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Abstract

Amplification of the water cycle as a consequence of climate change is predicted to
increase the climate variability as well as the frequency and severity of droughts and
wet extremes over continents such as Australia. Australia has recently experienced three
large-scale hydroclimatic extremes, including a decadal millennium drought from 2001
to 2009 (termed the 'big dry'), followed by a short wet pulse during 2010 and 2011
(termed the 'big wet'), and another continent-wide dry condition in 2015. These dry and
wet events exerted pronounced negative impacts on water resources, natural ecosystems
and agriculture over large areas of Australia. Despite these extreme hydroclimatic
impacts, the fate of ecohydrological resources such as the loss and recovery of water

storage and vegetation remain largely unknown.

The overall goal of this thesis is to study the ecohydrological interactions and landscape
response to Australia's early 21% century hydroclimatic extremes. To achieve thesis
objectives, I (1) firstly investigated the spatial partitioning and temporal evolution of
water resources across Australia under extreme hydroclimatic impacts, (2) then assessed
the associations between the climate variability and dynamics in water resources and
vegetation productivity, (3) furthermore examined the resilience of regional arid
ecosystems to the highly wvariable water regimes and large-scale hydrological
fluctuations, and (4) conducted a synthesized assessment of ecohydrological variations
and interactions under these dry and wet events at continental, regional and biome

scales, respectively.

Results show that highly variable continental patterns were observed in water resources
and vegetation, involving differences in the direction, magnitude, and duration of total
water storage and surface greenness responses to drought and wet periods. These
responses clustered into three distinct geographic zones that correlated well with the
influences from three large-scale climate modes: the El Nifio-Southern Oscillation
(ENSO), the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM). At

regional scale, ecosystems such as arid wetlands exhibit strong ecological resilience to

XXV



hydroclimatic extremes, and are presumably sensitive to future altered water regimes
due to climate change. In addition, Total Water Storage Anomaly (TWSA) data derived
from Gravity Recovery And Climate Experiment (GRACE) satellites was found to be a
valuable indicator for ecohydrological system performances and effectively linking the

extreme climate variability with Australia's ecosystems.

This thesis highlights the value of Remote Sensing techniques (e.g. GRACE satellites)
as important tools for improved assessments and management of water resources and
associated ecosystems in Australia, particularly in the face of future increasing

hydroclimatic extremes.
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Chapter 1: Introduction




1.1 General research background

1.1.1 Global hydrological cycle and water balance

Water covers around 70 percent of the Earth's surface and is an essential element for
life (Gleick 1993). The global hydrological cycle describes the circulation of water, in
which water is cycled between land, the oceans and the atmosphere through four main
stages: evaporation, condensation, precipitation and runoff (Fig.1.1) (Pagano and
Sorooshian 2006). Driven by the sun and gravity, water moves between all these stages
and acts as a powerful vehicle for rearranging the Earth's energy budget, but the total
amount of water on the Earth remains fairly constant (Takle et al. 2007). The
hydrological cycle influences weather patterns, which over time adds up to become the

climate of any given location around the world (Chahine 1992).

Figure 1.1. The global hydrological cycle (ESA/AOES Medialab)

The water balance, representing a balance in the quantity of water within the
hydrological cycle, assesses the current status and trends in water resource availability
over a specified area or over the entire Earth (Lozan and Hupfer 2007; Xu and Singh
1998). Precipitation is the input of the water balance and this is later portioned by
physical hydrological processes into different water resources on the land such as

surface water, soil moisture, groundwater etc, which flow into the oceans and eventually



return to the atmosphere (Oki and Kanae 2006). A general water balance expression of a

water tight catchment over a given period is (Verstraeten et al. 2008; Zeng et al. 2012):
AS=P-E-R (1.1)

where P is precipitation; E is evapotranspiration; R is runoff; AS is the change in

terrestrial water storage (Fig.1.2).

@ WATER CYCLE

Water Balance Equation dW/dt = P-E-R

Total land water storage  Precipitation Evapotranspiration Runoff

Figure 1.2. Water balance in hydrological cycle (USCCGRP)

1.1.2 Ecosystems and their interactions with water resources

An ecosystem is a community of interacting biologies (e.g. plants, animals and
organisms) in a given area in conjunction with the non-living or abiotic environment
(e.g. air, water and mineral soil) (Levin 1998). Ecosystems can be of any size and many
types such as: wetlands, forests and grasslands or even the entire planet, in which these
biotic and abiotic components are linked together through nutrient cycles and energy
flows (Lavorel and Garnier 2002). Vegetation plays a key role in ecosystems and are
involved in various global biogeochemical cycles (e.g. water, carbon and nitrogen

cycles).

On one hand, ecosystems interact with all sorts of water sources (e.g. surface water,
soil moisture and groundwater) to maintain their structure, function and biodiversity.

Thus, a healthy and active ecosystem ultimately depends on the continued availability
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and quality of water. On the other hand, ecosystems lie at the heart of the global water
cycle, offering services to mitigate the extremes of drought and flood (Fig.1.3). As a
result, recognizing the water cycle as a biophysical process is essential for achieving

sustainable ecohydrological management (Cosgrove 2012).

o
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Figure 1.3. Interactions between ecosystems and water resources (ESA/AOES Medialab)
1.1.3 Climate change and intensifying hydrological cycle

"Climate change" refers to changes in the global environment that may alter the
capacity of the Earth to sustain life. Global warming is one of the most significant and
apparent recent climate changes, which has been identified as being mostly due to
anthropogenic activities (Karl and Trenberth 2003; Ramanathan et al. 2001). Since the
term "global warming" was first used in 1975 (Broecker 1975), it has become one of the
hottest scientific topics among scientists seeking its causes and impacts. Starting from
the early 20" century, the global Earth surface temperature has risen about 0.8 °C, with

two-thirds of the increase occurring since 1980 (Carnesale and Chameides 2011).

One of the important consequences of global warming is an intensifying global water
cycle over the past few decades (Chou et al. 2013). This intensification of the
hydrological cycle is mainly shown in terms of increasing atmospheric water vapour
content and precipitation, which eventually results in wet regions around the world

getting wetter and dry regions drier (Allan et al. 2010; Held and Soden 2006; John et al.
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2009; Knutson and Manabe 1995; Li et al. 2011; Wentz et al. 2007). There are good
physical reasons for this. In a warmer climate, the moisture content of the troposphere is
likely to increase, governed by the Clausius-Clapeyron expansion with a relative
humidity that tends to change less strongly (Trenberth and Stepaniak 2003). This results
in an increased water vapour concentration in the lower troposphere. Over
climatologically wet regions dominated by an ascending motion, the upward motion
induces positive anomalies of moisture convergence which finally enhances
precipitation. Vice versa, the downward motion flow over climatologically dry regions
causes negative anomalies of moisture convergence, which slows the processes for
producing precipitation (Chou and Lan 2012). Apart from the physical basis, the
tendency for moist regions to become wetter while dry regions become drier in response
to global warming has also been captured by both models and observations (Allan and
Soden 2008; Lenderink and Van Meijgaard 2008). This effect is often termed as the
“rich-get-richer mechanism” (Emori and Brown 2005; Held and Soden 2006) or the
“thermodynamic contribution” (Chou and Neelin 2004; Chou et al. 2009).

1.1.4 Increasing hydroclimatic extreme events

Hydroclimatic extreme events, commonly known as floods and droughts (Shelton
2009), often lead to changes in water-resource availability, and cause adverse impacts
on health, survival, infrastructure, communities and ecosystems (Meehl et al. 2005;
Meehl et al. 2007). To date, hydroclimatic events are still poorly understood, and

robustly planning for and preventing them remains a challenge.

Climate changes, such as global warming, have intensified the global hydrological
cycle by adding more moisture to the warmer air. This has led to rising rates of global
precipitation, evaporation, and freshwater discharge, which resulted in more extreme
flooding events occurring over wet areas while increasingly common mega-droughts
over dry regions have occurred (Famiglietti and Rodell 2013). Being forced by
anthropogenic greenhouse gases, the problem is only going to get worse over time

(Stocker et al. 2013).

Based on ocean salinity measurements gathered around the world over the years
1950 — 2000, recent study showed that ocean salinity patterns revealed a strong

intensification of global hydrological cycle in response to global warming (Durack et al.
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2012). Moreover, this study observed robust evidence of the intensifying global
hydrological cycle at a rate of 8 + 5% per degree of surface warming, which is double
the response projected by current climate models (Meehl et al. 2005). This phenomenon
was shown to be particularly significant in the waters surrounding Australia, southern
Africa and western South America, indicating future increasing hydroclimatic events for
places like Australia (Durack et al. 2012), which has already been experiencing

increased episodes of droughts and flooding over the last few decades.

1.2 Australian ecohydrology

Australia has a vast land area, encompassing a wide range of ecological and
hydroclimatic conditions. Recent studies suggested that Australia is expected to
experience an increasing frequency and intensity of hydroclimatic extreme events,
during which variations in Australian ecohydrology often play an important role in the
inter-annual fluctuations of the global carbon and water cycles (Boening et al. 2012;

Bastos et al. 2013; Fasullo et al. 2013; Poulter et al. 2014).

Australia, with a land area of 7.69 million km?, accounts for five per cent of the
world's land mass and is the planet's sixth largest country after Russia, Canada, China,
the USA, and Brazil (Geoscience Australia 2009). It is the smallest of the world's
continents and also the lowest, the flattest and the driest inhabited continent (Johnson
2004). Australia consists of six states (Fig.1.4): New South Wales (NSW), Queensland
(QLD), South Australia (SA), Tasmania (TAS), Victoria (VIC) and Western Australia
(WA), and two major mainland territories (Fig.1.4): the Australian Capital Territory
(ACT) and the Northern Territory (NT).

LA ustralian
ria

Capital
Tasmania '

Territory

Figure 1.4. Australia states map



1.2.1 Hydrogeology and soil

Australia is one of the oldest continents geologically and has become the flattest land
mass on earth through millions of years of erosion (Fig.1.5 A). It is home to rocks
dating from more than 3000 million years while others are the result of volcanic
activities that continued up to only a few thousand years ago (Geoscience Australia
2010). Australia was shaped by tectonic Earth movements and long-term changes in sea
level, and most of its landforms are the result of prolonged erosion by wind and water.
Around half of Australia's rivers drain inland and often end in ephemeral salt lakes, with
very long historical drainage patterns. Some individual valleys have maintained their

position for millions of years (Geoscience Australia 2010).

The soils constitute one of the greatest natural resources for humans and ecosystems
in Australia. They are mainly composed of weathered rocks, forming on sorted
sediments in sand sheets, dune fields and riverine plains (Fig.1.5 B). Soils spread over
the continent under various climatic conditions, mostly lying in the alpine zones of
south-eastern Australia and Tasmania, through the Mediterranean zones of south-
western and southern Australia and the wet and dry tropics of Queensland, to the very
low rainfall areas of the centre (Northcote 1960-1968). Due to the low and unreliable
rainfall, soils in most of the arid to semi-arid regions over outback Australia are not
suitable for arable agriculture or sown pasture. The surface and underground water
resources of the areas are very low or saline, making irrigation impossible (Isbell et al.

1997).



Figure 1.5. (A) Basic geological regions of Australia based on age (Geoscience Australia). (B)

Australian Soil Classification map (Northcote 1960-1968).

1.2.2 Climate drivers

Australia is characterized by extreme climate variability driven by multiple large-
scale climate modes (Fig. 1.6), among which the three dominant ocean-atmosphere
systems are: the El Nifio-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD)
and the Southern Annular Mode (SAM) (Cai et al. 2011; Meyers et al. 2007; Risbey et
al. 2009). The Intergovernmental Panel on Climate Change (IPCC) concluded that
global warming is expected to increase the frequency of extreme climatic events
associated with these three climate modes in the 21% century (Rogelj 2013). Moreover,
recent study found that when the three climate modes synchronise, the interaction
amongst them will bring more than the effect of any single mode, causing extreme

drought or flooding across Australia (Cleverly et al. 2016).
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Figure 1.6. The main climate drivers of rainfall variability in the Australian region (BOM).
1.2.3 Climate of Australia

Australia experiences a variety of climates due to its vast size and is under the
control of various climate modes, within generally six climatic zones (Fig.1.7 A),

including (BOM 2001):

1) Temperate zone: covers the coastal hinterland of New South Wales, much of
Victoria, Tasmania and the south-eastern corner of South Australia;

2) Desert zone: arid/semi-arid areas of outback Australia, stretching across the South
Australia and Western Australia, far south-western Queensland and north-western
corner of New South Wales and part of the Northern Territory.

3) Grasslands (or savanna) zone: is a belt-like area surrounding the desert zone areas
in the center with additional small part in the middle of the Northern Territory.

4) Equatorial zone: the far tip of Queensland.

5) Tropical zone: parts of the Western Australia, Northern Territory and Queensland
ranging from 10 ~ 15°S.



6) Mediterranean (or sub-tropical) zone: the coastal and inland fringe along the
Queensland coast and the coastal fringe south of Western Australia.

The seasons in the Temperate, Grassslands and Desert zones are (Reid 1995): Spring
(September to November), Summer (December to February), Autumn (March to May)
and Winter (June to August) while there are only two seasons (dry and wet) in the
Equatorial, Tropical and Mediterranean zones: Dry (April to October) and Wet
(November to March).

Australia is the driest continent apart from Antarctica, with average annual rainfall
below 600 mm over 80% of the continent, and below 300 mm over 50% (Fig.1.7 B).
Rainfall is distributed unevenly across Australia; some places in the desert area of
Australia receive less than 100 mm rainfall annually while some areas in far North
Queensland coast can have rainfall exceeding 4000 mm a year. The dryness of the
Australian landmass is mainly attributed to four factors: shape of the landmass, low
elevation of landforms, cold ocean currents off the west coast and the dominance of
high-pressure systems (Nicholls et al. 1997). Previous studies indicated that average
rainfall has slightly increased since 1900 but with strong spatial variation of increases in

northern Australia and declines in southern regions (CSIRO and BOM 2014).
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Figure 1.7. (A) Major climatic zones of Australia with red polygon highlighting the Agriculture
areas (BOM). (B) Mean annual precipitation over 1961-1990 (BOM).

1.2.4 Land cover type
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Australia, well-known for its relatively low vegetation cover globally, has undergone
enormous land-use changes since human settlement, resulting in increases in
deforestation and forest degradation (Bradshaw 2012). In order to identify the land
cover types of Australia and build the associated land use management systems (e.g.
land use types, irrigated areas, deforestation and regrowth forest), the Dynamic Land
Cover Dataset (DLCD) was developed by Geoscience Australia and the Bureau of
Agricultural and Resource Economics and Sciences (Lymburner et al. 2011). This
Australian land cover classification system (Fig.1.8) shows that Grasslands are the
dominant feature of Australia's landscapes, covering more than one third of the land
area. Tree dominated landscapes (e.g. open and sparse tree cover classes) comes second,
accounting for slightly less than 30% of Australia's land area. Shrub dominated
landscapes take up around one fifth of the continent, with an area of almost 1.6 million

square kilometres in total.

Agriculture, including irrigated and rain-fed cropping and pastures, cover less than
10% of Australia's land area and are mainly located in areas with climates ranging from
tropical to temperate and Mediterranean-style (e.g. north-eastern, south-eastern and
south-western parts of Australia). The remaining areas include: fresh and salt lakes,
wetlands, and urban areas occupy approximately 1.5% of Australia's land area. The
intensity of human activities in Australia is much lower than those in other countries
(Sanderson et al. 2002), with most impact centred in urban and agricultural areas. Even
in large croplands, irrigation and river extraction activities are not intensive with rain-

fed cropland accounting for more than 95% (NLWRA 2001).
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Figure 1.8. Australia Land Cover Map compiled from the National Dynamic Land Cover

Dataset from 2000 — 2008 (Lymburner et al. 2011).

1.2.5 Natural hazards

Natural hazards and disasters commonly caused by extreme climatic events across

Australia are (Steffen et al. 2013):
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1) Bushfires: Bushfires in Australia are common and frequent, particularly during
the summer months. They have been active and increasing in southern NSW, Victoria,
Tasmania and parts of South Australia, over the last 30 years (Hennessy et al. 2005).

2) Flooding: Rainfall distribution in Australia is extremely uneven. Eastern and
north-eastern tropical areas of Australia receive high levels of rainfall each year. During
La Nifa years, the heavy rain in these areas often creates damaging floods (Heberger
2011).

3) Drought: Studies indicate that mega-drought occurs in some parts of Australia
on average once every 18 years (Australian Bureau of Agricultural 2012). Some
droughts are long lived while others are short and intense, but both causing significant
damage. Droughts can be both continental and localised and are sometimes, but not
always, related to El Nifio events, making drought forecasting very difficult.

4) Cyclones: Australia is attacked by tropical cyclones primarily between
December and April but sometimes from November to May. Cyclones are most likely to
occur in northern Australia, in particular, between Broome and Exmouth. Severe
cyclones can cause billions of dollars of damage and many deaths (Kuleshov et al.
2008).

The frequency of extreme climatic events has been increasing over the last four
decades due to greenhouse warming, and is likely to increase in future, which may exert
substantial ecological and hydrological impacts on Australia (Cai et al. 2014a; IPCC
2014).

1.3 Australia's recent hydroclimatic extremes and their impacts

Australia is a land of extremes, and famous for both droughts and floods. This has
been truer than ever in the 21* century. Since 2000, Australia has experienced three
large-scale hydroclimatic extremes, including a decadal millennium drought from 2001
to 2009 (termed the 'big dry'), followed by a short wet pulse (termed the 'big wet')
during 2010 and 2011, and another continent-wide dry condition in 2015. The 'big dry'
led to a reduction of more than half of the water storage for mainland capital cities and
severe declines in agricultural production (Steffen et al. 2013). It also had adverse
impacts on ecosystems, which suffered from reduced water availability and natural
disasters such as frequent bushfires (Van Dijk et al. 2013). Overall, since 2001 the
Australian Federal Government had provided $4.5 billion AUD in drought assistance.
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The following 'big wet' caused widespread flooding over most of eastern Australia,
which affected at least 70 towns and more than 200,000 people with a total economic
loss estimated to be around $2.38 billion AUD (Heberger 2011). 2015 was ranked as
Australia's fifth hottest year on record with a September-October rainfall of just 17 mm
- the third lowest total on record. This 2015 El Nifio event eventually became the
seventeenth of the 26 big El Nifio events since 1900 that have brought catastrophic
bushfires historically to Victoria, Tasmania and South Australia and severe drought in
Queensland (David Jones 2016). Moreover, it may also be related to the devastating
Great Barrier Reef coral bleaching (Terry Hughes et al. 2016) and the concurrent
dieback of mangroves in Queensland's Gulf Country (Norm Duke and Wild 2016). The
world's weather was reported to be on a highly unpredictable path of extremes which
may continue to 2016-17 (Hannam 2016). Recent study suggested that the number of El
Nifio and La Nifa years may stay the same with climate change, but the frequency of
ENSO-related catastrophic weather events affecting Australia are likely to quadruple

this century if greenhouse gas emissions remain on a rising trajectory (Cai et al. 2015).

1.4 Overview of literature

Climate change leads to anomalous behaviour in climate modes, increasing the
frequency and severity of hydroclimatic events (Cai et al. 2014a; IPCC 2014). Recent
evidence demonstrated that variations in Australia's ecohydrology under hydroclimatic
extremes play an increasingly important role in the inter-annual variability of the global
carbon and water cycles (Bastos et al. 2013; Boening et al. 2012; Fasullo et al. 2013;
Poulter et al. 2014).

1.4.1 Hydrological studies

Numerous studies have focused on the hydrological impacts of the 'big dry',
particularly over south-eastern Australia where one of the most important drainage
basins — the Murray-Darling Basin (MDB) is located (Kirby et al. 2012; Leblanc et al.
2011; Leblanc et al. 2009; Van Dijk et al. 2013). The MDB is commonly called the
“bread basket” because it accounts for about 30% of the gross value of Australia's

agricultural production (Liu et al. 2015). Besides the agricultural land in the basin (~67%
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for pasture and cropping), 32% of the MDB is covered by native forest that provides
home for many important animal species (Koehn 2015).

Leblanc et al. (2009) found the multi-year drought led to an almost complete drying
of surface water and significant groundwater depletion over the MDB. The following
2010-11 'big wet' watered the MDB but at some places in the basin only the surface
water was replenished instead of groundwater (Leblanc et al. 2011; Tulbure et al. 2016).
In addition, there were also studies conducted on the impacts of the prolonged drought
and intensive wet period on ecosystems, economy, and society over this region (Kirby
et al. 2012; Steffen et al. 2013; Van Dijk et al. 2013). The 'big dry', previously
considered as a localized drought over southeast Australia (Leblanc et al. 2009;
Ummenhofer et al. 2009), was later proven to be a continent-wide event (Heberger 2011;
McGrath et al. 2012). McGrath et al. (2012) showed a pronounced reduction in water
storage and rainfall across broad areas of Australia during the drought, particularly over
north-western Australia. By contrast, the La Nifia induced 'big wet' brought record-
breaking rains in 2010-2011 and triggered a global land carbon sink anomaly, of which
more than half was attributed to Australia's ecosystems (Ahlstrom et al. 2015; Poulter et
al. 2014). The dramatic increase in rainfall from this La Nifia event also resulted in a

recorded global sea-level drop (Boening et al. 2012; Fasullo et al. 2013).

1.4.2 Ecological studies

Australia's recent large-scale drought and flooding events provide unique
opportunities to understand ecosystem responses to hydroclimatic extremes. Studies
have been carried out to investigate the impacts of hydrological variations on intra and
inter-annual variability in surface greenness over Australia during the 'big dry' and 'big
wet' (Broich et al. 2014; McGrath et al. 2012). Yang et al. (2014) did the first study on
direct use of Total Water Storage Anomaly (TWSA) data derived from the Gravity
Recovery and Climate Experiment twin satellites (GRACE), to examine hydrological
controls on temporal variability in vegetation during the 'big dry'. They found the
GRACE-TWSA is a valuable indicator for surface greenness dynamics especially
during hydroclimatic periods, which sometimes cannot be captured by conventional
hydrological indicators, such as precipitation and soil moisture (Yang et al. 2014). A
recent study of Ma et al. (2015) observed abrupt shifts in phenology and vegetation

productivity under the climate extremes, with widespread reductions or collapse in the
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normal patterns of seasonality over south-eastern Australia. They further found that
semi-arid ecosystems exhibit the largest sensitivity to hydroclimatic variations among
other ecosystems (Ma et al. 2015). This demonstrates that ecosystems in arid or semi-
arid areas, like over most parts of Australia, are particular vulnerable to hydroclimatic

extremes (Huete 2016).
1.4.3 Climatological studies

Australia's wild 21 century hydroclimatic events, including a protracted drought
period, a dramatic wet pulse and another anomalous El Nifio event in 2015, were mostly
attributed to the variations in climate systems and their interactions.

The 'big dry' event is of continental scale but the concurrent droughts over different
areas of Australia were due to various reasons. For example, the drought in south-
eastern Australia was attributed to a significant lack of the "negative" phase of the
Indian Ocean Dipole (IOD) in conjunction with increased air temperature (Ummenhofer
et al. 2009). In comparison, the dry event over north-western Australia was mainly
caused by the decrease in tropical cyclone frequency (McGrath et al. 2012; Nott 2011),
which is the major source of the water for this region (Cullen and Grierson 2007).
Moreover, the large reduction in rainfall over south-western Australia was a result of the
combination of long-term positive IOD and upward Southern Annular Mode (SAM)
trend during winter (Cai et al. 2014c). Previous studies based on climate models
suggested that the Australian Millennium Drought was generally attributed to natural
variability in climate systems (Ummenhofer et al. 2011). However, recent study showed
that the late 20™ century changes in climate modes were also partly due to
anthropogenic greenhouse warming, which significantly influenced many regional

rainfalls over Australia, causing droughts like 'big dry' (Cai et al. 2015).

Although the 2010-11 'big wet' was mostly attributed to one of the strongest La Nina
events in the past nine decades (BOM 2012; Nicholls 2011), recent studies showed that
it was also partly explained by a concurrent extreme positive excursion of SAM
particularly over regional areas (Hendon et al. 2014). SAM was estimated to have
accounted for around 10% of the 'big wet' rainfall anomaly over eastern Australia and

more than 40% along the east-central coastal regions in 2010 (Lim and Hendon 2015).
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The annual climate report from the Bureau of Meteorology (BOM) demonstrated the
fifth hottest year on record of Australia made 2015 another drought period, which was
mostly caused by a strong El Nifio event concurrent with a positive phase of IOD and

seasonal effects from SAM (Scott Power 2016).

Australian weather and climate have been demonstrated to generally be a result of
interactions among various climate systems rather than the effect of any single climate
mode (Risbey et al. 2009). The synchronization of the climate modes especially the
three major ones influencing Australia — ENSO, IOD and SAM, will often bring more
than the effect of any single mode on rainfall/TWS, causing extreme dry or wet

hydroclimatic events across Australia (Cleverly et al. 2016).

1.5 Gravity recovery and climate experiment satellites

Despite the recent extreme hydroclimatic impacts, 1) the spatial partitioning and
temporal evolution of water resources across Australia, 2) the resilience of ecosystems
to the highly variable water regimes and large-scale hydrological fluctuations and 3) the
associations between ecohydrological dynamics and the extreme climate variability
remain largely unknown. In this thesis, we addressed these issues by applying the
Remote Sensing (RS) technique, which with multi-sensor systems of various spatial
resolutions and physical properties, can provide an unparalleled way to monitor
important land surface dynamics and characteristi