Towards Efficient and Lightweight Security Architecture for Big Sensing Data Streams

by

Deepak Puthal

M. Tech. (National Institute of Technology Rourkela)

A thesis submitted to Faculty of Engineering and Information Technology University of Technology, Sydney

> for the degree of Doctor of Philosophy

> > April 2017

To my family and friends

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

Acknowledgement

I sincerely express my deep gratitude to my principle coordinating supervisor, Prof. Jinjun Chen, for his experienced supervision and continuous encouragement throughout my PhD study. And I want to show my most honest appreciation to my co-supervisors, Dr. Surya Nepal and Dr. Rajiv Ranjan from CSIRO, for their supervision and encouragement. Without their consistent support and supervision, I would not have been able to complete this thesis. I express my hearty gratitude to Dr. Ranjan for his financial support, without him it may have been difficult for me to travel to Australia for PhD study.

I thank the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for offering me a full Scholarship throughout my doctoral program. I also thank University of Technology Sydney (UTS) and the Faculty of Engineering and IT (FEIT) for providing me an IRS Scholarship throughout my doctoral program.

My thanks also go to staff members, research assistants, previous and current colleagues, and friends at UTS, and CSIRO for their help, suggestions, friendship and encouragement; in particular, Dr. Priyadarsi Nanda, Prof. Sean He, Eryani Tjondrowalujo, Chang Liu, Xuyun Zhang, Chi Yang, Adrian Johannes, Nazanin Borhan, Ashish Nanda, Jongkil Kim, Nan Li, Danan Thilakanathan, Mian Ahmed Jan, and Usman Khan.

Last but not least, I am deeply grateful to my parents Karitk Ch. Puthal, Shakuntala Puthal, my brother, sisters and brothers-in-law for supporting me to study abroad, understanding, encouragement and help. Most importantly, I would like to sincerely express the deepest gratitude to almighty god.

Abstract

A large number of mission critical applications from disaster management to health monitoring are contributing to the Internet of Things (IoT) by deploying a number of smart sensing devices in a heterogeneous environment. Resource constrained sensing devices are being used widely to build and deploy self-organising wireless sensor networks for a variety of critical applications. Many such devices sense the deployed environment and generate a variety of data and send them to the server for analysis as data streams. The key requirement of such applications is the need for near real-time stream data processing in large scale sensing networks. This trend gives birth to an area called big sensing data streams. One of the key problems in big data is to ensure end-to-end security where a Data Stream Manager (DSM) must always verify the security of the data before executing a query to ensure data security (i.e., confidentiality, integrity, authenticity, availability and freshness) as the medium of communication is untrusted. A malicious adversary may access or tamper with the data in transit. One of the challenging tasks in such applications is to ensure the trustworthiness of collected data so that any decisions are made on the correct data, followed by protecting the data streams from information leakage and unauthorised access. This thesis considers end-to-end means from source sensors to cloud data centre. Although some security issues are not new, the situation is aggravated due to the features of the five Vs of big sensing data streams: Volume, Velocity, Variety, Veracity and Value. Therefore, it is still a significant challenge to achieve data security in big sensing data streams. Providing data security for big sensing data streams in the context of near real time analytics is a challenging problem.

This thesis mainly investigates the problems and security issues of big sensing data streams from the perspectives of efficient and lightweight processing. The big data streams computing advantages including real-time processing in efficient and lightweight fashion are exploited to address the problem, aiming at gaining high scalability and effectiveness. Specifically, the thesis examines three major properties in the lifecycle of security in big data streams environments. The three properties include authenticity, integrity and confidentiality also known as the AIC triad, which is different to CIA triad used in general data security. Accordingly, a lightweight security framework is proposed to maintain data integrity and a selective encryption technique to maintain data confidentiality over big sensing data streams. These solutions provide data security from source sensing devices to the processing layer of cloud data centre. The thesis also explore a further proposal on a lattice based information flow control model to protect data against information leakage and unauthorised access after performing the security verification at DSM. By integrating the access control model, this thesis provides an end-to-end security of big sensing data streams i.e. source sensing device to the cloud data centre processing layer. This thesis demonstrates that our solutions not only strengthen the data security but also significantly improve the performance and efficiency of big sensing data streams compared with existing approaches.

The Author's Publications

So far, I have published nine refereed papers including one book chapter, one IEEE magazine, one ERA ranked A^{*1} journal paper, one ERA ranked A journal paper, three ERA ranked A conference papers and one ERA ranked B conference paper and other papers. The publications as well as one paper that is under review are listed below in detail. The impact factor (IF)² of each journal paper is also stated.

Book Chapter:

 Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "End-to- End Security Framework for Big Sensing Data Streams." in *Big Data Management, Architecture, and Processing*, CRC Press, to be published 2017.

Journal Articles:

- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "A Dynamic Prime Number Based Efficient Security Mechanism for Big Sensing Data Streams." *Journal of Computer and System Sciences (JCSS)*. Vol. 83(1), pp. 22-42, 2017. (A*, IF: 1.583)
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "DLSeF: A Dynamic Key Length based Efficient Real-Time Security Verification Model for Big Data Streams." ACM Transactions on Embedded Computing Systems

 ¹ ERA ranking is a ranking framework for publications in Australia. Refer to <u>http://www.arc.gov.au/</u><u>era/era_2010/archive/era_journal_list.htm</u> for detailed ranking tiers. The 2010 version is used herein. For journal papers: A* (top 5%); A (next 15%). For conference papers (no A* rank): A (top 20%).
 ² IF: Impact Factor. Refer to <u>http://wokinfo.com/essays/impact-factor/</u> for details and query.

(TECS), Vol. 16(2), pp. 51:1-51:24, 2016. (A*, IF: 1.19)

- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "Threats to Networking Cloud and Edge Datacenters in the Internet of Things." *IEEE Cloud Computing*. Vol. 3(3), pp. 64-71, 2016.
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, Xindong Wu, and Jinjun Chen. "SEEN: A Selective Encryption Method to Ensure Confidentiality for Big Sensing Data Streams." *IEEE Transactions on Big Data (TBD)*, Minor revision, February 2017.

Conference Papers:

- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "A Synchronized Shared Key Generation Method for Maintaining End-to-End Security of Big Data Streams." in 50th Hawaii International Conference on System Sciences (HICSS-50), Hawaii, USA. 2017. (A)
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "IoT and Big Data: An architecture With Data Flow and Security Issues." in 2nd international conference on Cloud, Networking for IoT Systems (CN\$IoT), Brindisi, Italy, 2017.
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "A Secure Big Data Streams Analytics Framework for Disaster Management on Cloud." in 18th IEEE International Conferences on High Performance Computing and Communications (HPCC 2016), Sydney, Australia. 2016 (B)
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "A Dynamic Key Length based Approach for Real-Time Security Verification of Big Sensing Data Streams." in 16th International Conference on Web Information System Engineering (WISE 2015), Miami, Florida, USA. 2015. (A)
- Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "DPBSV An Efficient and Secure Scheme for Big Sensing Data Streams." in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-15), Helsinki, Finland. 2015. (A)

11. Deepak Puthal, Surya Nepal, Cecile Paris, Rajiv Ranjan, and Jinjun Chen.
"Efficient Algorithms for Social Networks Coverage and Reach." in *IEEE BigData Congress*, New York, USA, 2015.

Table of Contents

Figure	S X	ciii		
Tables	X	XV		
Algori	Algorithms xvi			
Chapte	Chapter 1 Introduction 1			
1.1	Backg	round	1	
	1.1.1	Big Data with Security Issues	3	
	1.1.2	Cloud Computing ·····	5	
1.2	Motiv	ation: Securing Big Sensing Data Streams	6	
1.3	Overv	iew of the Work ·····	9	
	1.3.1	Methodology	9	
	1.3.2	Contributions 1	1	
1.4	Thesis	Organisation 1	3	
Chapte	er 2 I	Background Studies and Related Work 1	5	
Chapte 2.1	er 2 I Gener	Background Studies and Related Work1al Research Trend1	5	
Chapte 2.1 2.2	er 2 I Gener Review	Background Studies and Related Work1al Research Trend1w of Reviews1	5 5	
Chapto 2.1 2.2	er 2 I Gener Review 2.2.1	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1	5 7	
Chapto 2.1 2.2	er 2 I Gener Review 2.2.1 2.2.2	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1 Network Security 1	5 7 7	
Chapto 2.1 2.2	er 2 1 Gener Review 2.2.1 2.2.2 2.2.3	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1 Network Security 1 IoT Security 2	.5 .7 .7 .9	
Chapto 2.1 2.2 2.3	er 2 1 Gener Review 2.2.1 2.2.2 2.2.3 IoT G	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1 Network Security 1 IoT Security 2 enerated Data Stream Architecture 2	.5 .5 .7 .7 .9 21 23	
Chapto 2.1 2.2 2.3	er 2 I Gener Review 2.2.1 2.2.2 2.2.3 IoT G 2.3.1	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1 Network Security 1 IoT Security 2 enerated Data Stream Architecture 2 IoT Architecture 2	5 .5 .7 .7 .9 21 23	
Chapto 2.1 2.2 2.3	er 2 I Gener Review 2.2.1 2.2.2 2.2.3 IoT G 2.3.1 2.3.2	Background Studies and Related Work 1 al Research Trend 1 w of Reviews 1 Data Centre Security 1 Network Security 1 IoT Security 2 enerated Data Stream Architecture 2 IoT Architecture 2 Security Threats of Each Layer 2	.5 .7 .7 .9 .1 .3 .23 .23	
Chapto 2.1 2.2 2.3	er 2 I Gener Review 2.2.1 2.2.2 2.2.3 IoT G 2.3.1 2.3.2 Big Da	Background Studies and Related Work1al Research Trend1w of Reviews1Data Centre Security1Network Security1IoT Security2enerated Data Stream Architecture2IoT Architecture2Security Threats of Each Layer2ata Stream Security3	5 .5 .7 .7 .7 .9 21 23 23 28 88	
Chapto 2.1 2.2 2.3 2.4	er 2 I Gener Review 2.2.1 2.2.2 2.2.3 IoT G 2.3.1 2.3.2 Big D 2.4.1	Background Studies and Related Work1al Research Trend1w of Reviews1Data Centre Security1Network Security1IoT Security2enerated Data Stream Architecture2IoT Architecture2Security Threats of Each Layer2ata Stream Security3Security Requirements4	.5 .7 .7 .9 21 23 23 28 88	
Chapto 2.1 2.2 2.3 2.4	er 2 I Gener Review 2.2.1 2.2.2 2.2.3 IoT G 2.3.1 2.3.2 Big D 2.4.1 2.4.2	Background Studies and Related Work1al Research Trend1w of Reviews1Data Centre Security1Network Security1IoT Security2enerated Data Stream Architecture2IoT Architecture2Security Threats of Each Layer3Security Requirements4CIA Triad Properties4	5 .5 .7 .7 .9 21 23 23 28 88 80 10	

	2.4.3	Confidentiality of Big Data Streams	• 42
	2.4.4	Integrity of Big Data Streams	• 45
	2.4.5	Availability of Big Data Streams	· 51
2.5	Compa	arision	· 56
2.6	Summ	ary ·····	· 59
Chapte	er 3 S	Security Verification Framework for Big Sensing Data Streams	61
3.1	Introdu	uction ·····	· 62
3.2	Prelim	inaries to the Chapter	· 64
3.3	Resear	rch Challenges and Research Motivation	· 65
	3.3.1	Research Challenges	· 66
	3.3.2	Research Motivation	· 67
3.4	Dynan	nic Prime-Number Based Security Verification	· 70
	3.4.1	DPBSV System Setup	· 70
	3.4.2	DPBSV Handshaking	· 72
	3.4.3	DPBSV Rekeying	· 72
	3.4.4	DPBSV Security Verification	· 74
3.5	Securi	ty Analysis ·····	· 76
	3.5.1	Security Proof ·····	· 76
	3.5.2	Forward Secrecy	· 81
3.6	Experi	iment and Evaluation	· 81
	3.6.1	Sensor Node Performance	· 82
	3.6.2	Security Verification	· 83
	3.6.3	Performance Comparision	· 86
	3.6.4	Required Buffer Size	· 87
3.7	Summ	ary	· 88
Chapte	er4 I	Lighweight Security Protocol for Big Sensing Data streams	89
4.1	Introdu	uction ·····	· 89
4.2	Prelim	inaries to the Chapter	· 92
4.3	Resear	rch Challenges and Research Motivation	· 94
	4.3.1	Research Challenges	· 94
	4.3.2	Research Motivation	· 96
4.4	DLSel	F Lightweight Security Protocol	· 96
	4.4.1	DLSeF System Setup	· 97
	4.4.2	DLSeF Handshaking	100

	4.4.3	DLSeF Rekeying
	4.4.4	DLSeF Key Synchronisation
	4.4.5	DLSeF Security Verification
4.5	Securi	ty Analysis ······110
	4.5.1	Security Proof
4.6	Experi	iment and Evaluation
	4.6.1	Sensor Node Performance 115
	4.6.2	Security Verification 117
	4.6.3	Performance Comparision
	4.6.4	Required Buffer Size
4.7	Summ	ary
Chapte	er 5 S	Seletive Encryption Method to ensure Confidentiality of Big
Sensin	g Data	Streams 124
5.1	Introd	uction
5.2	Desig	n Consideration 127
	5.2.1	System Architecture 128
	5.2.2	Adversary Model 130
	5.2.3	Attack Model ····· 131
5.3	Resear	rch Challenges and Research Motivation
	5.3.1	Research Challenges 132
	5.3.2	Research Motivation 134
5.4	Select	ive Encryption Method for Big Data Streams
	5.4.1	Initial System Setup 136
	5.4.2	Rekeying ····· 138
	5.4.3	New Node Authentication
	5.4.4	Reconfiguration 141
	5.4.5	Enctyption/Decryption 142
	5.4.6	Tradeoffs ····· 143
	5.4.7	Requirement Resources for SEEN144
5.5	Theor	itical Analysis · · · · · 147
	5.5.1	Security Proof
	5.5.2	Forward Secrecy 150
5.6	Experi	imental and Evaluation
	5.6.1	Security Verification 151

	5.6.2	Performance Comparision	153
	5.6.3	Required Buffer Size	154
	5.6.4	Network Performance	155
5.7	Summ	ary	157
Chapte	er 6 A	Access Control Framework for Big Sensing Data streams	158
6.1	Introd	uction ·····	158
6.2	Backg	round Studies	161
	6.2.1	Stream Processing	161
	6.2.2	Stream Security	162
	6.2.3	Chinese Wall Policy	163
6.3	Design	n Consideration ·····	163
	6.3.1	System Architecture	163
	6.3.2	Defination ·····	166
	6.3.3	QoS Requirements	167
	6.3.4	Adversary Model	169
6.4	Acces	s Control Model ······	170
6.5	Exper	imental Evaluation ······	173
	6.5.1	System Setup	173
	6.5.2	Results Discussion	175
6.6	Summ	ary	176
Chapt	er 7 🔾	Conclusion and Future Work	177
7.1	Concl	usion	177
7.2	Future	e Work ·····	181
Biblio	graphy		183

Figures

Figure 1-1 Typical Lifecycle of Security Framework for Big Sensing Data Streams 6
Figure 2-1 Cloud computing security architecture
Figure 2-2 Layer wise IoT Security architecture 22
Figure 2-3 layer wise IoT architecture from IoT device to cloud data centre 26
Figure 2-4 Communication protocol in IoT
Figure 2-5 Cloud computing security threats, attacks and vulnerabilities
Figure 2-6 CIA triad of data security either data in transit or in rest
Figure 3-1 A simplified view of a DSMS to process and analyse input data stream 62
Figure 3-2 Overlay of our architecture from sensing device to data centre
Figure 3-3 Pair of dynamic relative prime number generation
Figure 3-4 The sensors used for experiment 81
Figure 3-5 Estimated power consumption during the key generation process 83
Figure 3-6 Scyther simulation environment result page
Figure 3-7 Performance of the security scheme comparision
Figure 3-8 Performance comparison of minimum buffer size required
Figure 4-1 High level of architecture from source sensing device to big data
processing centre 93
Figure 4-2 Secure authentication of Sensor and DSM100
Figure 4-3 Neighbour node discovered to get the key generation properties 105
Figure 4-4 Neighbour discovery with all possible conditions107
Figure 4-5 Performance computation of two different sensors
Figure 4-6 Energy consumption by using COOJA in Contiki OS 116
Figure 4-7 Scyther simulation environment result page

Figure 4-8 Security verification results of Scyther during neighbour authentication
Figure 4-9 Performance comparison 121
Figure 4-11 Efficiency comparison of minimum buffer size required to process \cdot 121
Figure 5-1 High level architectural diagram for SEEN protocol130
Figure 5-2 Initial authentication methods with 4 steps process
Figure 5-3 Key Selection 139
Figure 5-4 Shared key management for robust clock skew
Figure 5-5 Method to the data sensitivity level
Figure 5-6 Scyther simulation result page of security verification 152
Figure 5-7 Performance comparison SEEN method
Figure 5-8 Efficiency comparison by comparing required buffer size154
Figure 5-9 Energy consumption 155
Figure 6-1 Overview of access control of big data streams using lattice model \cdots 166
Figure 6-2 Lattice model for data access
Figure 6-3 Experiment Setups 172
Figure 6-4 Mapping time for HT Sensor Dataset
Figure 6-5 Mapping time for Twin Gas Sensor Dataset

Tables

Table 2-1 Network layer security threats 31
Table 2-2 Possible threats of IoT generated Big Dat streams in CIA triad
reprentation 57
Table 2-3 Comparison of IoT generated big data stream security threats and
solutions according to CIA triad method
Table 3-1 DPBSV Notations 69
Table 3-2 Notations Symmetric key (AES) algorithm takes time to get all possible
keys using most advanced Intel i7 Processor ······ 77
Table 4-1 Notations used in this DLSeF model 98
Table 5-1 SEEN Notations 135
Table 5-2 Performance and Properties of Security Solutions 156
Table 5-3 Communication overhead of SEEN protocol156
Table 6-1 Machine specification 174
Table 6-2 Dataset information 174

Algorithms

Algorithm 3-1 Security Framework for Big Sensing Data Stream	74
Algorithm 3-2 Dynamic Prime Number Generation	78
Algorithm 4-1 Synchronisation of Dynamic Key Length Generation 1	02
Algorithm 4-2 Key Generation (Rekeying) Process 1	07
Algorithm 4-3 Lightweight Security Protocol for Big Sensing Data Stream 1	09
Algorithm 5-1 Rekeying process 1	40
Algorithm 5-2 Selective encryption method for big sensor data streams	45