as modelled by (4.38), so the label information propagated to xi should be summed

over multiple examples. Therefore, by treating ωji = 0 if xi and xj are not directly

linked by an edge on G, (4.38) is extended to

f
(t+1)
i − f

(t)
i = −γmi

∑
j=1∼n,j �=i

ωji(f
(t)
i − f

(t)
j), (4.39)

where n is the total amount of examples on the graph. After re-arranging (4.39), we

obtain the following model explaining the diffusions among multiple examples:

f
(t+1)
i =

(
1− γmi

∑
j=1∼n, j �=i

ωji

)
f
(t)
i + γmi

∑
j=1∼n, j �=i

ωjif
(t)
j . (4.40)

93

By applying (4.40) to all the n examples {xi}ni=1, the propagation on graph G can

be reformulated into a compact formation

f (t+1) = Ψf (t), (4.41)

where f (t) = (f
(t)
1 , f

(t)
2 , · · · , f (t)

n)
�

, and

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎝

1− γm1

∑
j=1∼n, j �=1

ωj1 γm1ω21 · · · γm1ωn1

γm2ω12 1− γm2

∑
j=1∼n, j �=2

ωj2 · · · γm2ωn2

...
...

. . .
...

γmnω1n γmnω2n · · · 1− γmn

∑
j=1∼n, j �=n

ωjn

⎞⎟⎟⎟⎟⎟⎟⎠ .

For propagation purpose, the diagonal elements in Ψ are set to 0 to avoid the self-

loop on graph G Zhou and Bousquet [2003]. Therefore, Eq. (4.41) can be rewritten as

f (t+1) = γM(t)Wf (t). (4.42)

By row-normalizing W as P = D−1W and setting the propagation coefficient

γ = 1, we achieve the employed propagation model that is essentially the same as

Eq. (4.10). Consequently, our propagation strategy from simple examples to more

difficult ones has a close relationship with the practical fluid diffusion with highlands

and lowlands. This completes the proof.

4.8 Experimental Results
In this section, we compare the proposed TLLT with several representative label

propagation methods on both synthetic and practical datasets. In particular, we im-

plement TLLT with two different learning-to-teach strategies presented by Eqs. (4.12)

and (4.13), and term them “TLLT (Norm)” and “TLLT (Entropy)”, respectively. The

compared methods include Gaussian Field and Harmonic Functions (GFHF) Zhu and

Ghahramani [2002], Local and Global Consistency (LGC) Zhou and Bousquet [2003],

Graph Transduction via Alternating Minimization (GTAM) Wang et al. [2008b],

Linear Neighbourhood Propagation Wang et al. [2009b] (LNP), and Dynamic Label

Propagation (DLP) Wang et al. [2013]. Note that GFHF is the learning model (i.e.,
learner) used by our proposed TLLT, which is not instructed by a teacher.

4.8.1 Synthetic Data
We begin by leveraging the two-dimensional DoubleMoon dataset to visualize the

propagation process of different methods. DoubleMoon consists of 640 examples,

94

TLLT(Norm)

(c) (d)

GFHF

(e)

LGC

(f)

LNPLGCGFHFTLLT(Entropy)TLLT(Norm)

(j) (l)(k) (m) (n)

TLLT(Entropy)

DLP

(o)

GTAM

(p)

LNP

(g)

DLP

(h)

GTAM

(i)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

2

Positive
Negative
Unlabeled

Difficult
bridge point

(a)
0 2 4 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Imperfect
edges

Figure 4.4: The propagation process of the methods on the DoubleMoon dataset. (a) is the initial state with marked labeled

examples and difficult bridge point. (b) shows the imperfect edges during graph construction caused by the bridge point in

(a). These unsuitable edges pose a difficulty for all the compared methods to achieve accurate propagation. The second row

(c)∼(i) shows the intermediate propagations of TLLT (Norm), TLLT (Entropy), GFHF, LGC, LNP, DLP, and GTAM. The

third row (j)∼(p) compares the results achieved by all the algorithms, which reveals that only the proposed TLLT achieves

perfect classification while the other methods are misled by the ambiguous bridge point.

9
5

which are equally divided into two moons. This dataset was contaminated by Gaussian

noise with standard variance 0.15, and each class had only one initial labeled example

(see Fig. 4.4(a)). The 8-NN graph with the Gaussian kernel width ξ = 1 is established

for TLLT, GFHF, LGC, GTAM, and DLP. The parameter μ in GTAM is set to 99

according to Wang et al. [2008b]. The number of neighbors k for LNP is adjusted to

10. We set γ1 = 1 for TLLT (Norm) and γ2 = 2 for TLLT (Entropy). The trade-off

parameter α in Eq. (4.7) is fixed to 1 throughout the chapter, and we show that the

result is insensitive to the variation of this parameter in Section 4.8.6.

From Fig. 4.4(a), we observe that the distance between the two classes is very

small, and that a difficult bridge point is distributed over the intersection region

between the two moons. Therefore, the improper edges (see Fig. 4.4(b)) caused by the

bridge point may lead to the mutual transmission of labels from different classes. As

a result, previous label propagation methods like GFHF, LGC, LNP, DLP and GTAM

generate unsatisfactory results, as shown by Figs. 4.4(l)(m)(n)(o)(p). In contrast, only

our proposed TLLT (including TLLT (Norm) and TLLT (Entropy)) achieves perfect

classification without any confusion (see Figs. 4.4(j)(k)). The reason for our accurate

propagation can be found in Figs. 4.4(c)(d), which indicate that the propagation to

ambiguous bridge point is postponed due to the careful curriculum selection. On the

contrary, this critical but difficult example is propagated by GFHF, LGC, LNP, DLP

and GTAM at an early stage as long as it is connected to the initial labeled examples

(see Figs. 4.4(e)(f)(g)(h)(i)), resulting in the mutual label transmission between the

two moons. This experiment highlights the importance of our teaching-guided label

propagation.

4.8.2 UCI Benchmark Data
In this section, we compare TLLT with GFHF, LGC, GTAM, LNP, and DLP on four

UCI benchmark datasets Frank and Asuncion [2010]. Of these four datasets, SPECTF
concerns about the binary classification while Iris, Wine and Seeds are multi-class

classification problems. For each dataset, all the algorithms are tested with different

numbers of initial labeled examples, such as l(0) = 40 and l(0) = 80 for SPECTF, and

l(0) =60 and l(0) =120 for Iris, Wine and Seeds. In order to suppress the influence of

different initial labeled sets to the final performance, the accuracies are reported as the

mean values of the outputs of ten independent runs. In each run, the labeled examples

are randomly selected. However, the ten different partitions of labeled and unlabeled

sets are identical for all the compared algorithms.

On each dataset, we established the same 5-NN graph (i.e. k = 5) for GFHF, LGC,

GTAM and DLP to achieve fair comparison. For LNP, we respectively set k to 10,

50, 30 and 50 on Iris, Wine, Seeds and SPECTF since the graph required by LNP is

different from other methods. The learning rates γ1 and γ2 in TLLT were simply tuned

to 1, and the classification accuracies of all the compared methods are presented by

96

Table 4.1: Experimental results of the compared methods on four UCI benchmark

datasets. (Each record in the table represents the “accuracy ± standard deviation”.

The highest result obtained on each dataset is marked in bold.)

Datasets Iris Wine Seeds SPECTF
l(0) 60 120 60 120 60 120 40 80

GFHF 0.962±0.011 0.988±0.004 0.962±0.009 0.979±0.009 0.918±0.011 0.949±0.005 0.667±0.029 0.739±0.013
LGC 0.940±0.017 0.957±0.013 0.898±0.014 0.908±0.022 0.906±0.007 0.907±0.008 0.515±0.088 0.548±0.052

GTAM 0.867±0.026 0.969±0.015 0.897±0.035 0.924±0.054 0.828±0.041 0.914±0.036 0.482±0.002 0.556±0.003
LNP 0.832±0.054 0.905±0.059 0.749±0.133 0.780±0.130 0.702±0.080 0.865±0.055 0.434±0.061 0.525±0.050
DLP 0.951±0.008 0.980±0.005 0.875±0.029 0.927±0.026 0.919±0.006 0.942±0.009 0.512±0.131 0.611±0.035

TLLT (Norm) 0.979±0.003 0.991±0.004 0.965±0.011 0.990±0.007 0.927±0.009 0.952±0.006 0.672±0.051 0.751±0.024
TLLT (Entropy) 0.975±0.010 0.996±0.006 0.965±0.007 0.991±0.009 0.919±0.014 0.956±0.010 0.667±0.028 0.742±0.030

Table 4.1.

From Table 4.1, we observe that the proposed TLLT (Norm) and TLLT (Entropy)

yield better performance than other baselines on all the adopted datasets. Another fact

is that both TLLT (Norm) and TLLT (Entropy) consistently outperform GFHF, which

is the plain learning model adopted by TLLT. Therefore, the well-organized learning

sequence produced by our teaching and learning strategy does help to improve the

propagation performance. Notably, TLLT (Entropy) achieves more than 99% accuracy

on Iris and Wine datasets when l(0) = 120.

4.8.3 Text Categorization
To demonstrate the superiority of TLLT in dealing with practical problems, we com-

pare TLLT against GFHF, LGC, GTAM, LNP, and DLP in terms of text categorization.

A subset of RCV1 Lewis et al. [2004] with 2000 documents is employed for our

experiment. These documents were classified into four categories: “C15”, “ECAT”,

“GCAT”, and “MCAT”, and each category contained 500 examples. The standard TF-

IDF weighting scheme was adopted to generate the feature vector for each document.

The parameters of the graph used for GFHF, LGC, GTAM, DLP and TLLT are fixed

to k = 10 and ξ = 2. The k for LNP is adjusted to 20. The learning rates for TLLT

(Norm) and TLLT (Entropy) are optimally tuned to γ1=0.2 and γ2=2 via grid search

hereinafter. Specifically, γ1 and γ2 are chosen from 0.1 to 2 with the interval 0.05. We

implement all the methods with l(0)=200, 400, 600, 800 initial labeled examples, and

report the classification accuracy averaged over the outputs of ten independent runs.

In each run, the labeled and unlabeled examples are randomly generated; however, the

ten different partitions of labeled and unlabeled sets are identical for all the compared

methods. The experimental results are summarized in Table 4.2, in which the highest

records are marked with boldface. We observe that both TLLT (Norm) and TLLT

(Entropy) outperform the other competing methods when l(0) varies from 200 to 800.

97

Table 4.2: Accuracy of all methods on the RCV1 dataset (the highest records are

marked in bold).

l(0) = 200 l(0) = 400 l(0) = 600 l(0) = 800

GFHF 0.848 ± 0.017 0.872 ± 0.007 0.905 ± 0.008 0.930 ± 0.004

LGC 0.832 ± 0.018 0.862 ± 0.013 0.879 ± 0.010 0.889 ± 0.008

GTAM 0.500 ± 0.002 0.501 ± 0.002 0.576 ± 0.004 0.651 ± 0.001

LNP 0.515 ± 0.079 0.582 ± 0.089 0.575 ± 0.047 0.599 ± 0.055

DLP 0.752 ± 0.044 0.858 ± 0.024 0.900 ± 0.008 0.921 ± 0.004

TLLT (Norm) 0.860 ± 0.012 0.879 ± 0.006 0.917 ± 0.008 0.923 ± 0.006

TLLT (Entropy) 0.856 ± 0.008 0.887 ± 0.003 0.920 ± 0.003 0.933 ± 0.007

Figure 4.5: Example images of COIL20 dataset.

4.8.4 Object Recognition
We also apply the proposed TLLT to typical computer vision problems. COIL20 is

a popular public dataset for object recognition which contains 1440 object images

belonging to 20 classes (see Fig. 4.5 for examples), and each object has 72 images

shot from different angles. The resolution of each image is 32 × 32, with 256 grey

levels per pixel. Thus, each image is represented by a 1024-dimensional element-

wise vector. We built a 5-NN graph with ξ = 50 for GFHF, LGC, GTAM, DLP and

TLLT. The number of neighbours k for LNP was tuned to 10. Other parameters were

γ1 = 1 for TLLT (Norm) and γ2 = 0.5 for TLLT (Entropy). All the algorithms were

implemented under l(0)=100, 200, 300, 400 initial labeled examples, and the reported

accuracies are mean values of the outputs of ten independent runs. Table 4.3 shows

98

Table 4.3: Accuracy of all methods on the COIL20 dataset (the highest records are

marked in bold).

l(0) = 100 l(0) = 200 l(0) = 300 l(0) = 400

GFHF 0.886 ± 0.009 0.899 ± 0.006 0.935 ± 0.003 0.942 ± 0.007

LGC 0.884 ± 0.013 0.895 ± 0.009 0.898 ± 0.004 0.902 ± 0.005

GTAM 0.716 ± 0.026 0.781 ± 0.019 0.841 ± 0.029 0.889 ± 0.025

LNP 0.872 ± 0.011 0.873 ± 0.011 0.870 ± 0.005 0.867 ± 0.004

DLP 0.778 ± 0.019 0.838 ± 0.022 0.870 ± 0.003 0.881 ± 0.005

TLLT (Norm) 0.897 ± 0.007 0.922 ± 0.007 0.950 ± 0.006 0.957 ± 0.005
TLLT (Entropy) 0.897 ± 0.008 0.920 ± 0.002 0.943 ± 0.009 0.955 ± 0.005

shoe sandal

slipper boot

Figure 4.6: Example images of UT Zappos dataset.

the comparison results, from which we observe that TLLT consistently hits the highest

records among all comparators. Though the number of initial labeled examples is very

limited, our method can still achieve impressive output.

4.8.5 Fine-grained Image Classification
To further demonstrate the strength of TLLT, we apply the proposed algorithm to

identify the fine-grained visual differences. We use a subset of the UT Zappos dataset

Yu and Grauman [2014] to classify 4000 shoes belonging to 4 common categories:

“shoe”, “sandal”, “slipper”, and “boot”. The orientation of the shoes is consistent and

the shoes are centred on a white background image as shown by Fig. 4.6. It can be

observed that the colour and style of shoes within a category differ significantly, which

makes accurate classification extremely challenging.

Each example is represented by a 960-dimensional GIST feature. The established

99

Table 4.4: Accuracy of all methods on UT Zappos dataset (highest records are marked

in bold).

l(0) = 160 l(0) = 240 l(0) = 320 l(0) = 400

GFHF 0.771 ± 0.014 0.803 ± 0.012 0.804 ± 0.002 0.818 ± 0.009

LGC 0.773 ± 0.021 0.490 ± 0.007 0.492 ± 0.013 0.810 ± 0.016

GTAM 0.680 ± 0.001 0.695 ± 0.002 0.710 ± 0.001 0.725 ± 0.001

LNP 0.654 ± 0.042 0.664 ± 0.084 0.725 ± 0.037 0.745 ± 0.044

DLP 0.505 ± 0.183 0.719 ± 0.072 0.756 ± 0.033 0.804 ± 0.162

TLLT (Norm) 0.793 ± 0.011 0.809 ± 0.011 0.823 ± 0.009 0.840 ± 0.007

TLLT (Entropy) 0.786 ± 0.012 0.817 ± 0.012 0.826 ± 0.009 0.845 ± 0.007

graph for GFHF, LGC, GTAM, DLP and TLLT was parameterized by k = 5 and

ξ = 1, and the k for LNP was set to 10. We select the value of k from {5, 6, · · · , 15}
so that the highest accuracy is obtained. The learning rates of TLLT (Norm) and TLLT

(Entropy) were γ1 = 0.15 and γ2 = 2, respectively.

The accuracy achieved by all the methods under l(0) = 160, 240, 320, 400 initial

labeled examples is reported in Table 4.4. Similar to above experiments, each reported

accuracy is averaged over ten implementations with different labeled sets. Table 4.4

suggests that TLLT (Norm) and TLLT (Entropy) outperform other comparators with

the increase of l(0). We also observe that both TLLT (Entropy) and TLLT (Norm) are

superior to GFHF, therefore the strength of our interactive teaching and learning is

demonstrated. Other baselines like LGC, GTAM, LNP and DLP also perform worse

than TLLT.

4.8.6 Parametric Sensitivity
In Section 4.6, we theoretically verify that TLLT is insensitive to the change of

Gaussian kernel width ξ. Besides, the weighing parameter α in Eq. (4.7) is also a

key parameter to be tuned in our method. In this section, we investigate the parametric

sensitivity of each of the parameters ξ and α by examining classification performance

of one while the other is fixed. The above three practical datasets RCV1, COIL20, and

UT Zappos are adopted here, and the results are illustrated in Fig. 4.7.

Fig. 4.7 reveals that TLLT is very robust to the variations of these two parameters,

so they can be easily tuned for practical use. The results in Figs. 4.7 (a), (c) and (e) are

also consistent with the theoretical validation in Section 4.6.

100

4.9 Summary of This Chapter
This chapter proposed a novel label propagation algorithm through iteratively employ-

ing a Teaching-to-Learn and Learning-to-Teach (TLLT) scheme. The main ingredients

contributing to the success of TLLT are 1) explicitly manipulating the propagation

sequence to move from the simple to difficult examples, and 2) adaptively determining

the feedback-driven curriculums. These two contributions collaboratively lead to

higher classification accuracy than the existing algorithms, and exhibit the robustness

to the choice of graph parameters. Empirical studies reveal that TLLT can accomplish

the state-of-the-art performance in various applications.

101

(e) (f)

(c) (d)

(a) (b)

Figure 4.7: Parametric sensitivity of TLLT. The first, second and third rows correspond

to RCV1, COIL20 and UT Zappos datasets, respectively. (a), (c) and (e) show the

variation of accuracy w.r.t. the kernel width ξ when α is fixed to 1, and (b), (d) and (f)

evaluate the influence of the trade-off α to final accuracy under ξ = 10.

102

Chapter 5

Teaching-to-Learn and
Learning-to-Teach For Saliency
Detection

Saliency detection has been widely adopted for identifying the most attractive object in

an image. Recently, label propagation has been introduced for saliency detection and

achieved encouraging performance. The propagation sequence generated by existing

saliency detection methods is governed by the spatial relationships of image regions,

i.e., the saliency value is transmitted between two adjacent regions. However, for the

inhomogeneous difficult adjacent regions, such a sequence may incur wrong propa-

gations. In this chapter, we apply the framework of teaching-to-learn and learning-

to-teach proposed in Chapter 4, and attempt to manipulate the propagation sequence

for optimizing the propagation quality. Intuitively, we postpone the propagations to

difficult regions and meanwhile advance the propagations to less ambiguous simple

regions. In the teaching-to-learn step, a teacher is designed to arrange the regions from

simple to difficult and then assign the simplest regions to the learner. In the learning-

to-teach step, the learner delivers its learning confidence to the teacher to assist the

teacher to choose the subsequent simple regions. Due to the interactions between the

teacher and learner, the uncertainty of original difficult regions is gradually reduced,

yielding manifest salient objects with optimized background suppression. Extensive

experimental results on benchmark saliency datasets demonstrate the superiority of

the proposed algorithm over twelve representative saliency detectors.

5.1 A Brief Introduction to Saliency Detection
Saliency detection has attracted intensive attention and achieved considerable progress

during the past two decades. Up to now, a great number of detectors based on

103

Figure 5.1: The results achieved by typical propagation methods and our method on

two example images. From left to right: input images, results of Yang et al. [2013b],

Jiang et al. [2013], and our method.

computational intelligence have been proposed. They can be roughly divided into

two categories: bottom-up methods that are data and stimulus driven, and top-down
methods that are task and knowledge driven.

Top-down methods are usually related to the subsequent applications. For example,

Maybank [2013] proposed a probabilistic definition of salient image regions for image

matching. Yang and Yang [2012] combined dictionary learning and Conditional

Random Fields (CRFs) to generate discriminative representation of target-specific

objects. Moreover, the work in Gao et al. [2009] and Zhu et al. [2014a] also belong to

typical top-down methods.

Different from top-down methods, bottom-up methods use low-level cues, such

as contrast and spectral information, to recognize the most salient regions without

realizing content or specific prior knowledge about the targets. The representatives

include Cheng et al. [2011]; Fu et al. [2014]; Hou and Zhang [2007]; Itti et al. [1998];

Jiang et al. [2011]; Kim et al. [2014]; Lee et al. [2005]; Li et al. [2014]; Margolin et al.

[2013]; Perazzi et al. [2012].

Recently, propagation methods have gained much popularity in bottom-up saliency

detection and achieved state-of-the-art performance. To conduct saliency propagations,

an input image is represented by a graph over the segmented superpixels, in which

the adjacent superpixels in the image are connected by weighted edges. The saliency

values are then iteratively diffused along these edges from the labeled superpixels

to their unlabeled neighbors. However, such propagations may incur errors if the

unlabeled adjacent superpixels are inhomogeneous or very dissimilar to the labeled

ones. For example, Gopalakrishnan et al. [2009] and Jiang et al. [2013] formulate the

104

saliency propagation process as random walks on the graph. Ren et al. [2010] and Yang

et al. [2013b] conduct the propagations by employing personalized PageRank Zhou

et al. [2004b] and manifold based diffusion Zhou et al. [2004b], respectively. All these

methods generate similar propagation sequences which are heavily influenced by the

superpixels’ spatial relationships. However, once encountering the inhomogeneous or

incoherent adjacent superpixels, the propagation sequences are misleading and likely

to lead to inaccurate detection results (see Fig. 5.1).

Based on the above observations, we argue that not all neighbors are suitable

to participate in the propagation process, especially when they are inhomogeneous

or visually different from the labeled superpixels. Therefore, we assume different

superpixels have different difficulties, and measure the saliency values of the simple

superpixels prior to the difficult ones. This modification to the traditional scheme

of generating propagation sequences is very critical, because in this modification the

previously attained knowledge can ease the learning burden associated with complex

superpixels afterwards, so that the difficult regions can be precisely discovered. Such a

“starting simple” strategy conforms to the widely acknowledged theoretical results in

pedagogic and cognitive areas Elman [1993]; Khan et al. [2011]; Rohde and Plaut

[1999], which emphasize the importance of teachers for human’s acquisitions of

knowledge from the childish stage to the mature stage.

By taking advantage of these psychological opinions, we propose a novel ap-

proach for saliency propagation by leveraging a teaching-to-learn and learning-to-

teach paradigm. This paradigm plays two key roles: a teacher behaving as a

superpixel selection procedure, and a learner working as a saliency propagation

procedure. In the teaching-to-learn step of the t-th propagation, the teacher assigns

the simplest superpixels (i.e., curriculum) to the learner in order to avoid the erroneous

propagations to the difficult regions. The informativity, individuality, inhomogeneity,

and connectivity of the candidate superpixels are comprehensively evaluated by the

teacher to decide the proper curriculum. In the learning-to-teach step, the learner

reports its t-th performance to the teacher in order to assist the teacher in wisely

deciding the (t + 1)-th curriculum. If the performance is satisfactory, the teacher

will choose more superpixels into the curriculum for the following learning process.

Owing to the interactions between the teacher and learner, the superpixels are logically

propagated from simple to difficult with the updated curriculum, resulting in more

confident and accurate saliency maps than those of typical methods (see Fig. 5.1).

5.2 Saliency Detection Algorithm
This section details our saliency detection scheme (see Fig. 5.2). When an input image

is given, it is pre-processed by computing the convex hull, segmenting into superpixels,

and constructing the graph over these superpixels. After that, the saliency values

105

input image convex hull
(blue polygon)
& superpixels

graph
construction

(white lines are
edges)

background
seeds

boundary
seeds

convex hull mask

coarse saliency
map

final saliency
map

superpixels
Pre-processing Stage 2

Stage 1

input image convex hull
(blue polygon)
& superpixels
(p yg(p yg

graph
construction

(white lines are
edges)

superpixelsp
Pre-processing

background
seeds

g

boundary
seeds

convex hull mask

coarse saliency
map

Stage 1

final saliency
map

Stage 2

foreground
seeds

saliency
map

Figure 5.2: The diagram of our detection algorithm. The magenta arrows annotated

with numbers denote the implementations of teaching-to-learn and learning-to-teach

propagation shown in Fig. 5.3.

are propagated from the background seeds to form a coarse map (Stage 1). Finally,

this map is refined by propagating the saliency information from the most confident

foreground regions to the remaining superpixels (Stage 2). In the above stages, all

the propagations are implemented under the proposed teaching-to-learn and learning-

to-teach paradigm (see the magenta arrows in Fig. 5.2), which will be concretely

introduced in Section 5.3.

5.2.1 Image Pre-processing
Given an input image, a convex hull H is constructed to estimate the target’s location

Yang et al. [2013a]. This is done by detecting some key points in the image via Harris

corner detector. Because most key points locate within the target region, we link the

outer key points to a convex hull to roughly enclose the target (see Fig. 5.2).

We proceed by using the SLIC Achanta et al. [2012] algorithm to over-segment

the input image into N small superpixels (see Fig. 5.2), then an undirected graph

G = 〈V,E〉 is built where V is the vertex set consisted of these superpixels and E

is the edge set encoding the similarity between them. In our work, we link two

vertices1 si and sj by an edge if they are spatially adjacent in the image or both of

them correspond to the boundary superpixels. Then their similarity is computed by the

Gaussian kernel function ωij = exp
(−‖si − sj‖2/(2σ2)

)
, where σ is the kernel width

and si is the feature vector of the i-th superpixel represented in the LAB-XY space (i.e.
si = (scolori ; spositioni)). Therefore, the G’s associated adjacency matrix W ∈ R

N×N is

defined by Wij = ωij if i �= j, and Wij = 0 otherwise. The diagonal degree matrix is

D with Dii =
∑

j Wij .

1In this chapter, “superpixel” and “vertex” refer to the same thing. We use them interchangeably

for different explanation purposes.

106

5.2.2 Coarse Map Establishment
A coarse saliency map is built from the perspective of background, to assess how

these superpixels are distinct from the background. To this end, some regions that are

probably background should be determined as seeds for the saliency propagation. Two

background priors are adopted to initialize the background propagations. The first one

is the convex hull prior Yang et al. [2013a] that assumes the pixels outside the convex

hull are very likely to be the background; and the second one is the boundary prior
Wei et al. [2012]; Yang et al. [2013b] which indicates the regions along the image’s

four boundaries are usually non-salient. Note that the two priors are not strong because

the specified non-salient regions will be further refined or modified by the subsequent

propagation process, and every superpixel will receive a reasonable saliency value as

a result.

For employing the convex hull prior, the superpixels outside H are regarded as

background seeds (marked with yellow in Fig. 5.2) for saliency propagation. Suppose

the propagation result is expressed by an N -dimensional vector f∗ =
(
f ∗
1 · · · f ∗

N

)�
,

where f ∗
i (i = 1, · · · , N) are obtained saliency values corresponding to the superpixels

si, then after scaling f∗ to [0, 1] (denoted as f∗normalized), the value of the i-th superpixel

in the saliency map SConvexHull is

SConvexHull(i) = 1− f∗normalized(i), i = 1, 2, · · · , N, (5.1)

Similarly, we treat the superpixels of four boundaries as seeds, and implement the

propagation again. A saliency map based on the boundary prior can then be generated,

which is denoted as SBoundary. Furthermore, we establish a binary mask Smask Fu

et al. [2013] to indicate whether the i-th superpixel is inside (SMask(i) = 1) or outside

(SMask(i) = 0) the convex hull H. Finally, the saliency map of Stage 1 is obtained by

integrating SConvexHull, SBoundary, and SMask as

SStage1 = SConvexHull ⊗ SBoundary ⊗ SMask, (5.2)

where “⊗” is the element-wise product between matrices.

5.2.3 Map Refinement
After the Stage 1, the dominant object can be roughly highlighted. However, SStage1

may still contain some background noise that should be suppressed. Therefore, we

need to propagate the saliency information from the potential foreground regions to

further improve SStage1.

Intuitively, we may choose the superpixels with large saliency values in SStage1

as foreground seeds. In order to avoid erroneously taking background as seeds, we

carefully pick up a small number of superpixels as seeds that are in the set:

{si| SStage1(i) ≥ ηmax1≤j≤N(SStage1(j))} , (5.3)

107

where η is set to 0.7. Finally, by setting the labels of seeds to 1 and conducting the

teaching-to-learn and learning-to-teach propagation, we achieve the final saliency map

SStage2. Fig. 5.2 illustrates that SStage2 successfully highlights the foreground regions

while removes the background noise appeared in SStage1.

5.3 Teaching-to-learn and Learning-to-teach For Saliency
Propagation

Saliency propagation plays an important role in our algorithm. Suppose we have l
seed vertices s1, · · · , sl on G with saliency values f1 = · · · = fl = 1, the task

of saliency propagation is to reliably and accurately transmit these values from the

l labeled vertices to the remaining u = N − l unlabeled superpixels.

As mentioned in Section 5.1, the propagation sequence in existing methods

Gopalakrishnan et al. [2009]; Jiang et al. [2013]; Yang et al. [2013b] may incur

imperfect results on difficult superpixels, so we propose a novel teaching-to-learn and

learning-to-teach framework to optimize the learning sequence (see Fig. 5.3). To be

specific, this framework consists of a learner and a teacher. Given the labeled set and

unlabeled set at time t denoted as L(t) and U(t), the teacher selects a set of simple

superpixels from U(t) as curriculum T(t). Then, the learner will learn T(t), and return

a feedback to the teacher to help the teacher update the curriculum for the (t + 1)-th
learning. This process iterates until all the superpixels in U(t) are properly propagated.

5.3.1 Teaching-to-learn
The core of teaching-to-learn is to design a teacher deciding which unlabeled

superpixels are to be learned. For the t-th propagation, a candidate set C(t) is firstly

established, in which the elements are vertices directly connected to the labeled set

L(t) on G. Then the teacher chooses the simplest superpixels from C(t) as the t-th
curriculum. To evaluate the propagation difficulty of an unlabeled superpixel si∈C(t),

the difficulty score DSi is defined by combining informativity INF i, individuality

INDi, inhomogeneity IHM i, and connectivity CON i, namely:

DSi = INF i + INDi + IHM i + CON i. (5.4)

Next we will detail the definitions and computations of INF i, INDi, IHM i, and

CON i, respectively.

Informativity: The simple superpixel should not contain too much information

given the labeled set L1. Therefore, the informativity of a superpixel si ∈ C is

1For simplicity, the superscript t is omitted for all the notations hereinafter unless otherwise

specified.

108

informativity

individuality

connectivity

integrated updated
labeled

superpixels

Teaching-to-learn

Learning-to-teach

labeled
superpixels

Learning confidence

saliency map

iterate

inhomogeneity

Figure 5.3: An illustration of our teaching-to-learn and learning-to-teach paradigm.

In the teaching-to-learn step, based on a set of labeled superpixels (magenta) in an

image, the teacher discriminates the adjacent unlabeled superpixels as difficult (blue

superpixels) or simple (green superpixels) by fusing their informativity, individuality,

inhomogeneity, and connectivity. Then simple superpixels are learned by the learner,

and the labeled set is updated correspondingly. In the learning-to-teach step, the learner

provides a learning feedback to the teacher to help decide the next curriculum.

109

straightforwardly modeled by the conditional entropy H(si|L), namely:

INF i = H(si|L). (5.5)

The propagations on the graph follow the multivariate Gaussian process Zhu

et al. [2003a], with the elements fi (i = 1, · · · , N) in the random vector f =(
f1 · · · fN

)�
denoting the saliency values of superpixels si. The associated

covariance matrix K equals to the adjacency matrix W except the diagonal elements

are set to 1.

For the multivariate Gaussian, the closed-form solution of H(si|L) is Bishop

[2006]:

H(si|L) = 1

2
ln(2πeσ2

i|L), (5.6)

where σ2
i|L denotes the conditional covariance of fi given L. Considering that the

conditional distribution is a multivariate Gaussian, σ2
i|L in Eq. (5.6) can be represented

by

σ2
i|L = K2

ii −Ki,LK
−1
L,LKL,i, (5.7)

in which Ki,L and KL,L denote the sub-matrices of K indexed by the corresponding

subscripts. By plugging Eqs. (5.6) and (5.7) into Eq. (5.5), we obtain the informativity

of si.
In Eq. (5.7), the inverse of an l × l (l is the size of gradually expanded labeled set

L) matrix KL,L should be computed in every iteration. As l becomes larger and larger,

directly inverting this matrix can be time-consuming. Therefore, we adopt the efficient

updating technique designed in Chapter 4 based on the blockwise inversion equation.

Individuality: Individuality measures how distinct of a superpixel to its surrounding

superpixels. We consider a superpixel simple if it is similar to the nearby superpixels in

the LAB color space. This is because such superpixel is very likely to share the similar

saliency value with its neighbors, thus can be easily identified as either foreground or

background. For example, the superpixel s2 in Fig. 5.4(a) has lower individuality than

s1 since it is more similar to the neighbors than s1. The equation below quantifies the

local individuality of si and its neighboring superpixels N(si):

INDi = IND(si,N(si)) =
1

|N(si)|
∑

j∈N(si)

∥∥scolori − scolorj

∥∥, (5.8)

where |N(si)| denotes the amount of si’s neighbors. Consequently, the superpixels

with small individuality are preferred for the current learning.

Inhomogeneity: It is obvious that a superpixel is ambiguous if it is not homogenous

or compact. Fig. 5.4(b) provides an example that the homogenous s4 gets smaller

IHM value than the complicated s3. Suppose there are b pixels
{
pcolor
j

}b

j=1
in a

superpixel si characterized by the LAB color feature, then their pairwise correlations

110

are recorded in the b× b symmetric matrix Θ = PP�, where P is a matrix with each

row representing a pixel pcolor
j . Therefore, the inhomogeneity of a superpixel si is

defined by the reciprocal of mean value of all the pairwise correlations:

IHM i =

(
2

b2 − b

∑b

i=1

∑b

j=i+1
Θij

)−1

, (5.9)

where Θij is the (i, j)-th element of matrix Θ. Small IHM i means that all the pixels

in si are much correlated with others, so si is homogenous and can be easily learned.

Connectivity: For the established graph G, a simple intuition is that the vertices

strongly connected to the labeled set L are not difficult to propagate. Such strength

of connectivity is inversely proportional to the averaged geodesic distances between

si ∈ C and all the elements in L, namely:

CON i =
1

l

∑
j∈L

geo(si, sj). (5.10)

In Eq. (5.10), geo(si, sj) represents the geodesic distance between si and sj , which can

be approximated by their shortest path, namely:

geo(si, sj) = min
R1=i,R2,··· ,Rn=j

∑n−1

k=1
max(ERk,Rk+1

− c0, 0)

s.t. Rk, Rk+1 ∈ V, Rk and Rk+1 are connected in G

. (5.11)

Here V denotes the vertex set of G, ERk,Rk+1
computes the Euclidean distance

between Rk and Rk+1, and c0 is an adaptive threshold preventing the “small-weight-

accumulation” problem Wei et al. [2012].

Finally, by substituting Eqs. (5.5), (5.8), (5.9) and (5.10) into Eq. (5.4), the

difficulty scores of all si ∈ C can be calculated, based on which the teacher is able to

determine the simple curriculum for the current iteration. With the teacher’s effort, the

unlabeled superpixels are gradually learned from simple to difficult, which is different

from the propagation sequence in many existing methodologies Gopalakrishnan et al.

[2009]; Jiang et al. [2013]; Ren et al. [2010]; Yang et al. [2013b].

5.3.2 Learning-to-teach
After the difficulty scores of all candidate superpixels are computed, the next step is

to pick up a certain number of superpixels as curriculum based on DS1, · · · , DS|C|.
A straightforward idea is to sort all the elements in C so that their difficulty scores

satisfying DS1 ≤ DS2 ≤ · · · ≤ DS|C|. Then the first q (q ≤ |C|) superpixels are

used to establish the curriculum set T = {s1, s2, · · · , sq} according to the pre-defined

q. However, we hold that how many superpixels are to be learned at t should depend on

the (t− 1)-th learning performance. If the (t− 1)-th learning is confident, the teacher

111

(b)(a)
Figure 5.4: The illustrations of individuality (a) and inhomogeneity (b). The region s1
in (a) obtains larger individuality than s2, and s3 in (b) is more inhomogeneous than

s4.

may assign “heavier” curriculum to the learner. In other words, the teacher should also

consider the learner’s feedback to arrange the proper curriculum, which is a “learning-

to-teach” mechanism. Next we will use this mechanism to adaptively decide q(t) for

the t-th curriculum.

As mentioned above, q(t) should be adjusted by considering the effect of previous

learning. However, since the correctness of the (t−1)-th output saliency is unknown,

we define a confidence score to blindly evaluate the previous learning performance.

Intuitively, the (t − 1)-th learning is confident if the saliency values f
(t−1)
1 , · · · , f (t−1)

q(t−1)

are close to 0 (very dissimilar to seeds) or 1 (very similar to seeds) after scaling.

However, if f
(t−1)
1 , · · · , f (t−1)

q(t−1) are close to the ambiguous value 0.5, the teacher will

rate the last learning as unsatisfactory, and produce a small q(t) to relieve the “burden”

for the current learning. Therefore, the confidence score that belongs to [0, 1] is defined

by

ConfidenceScore = 1− 2

q(t−1)

∑q(t−1)

i=1
min(f

(t−1)
i , 1− f

(t−1)
i), (5.12)

and q(t) is finally computed by

q(t) =
⌈∣∣C(t)

∣∣× ConfidenceScore
⌉
. (5.13)

112

iteration 1 iteration 4iteration 2 iteration 7 iteration 9

(a) (b)

(c) (d)

informativity individuality inhomogeneity connectivity intergration

propagation
postponed

Figure 5.5: Visualization of the designed propagation process. (a) shows the input

image with boundary seeds (yellow). (b) displays the propagations in several key

iterations, and the expansions of labeled set L are highlighted with light green masks.

(c) is the final saliency map. The curriculum superpixels of the 2nd iteration decided by

informativity, individuality, inhomogeneity, connectivity, and the final integrated result

are visualized in (d), in which the magenta patches represent the learned superpixels

in the 1st propagation, and the regions for the 2nd diffusion are annotated with light

green.

5.3.3 Saliency Propagation
After the curriculum T(t) =

{
s1, s2, · · · , sq(t)

}
is specified, the learner will spread the

saliency values from L(t) to T(t) via propagation. Particularly, the expression is:

f (t+1) = M(t)D−1Wf (t), (5.14)

where M(t) is a diagonal matrix with M
(t)
ii = 1 if si ∈ L(t) ∪ T(t), and M

(t)
ii = 0

otherwise. When the t-th iteration is completed, the labeled and unlabeled sets are

updated as L(t+1) = L(t) ∪ T(t) and U(t+1) = U(t) − T(t), respectively. Eq. (5.14)

initializes from the binary vector f (0) =
(
f
(0)
1 , · · · , f (0)

N

)�
(f

(0)
i = 1 if the i-th

superpixel corresponds to seed, and 0 otherwise), terminates when U becomes an

empty set, and the obtained saliency value vector is denoted by f̄ . Finally, we smooth

f̄ by driving the entire propagation on G to the stationary state:

f∗ =
(
I− αD−1W

)−1
f̄ , (5.15)

where α is a parameter set to 0.99 Yang et al. [2013b], and f∗ encodes the saliency

information of N superpixels as defined in Section 5.2.2.

One example of the complete propagation process is visualized in Fig. 5.5, in

which the superpixels along the image’s four boundaries serve as seeds to propagate

the saliency information to the remaining superpixels (see Fig. 5.5(a)). In (b), we

observe that the sky regions are relatively easy and are firstly learned during the

113

1st∼4th iterations. In contrast, the land areas are very different from the seeds,

so they are difficult and their diffusion should be deferred. Though the labeled set

touches the land in a very early time (see the red circle in the 1st iteration), the land

superpixels are not diffused until the 4th iteration. This is because the background

regions are mostly learned until the 4th iteration, which provide sufficient preliminary

knowledge to identify the difficult land regions as foreground or background. As

a result, the learner is more confident to assign the correct saliency values to the

land after the 4th iteration, and the target (pyramid) is learned in the end during

the 7th∼9th iterations. More concretely, the effect of our curriculum selection

approach is demonstrated in Fig. 5.5(d). It can be observed that though the curriculum

superpixels are differently chosen by their informativity, individuality, inhomogeneity,

and connectivity, they are easy to learn based on the previous accumulated knowledge.

Particularly, we notice that the final integrated result only preserves the sky regions

for the leaner, while discards the land areas though they are recommended by

informativity, individuality, and inhomogeneity. This further reduces the erroneous

propagation possibility since the land looks differently from the sky and actually more

similar to the unlearned pyramid. Therefore, the fusion scheme (5.4) and the proper

q(t) decided by the learning-to-teach step are reasonable and they are critical to the

successful propagations (see Fig. 5.5(c)).

5.4 Experimental Results
In this section, we qualitatively and quantitatively compare the proposed Teaching-to-

Learn and Learning-to-Teach approach (abbreviated as “TLLT”) with twelve popular

methods on two popular saliency datasets. The twelve baselines include classical

methods (LD Liu et al. [2007], GS Wei et al. [2012]), state-of-the-art methods (SS

Fu et al. [2014], PD Margolin et al. [2013], CT Kim et al. [2014], RBD Zhu et al.

[2014b], HS Yan et al. [2013], SF Perazzi et al. [2012]), and representative propagation

based methods (MR Yang et al. [2013b], GP Fu et al. [2013], AM Jiang et al. [2013],

GRD Yang et al. [2013a]). We adopt the weighted precision Precisionw, weighted

recall Recallw and weighted Fβ-measure Fw
β proposed by Margolin et al. [2014] for

performance evaluation. The parameters in our method are set to N = 400 and

θ = 0.25 throughout the experiments. The parametric sensitivity and failed cases

are also discussed at the end of this section.

5.4.1 Experiments on Public Datasets
The MSRA 1000 dataset Liu et al. [2007], which contains 1000 images with binary

pixel-level groundtruth, is firstly adopted for our experiments. The average precisionw,

recallw, and Fw
β of all the methods are illustrated in Fig. 5.6(a). We can observe that

114

(a)(a) (b)
Figure 5.6: Comparison of different methods on two saliency detection datasets. (a) is

MSRA 1000, and (b) is ECSSD.

the Fw
β of our TLLT is larger than 0.8, which is the highest record among all the

comparators. Another notable fact is that TLLT outperforms other baselines with

a large margin in Precisionw. This is because the designed teaching-to-learn and

learning-to-teach paradigm propagates the saliency value carefully and accurately. As

a result, our approach has less possibility to generate the blurred saliency map with

confused foreground. In this way, the Precisionw is significantly improved. More

importantly, we note that the Recallw of our method also touches a relatively high

value, although the Precisionw has already obtained an impressive record. This further

demonstrates the strength of our innovation.

Although the images from MSRA 1000 dataset have a large variety in their content,

the foreground is actually prominent among the simple and structured background.

Therefore, a more complicated dataset ECSSD Yan et al. [2013], which represents

more general situations that natural images fall into, is adopted to further test all the

algorithms. Fig. 5.6(b) shows the result. Generally, all methods perform more poorly

on ECSSD than on the MSRA 1000. However, our algorithm still achieves the highest

Fw
β and Precisionw when compared with other baselines. RBD obtains slightly lower

Fw
β than our method with 0.5215 compared to 0.5284, but the weighted precision

is not as good as our approach. Besides, some methods such as HS, SF and GRD

obtain very moderate results since they tend to detect the most salient regions at the

expense of low precision. As a result, the imbalance between Precisionw and Recallw

will happen, which pulls down the overall Fw
β to a low value. Comparatively, TLLT

produces relatively balanced Precisionw and Recallw on both datasets, therefore higher

Fw
β is obtained.

The average CPU seconds of evaluated methods for processing one image in

ECSSD are summarized in Table 5.1, on an Intel i5 3.20GHz CPU with 8GB RAM.

115

Table 5.1: Average CPU seconds of all the approaches on ECSSD dataset

Method LD GS SS PD CT RBD HS SF MR GP AM GRD TLLT

Duration (s) 7.24 0.18 3.58 2.87 3.53 0.20 0.43 0.19 0.87 3.22 0.15 0.93 2.31

Code matlab matlab matlab matlab matlab matlab C++ matlab matlab matlab matlab matlab matlab

Input LD GS SS PD RBDCT HS SF MR GP AM GRD TLLT GTTLLT

Figure 5.7: Visual comparisons of saliency maps generated by all the methods on some

challenging images. The ground truth (GT) is presented in the last column.

our method takes 2.31 seconds per detection, which is slower than GS, RBD, HS,

SF, MR, AM, GRD, but faster than LD, SS, PD, CT, and GP. Because our method

needs to decide the suitable curriculum in every iteration, it needs relatively longer

computational time. The iteration times for a normal image under our parametric

settings are usually 5∼15. However, better results can be obtained as shown in Fig. 5.6,

at the cost of more computational time.

To further present the merits of the proposed approach, we provide the resulting

saliency maps of evaluated methods on several very challenging images from the

two datasets (see Fig. 5.7). Though the backgrounds in these images are highly

complicated, or very similar to the foregrounds, TLLT is able to generate fairly

confident and clean saliency maps. In other words, TLLT is not easily confused by

the unstructured background, and can make a clear distinction between the complex

background and the regions of interest.

116

(a) (b)
Figure 5.8: Parametric sensitivity analyses: (a) shows the variation of Fw

β w.r.t. θ by

fixing N = 400; (b) presents the change of Fw
β w.r.t. N by keeping θ = 0.25.

5.4.2 Parametric Sensitivity
There are two free parameters in our algorithm to be manually tuned: Gaussian kernel

width θ and the amount of superpixels N . We evaluate each of the parameters θ and

N by examining Fw
β with the other one fixed. Fig. 5.8 reveals that Fw

β is not sensitive

to the change of N , but heavily depends on the choice of θ. Specifically, it can be

observed that the highest records are obtained when θ = 0.25 on both datasets, so we

adjust θ to 0.25 for all the experiments.

5.4.3 Failed Cases
Though the proposed TLLT achieves very impressive results in most cases, it may fail

if 1) the target is extremely similar to the background which significantly confuses

the propagation; and 2) the generated convex hull completely misses the salient

object. The two examples corresponding to above situations are presented in Fig. 5.9.

In Fig. 5.9(a), the color of the target is very close to the background, therefore

the generated saliency map (Fig. 5.9(b)) is far from perfect even though the seed

superpixels are correct. In Fig. 5.9(c), the convex hull encloses the non-target regions,

so the real targets are not precisely detected in the final saliency map (Fig. 5.9(d)).

However, this case seldom occurs according to the extensive experiments in prior

works Fu et al. [2013]; Xie et al. [2013]; Yang et al. [2013a]. The failure rates of

the convex hull in MSRA 1000 and ECSSD are 6/1000 and 12/1000, respectively.

Actually, the two listed situations 1) and 2) are also challenging for the existing

saliency algorithms.

117

(a) (b)

(c) (d)
Figure 5.9: Failed cases of our method. (a) shows an example that the object is very

similar to the background, in which the correct seed superpixels are marked with

magenta. (b) is the imperfect saliency map corresponding to the image in (a). In

(c), the targets are completely missed by the convex hull (blue polygon), which leads

to the detection failure as revealed by (d).

118

5.5 Summary of This Chapter
This chapter proposed a novel approach for saliency propagation through leveraging a

teaching-to-learn and learning-to-teach paradigm. Different from the existing methods

that propagated the saliency information entirely depending on the relationships among

adjacent image regions, the proposed approach manipulated the propagation sequence

from simple regions to difficult regions, thus leading to more reliable propagations.

Consequently, our approach can render a more confident saliency map with higher

background suppression, yielding a better popping out of objects of interest.

119

Chapter 6

Conclusion and Future Work

In this section, we first conclude the entire thesis, and then elaborate the possible trends

for future research.

6.1 Thesis Summarization
This thesis addresses the problem of robust graph transduction. In practical situations,

there are usually a large number of noisy data, which significantly impair the

performance of existing graph transduction methods. Therefore, we designed various

robust algorithms that can suppress the adverse impact of the noisy data from different

aspects. Specifically, one non-iterative method LPDGL, and two iterative approaches

FLAP and TLLT were proposed, among which TLLT was further shown to be effective

for saliency detection tasks.

In LPDGL (Chapter 2), we introduced a deformed graph Laplacian, which

originates from the deformed differential operator developed in mathematical physics.

As a consequence, the resulting smoothness term not only contains the existing

pairwise term, but also incorporates a novel local smoothness term. This local

smoothness term assigns confident labels to the examples with large degree, as well

as allocates “weak labels” to the uncertain examples with small degree. Therefore,

the negative effects of outliers or “bridge points” can be decreased, leading to

robust transduction performance. The free parameters appeared in our regularization

framework are also easy to tune because the final performance is proved to be

insensitive to their changes. Moreover, we show that our transductive model can be

easily extended to inductive settings, and the robustness and generalizability are also

theoretically guaranteed. LPDGL has a variety of applications such as handwritten

digit recognition, face recognition and violent behavior detection.

In FLAP (Chapter 3), we drew an analogy between label propagation and practical

120

fluid diffusion, and leveraged a well-known physical theory called Fick’s Law of

Diffusion to achieve “natural” label propagation. In other words, when and how much

label information is received or transferred by an example, or where these labels should

be propagated to, are naturally governed. This is very different from most of the

existing machine learning algorithms which are established based on some heuristic

and ad hoc criteria. As a result, FLAP yields more robust propagation result than the

existing methods. Besides, we show that another advantage of our FLAP is that the

eigenvalues of the associated iteration matrix are regularly distributed, leading to faster

convergence rate than the existing propagation algorithms. Furthermore, we prove that

although FLAP is derived from the viewpoint of physical theory, and it has a close

relationship with the traditional regularization networks, Markov random fields, and

graph kernels. Comprehensive experimental results on both synthetic and practical

datasets suggest that FLAP obtains very encouraging performance when compared

with state-of-the-art algorithms.

In TLLT (Chapter 4), we considered that the the traditional propagation methods

have some defects for handling the difficult examples with uncertain labels. Therefore,

we proposed to establish a logical propagation sequence from simple examples to

more difficult ones under the guidance of a knowledgable “teacher”. The teacher

can assess the difficulty (or classification reliability) of each unlabeled example, and

only arrange the simplest unlabeled examples (i.e. a curriculum) to the learner for the

current propagation. After “learning” this curriculum, the learner delivers a learning

feedback to the teacher to assist it in deciding the next simplest curriculum. Due to

the interactions between the teacher and learner, the improved accuracy over existing

methods is achieved, and the classification performance is also shown to be robust to

the choice of graph parameter.

Finally, in Chapter 5 we applied the framework of TLLT to detect the most salient

objects in an image. The difficulty of a superpixel is judged by its informativity,

individuality, inhomogeneity, and connectivity. In the designed saliency propagation

process, the simple superpixels are decided as foreground or background prior to the

difficult superpixels. As a result, our detector generates manifest saliency maps, and

meanwhile outperforms baseline methods revealed by both qualitative and quantitative

comparisons.

6.2 Relationship and Differences among Algorithms
Although the proposed three algorithms (LPDGL, FLAP, and TLLT) in this paper are

able to conduct graph transduction, they have different purposes and are applicable

to different scenarios. When the dataset is small, such as the Iris and Wine datasets

appeared in Sections 2.4.3, 3.4.3 and 4.8.2, the classification accuracies of LPDGL

121

and TLLT are slightly higher than FLAP. This is because some specific measures are

taken to deal with the noisy data in LPDGL and TLLT. For example, LPDGL utilizes

the degree information of every example, while TLLT identifies the difficulty levels

of unlabeled examples and explicitly establishes a classification sequence from simple

examples to more difficult ones. In contrast, FLAP does not have a specific mechanism

to handle noise, so it is slightly worse than LPDGL and TLLT in terms of classification

accuracy. However, LPDGL and TLLT are only suitable for small-scale datasets, while

FLAP is applicable to relatively large datasets. This is because the eigenvalues of the

iteration matrix in FLAP are distributed regularly, so FLAP is able to converge to the

stationary point efficiently. This has been theoretically verified in Section 3.2, and

empirically demonstrated in Figs. 3.6, 3.7, 3.8, 3.9 and Table 3.5. Although LPDGL

has a closed-form solution as indicated in (2.7), it has to compute the inverse of an

n× n matrix (n is the number of examples), therefore the optimal solution of LPDGL

can be efficiently obtained when the amount of examples is not large. However, if

we are faced with a large dataset, such matrix inversion will be quite time-consuming,

and at this time LPDGL will be less efficient that FLAP. For TLLT, it has to solve

an optimization problem (4.8) to generate the optimal curriculum examples in each

iteration, so TLLT takes longer computational time than FLAP when the size of dataset

is large. Besides, Section 2.2 indicates that LPDGL can be easily extended to obtain

a general decision function to cope with induction cases, and this is the advantage of

LPDGL over TLLT and FLAP. Therefore, LPDGL can be an ideal choice if we want to

accomplish graph transduction as well as obtain a general decision function to predict

the labels of unseen examples in the future.

6.3 Future Work
Although the algorithms proposed in this thesis have achieved encouraging results to

some extent, some issues still remain open and should be further investigated:

• Graph construction. Obviously, all the graph transduction algorithms are based

on a established graph. However, how to build a suitable graph that can faithfully

reflect the intrinsic structure of the dataset is still to be investigated. A well-

constructed graph is beneficial to boosting the performance of our transduction

algorithms including LPDGL, FLAP, and TLLT. To this end, we need to take

a further insight into the data itself, and also utilize the practical domain

knowledge to construct a suitable graph.

• Scalability. Almost all the current graph transduction methods are not scalable

to large datasets, because they usually involve some computationally heavy

factors, such as large matrix multiplication, large matrix inverse or slow

122

convergence rate. For example, LPDGL contains a large matrix inverse in

Eq. (2.7), FLAP needs a large matrix multiplication in Eq. (3.11), and TLLT

has a overhead of optimizing the simplest curriculum via solving Eq. (4.7).

Therefore, more efficient transductive models and the related solvers are to be

developed.

• Multi-label handling. All the algorithms proposed in this thesis are only able

to handle single-label data. However, it is often the case that the real data can be

assigned a set of different labels, such as image annotation. Consequently, our

algorithms should be improved to handle multi-label cases by further considering

the correlations among the different labels.

• Heterogeneous data. Practically, data may come from different sources. For

example, an image can be characterized by different feature descriptors like

SIFT, RGB, HOG, etc. A webpage usually contains both images and text.

Directly concatenating the heterogeneous features into one long feature vector

ignores the specific property within each of the features. Therefore, our

algorithms should be extended to multi-view settings, so that they can better

exploit the complementary information carried by different kinds of features.

• Label noise handling. Currently, our algorithms including LPDGL, FLAP and

TLLT are only robust to outliers, “bridge points” or the variations of some critical

parameters. However, label noise is another important issue that should be

taken into consideration for future algorithm design. For example, due to the

different expertise of labelers and the difficulty of tasks, the labels collected via

crowdsourcing often contain noise, making them not trustable for the following

analyses. Therefore, making our algorithms robust to noisy labels is a direction

that worths further studying.

• More applications. It will be valuable if the proposed algorithms can be

applied to more practical problems. Although the experimental results reveal

that our algorithms have achieved some initial success in image classification,

digit recognition, text classification and saliency detection, we think that our

algorithms are also promising for tackling some other applications, such as

bioinformatics data analyses, remote sensing image classification, and video

processing.

123

References

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels

compared to state-of-the-art superpixel methods. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(11):2274–2282, 2012. 106

E. Alpaydin. Combined 5× 2 cv f test for comparing supervised classification learning

algorithms. Neural computation, 11(8):1885–1892, 1999. 36, 37, 65

C. Alzate and J. Suykens. A semi-supervised formulation to binary kernel spectral

clustering. In Proc. of the IEEE World Congress on Computational Intelligence,

pages 1992–1999, 2012. 54

N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc, 68(3):337–404,

1950. 22

A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with

markov random walks. In Proc. International Conference on Machine Learning,

pages 49–56, Oregon, USA, 2007. 4, 8

X. Bai, X. Yang, L. Jan, W. Liu, and Z. Tu. Learning context-sensitive shape

similarity by graph transduction. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(5):861–874, 2010. 8

F. Balbach and T. Zeugmann. Teaching randomized learners. In Learning Theory,

pages 229–243. Springer, 2006. 75

M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian based manifold

methods. Learning theory, pages 835–851, 2005. 6

M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based

manifold methods. Journal of Computer and System Sciences, 74(8):1289–1308,

2008. 6

124

REFERENCES

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning

on large graphs. In Annual Conference on Learning Theory, volume 3120, pages

624–638. Springer, 2004a. 6

M. Belkin, I. Matveeva, and P. Niyogi. Tikhonov regularization and semi-supervised

learning on large graphs. In Acoustics, Speech, and Signal Processing (ICASSP).
IEEE International Conference on, volume 3. IEEE, 2004b. 6, 29

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples. The Journal of
Machine Learning Research, 7:2399–2434, 2006. 4, 6, 7, 18, 23, 30, 31

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proc.
International Conference on Machine Learning, pages 41–48. ACM, 2009. 75, 92

D. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic

press, 2014. 81

C. Bishop. Pattern recognition and machine learning, volume 1. springer New York,

2006. 110

A. Blum, J. Lafferty, and R. Rwebangira. Semi-supervised learning using randomized

mincuts. In Proc. International Conference on Machine Learning, pages 13–20,

2004. 4

X. Cai, F. Nie, W. Cai, and H. Huang. Heterogeneous image features integration via

multi-modal semi-supervised learning model. In IEEE International Conference on
Computer Vision, pages 1737–1744, 2013. 7

H. Chang and D. Yeung. Robust path-based clustering for the unsupervised and semi-

supervised learning settings. Technical report, 2004. 4, 30, 31

O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. 2006. 4, 30, 33,

50, 60

G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by

solving a sylvester equation. In SIAM International Conference on Data Mining,

pages 410–419. SIAM, 2008. 7

L. Chen, I. Tsang, and D. Xu. Laplacian embedded regression for scalable manifold

regularization. Neural Networks and Learning Systems, IEEE Transactions on, 23

(6):902–915, 2012a. 30

125

REFERENCES

L. Chen, I. Tsang, and D. Xu. Laplacian embedded regression for scalable manifold

regularization. Neural Networks and Learning Systems, IEEE Transactions on, 23

(6):902–915, Jun 2012b. 6

X. Chen, Y. Mu, H. Liu, S. Yan, Y. Rui, and T. Chua. Large-scale multilabel

propagation based on efficient sparse graph construction. ACM Transactions on
Multimedia Computing, Communications, and Applications, 10(1):6, 2013. 4

M. Cheng, G. Zhang, N. Mitra, X. Huang, and S. Hu. Global contrast based salient

region detection. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on, pages 409–416. IEEE, 2011. 104

A. Conn, N. Gould, A. Sartenaer, and P. Toint. Convergence properties of an

augmented lagrangian algorithm for optimization with a combination of general

equality and linear constraints. SIAM Journal on Optimization, 6(3):674–703, 1996.

82

C. André R D. Sousa, R. Solange, and B. Gustavo. Influence of graph construction

on semi-supervised learning. In Machine Learning and Knowledge Discovery in
Databases, pages 160–175. Springer, 2013. 4

O. Dekel and O. Shamir. Good learners for evil teachers. In Proc. International
Conference on Machine Learning, pages 233–240. ACM, 2009. 75

O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning from

single and multiple teachers. The Journal of Machine Learning Research, 13(1):

2655–2697, 2012. 75

C. Ding, T. Li, and D. Wang. Label propagation on k-partite graphs. In International
Conference on Machine Learning and Applications, pages 273–278. IEEE, 2009. 7

J. Elman. Learning and development in neural networks: The importance of starting

small. Cognition, 48(1):71–99, 1993. 75, 105

A. Erdem and M. Pelillo. Graph transduction as a noncooperative game. Neural
Computation, 24(3):700–723, 2012. 8

Y. Fang, K. Chang, and H. Lauw. Graph-based semi-supervised learning: Realizing

pointwise smoothness probabilistically. In Proc. International Conference on
Machine Learning, pages 406–414, 2014. 9

R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image

collections. In Advances in neural information processing systems, pages 522–530,

2009. 6

126

REFERENCES

R. Fletcher. On the barzilai-borwein method. In Optimization and control with
applications, pages 235–256. Springer, 2005. 82

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the nystrom

method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):

214–225, 2004. 86

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http:
//archive.ics.uci.edu/ml. 34, 96

K. Fu, C. Gong, I. Gu, and J. Yang. Geodesic saliency propagation for image salient

region detection. In Image Processing (ICIP), IEEE Conference on, pages 3278–

3282, 2013. 107, 114, 117

K. Fu, C. Gong, I. Gu, J. Yang, and X. He. Spectral salient object detection. In

Multimedia and Expo (ICME), IEEE International Conference on, 2014. 104, 114

Y. Fujiwara and G. Irie. Efficient label propagation. In Proc. International Conference
on Machine Learning, pages 784–792, 2014. 8

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence, pages 148–155.

Morgan Kaufmann Publishers Inc., 1998. 1

D. Gao, S. Han, and N. Vasconcelos. Discriminant saliency, the detection of suspicious

coincidences, and applications to visual recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(6):989–1005, 2009. 104

B. Gary, R. Manu, B. Tamara, and L. Erik. Labeled faces in the wild: A database

for studying face recognition in unconstrained environments. Technical report,

University of Massachusetts, Amherst, 2007. 40

A. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-based semi-supervised

classification. In International Conference on Artificial Intelligence and Statistics,

pages 155–162, 2007. 7

A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak. Multi-manifold semi-supervised

learning. In International Conference on Artificial Intelligence and Statistics, pages

169–176, 2009. 7

A. Goldberg, B. Recht, J. Xu, R. Nowak, and X. Zhu. Transduction with matrix

completion: Three birds with one stone. In Advances in Neural Information
Processing Systems, pages 757–765, 2010. 8

127

REFERENCES

S. Goldman and M. Kearns. On the complexity of teaching. Journal of Computer and
System Sciences, 50(1):20–31, 1995. 75

G. Golub and V. Loan. Matrix computations, volume 3. Johns Hopkins University

Press, 1996. 50, 52, 54, 86

C. Gong, K. Fu, Q. Wu, E. Tu, and J. Yang. Semi-supervised classification with

pairwise constraints. Neurocomputing, 139:130–137, 2014a. 7

C. Gong, D. Tao, K. Fu, and J. Yang. Fick’s law assisted propagation for semi-

supervised learning. Neural Networks and Learning Systems, IEEE transactions
on, 2014b. x, 77

V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs to model saliency

in images. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 1698–1705. IEEE, 2009. 104, 108, 111

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In

Advances in Neural Information Processing Systems, pages 529–536, 2004. 7

W. Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239, 1989. 86,

87, 88

N. Higham. Accuracy and stability of numerical algorithms. Siam, 1996. 51

P. Hislop and I. Sigal. Introduction to Spectral Theory: With Applications to
Schrodinger Operators. Springer, 1996. 19

T. Hofmann, B. Schölkopf, and A. Smola. A tutorial review of RKHS methods in

machine learning. 2005. 22

X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In Computer
Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 1–8. IEEE,

2007. 104

T. Huang and C. Yang. The analysis and applications of special matrix. Science Press,

2007. 69

Y. Huang, D. Xu, and F. Nie. Semi-supervised dimension reduction using trace ratio

criterion. Neural Networks and Learning Systems, IEEE Transactions on, 23(3):

519–526, 2012. 7

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid

scene analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

20(11):1254–1259, 1998. 104

128

REFERENCES

T. Jebara, J. Wang, and S. Chang. Graph construction and b-matching for semi-

supervised learning. In Proc. International Conference on Machine Learning, pages

441–448. ACM, 2009. 4

M. Ji, T. Yang, B. Lin, R. Jin, and J. Han. A simple algorithm for semisupervised

learning with improved generalization error bound. In Proc. International
Conference on Machine Learning, 2012. 4, 30

B. Jiang, L. Zhang, H. Lu, C. Yang, and M. Yang. Saliency detection via absorbing

markov chain. In Computer Vision (ICCV), IEEE International Conference on,

pages 1665–1672. IEEE, 2013. xi, 104, 108, 111, 114

H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient

object segmentation based on context and shape prior. In British Machine Vision
Conference (BMVC), pages 1–12, 2011. 104

L. Jiang, D. Meng, T. Mitamura, and A. Hauptmann. Easy samples first: self-paced

reranking for zero-example multimedia search. In ACM MM, pages 547–556, 2014a.

75

L. Jiang, D. Meng, S. Yu, Z. Lan, S. Shan, and A. Hauptmann. Self-paced learning

with diversity. In Advances in Neural Information Processing Systems, pages 2078–

2086, 2014b. 75

L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. Hauptmann. Self-paced curriculum

learning. In AAAI Conference on Artificial Intelligence (AAAI), 2015. 75

T. Joachims. Transductive learning via spectral graph partitioning. In Proc.
International Conference on Machine Learning, pages 290–297, 2003. 6, 29, 46,

57, 62

M. Karasuyama and H. Mamitsuka. Manifold-based similarity adaptation for label

propagation. In Advances in Neural Information Processing Systems, pages 1547–

1555, 2013a. 4, 88

M. Karasuyama and H. Mamitsuka. Multiple graph label propagation by sparse

integration. Neural Networks and Learning Systems, IEEE Transactions on, 24(12):

1999–2012, 2013b. 4, 7

M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large scale manifold transduction.

In Proc. International Conference on Machine Learning, Helsinki, Finland, 2008. 6

F. Khan, B. Mutlu, and X. Zhu. How do humans teach: On curriculum learning and

teaching dimension. In Advances in Neural Information Processing Systems, pages

1449–1457, 2011. 75, 105

129

REFERENCES

J. Kim, D. Han, Y. Tai, and J. Kim. Salient region detection via high-dimensional color

transform. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 883–890. IEEE, 2014. 104, 114

K. Kim and J. Theobalt. Semi-supervised learning with explicit relationship

regularization. IEEE International Conference on Computer Vision and Pattern
Recognition, 74(8):1289–1308, 2015. 8

R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces.

In Proc. International Conference on Machine Learning, volume 2, pages 315–322,

2002. 56

X. Kong, M. Ng, and Z. Zhou. Transductive multilabel learning via label set

propagation. Knowledge and Data Engineering, IEEE Transactions on, 25(3):704–

719, 2013. 7

M. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In

Advances in Neural Information Processing Systems, pages 1189–1197, 2010. 75,

92

N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers for face

verification. In Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Conference on, pages 365–372. IEEE, 2009. 42, 65

P. Lancaster and M. Tismenetsky. Theory of matrices, volume 2. Academic press New

York, 1969. 21

C. Lee, A. Varshney, and D. Jacobs. Mesh saliency. In ACM Transactions on Graphics,

volume 24, pages 659–666. ACM, 2005. 104

Y. Lee and K. Grauman. Learning the easy things first: Self-paced visual category

discovery. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 1721–1728. IEEE, 2011. 75

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text

categorization research. The Journal of Machine Learning Research, 5:361–397,

2004. 97

S. Li and Y. Fu. Low-rank coding with b-matching constraint for semi-supervised

classification. In Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, pages 1472–1478. AAAI Press, 2013. 4

X. Li and Y. Guo. Adaptive active learning for image classification. In Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on,

2013. 17

130

REFERENCES

Y. Li and R. Zemel. High order regularization for semi-supervised learning of

structured output problems. In Proc. International Conference on Machine
Learning, pages 1368–1376, 2014. 8

Y. Li and Z. Zhou. Towards making unlabeled data never hurt. In Proc. International
Conference on Machine Learning, pages 1081–1088, 2011. 4, 30, 31

Y. Li and Z. Zhou. Towards making unlabeled data never hurt. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 37(1):175–188, 2015. 4

Y. Li, J. Kwok, and Z. Zhou. Semi-supervised learning using label mean. In Proc.
International Conference on Machine Learning, pages 633–640. ACM, 2009. 4

Y. Li, X. Hou, C. Koch, J. Rehg, and A. Yuille. The secrets of salient object

segmentation. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on, pages 280–287. IEEE, 2014. 104

F. Lin and W. Cohen. Adaptation of graph-based semi-supervised methods to

largescale text data. In The 9th Workshop on Mining and Learning with Graphs,

2011. 8

T. Liu, J. Sun, N. Zheng, X. Tang, and H. Shum. Learning to detect a salient object. In

Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 1–8.

IEEE, 2007. 114

W. Liu and S. Chang. Robust multi-class transductive learning with graphs. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 381–388. IEEE,

2009. 7

W. Liu, J. He, and S. Chang. Large graph construction for scalable semi-supervised

learning. In Proc. International Conference on Machine Learning, pages 679–686,

Haifa, Israel, 2010. 4, 30, 31, 36

T. Ma and L. Jan. Graph transduction learning with connectivity constraints with

application to multiple foreground cosegmentation. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pages 1955–1962. IEEE, 2013. 7

R. Margolin, A. Tal, and L. Zelnik-Manor. What makes a patch distinct? In Computer
Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 1139–1146.

IEEE, 2013. 104, 114

R. Margolin, L. Zelnik-Manor, and A. Tal. How to evaluate foreground maps. In

Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 248–

255. IEEE, 2014. 114

131

REFERENCES

S. Maybank. A probabilistic definition of salient regions for image matching.

Nuerocomputing, 120(23):4–14, 2013. 104

S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks on

machine learners. In AAAI Conference on Artificial Intelligence (AAAI), 2015. 75

F. Morbidi. The deformed consensus protocol. Automatica, 49(10):3049–3055, 2013.

16, 19

E. Nievas, O. Suarez, G. Garcı́a, and R. Sukthankar. Violence detection in video using

computer vision techniques. In Computer Analysis of Images and Patterns, pages

332–339. Springer, 2011. 43

G. Niu, B. Dai, C. Plessis, and M. Sugiyama. Transductive learning with multi-class

volume approximation. In Proc. International Conference on Machine Learning,

pages 1377–1385, 2014. 8

M. Orbach and K. Crammer. Graph-based transduction with confidence. In ECML-
PKDD. 2012. 7

K. Patil, X. Zhu, Ł. Kopeć, and B. Love. Optimal teaching for limited-capacity human

learners. In Advances in Neural Information Processing Systems, pages 2465–2473,

2014. 75

F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based

filtering for salient region detection. In Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on, pages 733–740. IEEE, 2012. 104, 114

K. Petersen and M. Pedersen. The matrix cookbook. Technical University of Denmark.

28, 87

H. Qiu and E. Hancock. Clustering and embedding using commute times. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 29(11):1873–1890, 2007.

80

M. Quang, L. Bazzani, and V. Murino. A unifying framework for vector-valued

manifold regularization and multi-view learning. In Proc. International Conference
on Machine Learning, pages 100–108, 2013. 4, 30

Z. Ren, Y. Hu, L. Chia, and D. Rajan. Improved saliency detection based on superpixel

clustering and saliency propagation. In Proceedings of the International Conference
on Multimedia, pages 1099–1102. ACM, 2010. 105, 111

D. Rohde and D. Plaut. Language acquisition in the absence of explicit negative

evidence: How important is starting small? Cognition, 72(1):67–109, 1999. 105

132

REFERENCES

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, 2000. 41

H. Rue and L. Held. Gaussian markov random fields: theory and applications.

Chapman & Hall, 2005. 55

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge

university press, 2004. 56

J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000. 6

A. Shinohara and S. Miyano. Teachability in computational learning. New Generation
Computing, 8(4):337–347, 1991. 75

A. Singla, I. Bogunovic, G. Bartok, A. Karbasi, and A. Krause. Near-optimally

teaching the crowd to classify. In Proc. International Conference on Machine
Learning, pages 154–162, 2014. 75

K. Sinha and M. Belkin. Semi-supervised learning using sparse eigenfunction bases.

In Advances in Neural Information Processing Systems, pages 1687–1695, 2009. 8

J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. Wasserstein propagation for

semi-supervised learning. In Proc. International Conference on Machine Learning,

pages 306–314, 2014. 9

A. Subramanya and J. Bilmes. Semi-supervised learning with measure propagation.

The Journal of Machine Learning Research, 12:3311–3370, 2011. 7

J. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In CVPR,

pages 2379–2386, 2013. 75

M. Szummer and T. Jaakkola. Partially labeled classification with markov random

walks. In Advances in Neural Information Processing Systems, pages 945–952,

Vancouver, Canada, 2002a. 8

M. Szummer and T. Jaakkola. Information regularization with partially labeled data.

In Advances in Neural Information Processing Systems, pages 1025–1032, 2002b. 7

K. Tang, V. Ramanathan, F. Li, and D. Koller. Shifting weights: Adapting object

detectors from image to video. In NIPS, pages 638–646, 2012. 75

J. Taylor and W. Thompson. An introduction to error analysis: the study of

uncertainties in physical measurements. Measurement Science and Technology, 9

(6):1015, 1998. 90

133

REFERENCES

W. Tong and R. Jin. Semi-supervised learning by mixed label propagation. In

Proceedings of the National Conference on Artificial Intelligence, volume 22, page

651, 2007. 9

V. Vapnik. Statistical learning theory, 1998. 4, 30

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Conference on. IEEE, 2001. 42, 65

B. Wang and Z. Tu. Affinity learning via self-diffusion for image segmentation and

clustering. In IEEE Conference on Computer Vision and Pattern Recognition, pages

2312–2319. IEEE, 2012. 9

B. Wang, Z. Tu, and J. Tsotsos. Dynamic label propagation for semi-supervised multi-

class multi-label classification. In IEEE International Conference on Computer
Vision, pages 425–432. IEEE, 2013. viii, 9, 10, 94

F. Wang and C. Zhang. Label propagation through linear neighborhoods. In Proc.
International Conference on Machine Learning, pages 985–992, 2006. 9, 57

F. Wang and C. Zhang. Label propagation through linear neighborhoods. Knowledge
and Data Engineering, IEEE Transactions on, 20(1):55–67, 2008. 9

F. Wang, T. Li, G. Wang, and C. Zhang. Semi-supervised classification using local and

global regularization. In The AAAI Conference on Artificial Intelligence (AAAI),
pages 726–731, 2008a. viii, 7, 10, 30

H. Wang, H. Huang, and C. Ding. Image annotation using multi-label correlated

Green’s function. In IEEE International Conference on Computer Vision, pages

2029–2034. IEEE, 2009a. 7

J. Wang and Y. Xia. Fast graph construction using auction algorithm. arXiv preprint
arXiv:1210.4917, 2012. 4

J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. In

Proc. International Conference on Machine Learning, pages 1144–1151, Helsinki,

Finland, 2008b. 4, 9, 30, 53, 94, 96

J. Wang, F. Wang, and C. Zhang. Linear neighborhood propagation and its

applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

31(9):1600–1615, 2009b. viii, 4, 9, 10, 11, 30, 31, 46, 53, 55, 57, 62, 94

Y. Wang and S. Chen. Safety-aware semi-supervised classification. Neural Networks
and Learning Systems, IEEE Transactions on, 2013. 4, 30

134

REFERENCES

Y. Wang, S. Chen, and Z. Zhou. New semi-supervised classification method based

on modified cluster assumption. Neural Networks and Learning Systems, IEEE
Transactions on, 23(5):689–702, 2012. 4, 30

Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In

European Conference on Computer Vision (ECCV), pages 29–42. Springer, 2012.

107, 111, 114

K. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for nonlinear

dimensionality reduction. In Proc. International Conference on Machine Learning,

pages 839–846, Banff, Canada, 2004. 76

Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints.

Mathematical Programming, 142(1-2):397–434, 2013. 81

M. Wu and B. Schölkopf. Transductive classification via local learning regularization.

In International Conference on Artificial Intelligence and Statistics, pages 628–635,

2007. 4, 7, 30, 31

X. Wu, Z. Li, M. Anthony, J. Wright, and S. Chang. Learning with partially absorbing

random walks. In Advances in Neural Information Processing Systems, pages 3077–

3085, 2012. 8

S. Xiang, F. Nie, and C. Zhang. Semi-supervised classification via local spline

regression. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32

(11):2039–2053, 2010. 7

Y. Xie, H. Lu, and M. Yang. Bayesian saliency via low and mid level cues. Image
Processing, IEEE Transactions on, 22(5):1689–1698, 2013. 117

H. Xu and S. Mannor. Robustness and generalization. Machine learning, 86(3):391–

423, 2012. 23, 24, 26

Z. Xu, I. King, M. Lyu, and R. Jin. Discriminative semi-supervised feature selection

via manifold regularization. Neural Networks, IEEE Transactions on, 21(7):1033–

1047, 2010. 7

W. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. In Computer Vision
and Pattern Recognition (CVPR), IEEE Conference on, pages 1155–1162. IEEE,

2013. 114, 115

C. Yang, L. Zhang, and H. Lu. Graph-regularized saliency detection with convex-hull-

based center prior. Signal Processing Letters, IEEE, 20(7):637–640, 2013a. 106,

107, 114, 117

135

REFERENCES

C. Yang, L. Zhang, H. Lu, X. Ruan, and M. Yang. Saliency detection via graph-

based manifold ranking. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on, pages 3166–3173. IEEE, 2013b. xi, 104, 105, 107, 108, 111, 113,

114

J. Yang and M. Yang. Top-down visual saliency via joint CRF and dictionary learning.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

2296–2303. IEEE, 2012. 104

X. Yang, X. Bai, L. Jan, and Z. Tu. Improving shape retrieval by learning graph

transduction. In European Conference on Computer Vision, pages 788–801.

Springer, 2008. 8

A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In

Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 192–

199. IEEE, 2014. 99

C. Zhang and F. Wang. A multilevel approach for learning from labeled and unlabeled

data on graphs. Pattern Recognition, 43(6):2301–2314, 2010. 4

D. Zhou and O. Bousquet. Learning with local and global consistency. In Advances in
Neural Information Processing Systems, pages 321–328, Vancouver, Canada, 2003.

viii, x, 4, 8, 9, 10, 11, 18, 29, 31, 46, 53, 57, 62, 77, 94

D. Zhou and B. Schölkopf. Learning from labeled and unlabeled data using random

walks. Pattern Recognition, pages 237–244, 2004. 4

D. Zhou, T. Hofmann, and B. Schölkopf. Semi-supervised learning on directed graphs.

In Advances in Neural Information Processing Systems, pages 1633–1640, 2004a. 9

D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. Ranking on data

manifolds. Advances in Neural Information Processing Systems, 16:169–176,

2004b. 8, 9, 105

J. Zhu, Y. Qiu, R. Zhang, J. Huang, and W. Zhang. Top-down saliency detection via

contextual pooling. Journal of Signal Processing Systems, 74(1):33–46, 2014a. 104

W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust background

detection. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 2814–2821. IEEE, 2014b. 114

X. Zhu. Machine teaching for bayesian learners in the exponential family. In Advances
in Neural Information Processing Systems, pages 1905–1913, 2013. 75

136

REFERENCES

X. Zhu. Machine teaching: An inverse problem to machine learning and an approach

toward optimal education. In AAAI Conference on Artificial Intelligence (AAAI),
2015. 75

X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label

propagation. Technical report, CMU-CALD-02-107, 2002. viii, x, 8, 9, 10, 11, 12,

75, 76, 77, 83, 84, 94

X. Zhu and A. Goldberg. Introduction to semi-supervised learning. 2009. 4, 30, 50

X. Zhu and Lafferty. Harmonic mixtures: combining mixture models and graph-based

methods for inductive and scalable semi-supervised learning. In Proc. International
Conference on Machine Learning, pages 1052–1059, Bonn, Germany, 2005. 4, 6,

30, 62, 64

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian

fields and harmonic functions. In Proc. International Conference on Machine
Learning, pages 912–919, 2003a. 1, 4, 6, 18, 29, 31, 46, 57, 62, 88, 110

X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: From Gaussian

fields to Gaussian processes. Technical report, CMU-CS-03-175, 2003b. 78

X. Zhu, J. Kandola, and Z. Ghahramani. Nonparametric transforms of graph kernels

for semi-supervised learning. In Advances in Neural Information Processing
Systems, Vancouver, Canada, 2005. 8, 46, 57

S. Zilles, S. Lange, R. Holte, and M. Zinkevich. Models of cooperative teaching and

learning. The Journal of Machine Learning Research, 12:349–384, 2011. 75

137

	Title Page
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 RelatedWork
	1.2.1 Non-iterative Methods
	1.2.2 Iterative Methods

	1.3 Motivations and Contributions
	1.4 Thesis Structure
	1.5 Publications during PhD Study

	2 Label Prediction Via Deformed Graph Laplacian
	2.1 Transduction In Euclidean Space
	2.1.1 Sensitivity of γ
	2.1.2 Sensitivity of β

	2.2 Induction In RKHS
	2.2.1 Robustness Analysis
	2.2.2 Generalization Risk
	2.2.3 Linearization of Kernelized LPDGL

	2.3 Relationship Between LPDGL and Existing Methods
	2.4 Experiments
	2.4.1 Toy Data
	2.4.1.1 Transduction on 3D Data
	2.4.1.2 Visualization of Generalizability

	2.4.2 Real Benchmark Data
	2.4.3 UCI Data
	2.4.4 Handwritten Digit Recognition
	2.4.5 Face Recognition
	2.4.5.1 Yale
	2.4.5.2 LFW

	2.4.6 Violent Behavior Detection

	2.5 Summary of This Chapter

	3 Fick’s Law Assisted Propagation
	3.1 Model Description
	3.2 Convergence Analysis
	3.3 Interpretation and Connections
	3.3.1 Regularization Networks
	3.3.2 Markov Random Fields
	3.3.3 Graph Kernels

	3.4 Experimental Results
	3.4.1 Synthetic Data
	3.4.2 Real Benchmarks Data
	3.4.3 UCI Data
	3.4.4 Handwritten Digit Recognition
	3.4.5 Teapot Image Classification
	3.4.6 Face Recognition
	3.4.7 Statistical Significance
	3.4.8 Computational Cost
	3.4.9 Parametric Settings
	3.4.9.1 Choosing η
	3.4.9.2 Choosing K

	3.5 Summary of This Chapter

	4 Label Propagation Via Teaching-to-Learn and Learning-to-Teach
	4.1 A Brief Introduction to Machine Teaching
	4.2 Overview of the Proposed Framework
	4.3 Teaching-to-Learn Step
	4.3.1 Curriculum Selection
	4.3.2 Optimization

	4.4 Learning-to-Teach Step
	4.5 Efficient Computations
	4.5.1 Commute Time
	4.5.2 Updating Σ−1L,L

	4.6 Robustness Analysis
	4.7 Physical Interpretation
	4.8 Experimental Results
	4.8.1 Synthetic Data
	4.8.2 UCI Benchmark Data
	4.8.3 Text Categorization
	4.8.4 Object Recognition
	4.8.5 Fine-grained Image Classification
	4.8.6 Parametric Sensitivity

	4.9 Summary of This Chapter

	5 Teaching-to-Learn and Learning-to-Teach For Saliency Detection
	5.1 A Brief Introduction to Saliency Detection
	5.2 Saliency Detection Algorithm
	5.2.1 Image Pre-processing
	5.2.2 Coarse Map Establishment
	5.2.3 Map Refinement

	5.3 Teaching-to-learn and Learning-to-teach For Saliency Propagation
	5.3.1 Teaching-to-learn
	5.3.2 Learning-to-teach
	5.3.3 Saliency Propagation

	5.4 Experimental Results
	5.4.1 Experiments on Public Datasets
	5.4.2 Parametric Sensitivity
	5.4.3 Failed Cases

	5.5 Summary of This Chapter

	6 Conclusion and FutureWork
	6.1 Thesis Summarization
	6.2 Relationship and Differences among Algorithms
	6.3 Future Work

	References

