

Ecohydrological interactions and landscape

response to recent hydroclimatic events in

Australia

Zunyi Xie

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

> Climate Change Cluster Faculty of Science University of Technology Sydney

> > April 2017

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of student:

Date: 13-04-2017

Acknowledgements

This project was supported by a joint scholarship of China Scholarship Council and University of Technology Sydney. Foremost, I would like to thank my principal supervisor Professor Alfredo Huete and co-supervisor Professor Graziella Caprarelli for their continuous support during my four years' PhD study. It has been a challenging but rewarding experience, which would not have been possible without their assistance. I thank Professor Huete for holding me to a high research standard by providing insightful comments on my work and constructive criticisms at different stages of my research. I appreciate very much his persistence and encouragement, for believing in me. I am also very grateful for the job opportunity he provided with me over the last two years, which substantially improved my technical skills and helped me financially. I would like to extend a special thanks to Professor Caprarelli for bringing me to UTS to pursue my PhD. She has been always there ready to help throughout my candidature, which I really appreciate.

My heartfelt gratitude also goes to many people who contributed to my PhD project in ways both small and large, including;

- My current team colleagues Rakhesh Devadas, Xuanlong Ma (Richard), Chris Watson, Leandro Giovannini, Nguyen Ngoc Tran, Paras Sidiqui, Ekena Rangel Pinage; my previous team colleagues Natalia Restrepo-Coupe, Kevin Davies, Qunying Luo, Wouter Maes; Professor Derek Eamus, Professor Qiang Yu and his visiting scholars, James Cleverly, Chao Chen, Mirela Tulbure, Mark Broich, Professor Deborah Edwards etc for their invaluable academic support.
- UTS friends Xunhe Zhang, Sicong Gao, Mingming Cheng, Jianxiu Shen, Xueling Li, Jie He, Qinggaozi Zhu, Hao Shi, Wenbo Wang, Maoying Qiao, Wenjie Zhang, Jiaqi Dong, Nikki Bramwell, Buddhi Dayananda, Stephen Fujiwara, Sofie Voerman etc for being wonderful friends and companions of me throughout my PhD.

- Faculty staff Marea Martlew, John Moore etc for assisting with the administration. UTS staff Richard Lum, Belinda Lee and Professor Tony Moon for their consistent assistance, encouragement and considered advice, which ensured I had a very pleasant study experience in UTS.
- Local friends Eric Pawsey, Eric's family and friends, Geoffrey Pearce, Dung Tran, Peter Mylan etc. In particular, I extend my special thanks to Geoffrey Pearce and Dung Tran for looking after me during my first two years in Sydney, assisting me in settling down here and helped me edit English of my thesis and publications. I would also like to thank Eric Pawsey, who treated me as his family, and more importantly, provided a home for me in Australia.

Last but not least, I would like to thank my family and friends in China for their support and understanding throughout my candidature, particularly my parents, who have been working so hard to raise me and support my education. They are great parents for me.

I have been going through cycles of sadness, anger, and 'despair', followed by 'fight back' feelings during my PhD, and I am lucky to have all of the people mentioned above in my life to support me all the time. The completion of my PhD has brought me a deep sense of satisfaction and achievement, which greatly inspired a village boy like me to believe where there is a will, there is a way.

Publications

Peer reviewed journal articles arising directly from this thesis

Journal publications

- Xie, Z., Huete, A., Restrepo-Coupe, N., Ma, X., Devadas, R., & Caprarelli, G. (2016). Spatial partitioning and temporal evolution of Australia's total water storage under extreme hydroclimatic impacts. *Remote Sensing of Environment, 183*, 43-52.
- Xie, Z., Huete, A., Ma, X., Restrepo-Coupe, N., Devadas, R., Clarke, K., & Lewis, M. (2016). Landsat and GRACE observations of arid wetland dynamics in central Australia under multi-decadal hydroclimatic extremes. *Journal of Hydrology*, 543,818-831.

Conference Proceedings

Xie, Z., Huete, A., Restrepo-Coupe, N., Devadas, R., Davies, K., & Waston C. (2015). Terrestrial total water storage dynamics of Australia's recent dry and wet events. *Proceeding of 2015 IEEE International Geoscience and Remote Sensing Symposium* (*IGARSS*), 992-995, Milan, Italy; 07/2015

Table of Contents

Certificate of original authorship	i
Acknowledgements	ii
Publications	iv
Table of Contents	v
List of Figures	xii
List of Tables	xxi
Abbreviations	xxii
Abstract	XXVV
Chapter 1: Introduction	1
1.1 General research background	2
1.1.1 Global hydrological cycle and water balance	2
1.1.2 Ecosystems and their interactions with water resources	
1.1.3 Climate change and intensifying hydrological cycle	4
1.1.4 Increasing hydroclimatic extreme events	5
1.2 Australian ecohydrology	6
1.2.1 Hydrogeology and soil	7
1.2.2 Climate drivers	
1.2.3 Climate of Australia	9
1.2.4 Land cover type	
1.2.5 Natural hazards	

1.3 Australia's recent hydroclimatic extremes and their impacts	13
1.4 Overview of literature	14
1.4.1 Hydrological studies	14
1.4.2 Ecological studies	15
1.4.3 Climatological studies	16
1.5 Gravity recovery and climate experiment satellites	17
1.5.1 Introduction of GRACE	17
1.5.2 Total Water Storage Anomaly (TWSA) data	
1.5.3 Scaling factor of TWSA data	19
1.5.4 GRACE applications	20
1.6 Current issues and corresponding thesis objectives	21
1.7 References	23
Chapter 2: Spatial partitioning and temporal evolution of Australia's to	tal water
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts	tal water 34
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts	tal water 34 35
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction	tal water 34 35 36
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods	tal water 34 35 36 38
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts	tal water 34 35 36 38 38
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods 2.2.1 Terrestrial total water storage 2.2.2 Climate index data.	tal water 34 35 36 36 38 38 39
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts	tal water 34 35 36 38 38 38 39 39
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods 2.2.1 Terrestrial total water storage 2.2.2 Climate index data 2.3 Auto-define transition dates between the 'big dry' and the 'big wet' 2.2.4. Statistical methods	tal water 34 35 36 36 38 38 39 39 39 40
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods 2.2.1 Terrestrial total water storage 2.2.2 Climate index data 2.2.3 Auto-define transition dates between the 'big dry' and the 'big wet' 2.2.4. Statistical methods 2.2.4.1 Trend analysis	tal water 34 35 36 38 38 38 39 39 40 40
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods 2.2.1 Terrestrial total water storage 2.2.2 Climate index data 2.3 Auto-define transition dates between the 'big dry' and the 'big wet' 2.2.4. Statistical methods 2.2.4.1 Trend analysis 2.2.4.2 Spatio-temporal variability	tal water 34 35 36 36 38 38 39 39 40 40 40
Chapter 2: Spatial partitioning and temporal evolution of Australia's to storage under extreme hydroclimatic impacts Abstract 2.1 Introduction 2.2 Data and methods 2.2.1 Terrestrial total water storage 2.2.2 Climate index data 2.2.3 Auto-define transition dates between the 'big dry' and the 'big wet' 2.2.4. Statistical methods 2.2.4.1 Trend analysis 2.2.4.2 Spatio-temporal variability 2.2.4.3 Cross correlation analysis	tal water 34 35 36 38 38 38 39 39 40 40 40 40

2.2.6 Calculating the rate of recovery in TWS	41
2.3 Results	42
2.3.1 Spatial and temporal variations in TWS across the continent	42
2.3.2 Transition dates from the end of the 'big dry' to the start of the 'big wet' ac	ross
the continent	44
2.3.3 Recovery of the continental total water storage during the 'big wet'	46
2.3.4 Spatial partitioning of Australia's TWS across the 'big dry' and the 'big we	et'
periods	47
2.3.5 Cumulative TWS and water-cycle intensification	50
2.3.6 The varying importance of large-scale climate modes on the three geograp	ohic
zones of TWS	51
2.4 Discussion	53
2.4.1 Towards a more realistic characterisation of the water storage dynamics ar	cross
time and space	53
2.4.2 Impacts of large-scale drought and wet events on Australia's water storage	9
dynamics	54
2.4.3 Three geographic zones and their relationships with large-scale climate m	odes55
2.5 Conclusion	57
2.6 References	58
Chantan 2. Spatial temporal elimete system drivers of Australia's total	wataw
storage and vegetation productivity under hydroclimatic extremes	water 65
Abstract	66
3.1 Introduction	66
3.2 Data and Methods	69
3.2.1 Climate indices	69
3.2.2 Total water storage anomaly	71

3.2.3 Enhanced vegetation index	.71
3.2.4 Rainfall	. 72
3.2.5 Correlation analysis	. 72
3.2.6 Calculation for climate modes of TWS variance	. 75
3.2.7 Spatio-temporal variability	. 75
3.3 Results	. 76
3.3.1 Climate drivers of three distinct hydrologic zones in TWS patterns	. 76
3.3.2 TWS-EVI vs rainfall-EVI patterns with climate variability	. 80
3.3.3 Temporal evolution of TWS under variations in three climate modes and their	r
interactions	. 83
3.3.4 Ecohydrological implications of 2015 El Niño event	. 87
3.4 Discussion	. 90
3.4.1 Spatial-temporal associations between climate modes and TWS	. 90
3.4.2 TWS vs rainfall for linking climate variability and vegetation productivity	.91
3.4.3 2015 drought and future challenges in Australia	. 93
3.5 Conclusion	. 94
3.6 References	. 95
Chapter 4: Landsat and GRACE observations of arid wetland dynamics in	n a
dryland river system under multi-decadal hydroclimatic extremes	100
Abstract	101
4.1 Introduction	102
4.2 Data and methods	109
4.2.1 Study area	109
4.2.2 Landsat data	111
4.2.3 GRACE-derived total water storage anomaly	112

4.2.4 Other observational data	113
4.2.5 Vegetation Index calculation	114
4.2.6 Flood extent mapping	115
4.2.7 Wetland vegetation growth extent extraction	116
4.2.8 Spatio-temporal variability and correlation analysis	117
4.3 Results	117
4.3.1 Spatial-temporal flood patterns in Coongie Lakes from 1988 to 2011	117
4.3.2 GRACE-TWSA identification of the water source area for Coongie Lakes	100
wetland	120
4.3.3 Ecological responses of Coongie Lakes to hydrological variations	121
4.3.4 The impacts of hydroclimatic extremes on ecohydrology in Coongie Lakes	124
4.4 Discussion	126
4.4.1 Ecological significance of periodic flood events over arid wetlands and the	r
connection with large-scale climate systems	126
4.4.2 GRACE-TWSA as a valuable and integrative indicator of arid wetland	
ecohydrological dynamics	128
4.4.3 Ecological resilience of arid wetlands despite high hydrological variations a	and
hydroclimatic extremes	129
4.5 Conclusion	130
4.6 References	131
Chapter 5: Impacts of the dry and wet hydroclimatic events on water reso	urces
and ecosystem functioning across Australia	141
Abstract	142
5.1 Introduction	142
5.2 Data and Methods	145
5.2.1 Data	145

	а.	Hydrological datasets	145
	b.	Ecological datasets	146
5	.2.2	Geostatistics methods	148
5.	.2.3	Time series analysis of rainfall	149
5	.2.4	Australian continental ET estimate based on the water balance equation	149
5	.2.5	GRACE-based estimation of groundwater storage changes	151
5	.2.6	Trend Analysis	151
5	.2.7	Spatio-temporal variability and correlation analysis	152
5.3	Resi	ults	152
5.	.3.1	Spatial and temporal variations in water resources under hydroclimatic ex	tremes152
	5.3.	.1.1 Geostatistics of water cycle intensification	152
	5.3.	.1.2 Rainfall patterns and its relationship with TWS	160
	5.3	.1.3 ET changes during the 'big dry' and 'big wet'	164
	5.3	.1.4 Soil moisture and groundwater on drying and wetting	167
5	.3.2	Response of ecosystem to hydrological variations under hydroclimatic ex	tremes171
	5.3	.2.1 Ecohydrological interactions over Australian continent	171
	5.3	.2.2 Hydrological variations and their ecological implications at regional	scale
			180
5.4.	Dis	cussion	195
5.	.4.1.	Water resources in the balance under hydroclimatic extremes	195
	5.4.	.1.1 A land of more extreme droughts and flooding rains	195
	5.4.	.1.2 GRACE satellite observed hydrological performance	196
	5.4.	1.3 Water balance derived ET_{WB} vs AWAP modelled ET_{AWAP}	197
5	.4.2.	Impacts of the two hydroclimatic events on ecosystem functioning	201
	5.4	.2.1 Low association between vegetation and TWS indicates the potentic	ıl
	stre	ess of ecosystem under extreme hydrolicmatic impacts	201

5.4.2.2 GRACE satellite observed hydrological controls on vegetation	ı over
mainland Australia	
5.4.2.3 Future study on macroecology of mangroves in Australia	
5.5. Conclusion	
5.6. References	
Chapter 6: Conclusions and Future Perspective	214
6.1 Summary of key methodology and conclusions	
6.2 General discussion and future research directions	
6.3 Final conclusion	

List of Figures

Figure 1.1. The global hydrological cycle (ESA/AOES Medialab)
Figure 1.2. Water balance in hydrological cycle
Figure 1.3. Interactions between ecosystems and water resources (ESA/AOES Medialab)
Figure 1.4. Australia states map
Figure 1.5. (A) Basic geological regions of Australia based on age (Geoscience Australia). (B) Australian Soil Classification map (Northcote 1960-1968)
Figure 1.6. The main climate drivers of rainfall variability in the Australian region (BOM)
Figure 1.7. (A) Major climatic zones of Australia with red polygon highlighting the Agriculture areas (BOM). (B) Mean annual precipitation over 1961-1990 (BOM) 10
Figure 1.8. Australia Land Cover Map compiled from the National Dynamic Land Cover Dataset from 2000 – 2008 (Lymburner et al. 2011)
Figure 1.9 The GRACE space gravity mission (JPL, NASA)
Figure 2.1. (A) Monthly continental average TWSA from July 2002 to December 2014 (solid blue line) with solid red line indicating the smoothed and de-seasonalized TWSA. The black dashed lines are the linear trends of the de-seasonalized TWSA during the drying phase, watting phase, and second drying phase respectively ($n < 0.05$). The error
bars indicate the standard deviations among three GRACE datasets provided by JPL,
CSR and GFZ, and the shaded area is 95% CI in the de-seasonalized TWSA; (B-E) show continental TWSA patterns in Jul-2002 (start of the study period), Oct-2009 (end
of the 'big dry'), Jul-2011 (end of the 'big wet'), and Dec-2014 (end of the study period)

Figure 2.2. Variations in TWSA (de-seasonalized) at three sites in Australia (triangle symbols in Fig.2.1B-E) with the shading representing the 95% CI. The three sites are located in northern Australia (Site-1), southern part of MDB in southeastern Australia (Site-2) and the Wheatbelt region of the southwestern Australia (Site-3). The black circles indicate the end of the 'big dry' and the end of the 'big wet'. The red dashed lines are the linear trends of the de-seasonalized TWSA during the 'big dry' and the 'big wet', respectively.

Figure 2.6. Pearson's coefficient (maximum r) and the time lag in months between (A,D) monthly MEI and TWSA; (B,E) DMI and TWSA; (C,F) SAMI and TWSA from July

Figure 3.1. Illustration diagram for Partial and Semi-partial correlations75

Figure 3.9. Monthly continental average TWSA from July 2002 to December 2015 (solid blue line) with the solid red line indicating the smoothed and de-seasonalized TWSA. The black dashed lines are the linear trends of the de-seasonalized TWSA during the 'big dry', 'big wet', 'after the big wet' and '2015 El Niño' respectively (p < 0.05). The error bars indicate the standard deviations among three GRACE datasets provided by JPL, CSR and GFZ, and the shaded area is 95% CI in the de-seasonalized TWSA.

 Figure 3.12. Monthly values of three climate indices (SOI, DMI and SAMI) and continental average TWSA over 2015.
 89

Figure 4.4. Spatial distribution of inundation over Coongie Lakes wetland for six monthly flood extent images across the four seasons of the 2010 major flooding year.120

Figure 5.1. (A) Typical image of variogram and (B) Illustration of Moran's Index 148

Figure 5.2. Flow chart of 'dry'-'wet' rainfall months separation model......149

Figure 5.3. (A) Annual mean TWSA in the three TWS zones across Australia from Hydro 2002 to 2012 (p-value < 0.05); (B) Annual TWSA difference between wet (Zone I) and dry (Zone III) contrasting areas in Australia during Hydro 2002 and 2012...... 154

Figure 5.4. 3D plot of TWS trends from Hydro 2002 to 2012 with two transects...... 155

 Figure 5.5. Changes in the standard deviation of annual TWSA across Australia from

 Hydro 2002 to 2012.
 156

Figure 5.12. (A) Monthly mean values of total water storage anomalies (TWSA), deseasonalized TWSA, rainfall and deseasonalized rainfall in cm for continental Australia from 2002 to 2013; (B) Time series of annual BOM precipitation anomalies (cm year⁻¹), with 5-year running mean superimposed in red curve (1900-2013). (C) Cross Pearson's correlation coefficients between rainfall and TWS from 2002-2013. 164

Figure 5.14. (A) ET rate of change in the 'big dry' (Hydro 2002-2008); and (B) for the combined 'big dry' and 'big wet' period (Hydro 2002-2012) over Australia with all pixels (cm/yr); (C) ET rate of change in the 'big dry'; and for the (D) combined 'big dry' and 'big wet' period over Australia (cm/yr) with statistically non-significant pixels excluded.

Figure 5.16. (A) Soil moisture rate of change in the 'big dry' (Hydro 2002-2008); and (B) for the combined 'big dry' and 'big wet' period (Hydro 2002-2012) over Australia (cm/yr); (C) Groundwater rate of change in the 'big dry'; and (D) for the combined 'big dry' and 'big wet' period over Australia (cm/yr). Statistically non-significant pixels were excluded.

List of Tables

 Table 2.1. Summary of ecological, climatic, hydrological, geological and human conditions in Zone I, II and III
 49

Table 4.1. Summary of relevant studies on ecological dynamics and hydrological processes of arid wetlands and river transmission losses in dryland environments worldwide (the current paper is added for completeness). In the 'Key findings' column, three components of studies are identified by the code: (i) arid wetland vegetation dynamics; (ii) arid wetland hydrological processes; and (iii) river flow variability and flood transmission losses. N/A represents 'not applicable' in the relevant research. 105

Table 5.1.	Summary of TWSA	A variogram	159
------------	-----------------	-------------	-----

 Table 5.2.
 Spatially averaged optimal correlations and corresponding lags (in months)

 between TWSA, rainfall and EVI over Australian continent.
 174

 Table 5.3. Correlations among all the ecohydrological variables during Hydro 2002 and

 2012.
 183

 Table 5.4. Summary of the six sub study areas
 188

Table 5.5. Pearson's correlation coefficients (r) between a) monthly ET_{WB} , ET_{AWAP} and rainfall; and between b) annual ET_{WB} , ET_{AWAP} and rainfall during Hydro 2002 - 2012...... 2000

Abbreviations

AOES	Advanced Orbital Ephemeris System
AVHRR	Advanced Very High Resolution Radiometer
AWAP	Australian Water Availability Project
BOM	Bureau of Meteorology
CAMS	Climate Anomaly Monitoring System
CDR	Climate Data Record
CI	Confidence Interval
CLM	Community Land Model
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CSR	University of Texas Centre for Space Research
DEM	Digital Elevation Model
DLCD	Dynamic Land Cover Dataset
DSWE	Dynamic Surface Water Extent
ENSO	El Niño-Southern Oscillation
EROS	Earth Resources Observation and Science Centre
ESA	European Space Agency
ET	Evapotranspiration
ETM+	Enhanced Thematic Mapper Plus
EVI	Enhanced Vegetation Index

fPAR	Fraction of Photosynthetically Active Radiation
GDEs	Groundwater Dependent Ecosystems
GFZ	GeoForschungsZentrum
GLDAS	Global Land Data Assimilation System
GRACE	Gravity Recovery and Climate Experiment
HadISST	Hadley Centre Sea Ice and Sea Surface Temperature
IOD	Indian Ocean Dipole
IPCC	Intergovernmental Panel on Climate Change
JAXA	Japan's National Space Development Agency
JPL	Jet Propulsion Laboratory
MDB	Murray-Darling Basin
MEI	Multivariate ENSO Index
MNDWI	Modified Normalized Difference Wetness Index
MODIS	Moderate Resolution Imaging Spectroradiometer
NASA	National Aeronautics and Space Administration
NDVI	Normalized Difference Vegetation Index
NIR	Near-infrared
NLWRA	National Land and Water Resources Audit
NOAA	National Oceanic and Atmospheric Administration
OLI	Operational Land Imager
OLS	Ordinary Least Squares
PCCA	Partial Cross-Correlation Analysis
QA	Quality assessment

SAM	Southern Annular Mode
SEACI	South Eastern Australian Climate Initiative
SPCCA	Semi Partial Cross-Correlation Analysis
SRTM	Shuttle Radar Topography Mission
SST	Sea Surface Temperature
STL	Seasonal Decomposition of Time Series by LOESS
TRMM	Tropical Rainfall Measuring Mission
TW	Landsat Thematic Mapper
TWSA	Total Water Storage Anomaly
USCCGRP	United States Climate Change Global Research Program
USGS	United States Geological Survey

Abstract

Amplification of the water cycle as a consequence of climate change is predicted to increase the climate variability as well as the frequency and severity of droughts and wet extremes over continents such as Australia. Australia has recently experienced three large-scale hydroclimatic extremes, including a decadal millennium drought from 2001 to 2009 (termed the 'big dry'), followed by a short wet pulse during 2010 and 2011 (termed the 'big wet'), and another continent-wide dry condition in 2015. These dry and wet events exerted pronounced negative impacts on water resources, natural ecosystems and agriculture over large areas of Australia. Despite these extreme hydroclimatic impacts, the fate of ecohydrological resources such as the loss and recovery of water storage and vegetation remain largely unknown.

The overall goal of this thesis is to study the ecohydrological interactions and landscape response to Australia's early 21st century hydroclimatic extremes. To achieve thesis objectives, I (1) firstly investigated the spatial partitioning and temporal evolution of water resources across Australia under extreme hydroclimatic impacts, (2) then assessed the associations between the climate variability and dynamics in water resources and vegetation productivity, (3) furthermore examined the resilience of regional arid ecosystems to the highly variable water regimes and large-scale hydrological fluctuations, and (4) conducted a synthesized assessment of ecohydrological variations and interactions under these dry and wet events at continental, regional and biome scales, respectively.

Results show that highly variable continental patterns were observed in water resources and vegetation, involving differences in the direction, magnitude, and duration of total water storage and surface greenness responses to drought and wet periods. These responses clustered into three distinct geographic zones that correlated well with the influences from three large-scale climate modes: the El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM). At regional scale, ecosystems such as arid wetlands exhibit strong ecological resilience to hydroclimatic extremes, and are presumably sensitive to future altered water regimes due to climate change. In addition, Total Water Storage Anomaly (TWSA) data derived from Gravity Recovery And Climate Experiment (GRACE) satellites was found to be a valuable indicator for ecohydrological system performances and effectively linking the extreme climate variability with Australia's ecosystems.

This thesis highlights the value of Remote Sensing techniques (e.g. GRACE satellites) as important tools for improved assessments and management of water resources and associated ecosystems in Australia, particularly in the face of future increasing hydroclimatic extremes.