Development of Electrode Materials for Lithium-ion Batteries and Sodium-ion Batteries

A thesis presented for the award of the degree of

Doctor of Philosophy

from

University of Technology, Sydney

By

Xiuqiang Xie, B. Sc., M.Sc.

December, 2016

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Xiuqiang Xie, certify that the work presented in this thesis has not previously been submitted for a degree nor has been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Xiuqiang Xie

Sydney, Australia

October, 2016

DEDICATION

This thesis is dedicated to my family. Thank you for all of your love and support.

ACKNOWLEDGEMENTS

Firstly, I am grateful to my supervisor, Professor Guoxiu Wang, for his kind and continuous support and invaluable advice throughout my Ph.D. study. I would also like to thank Professor Yury Gogotsi for his valuable guidance during my visit to Drexel University in Philadelphia.

I would like to acknowledge Dr. Jane Yao. Her kind help and support is essential to my laboratory work.

Special thanks are given to my colleagues at UTS, Dr. Dawei Su, Dr. Zhimin Ao, Dr. Bing Sun, Dr. Hao Liu, Dr. Shuangqiang Chen, Dr. Anjon Kumar Mondal, Mr. Jinqiang Zhang, Miss Yufei Zhao, Miss Katja Kretschmer, Mr. Xin Guo, Mr. Jianjun Song, Mr. Kefei Li, Miss Jing Xu, and Mr. Weizhai Bao. Their kind collaboration and assistance were helpful. Also, I want to thank my friends in Philadelphia, Dr. Taron Makaryan, Dr. Babak Anasori, Dr. Meng-Qiang Zhao, Chang (Evelyn) Ren, Miss Kathleen Maleski, Miss Katie Van Aken, Mr. Tyler Mathis, Mr. Patrick Urbankowski, Mr. Chi Chen, Mr. Xin-Bing Cheng, Professor Jianguang Xu, Professor Jun Yan, Professor Fayan Meng, Mr. Mohamed Alhabeb, Mr. Muhammad Boota, Dr. Narendra Kurra, Miss. Adriana Navarro Suarez, and Miss Christine Hatter. We have a lot of good memories in Philadelphia.

In addition, I appreciate the administrative and technical support I received from Dr. Ronald Shimmon, Dr. Linda Xiao, Miss Sarah King, and Miss Emaly Black. I would also like to thank Danielle and Wendy at Drexel University for the help in many aspects.

The financial support from UTS and AutoCRC 2020 to help finish my Ph.D. study are highly appreciated.

Last but not the least, I would like to thank my parents, my wife and sisters for supporting me spiritually throughout writing this thesis and my life in general.

Xiuqiang Xie

RESEARCH PUBLICATIONS

- Xiuqiang Xie, Shijian Wang, Katja Kretschmer, Guoxiu Wang, Two-dimensional Layered Compound Based Anode Materials for Lithium-ion Batteries and Sodium-ion Batteries, J. Colloid Interf. Sci., 2017, 499, 17-32.
- Xiuqiang Xie, Meng-Qiang Zhao, Babak Anasori, Kathleen Maleski, Chang E. Ren, Jingwen Li, Bryan W. Byles, Ekaterina Pomerantseva, Guoxiu Wang and Yury Gogotsi, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices, *Nano Energy*, 2016, 26, 513–523.
- Xiuqiang Xie, Taron Makaryan, Mengqiang Zhao, Katherine L. Van Aken, Yury Gogotsi and Guoxiu Wang, MoS₂ nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries, *Adv. Energy Mater*, 2016, 6, 1502161. (One of the Top 10 most read articles of Advanced Energy Materials in March 2016)
- 4. Xiuqiang Xie, Zhimin Ao, Dawei Su, Jinqiang Zhang, and Guoxiu Wang, MoS₂/graphene composite anodes with enhanced performance for sodium ion batteries: the role of the two-dimensional heterointerface, *Adv. Funct. Mater.*, 2015, 25, 1393-1403. (Web of Science ESI Highly Cited Paper; one of the most accessed papers between 03/2015 to 02/2016, Most Accessed 04/2015 to 03/2016)
- Xiuqiang Xie, Katja Kretschmer, Jinqiang Zhang, Bing Sun, Dawei Su, and Guoxiu Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries, Nano Energy, 2015, 13, 208-217. (One of the most downloaded Nano Energy articles)
- 6. *Xiuqiang Xie*, Katja Kretschmer and Guoxiu Wang, Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering, *Nanoscale*, 2015, 7, 13278-13292.
- Xiuqiang Xie, Shuangqiang Chen, Bing Sun, Chengyin Wang, and Guoxiu Wang*, 3D networked SnO₂/graphene aerogel with hierarchically porous architecture for high-rate performance sodium-ion batteries, *ChemSusChem*, 2015, 8, 2948-2955.
- 8. *Xiuqiang Xie*, Dawei Su, Jinqiang Zhang, Shuangqiang Chen, Anjon Kumar Mondal, and Guoxiu Wang, A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO₂/graphene for sodium-ion batteries, *Nanoscale*, 2015, 7, 3164-3172. (Web of Science ESI Highly Cited Paper)
- 9. Xiuqiang Xie, Dawei Su, Bing Sun, Jinqiang Zhang, Chengyin Wang, and Guoxiu Wang, Synthesis of single-crystalline spinel LiMn₂O₄ nanorods for lithium-ion batteries with high rate capability and long cycle life, *Chem. Eur. J.*, 2014, 20, 17125-17131.

- 10. Xiuqiang Xie, Dawei Su, Shuangqiang Chen, Jinqiang Zhang, Shixue Dou, and Guoxiu Wang, SnS₂ nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries, Chem. Asian J., 2014, 9, 1611-1617. (One of the most frequently cited papers published in 2013 and 2014 according to Web of Science)
- 11. Yufei Zhao, *Xiuqiang Xie*, Jinqiang Zhang, Hao Liu, Hyo-Jun Ahn, Kening Sun and Guoxiu Wang, MoS₂ nanosheets supported on 3D graphene aerogel as a highly efficient catalyst for hydrogen evolution, *Chem. Eur. J.*, 2015, 21, 15908-15913.
- Dawei Su, *Xiuqiang Xie*, and Guoxiu Wang, Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries, *Chem. - Eur. J.*, 2014, 20, 3192-3197.
- **13.** Dawei Su, *Xiuqiang Xie*, Paul Munroe, Shixue Dou, and Guoxiu Wang, Mesoporous hexagonal Co₃O₄ for high performance lithium ion batteries, *Sci. Rep.*, 2014, 4, 6519.
- 14. Dawei Su, *Xiuqiang Xie*, Shixue Dou, and Guoxiu Wang, CuO single crystal with exposed {001} facets-A highly efficient material for gas sensing and Li-ion battery applications, *Sci. Rep.*, 2014, 4, 5753.
- Bing Sun, Katja Kretschmer, *Xiuqiang Xie*, Paul Munroe, Zhangquan Peng and Guoxiu Wang, Hierarchical Porous Carbon Spheres for High-Performance Na–O₂ Batteries, *Adv. Mater.*, 2017, DOI: 10.1002/adma.201606816.
- 16. Chi Chen, Muhammad Boota, *Xiuqiang Xie*, Mengqiang Zhao, Babak Anasori, Chang E. Ren, Ling Miao, Jianjun Jiang and Yury Gogotsi, Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers, *J. Mater. Chem. A*, 2017, 5, 5260-5265.
- 17. Jianjun Song, Dawei Su, Xiuqiang Xie, Xin Guo, Weizhai Bao, Guangjie Shao, and Guoxiu Wang, Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 2016, 8, 29427–29433.
- Katja Kretschmer, Bing Sun, *Xiuqiang Xie*, Shuangqiang Chen and Guoxiu Wang, A free-standing LiFePO₄-carbon paper hybrid cathode for flexible lithium-ion batteries, *Green Chem.*, 2016, 18, 2691-2698.
- **19.** Anjon Kumar Mondal, Hao Liu, *Xiuqiang Xie*, Katja Kretschmer and Guoxiu Wang, Hydrothermal synthesis of multiwalled carbon nanotubes/zinc manganate nanoparticles as anode materials for lithium ion batteries. *ChemPlusChem*, 2016, 81, 399-405.
- **20.** Jinqiang Zhang, Bing Sun, *Xiuqiang Xie*, Yufei Zhao and Guoxiu Wang, A bifunctional organic redox catalyst for rechargeable lithium–oxygen batteries with enhanced performances, *Advanced Science*, 2016, 3, 1500285.
- **21.** Shuangqiang Chen, Bing Sun, *Xiuqiang Xie*, Anjon Kumar Mondal, Xiaodan Huang and Guoxiu Wang, Multi-chambered micro/mesoporous carbon nanocubes as new

polysulfides reserviors for lithium-sulfur batteries with long cycle life, *Nano Energy*, 2015, 16, 268-280.

- **22.** Jinqiang Zhang, Bing Sun, *Xiuqiang Xie*, Katja Kretschmer, and Guoxiu Wang, Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether, *Electrochim. Acta*, 2015, 183, 56-62.
- 23. Jinqiang Zhang, Shuangqiang Chen, *Xiuqiang Xie*, Katja Kretschmer, Xiaodan Huang, Bing Sun, and Guoxiu Wang, Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries, *J. Membr. Sci.*, 2014, 472, 133-140.
- 24. Katja Kretschmer, Bing Sun, Jinqiang Zhang, *Xiuqiang Xie*, Hao Liu and Guoxiu Wang, 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na₃V₂(PO₄)₃@Carbon Paper Cathode for Sodium-Ion Batteries, *Small*, 2017, 13, 1603318.
- **25.** Shuangqiang Chen, Zhimin Ao, Bin Sun, *Xiuqiang Xie*, and Guoxiu Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries, *Energy Storage Materials*, 2016, 5, 180-190.
- 26. Anjon Kumar Mondal, Dawei Su, Shuangqiang Chen, *Xiuqiang Xie*, and Guoxiu Wang, Highly porous NiCo₂O₄ nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability, *ACS Appl. Mater. Interfaces*, 2014, 6, 14827-14835.
- 27. Jing Xu, Dawei Su, Weizhai Bao, Yufei Zhao, Xiuqiang Xie, Guoxiu Wang, Rose flowerlike NiCo₂O₄ with hierarchically porous structures for highly reversible lithium storage, *Journal of Alloys and Compounds*, 2016, 684, 691-698.
- 28. Shuangqiang Chen, Yufei Zhao, Bing Sun, Zhimin Ao, *Xiuqiang Xie*, Yiying Wei, and Guoxiu Wang, Microwave-assisted synthesis of mesoporous Co₃O₄ nanoflakes for applications in lithium ion batteries and oxygen evolution reactions, *ACS Appl. Mater. Interfaces*, 2015, 7, 3306-3313. (Web of Science ESI Highly Cited Paper)
- 29. Anjon Kumar Mondal, Dawei Su, Shuangqiang Chen, Katja Kretschmer, *Xiuqiang Xie*, Hyo-Jun Ahn, and Guoxiu Wang, A microwave synthesis of mesoporous NiCo₂O₄ nanosheets as electrode materials for lithium-ion batteries and supercapacitors, *ChemPhysChem*, 2015, 16, 169-175. (Web of Science ESI Highly Cited Paper)

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP	I
DEDICATION	
ACKNOWLEDGEMENTS	III
RESEARCH PUBLICATIONS	V
TABLE OF CONTENTS	VIII
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
ABSTRACT	XXVIII
INTRODUCTION	XXXI
Chapter 1 Literature Review	XXXI
1.1 Lithium-ion Batteries	
1.1.1 Electrochemistry of Lithium-ion Batteries	
1.1.2 Cathode materials for LIBs	
1.1.3 Anode materials for LIBs	
1.2 Sodium-ion Batteries	
1.2.1 Cathode materials for SIBs	
1.2.2 Anode materials for SIBs	
Chapter 2 Experimental	
2.1 Overview	
2.2 Materials preparation	
2.2.1 Solid state reaction	
2.2.2 Hydrothermal method	
2.3 Materials characterization	

2.3.1 X-ray Diffraction (XRD)	42
2.3.2 Raman Spectroscopy	42
2.3.3 X-ray photoelectron spectroscopy (XPS)	43
2.3.4 N ₂ sorption/desorption measurement	44
2.3.5 Thermogravimetric Analysis (TGA)	44
2.3.6 Scanning Electron Microscopy (SEM)	44
2.3.7 Transmission Electron Microscopy (TEM)	45
2.4 Electrode preparation and batteries assembly	45
2.4.1 Electrode preparation	45
2.4.2 Cell assembly	46
2.5 Electrochemical measurements	46
2.5.1 Galvanostatic charge-discharge	47
2.5.2 Cyclic voltammetry	47
2.5.3 Electrochemical Impedance Spectroscopy	48
Chapter 3 Synthesis of Single Crystalline Spinel LiMn ₂ O ₄ Nanorods for Li-ion Batter	ies
with High Rate Capability and Long Cycle Life	50
3.1 Introduction	50
3.2 Experimental	53
3.2.1 Synthesis of MnO ₂ nanorods	53
3.2.2 Synthesis of porous Mn ₃ O ₄ nanorods	53
3.2.3 Synthesis of LiMn ₂ O ₄ nanorods	53
3.2.4 Characterization	54
3.2.5 Cell assembly and electrochemical testing	54
3.3 Results and Discussion	55
3.4 Conclusions	74

Chapter 4 A Comparative Investigation on the Effects of Nitrogen-doping into Graphene on
Enhancing the Electrochemical Performance of SnO ₂ /graphene for Sodium-ion Batteries 76
4.1 Introduction
4.2 Experimental
4.2.1 Materials
4.2.2 Structural and physical characterization
4.2.3 Cell assembly and electrochemical testing
4.3 Results and Discussion
4.4 Conclusions
Chapter 5 MoS ₂ /Graphene Composite Anodes with Enhanced Performance for Sodium Ion
Batteries: the Role of the Two-dimensional Heterointerface
5.1 Introduction
5.2 Experimental Section
5.2.1 Sample preparation
5.2.2 Structural and physical characterization103
5.2.3 Cell assembly and electrochemical testing
5.2.4 DFT calculations
5.3 Results and Discussions
5.4 Conclusions
Chapter 6 SnS ₂ Nanoplatelet/Graphene Nanocomposites as High Capacity Anode Materials for Sodium Ion Batteries
6.1 Introduction
6.2 Experimental Section
6.2.1 Sample preparation136
6.2.2 Structural and physical characterization136
6.2.3 Cell assembly and electrochemical testing

Х

6.3 Results and Discussion	138
6.4 Conclusion	150
Chapter 7 Three-dimensional Networked SnO ₂ /Graphene Aerogel with Hierarchical	ly
Porous Architecture for High-Rate Performance Sodium-Ion Batteries	152
7.1 Introduction	152
7.2 Experimental	153
7.2.1 Materials preparation	153
7.2.2 Structural and physical characterization	154
7.2.3 Cell assembly and electrochemical testing	154
7.3 Results and Discussion	155
7.4 Conclusions	173
Chapter 8 Sn@CNT Nanopillars Grown Perpendicularly on Carbon Paper: a Novel	Free-
standing Anode for Sodium Ion Batteries	174
8.1 Introduction	174
8.2 Experimental	177
8.2.1 Sample preparation	177
8.2.2 Structural and physical characterization	178
8.2.3 Electrochemical testing	178
8.2.4 Full Na-ion cell assembly	179
8.3 Results and Discussions	180
8.4 Conclusions	200
Chapter 9 MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: a Freestanding Ele	ectrode
for Highly Reversible Sodium Ion Batteries	202
9.1 Introduction	202
9.2 Experimental Section	204
9.2.1 Sample preparation	204

9.2.2 Structural and physical characterization	
9.2.3 Electrochemical testing	
9.2.4 In situ Raman measurements	
9.3 Results and Discussions	
9.4 Conclusions	
Chapter 10 Porous Heterostructured MXene/Carbon Nanotube Composite Paper	with High
Volumetric Capacity for Sodium-Based Energy Storage Devices	
10.1 Introduction	
10.2 Experimental Section	
10.2.1 Preparation of delaminated $Ti_3C_2T_x$ suspension	
10.2.2 Fabrication of freestanding $Ti_3C_2T_x$ and its composite films	
10.2.3 Characterizations	
10.2.4 Electrochemical tests	227
10.2.5 Assembly of $Na_{0.44}MnO_2//Ti_3C_2T_x/CNT$ -SA full cells	
10.3 Results and Discussions	229
10.4 Conclusions	
Chapter 11 Conclusions and Future Perspective	254
11.1 Conclusions	254
11.1.1 LiMn ₂ O ₄ nanorods as cathode materials for lithium-ion batteries	254
11.1.2 Nanostructured electrode materials for sodium-ion batteries	254
11.2 Future Perspective	257
APPENDIX: NOMENCLATURE	
REFERENCES	

LIST OF TABLES

Table 1.1 Characteristics of sodium and lithium 21
Table 1.2 Some of the MAX phases reported 30
Table 1.3 Summary of properties of typical metal or metalloid materials for Na-ion
batteries
Table 2.1 Chemicals used in the research project 39
Table 3.1 Summary of LiMn ₂ O ₄ nanorods as cathode materials for lithium-ion batteries 52
Table 3.2 Electrochemical data derived from potentiostatic differential capacity curves of
LiMn ₂ O ₄ samples prepared at different temperatures
Table 4.1 Kinetic parameters of SnO ₂ /G and SnO ₂ /NG electrodes
Table 5.1 Elemental composition obtained by EDX analysis of the MG-3 composites before
and after post-treatment
Table 5.2 Elemental composition obtained by EDX analysis of the MG-x composites113
Table 5.3 The total energy of MoS_2 and the MoS_2 /graphene heterostructure with a Na atom
adsorbed at representative positions, the corresponding adsorption energy of the Na atom
and the charge transferred from Na atom to MoS_2 or MoS_2 /graphene bilayer system are also
provided
Table 7.1 Elemental analysis of GO and graphene obtained by hydrothermal reduction157
Table 7.2 Survey of the BET surface area and pore volume of the as-prepared SGA-1,
SGA-2, SGA-3, and SGA-4
Table 7.3 Kinetic parameters of the SnO2 and SGA-2 electrode 166

LIST OF FIGURES

Figure 1.1 (a) Relative energy diagram of electrode potentials and electrolyte energy gap in
LIBs; (b) schematic diagram of the lithium intercalation-de-intercalation reaction
mechanism in a rechargeable LIB containing solid electrodes and a liquid electrolyte 2
Figure 1.2 Schematic illustration of rechargeable LIBs
Figure 1.3 Diagram illustrating the capacities and electrochemical potentials of important
cathode and anode materials with respect to Li metal and the cell voltage of LIBs
Figure 1.4 Lamellar structure of LiCoO ₂
Figure 1.5 (a) Crystal structure of LiFePO ₄ . (b) Schematic representation of the processes
during charge/discharge of LiFePO ₄
Figure 1.6 Crystal structure of spinel LiMn ₂ O ₄ 10
Figure 1.7 Schematic representation showing insertion/extraction of Li ⁺ during
discharge/charge
Figure 1.8 Schematic illustration of the conversion reaction of a transition metal oxide in
LIBs
Figure 1.9 Operation voltages versus specific capacities of various cathode materials for
SIBs
Figure 1.10 Classification of Na-Me-O layered materials with sheets of edge-sharing MeO ₆
octahedra and phase transition processes induced by sodium extraction
Figure 1.11 Framework of Prussian blue analogues
Figure 1.12 Operation voltages vs. specific capacities of various anode materials for
SIBs. ¹⁵⁸
Figure 2.1 Framework of the experiments
Figure 2.2 Modified coin cell design for <i>in situ</i> Raman spectroscopy
Figure 2.3 Schematic impedance spectrum in a Nyquist plot for lithium/sodium-ion cells.48

Figure 3.1 A schematic illustration of the procedure for preparing the porous Mn_3O_4	
nanorods and spinel LiMn ₂ O ₄ nanorods	;5
Figure 3.2 XRD pattern of MnO ₂	;7
Figure 3.3 Low-magnification and high-magnification SEM images of MnO ₂ (a and b),	
Mn_3O_4 (c and d), illustrating the nanostructure of the as-synthesized products	;7
Figure 3.4 XRD pattern of Mn ₃ O ₄	;8
Figure 3.5 N_2 adsorption-desorption analysis results for the as-synthesized porous Mn_3O_4	
nanorods, the inset gives the pore size distribution of the Mn_3O_4 sample	;9
Figure 3.6 N_2 adsorption-desorption analysis results of LiOH/Mn ₃ O ₄ mixture prepared by	
vacuum-assisted impregnation method	;9
Figure 3.7 XRD patterns of the product obtained at different calcination temperatures, all	
patterns agree well with the standard pattern of spinel $LiMn_2O_4$ (JCPDS 35-0782)	j 1
Figure 3.8 (a) Medium- and (b) high-magnification FESEM images of LiMn ₂ O ₄ nanorods.	51
Figure 3.9 (a) Low-magnification, (b) medium-magnification and (c) lattice-resolved high	
resolution TEM images of LiMn ₂ O ₄ nanorods, (d) SAED pattern of a single crystalline	
LiMn ₂ O ₄ nanorod	52
Figure 3.10 Electrochemical characterization of LiMn ₂ O ₄ nanorods. (a) Cyclic voltammetr	y
curve between 3.0 and 4.5 V vs. Li/Li ⁺ at a scanning rate of 0.1 mV s ⁻¹ . (b) Galvanostatic	
charge/discharge curve and potentiostatic differential capacity vs . voltage (dQ/dV) 6) 3
Figure 3.11 Potentiostatic differential capacity vs. voltage (dQ/dV) of LiMn ₂ O ₄ obtained at	t
different calcination temperature at 0.2 C	, 4
Figure 3.12. Cycling performance of LMO-650 at 1C and 2C	6
Figure 3.13. Cycling performance of LMO-700 at 1C and 2C	6
Figure 3.14 Cycling performance of LMO-750 at 1C and 2C ($1C = 148 \text{ mA g}^{-1}$)	57
Figure 3.15 Cycling performance of LiMn ₂ O ₄ obtained from a precursor ratio (Li:Mn) of	
1.05:2 at a rate of 1C	59

Figure 3.16 Cycling performance of LiMn ₂ O ₄ obtained from a precursor ratio (Li:Mn) of
Figure 3.17 Cycling performance of LiMn ₂ O ₄ obtained from a precursor ratio (Li:Mn) of 1.15:2 at different rates
Figure 3.18 (a) Cycling performance of LiMn ₂ O ₄ nanorods obtained from a precursor ratio (Li:Mn) of 1.2:2 at the 3C rate. (b) The Coulombic efficiency as a function of cycle number. (c) Discharge capacity retention as a function of cycle number at 3C rate. (d) Capacity retention comparison with other LiMn ₂ O ₄ nanoarchitectures reported recently 71
Figure 3.19. SEM images of $LiMn_2O_4$ obtained at a calcination temperature of 800 °C (a and b) at a Li:Mn ratio of 1.20:2 and the corresponding cycling performance at 3C at room temperature
Figure 3.20 (a) Charge-discharge profiles of $LiMn_2O_4$ nanorods at different C rates between 3.0 and 4.3 V in coin-type half cells (1C = 148 mA g ⁻¹). (b) Rate capability of $LiMn_2O_4$ electrode at varied C rates
Figure 3.21 SEM image of LiMn ₂ O ₄ electrode after 1000 cycles
Figure 4.1 Schematic illustration for the preparation of SnO ₂ /NG nanohybrids
Figure 4.2 TGA curves of the SnO ₂ /G and SnO ₂ /NG
Figure 4.3 (a) XRD patterns of SnO_2/NG and SnO_2/G composites. (b) Raman spectra of SnO_2/NG and SnO_2/G composites in the range of 800-2000 cm ⁻¹
Figure 4.4 Medium-magnification TEM image, high-resolution TEM image, SnO ₂ particle size distribution of SnO ₂ /NG nanohybrids (a, c, and e) and SnO ₂ /G composites (b, d, and f).
Figure 4.5 N_2 sorption isotherms of the SnO ₂ /G (a) and SnO ₂ /NG composites (b). Pore size distribution of the SnO ₂ /G (c) and SnO ₂ /NG composites (d)
Figure 4.6 XPS analysis of SnO ₂ /NG and SnO ₂ /G composites: (a) the survey spectrum, (b) high-resolution spectrum of C 1s, (c) N 1s spectrum, (d) XPS Sn 3d spectra, and (e) O 1s spectra. (f) Schematic illustration of different nitrogen species in NG

Figure 4.7 CV profiles of the SnO ₂ /NG composites at a scan rate of 0.1 mV s ^{-1} between
0.01 and 3.0 V
Figure 4.8 CV profiles of NG at a scan rate of 0.1 mV s ^{-1} between 0.01 and 3.0 V
Figure 4.9 Chare-discharge curves of bare SnO_2 at a current density of 20 mA g ⁻¹
Figure 4.10 (a) Galvanostatic charge-discharge profiles of the SnO_2/NG and SnO_2/G
composites. (b) Cycling performance of SnO_2/NG and SnO_2/G composites at a current density of 20 mA g ⁻¹ from the second cycle
Figure 4.11 Galvanostatic charge-discharge profiles of the SnO ₂ /NG and SnO ₂ /G
composites of the 50 th cycle (a) and 100 th cycle (b) at 20 mA g ⁻¹
Figure 4.12 (a) Cycling performance of SnO_2/NG composites at current densities of 40 and
80 mA g ⁻¹ from the second cycle. (b) Rate performance of SnO_2/NG at different current
densities
Figure 4.13 (a) Cycling performance of graphene and NG at a current of 20 mA g^{-1} . (b) The
Nyquist plots of the SnO ₂ /G and SnO ₂ /NG electrode, the inset shows the modeled
equivalent circuit. (c) Contribution of different nitrogen-doping effects to the overall
electrochemical performance enhancement of SnO_2/NG nanohybrids for SIBs compared to
SnO ₂ /G, where Effect 1 is the increased electro-active sites within graphene matrix due to
the nitrogen-doping and Effect 2 is the improved electron transfer efficiency within the
SnO ₂ /NG electrode benefiting from nitrogen-dopants
Figure 4.14 SnO ₂ /NG nanohybrids as anode materials for SIBs
Figure 4.15 SEM images of SnO ₂ /NG electrode after 100 cycles
Figure 5.1 Schematic illustration for the preparation of MoS ₂ /RGO heterostructures. As
shown in (d), there are two possible stacking configurations: MC (Mo on top of C atoms)
and SC (S on top of C atoms) configurations. The yellow, green and grey atoms represent
S, Mo and C atoms, respectively
Figure 5.2 Molecular structure of phosphomolybdic acid (PMA)107
Figure 5.3 XRD patterns of MG-3 composites before and after post-treatment108
Figure 5.4 TGA curves of MoS ₂ , MG-1, MG-2, and MG-3

Figure 5.5 XRD patterns of RGO, MG-1, MG-2, MG-3, and MoS ₂ 110
Figure 5.6 (a) Raman spectra of MoS ₂ , RGO and MG-3, showing a set of MoS ₂ Raman
peaks together with D band and G band of RGO. (b) Schematic illustration of E_{2g}^1 and A_{1g}
vibration models
Figure 5.7 SEM images of MG-1 (a and b), MG-2 (c and d), and MG-3 (e and f), showing the microstructural features of the nanocomposites, the inserts show the corresponding schematic illustrations of the composites
Figure 5.8 SEM image of bare MoS ₂ 115
Figure 5.9 SEM image and the corresponding EDX map of carbon, oxygen, molybdenum and of sulfur MG-1 (a), MG-2 (b), and MG-3 (c)
Figure 5.10 TEM images of MG-x composites. (a, b) MG-1, (c, d) MG-2, and (e, f) MG-3.
Figure 5.11 CV curves of MG-3118
Figure 5.12 Galvanostatic charge-discharge profiles of MG-1 (a), MG-2 (b), and MG-3 (c). (d) Initial reversible capacities of RGO, MG-x, and MoS ₂ at a current density of 20 mA g ⁻¹ , and the nominal capacities based on experimental values. The blue bars indicate the increased capacities due to the intimate MoS ₂ /RGO heterointerface. (e) Cycling performance of MG-3, MoS ₂ , and graphene at a current density of 20 mA g ⁻¹ 119
Figure 5.13 (a) Atomic structure of monolayer MoS ₂ supercell in the simulation, the numbers denote the possible adsorption position of Na atom. (b) The favorite structure of monolayer MoS ₂ with a Na atom adsorbed. Configuration of MC bilayer (c) and SC bilayer (d). The energy minimum diffusion pathway of a Na atom on the monolayer MoS ₂ (e), in MC bilayer (f), and in SC bilayer (g). The inserts in (e, f, and g) show the atomic structure of initial state (IS), transition state (TS) and final state (FS)
Figure 5.14 Six representative configurations for a Na atom adsorbed on $MoS_2/graphene$ bilayer structure. (a) Na adsorbed on the hallow site of a hexagon ring over MoS_2 layer, (b) Na adsorbed on the top of a Mo atom over MoS_2 layer, (c) Na adsorbed on the top of a S atom over MoS_2 layer, (d) Na adsorbed on the top of a C atom over graphene, (e) Na

adsorbed on the top of the hallow site of a C ring over graphene, (f) Na adsorbed between
graphene and MoS ₂ layers
Figure 5.15 The band structures of monolayer MoS ₂ (a), MoS ₂ /graphene bilayer with MC structure (c), and MoS ₂ /graphene bilayer with SC structure (e). (b), (d), and (f) show the corresponding band structure after the adsorption of Na. The blue dash lines are the band
structure of pristine graphene and red dash line denotes the Fermi level
Figure 5.16 Atomic structure of a Na atom adsorbed on MoS ₂ /RGO (MC configuration) with epoxy (a) and hydroxyl (b) groups in RGO, respectively. The corresponding energy minimum diffusion pathways of a Na atom on MoS ₂ /RGO with epoxy and hydroxyl groups in RGO are shown in (c) and (d) respectively
Figure 5.17 The band structure of MoS_2/RGO (MC configuration) with epoxy (a) and
hydroxyl (c) groups in RGO. After the Na atom adsorption, the corresponding band structures are shown in (b) and (d), respectively
Figure 5.18 (a) Nyquist plots of MG-3 and MoS ₂ as anode materials in the charged state (3.0 V vs. Na ⁺ /Na). (b) Rate performance of MG-3 and MoS ₂ electrodes. (c) Discharge capacity as a function of cycle number of MG-3 electrode from the second cycle at high current densities of 80 mA g ⁻¹ and 320 mA g ⁻¹ . The first 20 cycles were tested at a current density of 20 mA g ⁻¹
Figure 6.1 XRD pattern of the as-prepared SnS_2 /graphene composites. $I =$ Intensity138
Figure 6.2 (a) Low-magnification SEM image of SnS ₂ /graphene nanocomposites. (b) Enlarged view of the area marked by a white square in (a), showing the morphological features of graphene and SnS ₂
Figure 6.3 SEM images of SnS ₂ nanoplatelets
Figure 6.4 (a) and (b) Low and high magnification TEM images of the SnS ₂ /graphene composites, respectively. (c) HRTEM image of an individual SnS ₂ nanoplatelet oriented along the [001] direction, taken from the rectangular region in (b). (d) Structural simulation of layered SnS ₂ , with an interlayer distance of 0.59 nm
Figure 6.5 Raman spectrum of SnS_2 /graphene nanocomposites in the range of 130-2400
cm^{-1} . $I = Intensity$

Figure 6.6 TGA curve of SnS_2 /graphene nanocomposites. W = Weight percentage, T =
Temperature
Figure 6.7 CV curves for selected cycles of SnS_2 /graphene composites at a scan rate of 0.1 mV s ⁻¹ in the range of 0.01-3 V vs. Na ⁺ /Na. $I = Current$, $E = Potential$
Figure 6.8 (a) The initial discharge profile of SnS_2 /graphene at a current density of 20 mA g ⁻¹ . (b), (c) Ex-situ XRD patterns of SnS_2 /graphene electrode discharged to different state as marked in the profile, in which the standard diffraction peaks of different products are located at the bottom E = Potential C_a = Capacity I = Intensity 144
Figure 6.9 (a) The 1 st , 2 nd , and 10 th charge-discharge profiles of SnS ₂ /graphene at a rate of 20 mA g ⁻¹ . (b) Cycling performance of SnS ₂ /graphene, SnS ₂ , and graphene at a rate of 20 mA g ⁻¹ . E = Potential, C_a = Capacity, N = Cycle number
Figure 6.10 The 1 st , 2 nd and 10 th cycle charge-discharge profiles of SnS ₂ at a rate of 20 mA g ⁻¹
Figure 6.11 Discharge curves of SnS ₂ (a) and SnS ₂ /graphene nanocomposites (b) at current densities of 40, 80, 160, 320, and 640 mA g ⁻¹ , respectively. (c) Comparison of discharge capacities of SnS ₂ and SnS ₂ /graphene nanocomposites at current densities of 40, 80, 160, 320, and 640 mA g ⁻¹ , respectively. (d) Rate performance of SnS ₂ and SnS ₂ /graphene nanocomposites at currents of 20, 40, 80, 160, 320, 640, 320, 160, and 80 mA g ⁻¹ , respectively. <i>E</i> = Potential, <i>C_a</i> = Capacity, <i>N</i> = Cycle number, <i>C_d</i> = Current density147
Figure 6.12 (a) Nyquist plots of SnS_2 and $SnS_2/graphene$ nanocomposites. (b) The corresponding equivalent circuit (R_{Ω} : Ohm resistance; R_{ct} : Charge transfer resistance; Z_w : Warburg diffusion process; <i>CPE</i> : constant-phase element)
Figure 6.13 SEM images of SnS ₂ electrode (a and b) and SnS ₂ /graphene electrode (c and d) after cycling
Figure 7.1 Schematic illustration for the preparation of SnO ₂ /graphene aerogels155
Figure 7.2 XRD patterns (a) and TGA curves (b) of SGA-1, SGA-2, SGA-3, and SGA-4. The TGA measurement was conducted at a heating rate of 10 °C min ⁻¹ in air from room
temperature to 800 °C157

Figure 7.3 Low, medium, and high magnification SEM images of SGA-1 (a, b, c), SGA-2 (d e f) SGA-3 (g h i) and SGA-4 (i k l). The scale bars in a b d e g h i and k are 10
2, 10, 1, 10, 1, 10, and 2 μ m, respectively, and the scale bars in c, f, i, and I are 200, 100, 200, and 100 nm, respectively
Figure 7.4 N ₂ isotherms of SGA-1 (a), SGA-2 (b), SGA-3(c), and SGA-4(d)160
Figure 7.5 TEM images of SGA-1 (a), SGA-2 (b), SGA-3 (c), and SGA-4 (d). Lattice- resolved high-resolution TEM image of a single SnO ₂ nanoparticle (e), showing a neighboring interplanar distance of 0.33 nm, which can be indexed to the (110) plane of SnO ₂ . SAED pattern of SnO ₂ (f)
Figure 7.6. SEM images of bare SnO ₂ 163
Figure 7.7 CV curves of the as-prepared SGA-2163
Figure 7.8 Charge-discharge curves of SGA-2 at a current density of 20 mA g^{-1} . The insert shows the derivative curve (dQ/dV <i>vs.</i> V) of the 1st discharge process
Figure 7.9 (a) Rate performance of the as-prepared SGA-1, SGA-2, SGA-3, and SGA-4. (b) A comparison between the SGA-2 electrode and a variety of recently reported SnO ₂ /graphene anode materials for SIBs. The capacities were estimated based on the total mass of the composite
Figure 7.10 The Nyquist plots of the SnO ₂ , SGA-2 and SGA-3 electrode, the inset shows the modeled equivalent circuit. R_e is the electrolyte resistance, CPE represents constant phase element, R_{ct} is the charge-transfer resistance, and Z_w is the Warburg impedance166
Figure 7.11 (a) Cycling performance of SGA-2, SnO ₂ , and graphene electrode at a current density of 20 mA g^{-1} (22.2 μ A cm ⁻²). (b) Cycling performances of SGA-2 at current densities of 320, 640, and 1000 mA g^{-1}
Figure 7.12 Cycling performance and the Coulombic efficiency of the SGA-1 electrode at a current density of 20 mA g ⁻¹
Figure 7.13 Cycling performance the Coulombic efficiency of the SGA-3 electrode at a current density of 20 mA g ⁻¹
Figure 7.14 Cycling performance the Coulombic efficiency of the SGA-4 electrode at a current density of 20 mA g ⁻¹

Figure 7.15 Schematic illustration of the charge transfer within SnO ₂ /graphene aerogel
electrode, showing that the 3D hierarchically porous architecture favors both fast Na ⁺
diffusion and efficient electron transfer
Figure 8.1 The schematic illustration of the 3D free-standing electrode consisting of core-
sheath structured Sn@CNT nanopillars grown vertically on carbon paper176
Figure 8.2 A schematic illustration for the preparation procedure of 3D Sn@CNT-CP free-
standing electrode. (a) SnCl ₄ /FT. (b) Sn/carbon paper. (c) Sn@CNT-CP electrode with 3D
nanoarchitecture. (d) Structural details of the 3D Sn@CNT-CP180
Figure 8.3 TGA curves of FT in N ₂ atmosphere
Figure 8.4 SEM images of the carbon paper
Figure 8.5 (a) XRD pattern and (b) Raman spectrum of the Sn@CNT-CP electrode182
Figure 8.6 Raman spectrum of the bare carbon paper (CP) obtained from the carbonization
of facial tissue (FT)
Figure 8.7 TGA curves of Sn@CNT-CP (in air atmosphere)184
Figure 8.8 (a) Digital photograph of a rectangular Sn@CNT-CP free-standing electrode, the
insert shows "UTS" shaped Sn@CNT-CP. (b) Low- and (c, d) medium- magnification
SEM images of Sn@CNT-CP. (e and f) High-magnification SEM images of Sn@CNT-CP
with a hierarchical structure
Figure 8.9 SEM images of the products prepared by the same procedure without C_2H_2186
Figure 8.10 SEM energy dispersive spectroscopic (EDS) characterization of Sn@CNT-CP
(a-d). (a) SEM image, (b and c) C and Sn elemental mapping of the region shown in the
marked area in (a), (d) an integrated C- and Sn-elemental mapping image. (e) EDX
spectrum of the Sn@CNT-CP187
Figure 8.11 (a) TEM image of a single Sn@CNT nanopillar. (b) HRTEM image, showing
the thickness of the CNT layer. (c) Lattice-resolved high-resolution TEM image. (d) SAED
pattern of (a), demonstrating the single crystalline nature of Sn nanopillar
Figure 8.12 The photograph of the separator-supported Sn@CNT-CP electrode being bent
(a) and released (b)

Figure 8.13 (a) CV curves of Sn@CNT-CP composite at a scan rate of 0.1 mV s ⁻¹ in the
range of 0.01-2.6 V vs. Na/Na ⁺ . (b) Charge-discharge curves of Sn@CNT-CP electrode at a
current density of 50 µA cm ⁻²
Figure 8.14 XRD pattern of Sn@CNT-C electrode discharged to 0.01 V190
Figure 8.15 Cycling performances of (a) Sn@CNT-CP electrode and (b) carbon electrode prepared by the traditional dispersion technique
Figure 8.16 (a) Cycling performance of the Sn@CNT-CP and the carbon paper electrode at a current density of 50 μ A cm ⁻² , and the corresponding Coulombic efficiency of the free-standing Sn@CNT-CP electrode. (b) Cycling performance of Sn@CNT-CP at 250 μ A cm ⁻² and 500 μ A cm ⁻²
Figure 8.17 Cycling performance of bare Sn electrode prepared by the traditional dispersion technique at a current density of 80 mA g ⁻¹
Figure 8.18 Rate performance of the Sn@CNT-CP free-standing electrode196
Figure 8.19 (a) Schematic illustration of a full Na-ion battery with
Na _{0.80} Li _{0.12} Ni _{0.22} Mn _{0.66} O ₂ as cathode and free-standing Sn@CNT-CP as anode. (b) Cycling
performance and Coulombic efficiency of the full Na-ion battery. (c) Discharge curves of
the 1 st , 10 th , 20 th , 30 th , and 40 th cycle. (d) A photograph shows that a full Na-ion battery can store the electrical energy to light up a LED
Figure 8.20 Cycling performance of Na _{0.80} Li _{0.12} Ni _{0.22} Mn _{0.66} O ₂ cathode in a half cell199
Figure 9.1 (a) Schematic illustration for the preparation of MoS ₂ vertically aligned on carbon paper, which includes MoS ₂ -loading by hydrothermal deposition followed by annealing under Ar. (b) XRD patterns of the as-prepared MoS ₂ @C, indicating the 2H phase of MoS ₂ . (c) The simulated structure of 2H-MoS ₂ . (d) TGA curves of bare MoS ₂ and MoS ₂ @C in air
Figure 9.2 Energy dispersive X-ray (EDX) spectrum of the purified paper towel
Figure 9.3 Digital photo of a MoS ₂ loaded paper towel
Figure 9.4 Digital photo of a freestanding MoS ₂ @C paper
Figure 9.5 SEM images of carbon paper derived from paper towel

Figure 9.6 (a-d) SEM images of the as-prepared freestanding MoS ₂ @C. (e) High-
magnification TEM image and (f) SAED pattern of MoS ₂ @C210
Figure 9.7 (a) CV curve of the as-prepared MoS ₂ @C anode for sodium-ion batteries. <i>In situ</i> Raman spectra of the MoS ₂ @C electrode at different cut-off voltages during discharge (b) and charge (c) processes. (d) Schematic of the phase transition between 2H-MoS ₂ and 1T-MoS ₂ during sodium intercalation/de-intercalation
Figure 9.8 CV curves of the as-prepared $MoS_2@C$ anode for sodium-ion batteries in the first 4 cycles at a scan rate of 0.1 mV s ⁻¹ 214
Figure 9.9 <i>Ex situ</i> SEM images of MoS ₂ @C-CMC electrode discharged to 0.5 V (a and b), 0.01 V (c and d) and charged to 3.0 V (e and f)215
Figure 9.10 (a) Charge-discharge curves of the as-prepared MoS ₂ @C paper electrode at a current density of 80 mA g ⁻¹ . (b) Cycling performance and the corresponding Coulombic efficiencies of the MoS ₂ @C paper electrode at 80 mA g ⁻¹ . The cycling performance of bare carbon paper is also presented for comparison. (c) Charge-discharge curves of CMC coated MoS ₂ @C electrode (MoS ₂ @C-CMC) at a current density of 80 mA g ⁻¹ . (d) Cycling performance and the corresponding Coulombic efficiencies of the MoS ₂ @C-CMC paper electrode at 80 mA g ⁻¹ and the cycling performance of the CMC-coated carbon paper electrode (C-CMC). (e) Charge-discharge curves of MoS ₂ @C-CMC at different current densities. (f) Rate-performance of the MoS ₂ @C-CMC electrode as a function of cycle number at a current density of 80 mA g ⁻¹
Figure 9.12 Change of impedance spectra of $MoS_2@C$ -CMC electrode during cycling. The inset shows the modeled equivalent circuit. R_{Ω} is the electrolyte resistance, Q represents constant phase element, R_{ct} is the charge-transfer resistance, and Z_w is the Warburg impedance
Figure 9.13 Cycling performance of the MoS ₂ @C-CMC electrode and carbon paper-CMC electrode at a current density of 160 mA g ⁻¹
Figure 9.14 Schematic illustration showing paths for sodium-ion diffusion and electron conduction in the MoS ₂ @C electrode

Figure 10.1 (a) Schematic showing preparation of the porous MXene/CNT electrode by the
self-assembly method. The MXene nanosheets are negatively charged due to their
functional groups, and the CTAB-grafted CNTs are positively charged. (b) Zeta potential of
$Ti_3C_2T_x$ nanosheets, CTAB-grafted CNTs (CNT-CTAB), and self-assembled
$Ti_3C_2T_x/CNT$ -CTAB ($Ti_3C_2T_x/CNT$ -SA). (c) Digital photographs of $Ti_3C_2T_x$ suspension,
CNT-CTAB in water, and Ti ₃ C ₂ T _x /CNT-SA composites
Figure 10.2 Digital photographs of the as-prepared freestanding $Ti_3C_2T_x/CNT$ -SA film. 231
Figure 10.3 (a) Zeta potential of a colloidal solution of CNT-SDS. (b) Digital photographs
of $Ti_3C_2T_x$ suspension, CNT-SDS, and a $Ti_3C_2T_x$ /CNT-SDS mixture231
Figure 10.4 TEM images of $Ti_3C_2T_x$ nanosheet. (a) in plane, (b) cross-section231
Figure 10.5 Top view (left panels) and cross-sectional (right panels) SEM images of pure
$Ti_3C_2T_x$ (a and b), $Ti_3C_2T_x/CNT$ -SDS (c and d) and porous $Ti_3C_2T_x/CNT$ -SA (e and f).
Scale bars: 1 µm
Figure 10.6 N ₂ adsorption-desorption isotherms (a) and pore size distribution curves (b) of
$Ti_3C_2T_x/CNT$ -SDS and porous $Ti_3C_2T_x/CNT$ -SA
Figure 10.7 XRD pattern of the as-prepared $Ti_3C_2T_x/CNT$ -SA film235
Figure 10.8 The electrochemical properties of the $Ti_3C_2T_x/CNT$ -SA electrode in a two
electrode $Ti_3C_2T_x/CNT$ -SA//Na cell, where Na foil was used as the counter and reference
electrode: (a) cyclic voltammetry (CV) curves of the porous $Ti_3C_2T_x$ /CNT-SA electrode at
different scan rates from 0.1 to 3 mV s ⁻¹ ; (b) the relationship between peak current and scan
rate; (c) separation of the non-diffusion limited currents (k_1v) in the $Ti_3C_2T_x/CNT$ -SA
electrode at 0.1 mV s ⁻¹ . Three-electrode tests (overcapacitive activated carbon films and Na
work as counter and reference electrodes, respectively): (d) CV curves at different scan
rates collected from 0.5 to 100 mV s ⁻¹ ; (e) volumetric and gravimetric rate performances;
(f) galvanostatic charge-discharge profiles at different current densities236
Figure 10.9 Electrochemical performance of electrodes in a two-electrode cell with Na foil
as the counter and reference electrode: (a) charge/discharge curves of $Ti_3C_2T_x$ /CNT-SA at
20 mA g ⁻¹ in the voltage window of 0.01-3.0 V. (b) Cycling performance of pure $Ti_3C_2T_x$,

second cycle, the Coulombic efficiencies of $Ti_3C_2T_x/CNT$ -SA electrode are also shown. (c)
Linear fit of the Warburg impedance of $Ti_3C_2T_x$, $Ti_3C_2T_x/CNT$ -SA, and $Ti_3C_2T_x/CNT$ -SDS
electrodes. (d) Volumetric capacities of Ti ₃ C ₂ T _x /CNT-SA (this work), carbon,
MoS_2 /graphene paper, multilayered Ti_2CT_x powder, porous carbon nanofiber film, and N-
doped carbon nanofiber film. (e) Reversible capacities and Coulombic efficiencies of
$Ti_3C_2T_x/CNT$ -SA electrodes at 100 mA g ⁻¹ from the second cycle
Figure 10.10 XRD patterns of Ti ₃ C ₂ T _x /CNT-SA electrodes after different cycles239
Figure 10.11 (a) Nyquist plots of pure $Ti_3C_2T_x$, $Ti_3C_2T_x/CNT$ -SA and $Ti_3C_2T_x/CNT$ -SDS
electrodes, the inset is the enlarged Nyquist plots of Ti ₃ C ₂ T _x /CNT-SA electrode241
Figure 10.12 SEM images of the as-produced Ti ₃ C ₂ T _x /rGO-SA film. (a) Top view, (b)
cross-sectional view. Scale bars: 1 µm
Figure 10.13 N ₂ adsorption-desorption isotherm and pore size distribution curve (inset) of
Ti ₃ C ₂ T _x /rGO
Figure 10.14 Cycling performances of Ti ₃ C ₂ T _x /CNT-SA and Ti ₃ C ₂ T _x /rGO-SA films at a
current density of 100 mA g ⁻¹
Figure 10.15 Linear fit of the Warburg impedance of Ti ₃ C ₂ T _x /CNT-SA and Ti ₃ C ₂ T _x /rGO-
SA electrodes
Figure 10.16 XRD pattern of Na _{0.44} MnO ₂ powder245
Figure 10.17 SEM image of Na _{0.44} MnO ₂ powder
Figure 10.18 Galvanostatic charge/discharge curves of the Na _{0.44} MnO ₂ electrode at a
current density of 14 mA g ⁻¹
Figure 10.19 Extended cycling performance of Na _{0.44} MnO ₂ in a Na-ion half cell at a current
density of 14 mA g ⁻¹
Figure 10.20 Electrochemical performance of a $Na_{0.44}MnO_2//Ti_3C_2T_x/CNT$ -SA cell.
Charge-discharge curves (a) and cycling performance (b) at a current density of 50 mA (g-
$Ti_3C_2T_x/CNT$ -SA) ⁻¹ . The inset in b shows that the as-assembled full sodium-ion cell can
light up a LED

Figure 10.21 Na ⁺ diffusion and electron transfer within porous MXene/CNT-SA electrodes.
Figure 10.22 Zeta potential of Mo ₂ CT _x nanosheets
Figure 10.23 SEM images of pure Mo ₂ CT _x paper (a and b) and Mo ₂ CT _x /CNT-SA paper (c and d)
Figure 10.24 Charge/discharge curves of the Mo ₂ CT _x /CNT-SA//Na cell at 50 mA g ⁻¹ 251
Figure 10.25 Cycling performance of pure Mo_2CT_x and self-assembled Mo_2CT_x/CNT_s
paper electrodes at 50 mA g ⁻¹ . The Coulombic efficiencies of Mo ₂ CT _x /CNT-SA electrode
are also presented
Figure 10.26 Rate performance of the Mo ₂ CT _x /CNT-SA//Na cell252

ABSTRACT

Electrode materials are vital to the performance of lithium-ion batteries and sodium-ion batteries. A rational design of electrode materials depends critically on understanding of their electrochemical processes, which is highly desirable for the development of high performance electroactive materials towards different applications. The composition, morphology, structure and preparation method can affect the electrochemical performance. In this doctoral work, a series of electrode materials were designed and fabricated and their electrochemical properties for lithium-ion batteries and sodium-ion batteries were investigated.

Single crystalline spinel LiMn₂O₄ nanorods were prepared as stable cathode materials for lithium-ion batteries. The preparation involves infiltration of LiOH into porous Mn₃O₄ nanorods by a vacuum-assisted impregnation route, which facilitates the homogeneous reaction to prepare LiMn₂O₄. The reaction parameters were optimized and Li-rich single crystalline LiMn₂O₄ nanorods were prepared, which retained 95.6 % of its initial capacity after 1000 cycles at 3C rate as cathode material for lithium-ion batteries.

Considering the concerns of the increasing cost of lithium salts, the development of low-cost sodium-ion batteries is becoming a hot topic. In this doctoral work, a series of anode materials were explored for sodium-ion storage. The electrochemical performances of SnO₂/nitrogen-doped graphene and SnO₂/graphene were compared to investigate the effects of nitrogen-doping into graphene on enhancing the electrochemical performance for sodium-ion batteries. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within the graphene network)

in one single declaration, it was demonstrated that the improved electron transfer efficiency of SnO_2 /nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO_2 /nitrogen-doped graphene nanohybrids compared to the SnO_2 /graphene counterpart.

MoS₂/reduced graphene oxide (RGO) nanocomposites with intimate two-dimensional heterointerfaces were prepared by a facile one-pot hydrothermal method. The synergistic effect between MoS₂ and graphene contributing to the enhanced reversible capacity of MoS₂/RGO nanocomposites was investigated by experimental and computational studies. It was revealed that Na prefers to be adsorbed on MoS₂ in the MoS₂/RGO heterostructure rather than intercalate into the MoS₂/RGO heterointerface. Interestingly, the MoS₂/RGO heterointerfaces can significantly increase the electronic conductivity of MoS₂, and store more Na ions, while maintaining the high diffusion mobility of Na atoms on MoS₂ surface and high electron transfer efficiency from Na to MoS₂.

 SnS_2 nanoplatelet@graphene nanocomposites were prepared by using a morphologycontrolled hydrothermal method. The as-prepared materials achieved a high reversible specific sodium-ion storage capacity of 725 mA h g⁻¹, stable cyclability, and an enhanced high-rate capability as anode materials for sodium-ion batteries.

Three dimensional interconnected $\text{SnO}_2/\text{graphene}$ aerogels with a hierarchically porous structure were constructed by a facile *in situ* process. Such a functional architecture not only facilitates the electrode–electrolyte interaction but also provides an efficient electron pathway within the graphene networks. The as-prepared $\text{SnO}_2/\text{graphene}$ aerogels exhibited an initial reversible capacity of 451 mA h g⁻¹ with a stable cycling performance at a current

density of 20 mA g^{-1} . Even at a high current density of 1000 mA g^{-1} , the electrode achieved a capacity of 168 mA h g^{-1} after 500 cycles.

A series of freestanding electrodes with distinct architectures and promising electrochemical performance for sodium-ion storage were prepared, including:

1) Three dimensional freestanding electrodes consisting of Sn@CNT nanopillar arrays grown on carbon paper, which achieved a reversible capacity of 887 μ A h cm⁻² in the first cycle and good cyclability extending to 100 cycles.

2) Vertically aligned MoS₂ nanosheets/carbon paper electrodes as highly reversible anode materials. Coating with carboxy methyl cellulose sodium salt improved the cycling performance and a high reversible capacity of 286 mA h g⁻¹ was achieved after 100 cycles at a current density of 80 mA g⁻¹. The as-prepared electrodes delivered a high initial Coulombic efficiency of 79.5% and promising rate capability. Even at a high current density of 1000 mA g⁻¹, a reversible capacity of 205 mA h g⁻¹ was maintained.

3) Heterostructured Ti_3C_2 MXene/CNTs porous films with high volumetric capacity for sodium-ion storage. The open structure facilitates electrolyte transport and access of ions to the electrode and produces functional MXene-based electrodes for sodium-ion storage. When applied as freestanding electrodes for sodium-ion storage, the built-to-order Ti_3C_2 MXene/CNTs porous films showed a volumetric capacity of 421 mA h cm⁻³ at 20 mA g⁻¹, good rate performances, and excellent cycling stability.