Vulnerability assessment and adaptation of dryland agriculture on the Chinese Loess Plateau and Australian Wheatbelt

Xueling Li

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

School of Life Sciences
Faculty of Science
University of Technology Sydney

April 2017
Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Xueling Li

Xueling Li

18/04/2017
Acknowledgements

This project was funded by the joint China Scholarship Council (CSC) and the University of Technology, Sydney (UTS) Doctor of Philosophy (PhD) Scholarship. I extend my heartfelt gratitude to many people who helped me during the process of completing my project both in life and work.

I would like to firstly thank my supervisor Prof. Qiang Yu for his open minded supervising style, enthusiasm, encouragement and considered advice. Thanks for your conceptual input and support during all those PhD crises. Also thanks to my co-supervisors Dr. Anna Roberts, Director of Natural Decisions Pty Ltd and former Senior Research Scientist at Department of Primary Industries Victoria (DPI), who is particular assisted early on in the project, and Dr. Longhui Li from UTS, whose critical advice encourage me to become a better researcher.

I would also give my appreciation to my predecessors, collaborators, colleagues and friends. Dr. Chao Chen from CSIRO Agriculture Flagship, Dr. Hongtao Xing from CSIRO Land and Water and Dr. Liang He from National Meteorological Center of China Meteorological Administration shared their knowledge and gave me advices on my crop model studies; Dr. Wenzhao Liu and Wen Lin from Institute of Soil and Water Conservation Chinese Academy of Sciences and Ministry of Water Resources, assisted field experiments and data collection at Changwu station. Dr. Roger Cremades from Climate Service Center Germany (GERICS) gave helpful comments and feedback on my journal article publication. Prof. Alfredo Huete and his team members at UTS helped me practise for my stage assessment presentation and were willingness to help when I had
funding issues. Zunyi Xie, Hao Shi, Jianxiu Shen, Qinggaozi Zhu, accompanied me for most of my time and we had enjoyable experience together at UTS. All these bit by bit in life and work and relationships are appreciated and cherished. Last, I want to thank my family for their endless support.
Abstract

Sustainable agricultural production on drylands faces challenges from increasing food demand and climate change. The interrelated issues of production instability, vulnerability to climate change and the need for effective adaptations require a comprehensive and integrated ecological-economic assessment. Accordingly, this thesis examines two key dryland agricultural regions, the Australian Wheatbelt and the Chinese Loess Plateau, to provide new insights and improved approaches for dryland agricultural management.

Decomposition analysis was undertaken to identify the driving forces in growth and instability of Australian wheat production from 1900-2010. Results show that instability of Australian wheat production has not been reduced significantly in the past century. The increasing trend of wheat production was mainly due to sowing area increases whilst the yearly fluctuation of production is mainly caused by variable yields. A focus on yield alone may therefore bias assessments of the vulnerability of agriculture to climate change.

A conceptual framework was developed to assess the agricultural vulnerability of 243 rural counties on the Chinese Loess Plateau. A vulnerability index for each county was calculated from statistical indicators. Within the 49 most vulnerable counties, 42 were characterised by high exposure and sensitivity but low adaptive capacity. The most vulnerable area was found to be located in the central northeast-southwest belt of Loess Plateau.
Upon identifying vulnerable areas, the effectiveness of the regionally significant adaptation, plastic film mulching, on maize growth was assessed in the Loess Plateau. The APSIM model was calibrated and validated using field experiment data, then applied to simulate maize growth during 1961-2010 at Changwu station. Plastic film mulching could significantly increase maize yields by an average of 15.3%, and increase the cumulative probability at mid-range yield levels at Changwu. The advantage was found to be more pronounced in dry years than wet years. Geostatistical analysis was used to extend the modelling across the Loess Plateau to identify areas with climate favourable for adopting plastic film mulching. The central south presented high and stable production while the northwest showed the greatest potential in yield increase and variability reduction.

The multiscale studies concern both developing and developed counties, can be referenced to location-specific information for policy makers and researchers. The principles, frameworks, technologies and tools can be modified and adopted in other dryland regions.

Key words: Dryland, Australian Wheatbelt, Loess Plateau, Climate change, Agricultural production, Vulnerability, Adaptation
Symbols and abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABARES</td>
<td>Australian Bureau of Agricultural and Resource Economics and Sciences</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>APSIM</td>
<td>Agricultural Production Systems sIMulator</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>ESW</td>
<td>Extractable soil water</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency</td>
</tr>
<tr>
<td>RCP</td>
<td>Representative concentration pathways</td>
</tr>
<tr>
<td>UNDP</td>
<td>Office to Combat Desertification and Drought</td>
</tr>
<tr>
<td>UNSO</td>
<td>United Nations Sudano-Sahelian Office</td>
</tr>
<tr>
<td>$</td>
<td>dollar/s</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>ca.</td>
<td>approximately</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
</tbody>
</table>
List of tables

Table 4.1 Vulnerability indicators, variables and data sources .. 58

Table 4.2 Pearson’s Product Moment Correlation Coefficients of calculated vulnerability components from 243 counties on the Loess Plateau ... 63

Table 4.3 Identified 49 most vulnerable counties on Loess Plateau 67

Table 5.1 Soil properties at experiment site at Changwu agro-ecological experiment station ... 80

Table 5.2 Derived values of parameters for APSIM-Maize at Changwu (Variety: Xianyu 335). ... 85

Table 6.1 Simulated maize growing period, yield range and cumulative probability at four selected sites under conventional farming ... 111
List of figures

Fig. 1.1 Map of global drylands (Source: Millennium Ecosystem Assessment). 4

Fig. 1.2 Representation of the thesis structure and research questions showing the chapter numbers (grey boxes), research activities (yellow boxes) and outputs (green boxes). 7

Fig. 2.1 Australian Wheatbelt overlapping with distribution of dryland agriculture (extracted from Land Use of Australia 2010-11). Dryland agriculture includes all dryland cropping, grazing of modified/sown pastures and horticulture where no irrigation is used. ... 17

Fig. 2.2 Location of the Loess Plateau in China. ... 20

Fig. 2.3 Grain production (a), sowing area (b) and average yield (c) in the Australian Wheatbelt and Chinese Loess Plateau from 2001-2010. .. 24

Fig. 2.4 Categorisation of methodologies, methods and characterising dimensions of outcome and context vulnerability (Pearson et al. 2008). .. 29

Fig. 3.1 Australian wheat production (a), sowing area (b) and yield (c) from 1900 to 2010. ... 42

Fig. 3.2 Changes in average decadal production of Australian wheat. 45

Fig. 3.3 Changes in average yearly production of Australian wheat. 47
Fig. 3.4 Effect of yield and area on mean annual fluctuation of Australian wheat production by decade. IY, the average relative contribution rate of yield to production fluctuation; IA, the average relative contribution rate of sowing area to production fluctuation; IYA, the average relative interaction contribution rate of yield and area to production fluctuation. ...

Fig. 4.1 Conceptual framework for assessing agricultural vulnerability to climate change as a function of statistical indicators. ...

Fig. 4.2 The distribution of 3 calculated components (exposure, sensitivity, adaptive capacity) and 9 normalized indicators of vulnerability to climate change from 243 rural counties in the Loess Plateau. Vertical bars and left and right edges of boxes indicate minimum, maximum, 25 and 75 percentiles of the total data, thick black line and diamond are the median and average, respectively. RV = rainfall variability; EM = soil erosion modulus; CYV = climatic yield variability; DIRR = disposable income of rural residents; NAGDP = non-agriculture share of GDP; PGSA = productivity of grain sown area; RIF = ratio of irrigated farmland; CCF = consumption of chemical fertilizers; AMP = agricultural machinery power. ...

Fig. 4.3 Spatial distribution of vulnerability to climate variability and its components in the Loess Plateau: (a) exposure; (b) sensitivity; (c) potential harm; (d) adaptive capacity; (e) vulnerability. ..

Fig. 4.4 Mean absolute change in ranking of 243 counties of the Loess Plateau according to integrated vulnerability index when individual indicators are removed from the calculation of the index (a) and during one-way sensitivity analysis on the weights of six
indicators of adaptive capacity (b). RV = rainfall variability; EM = soil erosion modulus; CYV = climatic yield variability; DIRR = disposable income of rural residents; NAGDP = non-agriculture share of GDP; PGSA = productivity of grain sown area; RIF = ratio of irrigated farmland; CCF = consumption of chemical fertilizers; AMP = agricultural machinery power. .. 71

Fig. 4.5 Comprehensive management of Loess Plateau area zoning map (National Development and Reform Commission et al. 2010) with highest vulnerability class counties identified in this study marked. .. 73

Fig. 5.1 Changwu agro-ecological experiment station, (a) location within the Loess Plateau, and (b) view of the experiment site. .. 78

Fig. 5.2 Calibration and validation results of APSIM-Maize using Leaf Area Index (LAI) data from three maize growing experiments at Changwu. (a) Data from the 2010 experiment was used to calibrate the model which was then used to simulate the 2007 and 2008 experiments (circles = observed LAI; lines = predicted LAI). (b) Regression of observed and simulated LAI values (y = 1.0082x - 0.1803, R² = 0.78, p < 0.01). 86

Fig. 5.3 Calibration and validation results of APSIM-Maize using biomass and yield data from three maize growing experiments at Changwu. (a) Data from the 2010 experiment was used to calibrate the model which was then used to simulate the 2007 and 2008 experiments (hollow circles = observed biomass; lines = predicted biomass; filled triangles = observed yield; hollow triangles = predicted yield). (b) Regression of observed and simulated biomass and yield values (hollow circles = biomass; hollow triangles = yield; y = 0.9789x + 0.8024, R² = 0.97, p < 0.01). .. 87
Fig. 5.4 (a) Calibration results of APSIM-Maize Extractable Soil Water (ESW) data from maize growing experiments at Changwu in 2010 (circles = observed ESW; line = simulated ESW); (b) Regression of observed and simulated ESW values (y = 1.1313x - 35.842, R² = 0.95, p < 0.01).

Fig. 5.5 (a) Mean daily air temperature, (b) solar radiation and (c) total rainfall during maize growing seasons from 1961-2010. The boxplots show the 5th, 25th, 50th, 75th and 95th percentiles. Circles indicate the mean and crosses indicate the minimum and maximum.

Fig. 5.6 Total annual within season rainfall from 1961-2010 recorded at Changwu (vertical bars) and long term average (horizontal line).

Fig. 5.7 Simulated maize yields during 1961-2010 at Changwu under three scenarios; S1 conventional farming without plastic film mulching; S2 farming with plastic film mulching’s effect on reduced soil evaporation by 50%; S3 farming with plastic film mulching’s effect on both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C.

Fig. 5.8 Cumulative probability distribution of maize yields under three scenarios; conventional farming without plastic film mulching (S1, solid line); farming with plastic film mulching’s effect of reducing soil evaporation by 50% (S2, dotted line); farming with plastic film mulching’s effect of both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C (S3, dashed line).

Fig. 5.9 Average simulated maize yield at Changwu under three scenarios for dry and wet years with (a) and without (b) data from 1983, in which a yield of 0 t ha⁻¹ was simulated.
due to low temperatures after sowing. S1 = conventional farming without plastic film mulching; S2 = farming with plastic film mulching’s effect of reducing soil evaporation by 50%; S3 = farming with plastic film mulching’s effect of both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C; error bars represent standard deviation.

Fig. 5.10 Simulated WUE during 1961-2010 at Changwu under three scenarios; S1 conventional farming without plastic film mulching; S2 farming with plastic film mulching’s effect on reduced soil evaporation by 50%; S3 farming with plastic film mulching’s effect on both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C.

Fig. 5.11 Cumulative probability distribution of WUE under three scenarios; conventional farming without plastic film mulching (S1, solid line); farming with plastic film mulching’s effect of reducing soil evaporation by 50% (S2, dotted line); farming with plastic film mulching’s effect of both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C (S3, dashed line).

Fig. 5.12 Average simulated WUE at Changwu under three scenarios for dry and wet years with (a) and without (b) data from 1983, in which a yield of 0 t ha⁻¹ was simulated due to low temperatures after sowing. S1 = conventional farming without plastic film mulching; S2 = farming with plastic film mulching’s effect of reducing soil evaporation by 50%; S3 = farming with plastic film mulching’s effect of both soil evaporation reduction by 50% and temperature increase with an average increase of 0.77 °C; error bars represent standard deviation.
Fig. 6.1 Distribution of 45 meteorological stations over the Loess Plateau, where four sites were selected to show a transect of rainfall and temperature from central south to north. ... 103

Fig. 6.2 (a) Rainfall, (b) daily temperature and (c) global radiation in the spring maize growing season of Loess Plateau, (d)-(f) respectively indicate the coefficient of variations in rainfall, daily temperature and global radiation. ... 105

Fig. 6.3 Left (a)-(c) simulated yields and right (e)-(f) the coefficient of variations of spring maize across Loess Plateau under S1 (top), S2 (middle) and S3 (bottom) respectively. .. 107

Fig. 6.4 Spatial averaged yield difference between S2 - S1 (a), S3 - S1 (b), S3 - S2 (c). ... 109

Fig. 6.5 Spatial averaged change in coefficient of variation between S2 - S1 (a), S3 - S1 (b), S3 - S2 (c). ... 110

Fig. 6.6 Cumulative distribution of spring maize yield for four locations in the Loess Plateau under three scenarios; S1 (a), S2 (b), and S3 (c). ... 113

Fig. 6.7 Coefficient of variation reduction under S3 comparing to S1, with 49 most vulnerable counties highlighted, (a) absolute value and (b) by percentage. 115
Table of Contents

Certificate of original authorship ... i

Acknowledgements ... iii

Abstract .. v

Symbols and abbreviations ... vii

List of tables .. ix

List of figures .. xi

Table of Contents .. xvii

Chapter 1: Introduction ... 1

1.1 Problem statement .. 1

1.2 Research questions .. 6

1: What are the specific challenges for the management of dryland agricultural production? ... 7

2: What are the driving forces of wheat production growth and instability in Australia? ... 8

3: How can spatial variation of agricultural vulnerability be quantified? 8
4: How to assess the effectiveness of plastic film mulching as an adaptation to reduce vulnerability? ... 10

5: Where and how does climate variation in the Loess Plateau influence the effect of plastic film mulching and its estimated potential to reduce vulnerability? 11

1.3 Contributions to knowledge .. 12

Chapter 2: Dryland agricultural production, vulnerability and adaptation in two case study regions .. 15

2.1 Overview ... 15

2.2 The Australian Wheatbelt .. 16

 2.2.1 Overview .. 16

 2.2.2 Climate ... 17

 2.2.3 Farming systems .. 18

2.3 The Chinese Loess Plateau .. 19

 2.3.1 Overview .. 19

 2.3.2 Climate ... 20

 2.3.3 Farming systems .. 21

2.4 Growth and instability of dryland grain production .. 22
2.4.1 Grain production .. 22

2.4.2 The driving forces of growth and instability in agricultural production 25

2.5 Agricultural vulnerability assessment .. 26

2.5.1 The evolution of vulnerability definition ... 26

2.5.2 Vulnerability assessment methods .. 28

2.5.3 The research progress of agricultural vulnerability ... 31

2.6 Assessing the effectiveness of adaptation options .. 33

2.6.1 The adaptations in two study regions ... 33

2.6.2 The effectiveness of adaptations ... 35

2.7 Knowledge gap summary ... 35

Chapter 3: Contribution of area and yield to growth and instability in Australian wheat production ... 37

3.1 Introduction ... 37

3.2 Materials and methods .. 38

3.2.1 Data .. 38

3.2.2 Decomposition analysis ... 38

3.3 Results and discussion .. 41
3.3.1 Trend and variability of wheat production, sowing area and yield 41

3.3.2 The contribution of area and yield to the wheat production growth 43

3.3.3 The contribution of area and yield to the yearly fluctuation in wheat production ... 46

3.3.4 Policy implication .. 50

3.4 Conclusion .. 52

Chapter 4: Agricultural vulnerability over the Loess Plateau in response to climate change ... 53

4.1 Introduction ... 53

4.2 Method .. 56

4.2.1 Study area ... 56

4.2.2 Vulnerability framework .. 56

4.2.3 Indicators of vulnerability to climate change ... 57

4.2.4 Classification and mapping .. 62

4.2.5 Sensitivity analysis ... 62

4.3 Results and discussion .. 63

4.3.1 Relationship between vulnerability components and indicators 63
4.3.2 Vulnerability to climate change in the Loess Plateau .. 65

4.3.3 Spatial distribution of vulnerability on Loess Plateau .. 66

4.3.4 Sensitivity of results to indicator choice and weighting 70

4.3.5 Policy implications .. 72

4.4 Conclusion ... 74

Chapter 5: Analysis of the effectiveness of plastic film mulching as an adaptation..... 75

5.1 Introduction ... 75

5.2 Materials and methods ... 77

5.2.1 Study site, soil and climate data .. 77

5.2.2 Field experiments ... 80

5.2.3 APSIM model and its parameterisation .. 81

5.2.4 Model settings and simulation experiment design .. 82

5.2.5 Data analysis .. 83

5.3 Results .. 84

5.3.1 Model calibration and validation .. 84

5.3.2 Temporal variability of climate from 1961-2010 .. 88
5.3.3 Yield response to the application of plastic film mulch .. 90

5.3.4 Water use response to the application of plastic film mulch 93

5.4 Discussion .. 96

5.5 Conclusion .. 98

Chapter 6: Spatial variation of the effectiveness of plastic film mulching skill to adapt to climate across Loess Plateau ... 99

6.1 Introduction ... 99

6.2 Materials and methods ... 100

6.2.1 The APSIM model .. 100

6.2.2 Climate, soil and crop data ... 100

6.2.3 Spatial analysis .. 101

6.2.4 Data analysis ... 102

6.3 Results and discussion ... 103

6.3.1 Spatial and temporal variation of climate during maize growing season 103

6.3.2 Spatial variation of maize yield with and without plastic film mulching 105

6.3.3 Temporal variability of maize yield ... 110

6.3.4 The effectiveness of plastic film mulching as an adaptation 114
Chapter 7: Key findings, implications and conclusions ... 117

7.1 Overview ... 117

7.2 Key findings .. 117

7.2.1 What are the specific challenges for the management of dryland agricultural production? ... 117

7.2.2 What are the driving forces of grain production instability? 118

7.2.3 How can the spatial variation of agricultural vulnerability be quantified? .. 119

7.2.4 How to assess the effectiveness of plastic film mulching as an adaptation to reduce vulnerability? ... 120

7.2.5 Where and how does climate variation in the Loess Plateau influence the effect of plastic film mulching and its estimated potential to reduce vulnerability? 121

7.3 Implications for dryland agricultural management ... 122

7.3.1 Grain production growth and stability ... 122

7.3.2 Vulnerability assessment .. 123

7.3.3 Adaptation .. 123

7.4 Limitations and further work .. 124
7.5 Concluding comments... 125

References.. 127

Appendix I... 145