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Abstract

3D motion and 3D shape information are essential to many research fields,

such as computer vision, computer graphics, and augmented reality. Thus,

3D motion estimation and 3D shape recovery are two important topics in

these research communities. RGB-D cameras have become more accessible

in recent few years. They are popular for good mobility, low cost, and high

frame rate. However, these RGB-D cameras generate low-resolution and

low-accuracy depth images due to chip size limitations and ambient illumi-

nation perturbation. Thus, obtaining high-resolution and high-accuracy 3D

information based on RGB-D data is an important task.

This research investigates 3D motion estimation and 3D shape recovery

solutions for RGB-D cameras. Thus, within this thesis, various methods are

developed and presented to address the following research challenges: fusing

passive stereo vision and active depth acquisition; 3D motion estimation

based on RGB-D data; depth super-resolution based on RGB-D video with

large displacement 3D motion.

In Chapter 3, a framework is presented to acquire depth images by fusing

active depth acquisition and passive stereo vision. Active depth acquisition

and passive stereo vision have their limitations in some aspects, but their

range-sensing characteristics are complementary. Thus, combining both ap-

proaches can produce more accurate results than using either one only. Unlike

previous fusion methods, the noisy depth observation from active depth ac-

quisition is initially taken as a prior knowledge of the scene structure, which

improves the accuracy of the fused depth images.

xvii



ABSTRACT

Chapter 4 details a method for 3D scene flow estimation based on RGB-D

data. The accuracy of scene flow estimation is limited by two issues: occlu-

sions and large displacement motions. To handle occlusions, the occlusion

status is modelled, and the scene flow and occluded regions are jointly es-

timated. To deal with large displacement motions, an over-parameterised

scene flow representation is employed to model both the rotation and trans-

lation components of the scene flow.

In Chapter 5, a depth super-resolution framework is presented for RGB-D

video sequences with large 3D motion. To handle large 3D motion, our frame-

work has two stages: motion compensation and fusion. A superpixel-based

motion estimation approach is proposed for efficient motion compensation.

The fusion task is modelled as a regression problem, and a specific deep con-

volutional neural network (CNN) is designed that can learns the mapping

function between depth image observations and the fused depth image given

a large amount of training data.

xviii
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