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ABSTRACT
Electrode materials are vital to the performance of lithium-ion batteries and sodium-ion
batteries. A rational design of electrode materials depends critically on understanding of their
electrochemical processes, which is highly desirable for the development of high
performance electroactive materials towards different applications. The composition,
morphology, structure and preparation method can affect the electrochemical performance.
In this doctoral work, a series of electrode materials were designed and fabricated and their
electrochemical properties for lithium-ion batteries and sodium-ion batteries were

investigated.

Single crystalline spinel LiMn2O4 nanorods were prepared as stable cathode materials for
lithium-ion batteries. The preparation involves infiltration of LiOH into porous Mn3O4
nanorods by a vacuum-assisted impregnation route, which facilitates the homogeneous
reaction to prepare LiMn,Os. The reaction parameters were optimized and Li-rich single
crystalline LiMn,O4 nanorods were prepared, which retained 95.6 % of its initial capacity

after 1000 cycles at 3C rate as cathode material for lithium-ion batteries.

Considering the concerns of the increasing cost of lithium salts, the development of low-cost
sodium-ion batteries is becoming a hot topic. In this doctoral work, a series of anode materials
were explored for sodium-ion storage. The electrochemical performances of SnO»/nitrogen-
doped graphene and SnO,/graphene were compared to investigate the effects of nitrogen-
doping into graphene on enhancing the electrochemical performance for sodium-ion batteries.
In contrast to the previous reports which often ascribe the enhanced electro-activity of
nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the

electron transfer efficiency and increasing electro-active sites within the graphene network)
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in one single declaration, it was demonstrated that the improved electron transfer efficiency
of SnOx/nitrogen-doped graphene due to nitrogen-doping plays a more important role than
the increased electro-active sites within graphene network in enhancing the electro-activity

of SnO»/nitrogen-doped graphene nanohybrids compared to the SnO»/graphene counterpart.

MoS»/reduced graphene oxide (RGO) nanocomposites with intimate two-dimensional
heterointerfaces were prepared by a facile one-pot hydrothermal method. The synergistic
effect between MoS, and graphene contributing to the enhanced reversible capacity of
MoS2/RGO nanocomposites was investigated by experimental and computational studies. It
was revealed that Na prefers to be adsorbed on MoS; in the MoS>/RGO heterostructure rather
than intercalate into the MoS2/RGO heterointerface. Interestingly, the MoS2/RGO
heterointerfaces can significantly increase the electronic conductivity of MoS», and store
more Na ions, while maintaining the high diffusion mobility of Na atoms on MoS, surface

and high electron transfer efficiency from Na to MoS,.

SnS; nanoplatelet@graphene nanocomposites were prepared by using a morphology-
controlled hydrothermal method. The as-prepared materials achieved a high reversible
specific sodium-ion storage capacity of 725 mA h g !, stable cyclability, and an enhanced

high-rate capability as anode materials for sodium-ion batteries.

Three dimensional interconnected SnO»/graphene aerogels with a hierarchically porous
structure were constructed by a facile in situ process. Such a functional architecture not only
facilitates the electrode—electrolyte interaction but also provides an efficient electron
pathway within the graphene networks. The as-prepared SnO./graphene aerogels exhibited

an initial reversible capacity of 451 mA h g™ with a stable cycling performance at a current
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density of 20 mA g!. Even at a high current density of 1000 mA g !, the electrode achieved

a capacity of 168 mA h g ! after 500 cycles.

A series of freestanding electrodes with distinct architectures and promising electrochemical

performance for sodium-ion storage were prepared, including:

1) Three dimensional freestanding electrodes consisting of Sn@CNT nanopillar arrays
grown on carbon paper, which achieved a reversible capacity of 887 pA h cm 2 in the first

cycle and good cyclability extending to 100 cycles.

2) Vertically aligned MoS, nanosheets/carbon paper electrodes as highly reversible anode
materials. Coating with carboxy methyl cellulose sodium salt improved the cycling
performance and a high reversible capacity of 286 mA h g™ was achieved after 100 cycles at
a current density of 80 mA g!. The as-prepared electrodes delivered a high initial Coulombic
efficiency of 79.5% and promising rate capability. Even at a high current density of 1000 mA

gl areversible capacity of 205 mA h g!' was maintained.

3) Heterostructured Ti3Co MXene/CNTs porous films with high volumetric capacity for
sodium-ion storage. The open structure facilitates electrolyte transport and access of ions to
the electrode and produces functional MXene-based electrodes for sodium-ion storage. When
applied as freestanding electrodes for sodium-ion storage, the built-to-order
TizC> MXene/CNTs porous films showed a volumetric capacity of 421 mA hcm™ at

20 mA g !, good rate performances, and excellent cycling stability.
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