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Abstract

The smart grid is expected to modernize the current electricity grid by commencing a new

set of technologies and services that can make the electricity networks more secure, auto-

mated, cooperative and sustainable. The smart grid can integrate multiple distributed energy

resources (DERs) into the main grid. The need for DERs is expected to become more impor-

tant in the future smart grid due to the global warming and energy problems. Basically, the

smart grid can spread the intelligence of the energy distribution and control system from the

central unit to long-distance remote areas, thus enabling accurate state estimation and wide-

area real-time monitoring of these intermittent energy sources. Reliable state estimation is a

key technique to fulfil the control requirement and hence is an enabler for the automation of

power grids. Driven by these motivations, this research explores the problem of state estima-

tion and stabilization taking disturbances, cyber attacks and packet losses into consideration

for the smart grid.

The first contribution of this dissertation is to develop a least square based Kalman filter (KF)

algorithm for state estimation, and an optimal feedback control framework for stabilizing the

microgrid states. To begin with, the environment-friendly renewable microgrid incorporating

multiple DERs is modelled to obtain discrete-time state-space linear equations where sensors

are deployed to obtain system state information. The proposed smart grid communication

system provides an opportunity to address the state regulation challenge by offering two-

way communication links for microgrid information collection, estimation and stabilization.

Interestingly, the developed least square based centralised KF algorithm is able to estimate

the system states properly even at the beginning of the dynamic process, and the proposed

H2 based optimal feedback controller is able to stabilize the microgrid states in a fairly short

time.

Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create
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serious technical, economic, social and control problems in power network operations. In

contrast to the traditional cyber attack minimization techniques, this study proposes a re-

cursive systematic convolutional (RSC) code and KF based method in the context of smart

grids. The proposed RSC code is used to add redundancy in the microgrid states, and the log

maximum a-posterior is used to recover the state information which is affected by random

noises and cyber attacks. Once the estimated states are obtained, a semidefinite programming

(SDP) based optimal feedback controller is proposed to regulate the system states. Test re-

sults show that the proposed approach can accurately mitigate the cyber attacks and properly

estimate as well as regulate the system states.

The other significant contribution of this dissertation is to develop an adaptive-then-combine

distributed dynamic approach for monitoring the grid under lossy communication links be-

tween wind turbines and the energy management system. Based on the mean squared error

principle, an adaptive approach is proposed to estimate the local state information. The

global estimation is designed by combining local estimation results with weighting factors,

which are calculated by minimizing the estimation error covariances based on SDP. After-

wards, the convergence analysis indicates that the estimation error is gradually decreased, so

the estimated state converges to the actual state. The efficacy of the developed approach is

verified using the wind turbine and IEEE 6-bus distribution system.

Furthermore, the distribution power sub-systems are usually interconnected to each other,

so this research investigates the interconnected optimal filtering problem for distributed dy-

namic state estimation considering packet losses. The optimal local and neighbouring gains

are computed to reach a consensus estimation after exchanging their information with the

neighbouring estimators. Then the convergence of the developed algorithm is theoretically

proved. Afterwards, a distributed controller is designed based on the SDP approach. Simu-

lation results demonstrate the accuracy of the developed approaches.

The penultimate contribution of this dissertation is to develop a distributed state estimation

algorithm for interconnected power systems that only needs a consensus step. After mod-

elling the interconnected synchronous generators, the optimal gain is determined to obtain

a distributed state estimation. The consensus of the developed approach is proved based on

the Lyapunov theory. From the circuit and system point of view, the proposed framework

is useful for designing a practical energy management system as it has less computational

complexity and provides accurate estimation results.
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The distributed state estimation algorithm is further modified by considering different ob-

servation matrices with both local and consensus steps. The optimal local gain is computed

after minimizing the mean squared error between the true and estimated states. The consen-

sus gain is determined by a convex optimization process with a given local gain. Moreover,

the convergence of the proposed scheme is analysed after stacking all the estimation error

dynamics. The efficacy of the developed approach is demonstrated using the environment-

friendly renewable microgrid and IEEE 30-bus power system.

Overall, the findings, theoretical development and analysis of this research represent a com-

prehensive source of information for smart grid state estimation and stabilization schemes,

and will shed light on green smart energy management systems and monitoring centre design

in future smart grid implementations. It is worth pointing out that the aforementioned contri-

butions are very important in the smart grid community as communication impairments have

a significant impact on grid stability and the distributed strategies can reduce communication

burden and offer a sparse communication network.
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