
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Computing Connected Components with Linear
Communication Cost in Pregel-like Systems

Xing Feng†, Lijun Chang†, Xuemin Lin†, Lu Qin‡, Wenjie Zhang†
†University of New South Wales, Australia
‡University of Technology Sydney, Australia

{xingfeng,ljchang,lxue,zhangw}@cse.unsw.edu.au, lu.qin@uts.edu.au

Abstract—The paper studies two fundamental problems in
graph analytics: computing Connected Components (CCs) and
computing BiConnected Components (BCCs) of a graph. With
the recent advent of Big Data, developing efficient distributed
algorithms for computing CCs and BCCs of a big graph has
received increasing interests. As with the existing research efforts,
in this paper we focus on the Pregel programming model, while
the techniques may be extended to other programming models
including MapReduce and Spark.

The state-of-the-art techniques for computing CCs and BCCs
in Pregel incur O(m × #supersteps) total costs for both data
communication and computation, where m is the number of edges
in a graph and #supersteps is the number of supersteps. Since the
network communication speed is usually much slower than the
computation speed, communication costs are the dominant costs
of the total running time in the existing techniques. In this paper,
we propose a new paradigm based on graph decomposition to
reduce the total communication costs from O(m× #supersteps) to
O(m), for both computing CCs and computing BCCs. Moreover,
the total computation costs of our techniques are smaller than that
of the existing techniques in practice, though theoretically they are
almost the same. Comprehensive empirical studies demonstrate
that our approaches can outperform the existing techniques by
one order of magnitude regarding the total running time.

I. introduction

A graph G = (V, E) is usually used to model data and their
complex relationships in many real applications; for example,
in social networks, information networks, and communication
networks. Computing Connected Components (CCs) and com-
puting BiConnected Components (BCCs) of a graph are two
fundamental operations in graph analytics and are of great
importance [5], [13], [20], [23], [36]. Given an undirected
graph G, a CC of G is a maximal subgraph that is connected
(i.e., any pair of vertices are connected by a path). A BCC of
G is a maximal subgraph such that it remains connected after
removing any single vertex. For example, the graph in Figure 1
has two CCs: the subgraphs induced by vertices {v1, . . . , v9}

and by {v10, v11}, respectively; the left CC is further divided
into two BCCs: the subgraphs induced by vertices {v4, v5, v8}

and by {v1, v2, v3, v6, v7, v8, v9}, respectively.

Applications. Computing CCs is a key building block in
processing large graphs. For example, CCs are basic structures
for computing graph fractal dimensions when analyzing very
large-scale web graphs [13]. Computing CCs also plays an
important role in community detection in massive graphs by
serving as a preprocessing step [8]. Computing BCCs is very
important for analyzing large graphs. For example, BCCs can
be used in the measurement study of topology patterns of
large-scale community networks to measure their resilience

v11

v10

v8

v9

v2

v6

v3

v7

v1v5 v4

Fig. 1: A graph

to random failures [35]. Computing BCCs may also assist to
identify the set of articulation points of a graph that typically
belong to multiple BCCs. The articulation points are important
to be identified in many applications; for example, in social
networks [11], distributed networks [19], bioinformatics [20],
and wireless sensor networks [33].

Distributed Computation. Driven by many recent applica-
tions involving large-scale graphs, there is a very strong
demand to develop distributed computing techniques to process
such large-scale graphs. For example, the topology of Face-
book users is modeled as a graph with more than 1.4 billion
vertices (i.e., users) and 0.4 trillion edges (i.e., relationships
between users) in 2014,1 and a snapshot of web graph in 2012
has 0.98 billion web pages and 42.6 billion hyperlinks.2

It is well known that regarding a single machine, CCs and
BCCs of a graph can be computed by an in-memory algorithm
in linear time (i.e., O(m)) [5], [12] and by an external-
memory algorithm with I/O cost O(m× log n× log log n) [18],
where n and m are the number of vertices and the number
of edges of the input graph, respectively. However, these
techniques cannot be extended to the distributed computation
due to their sequential computing nature. Thus, developing
novel, efficient distributed techniques for computing CCs and
BCCs of a large-scale graph has received increasing interests
recently (e.g., [21], [23], [24], [36]). Most of the existing
techniques are based on open-source implementations of the
Pregel system [16], including Giraph [3], GPS [24], and
Pregel+ [36]. In this paper, for ease of a comparison to the
existing techniques, we also present our techniques based
on the Pregel system. Nevertheless, our techniques may be
extended to other distributed systems, such as MapReduce [6],
Spark [37], GraphLab [15], and GraphX [10].

Cost Estimation of Pregel Algorithms. Pregel is designed
based on the Bulk Synchronous Parallel (BSP) model [34],
with computation performed in a serial of supersteps. Denote
the total number of supersteps of a Pregel algorithm as
#supersteps. The cost of one superstep of a BSP (also Pregel)
algorithm on p workers (a.k.a cores) is (maxp

i=1 wi +maxp
i=1 hi×

g + l) [34], where wi is the cost for local computation at

1http://newsroom.fb.com/company-info/
2http://law.di.unimi.it/datasets.php

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference85

Algorithm Total data communication
hash-min O(m × #supersteps)

single-pivot O(m × #supersteps)
S-V O(m × #supersteps)

our approach O(m)
(a) CC Computation Algorithms

Algorithm Total data communication
T-V(hash-min) O(m × #supersteps)

T-V(single-pivot) O(m × #supersteps)
T-V(S-V) O(m × #supersteps)

our approach O(m)
(b) BCC Computation Algorithms

Fig. 2: Comparison of different Pregel algorithms for computing CCs and BCCs

worker i, hi is the number of messages sent or received by
worker i regarding data transmissions, g is the ability of a
communication network to deliver data, and l is the cost of
a barrier synchronization; here, g and l are system-dependent
parameters. Thus, the total running time of a Pregel algorithm
is expected to be determined by the total data communication
cost (H), total computation cost (W), and #supersteps (i.e.,
W
p + H

p × g + l × #supersteps).

Existing Approaches. There are three existing algorithms for
computing CCs in Pregel: hash-min, single-pivot, and S-V.
The total costs for both data communication and computation
of the three algorithms are O(m×#supersteps). hash-min [14],
[23] and single-pivot [24] adopt the same strategy by coloring
vertices such that all vertices in a CC end up with the same
color. Each vertex is initialized with a different color, and then
in each superstep, each vertex resets its color to be the smallest
one among its own color and its neighbors’ colors. While being
initially developed against MapReduce, hash-min is adopted
in [24] as a baseline algorithm to evaluate single-pivot in
Pregel. Here, single-pivot proposes a heuristic to speed up
the computation; it computes the first CC by conducting BFS
starting from a randomly selected vertex while other CCs are
computed by a follow-up hash-min.3 The #supersteps of both
hash-min and single-pivot are O(δ), where δ is the largest
diameter among CCs.

The third approach, S-V [36], significantly extends the
PRAM based algorithm in [27]. The main idea is to use a star
to span all vertices of a CC by the two phases below. Initially,
it constructs a rooted forest by making each vertex u point to
its neighbor vertex v as its parent where u.id < v.id and v.id
is maximized. Then, the first phase, shortcutting, is to connect
every vertex u to its grand parent by an edge to replace the
edge from u to its current parent. The second phase, hooking,
is to attach the root of a star to a vertex v in another tree
if there exists a vertex u in the star with v as its neighbor
and u.id < v.id — choose the vertex v with the largest id if
there are several such vertices. S-V iteratively alternates the
two phases till each tree is a star and no merges exist.4 The
#supersteps of S-V is O(log n).

For computing BCCs in Pregel, Yan et al. [36] presented
an algorithm, T-V, to extend the PRAM algorithm in [31]
to convert the problem of computing BCCs to computing
CCs, and then apply the above techniques (i.e., hash-min,
single-pivot, or S-V) to compute CCs. The converting process
requires an additional O(log n) #supersteps [36]. The total data
communication costs and computation costs of T-V algorithms
are O(m × #supersteps).

Our Approaches. Since the communication speed is much
slower than the computation speed, communication costs are

3The total data communication cost of single-pivot becomes O(m) if the
input graph contains one giant CC and other small CCs.

4Note that we confirmed with the authors of [36] through private communi-
cation that the data communication cost of S-V per superstep is O(m), which
is misspelled as O(n) in [36].

the dominant costs of the total running time in the existing
techniques (see Figures 10(b) and 13(b) in Section V). In
this paper, we aim to reduce the total data communication
costs from O(m × #supersteps) of the existing techniques to
O(m) as depicted in Figure 2. Although theoretically we retain
the other costs, our experiments show that the other costs are
also reduced in practice. Essentially, we develop a new graph
decomposition based paradigm to traverse the input graph only
by a constant time, in contrast to traversing the entire graph
every superstep of the existing techniques.

Computing CCs. We conduct graph decomposition by growing
BFS trees from randomly selected seed vertices. Clearly, a
pair of separately grown BFSs belong to one CC if they
share a common vertex. To ensure that each edge is visited
at most twice in our algorithm, the unvisited neighbors of
a common vertex in more than one BFSs are only extended
once to the next level for a further extension in one BFS.
For example, the graph in Figure 1 is decomposed into three
subgraphs as shown in Figure 3(a), which are obtained by
conducting BFS searches from v4, v1, and v10, respectively.
g1 and g2 firstly overlap on {v9}; assuming v9 is extended in
g2, then (v9, v7) will not be visited in g1. Finally, g1 and g2
are combined together to form a CC of G. At each superstep,
we proceed BFS one level further and randomly select new
seed vertices whose cardinality increases exponentially along
with supersteps. Since the number of BFSs (i.e., seed vertices)
is only a small fraction of the number of vertices in a graph
(e.g., ≤ 0.4%, see Figure 11(d) in Section V), the last step
(i.e., combining) can be achieved through aggregator of Pregel
systems at the master worker. We are able to show that the total
data communication cost and #supersteps of our approach are
O(m) and O(log n), respectively; moreover, if the input graph
is connected (or has a giant CC), then the #supersteps of our
approach becomes O(min{δ, log n}) (or with high probability).

v8

v3

v7

v5

v11

v10

v9

v2

v6

v1

v9

v7

g1 g3g2

v4

(a) Computing CCs

v7

v8

v2

v5

v3

v6

v1v4

(b) Computing BCCs
Fig. 3: Our approaches

Computing BCCs. Suppose the input graph G is connected,
the central idea is as follows. We first construct a BFS tree
T of G. Then, based on T , G may be treated as being
decomposed into (m − n + 1) basic cycles {C1, . . . ,Cm−n+1}

each of which is induced by a non-tree edge; that is, a basic
cycle consists of a non-tree edge (u, v) and the paths from u
and v to their nearest common ancestor in T . We can prove
that each basic cycle is biconnected and two biconnected
subgraphs belong to the same BCC if they share a common
edge. Therefore, our algorithm runs iteratively from the bottom
to the root in T to identify the vertices at the current layer and
their neighbors in the upper layer to be in the same BCC.

86

For example, given the BFS tree depicted by solid edges in
Figure 3(b), there are two basic cycles, C1 = (v8, v7, v3, v6, v8)
and C2 = (v8, v6, v2, v1, v5, v8). Thus, at the bottom layer, the
algorithm identifies {v1, v2, v5, v6}, {v3, v6, v7}, and {v4, v7} to be
in the same BCCs, respectively. Then, the algorithm moves to
the second bottom layer, and identifies that {v1, v2, v5, v6} and
{v3, v6, v7} should be in the same BCC including v8 due to the
common edge (v6, v8). To speed up the computation, we pro-
pose a vertex labeling approach. The total data communication
cost of our approach is O(m), and #supersteps is O(log n + δ).
Contributions. Our main contributions are as follows.
• We develop a new paradigm for computing CCs and

BCCs to reduce the total data communication cost.
• We propose a graph decomposition based approach for

computing CCs of a graph with total data communi-
cation cost O(m) in O(log n) supersteps.

• We propose a vertex labeling approach for computing
BCCs with total data communication cost O(m) in
O(log n + δ) supersteps.

We conduct extensive performance studies on large graphs,
and show that our approaches have significantly smaller com-
munication volume than the existing approaches and are one
order of magnitude faster than the existing techniques.

Organization. A brief overview of related works immediately
follows. In Section II, we give preliminaries and our problem
statement. The graph decomposition based paradigm and our
approach for computing CCs are presented in Section III, while
our vertex labeling approach for computing BCCs is illustrated
in Section IV. Section V presents our performance studies, and
Section VI finally concludes the paper. Proofs are omitted due
to space limits and can be found in the full version [7].

Related Works. Related works are categorized as below.

1) Computing CCs. Computing CCs by an in-memory algo-
rithm over a single machine can be achieved in linear time
regarding the input graph size by BFS or DFS [5]. PRAM
algorithms were proposed in [1], [27]. Algorithms based on
MapReduce include [4], [14], [21], [23], where the algorithm
in [21] was independently developed from the Pregel version
of S-V [36], and hash-min is used as a baseline to evaluate
single-pivot in [24]. All these MapReduce and Pregel algo-
rithms have total data communication costs O(m×#supersteps).
As stated earlier, we propose a new approach in Pregel to
reduce the total data communication cost to O(m).

2) Computing BCCs. Computing BCCs in the main memory
of a single machine can be achieved in linear time based
on DFS [12], or ear decomposition [26]. PRAM algorithms
for computing BCCs were studied in [28], [31], and PRAM
algorithm for testing graph biconnectivity was studied in [22].
The state-of-the-art algorithm T-V in Pregel [36] significantly
extends the techniques in [31] to convert the problem of
computing BCCs to computing CCs. In this paper, we develop
a new approach with total data communication cost O(m)
instead of O(m × #supersteps) in [36].

3) Graph Decomposition. The paradigm of graph decompo-
sition was studied in [2], [17], [29], [30] to decompose a
graph into subgraphs with designated properties. It aims to
minimize either the number of subgraphs, the maximum radius
among subgraphs, or the number of cross partition/subgraph
edges [2], [17], [29], [30]. While our approach is also based on
the paradigm of graph decomposition, the existing techniques
are irrelevant since we target at inherently different problems.

4) Other Distributed Graph Processing Systems. Besides the
Pregel system [16] and its open-source implementations [24],
[32], [36], other distributed graph processing systems include
GraphLab [15], MapReduce [6], Spark [37], and GraphX [10].
Pregel and GraphLab are very similar to each other though
GraphLab supports both synchronous and asynchronous mod-
els and does not allow graph mutations [15]. MapReduce [6] is
a general purpose distributed data processing system, and has
recently shown to be able to process graphs [21]. Spark [37]
is an in-memory distributed data processing system which
improves upon MapReduce by keeping data in main memory.
GraphX [10] is a system built on Spark to bridge the gap
between graph processing systems and general purpose data
processing systems. While we will present our techniques
based on the Pregel system, our techniques may be easily
modified to the above distributed systems. This is because our
techniques are based on the vertex-centric programming model
that can be easily implemented in the other systems.

II. Preliminary

In this paper, we focus on an unweighted undirected graph
G = (V, E) [9], where V is the set of vertices and E is the
set of edges. Denote the number of vertices, |V |, and the
number of edges, |E|, in G by n and m, respectively. Each
vertex v ∈ V has a unique integer ID, denoted v.id. We denote
an undirected edge between u and v by (u, v). Given a set
V ′ ⊆ V of vertices, the subgraph of G induced by V ′ is defined
as G[V ′] = (V ′, {(u, v) ∈ E | u, v ∈ V ′}). In the following,
for presentation simplicity we refer an unweighted undirected
graph as a graph.

v1

v2

v3

v4

v5

v6

v7

v8 v9 v10 v11 v12

Fig. 4: An example graph

Definition 2.1: A connected component (CC) of a graph is
a maximal subgraph in which any two vertices are connected
to each other by a path. �

For example, for the graph in Figure 4, there are
two connected components (CCs): the subgraphs induced
by {v1, v2, . . . , v7} (i.e., the subgraph at the top), and by
{v8, v9, . . . , v12} (i.e., the subgraph at the bottom), respectively.

Definition 2.2: A graph is biconnected if it is still connected
after removing any vertex from it. A biconnected component
(BCC) of a graph is a maximal biconnected subgraph. �

For example, the connected component in the top part
of Figure 4 is not biconnected because removing v4 will
disconnect the subgraph. Instead, it consists of two biconnected
components (BCCs): the subgraphs induced by {v1, . . . , v4} and
by {v4, . . . , v7}, respectively. In the following, we refer a BCC
either by the set of vertices or by the set of edges in it. Note
that, a vertex (e.g., v4) may belong to more than one BCCs,
while each edge belongs to a unique BCC.

Problem Statement. Given a large-scale graph G, in this paper
we study the problem of distributed computing all connected
components (CCs) of G and the problem of distributed com-
puting all biconnected components (BCCs) of G.

87

In this paper, for ease of a comparison to the existing
techniques, we present our techniques based on the Pregel
system which is introduced in below. Nevertheless, our tech-
niques may be extended to other distributed systems, such as
MapReduce [6], Spark [37], GraphLab [15], and GraphX [10].

A. The Pregel System

Pregel [16] is designed based on the Bulk Synchronous
Parallel (BSP) model [34]. Initially, vertices of the input graph
are distributed across a cluster of workers, where all adjacent
edges of a vertex reside in the same worker. Then, computation
tasks are performed in a serial of supersteps; let #supersteps
denote the total number of supersteps in a Pregel algorithm.

In a superstep, each active vertex invokes a user-defined
function, compute(). The compute function running on a vertex
v, (1) performs computation based on v’s current status and the
messages v received from the previous superstep, (2) updates
its status, (3) sends new messages to other vertices to be
received in the next superstep, and (4) may (optionally) make
v vote to halt. A halted vertex is reactivated if it receives
messages. A Pregel program terminates when all vertices
vote to halt and there is no message in transmit. Pregel is
often regarded as a vertex-centric programming model since it
performs computation for each vertex based on only the local
information of the vertex itself and the messages it receives.

Combiner and Aggregator. Pregel also extends BSP in
several ways. Firstly, Pregel supports combiner (i.e., combine()
function) to combine messages that are sent from vertices in
one worker to the same vertex in another worker. Secondly,
aggregator is also supported in Pregel. That is, in a superstep,
every vertex can contribute some values to aggregator and a
rule is specified to aggregate these values at the master worker;
the result of aggregation is visible to all vertices in the next
superstep. Thus, in Pregel, the master worker can act as a
coordinator by conducting some computation for all workers.
In this paper, we make use of the aggregator to design faster
Pregel algorithms for computing CCs and BCCs.

III. Computing CCs

In order to reduce the communication cost of computing
CCs, we develop a new paradigm in Section III-A, based
on which we present a new approach in Section III-B while
analyses are given in Section III-C.

A. A Graph Decomposition based Paradigm

Reducing Communication Cost. The existing approaches for
computing CCs have total (data) communication costs and total
computation costs O(m× #supersteps) (see Figure 2(a)). Since
the communication speed is much slower than the computation
speed, communication cost is the dominant cost of the total
running time in the existing techniques (see Figures 10(b)
and 13(b) in Section V), and thus the large communication
costs of the existing techniques significantly degrade their
performances. Motivated by this, in this paper, we aim to
reduce the total communication cost of a Pregel algorithm.

One thing to notice is that the total communication cost
of single-pivot becomes O(m) (or with high probability) if the
input graph is connected (or has one giant CC and other small
CCs). For example, YH is such a graph in our experiments;
the communication volume of single-pivot on YH is similar

to our algorithm and is much smaller than hash-min and S-V
(see Figure 10(c) in Section V). However, a Pregel algorithm
has an inevitable computation cost of O(n × #supersteps) for
checking at each superstep every vertex whether it is active.
Consequently, the computation cost of single-pivot on YH,
which has a large diameter, is very high (see Figure 10(b))
due to the large #supersteps (i.e., δ); this results in high total
running time (see Figure 10(a)). Therefore, #supersteps is also
an important factor to be optimized for Pregel algorithms. In
this paper, we retain the computation cost and #supersteps of
our algorithm to match the best of existing algorithms.

Graph Decomposition based Paradigm. We develop a new
graph decomposition based paradigm for computing CCs.

Definition 3.1: A graph decomposition of a graph G = (V, E)
is to decompose G into a set of subgraphs, {g1, . . . , gi =
(Vi, Ei), . . . , gl}, such that each subgraph gi keeps a designated
property (e.g., be connected) and

⋃l
i=1 Ei = E. �

Algorithm 1: CC-Overview
Input: A graph G = (V, E) distributed across a set of workers
Output: The set of CCs of G

1 Distributed compute a graph decomposition of G;
2 Merge decomposed subgraphs into CCs;
3 return the set of CCs;

The framework is illustrated in Algorithm 1, which first
decomposes an input graph into a set of connected subgraphs
and then merges the decomposed subgraphs into CCs. During
graph decomposition, we assign a unique color to all vertices in
a decomposed subgraph which is connected. Since subgraphs
sharing common vertices belong to the same CC, a vertex may
receive different colors and the decomposed subgraphs having
these colors belong to the same CC. We mark down, during
graph decomposition, the subgraphs that should be merged,
and dedicate the last superstep for the merge operation to
obtain the correct CCs. Since the number of colors (i.e., the
number of decomposed subgraphs) usually is only a small
fraction of the number of vertices in a graph (e.g., ≤ 0.4%, see
Figure 11(d)), the merge operation can be achieved through the
aggregator of Pregel systems at the master worker.

v1

v2

v3

v4

v10 v11 v12

v4
v5

v6

v7

v8 v9 v10

g1 g2

g4g3

Fig. 5: Graph decomposition based paradigm

For example, assume the graph in Figure 4 is decomposed
into four connected subgraphs {g1, g2, g3, g4} as shown in
Figure 5 and vertices in g1 have color 1 and vertices in g2 have
color 7, then v4 will receive colors 1 and 7, respectively, from
subgraphs g1 and g2. Therefore, the subgraph having color 1
(i.e., g1) and the subgraph having color 7 (i.e., g2) belong to the
same CC, and we merge g1 and g2 into a single CC. Similarly,
we can obtain the other CC.

B. Our Algorithm

Following the paradigm in Algorithm 1, we propose a new
approach for computing CCs, consisting of the following two

88

phases: graph decomposition and subgraph merging.

Graph Decomposition. We compute a graph decomposition
by simultaneously conducting BFS searches starting from a
set of seed vertices. When running a BFS, we label all visited
vertices by the color of the BFS, which is the seed vertex id
of the BFS. Thus, a vertex may receive multiple colors, one
from each BFS visiting it; we store all the received colors of
a vertex v into v.cls, and set v’s color, v.color, to be the first
received color. Once a vertex is assigned a color, it propagates
the color to all its neighbors. Therefore, the unvisited neighbors
of a vertex are only extended in one BFS because a vertex is
assigned a color only once; this guarantees that each edge is
visited at most twice during graph decomposition. When all
edges of the graph have been visited (i.e., all BFSs terminate),
each subgraph induced by vertices with the same color is a
decomposed subgraph; note that, here we say a vertex v have
all colors it received (i.e., all colors in v.cls).

Seed Vertex Selection. The largest diameter of the obtained
subgraphs by graph decomposition, which is related to #super-
steps, largely depends on the selection of seed vertices. For ex-
ample, in Figure 4, assume the seed vertices are {v1, v7, v8, v12},
then we will obtain the graph decomposition in Figure 5;
the largest diameter is 2. However, if the seed vertices are
chosen as {v1, v2, v8, v9}, then the obtained subgraphs will be
the subgraphs induced by {v1, v3, v4}, {v2, v4, v5, v6, v7}, {v8, v9},
{v9, v10, v11, v12}, respectively; the largest diameter will be 3.

We propose a randomized adaptive approach to seed vertex
selection by iteratively selecting seed vertices and conducting
BFSs. That is, in each superstep, we advance the existing
BFSs by one level (i.e., visit the neighbors of the currently
visited vertices), and also start BFSs from the newly selected
seed vertices. To make #supersteps bounded, we increase the
number of seed vertices to be selected as the iteration proceeds;
this is controlled by a parameter β > 1. Specifically, we
randomly select βi − βi−1 new vertices to be potential seed
vertices for superstep i > 0 (i.e., 1 vertex for superstep 0). For
each of the selected vertices, if it has already been visited by
the existing BFSs, then we do nothing; otherwise, it is treated
as a new seed vertex and we start a new BFS from it.

Algorithm 2: graph-decompose
Input: A graph G = (V, E), and a parameter β

1 Generate a random permutation P of the vertices in V;
2 for each vertex v ∈ V do
3 v.color ← nil; v.pos← the position of v in P;

4 while either a vertex has no color or an edge is not visited do
5 for each vertex v ∈ V do
6 Let C be the set of colors v received in messages;
7 if v.color = nil then
8 if |C| > 0 then
9 v.cls← C;

10 v.color ← the first color in C;

11 else if v.pos ≤ βi then
12 v.color ← vertex id of v;

13 Send v.color to v’s neighbors if v.color , nil;

14 else v.cls← v.cls ∪C;

Graph Decomposition Algorithm. The pseudocode of our
graph decomposition algorithm is shown in Algorithm 2,
denoted graph-decompose. We randomly permute all vertices

in G by the approach in [25] (Line 1), such that the random
vertex selection is achieved by sequentially selecting vertices
according to the permutation order. For each vertex v, the
position of v in the permutation, v.pos, and the color of v,
v.color, are initialized at Line 3. Then, we iterate until every
vertex has been assigned a color and all edges have been
visited (Lines 5–14). In a superstep, we perform the following
computations for each vertex v ∈ V . If v already has a color
(i.e., v.color , nil), we just add the set of colors v received in
this superstep into v.cls (Line 14). Otherwise, v.color = nil. In
this case, if v receives colors in this superstep (i.e., v is being
visited by the existing BFSs), then we assign the first color v
received to be its color (Lines 8–10); otherwise, if v is selected
by the random selection process (i.e., v.pos ≤ βi), then we start
a new BFS from v (Lines 11–12). After v is assigned a color,
we propagate its color to its neighbors (Line 13).

Subgraph Merging. In this phase, we merge the subgraphs
that belong to the same CC into a single subgraph by merging
colors, based on the facts that each subgraph is uniquely
identified by a color and subgraphs with colors in v.cls for a
v ∈ V belong to the same CC. To do so, we merge all received
colors of a vertex into a single color. For example, if a vertex
v receives two colors a and b (i.e., v.cls = {a, b}), then a and
b are merged into a single color. Note that, if another vertex
u receives colors b and c, then b and c are also merged into a
single color; this in turn merges a and c (i.e., a, b, and c are
merged into a single color).

Algorithm 3: merge-color Aggregator
/* Master worker collects information */

1 for each vertex v ∈ V do
2 if |v.cls| > 1 then Send v.cls to the master worker;

/* Master worker conducts the aggregation */
3 Let C be the set of all colors in received messages;
4 Initialize a disjoint-set data structure for C;
5 for each set of received colors cls do
6 Let c be the first color in cls;
7 for each color c′ ∈ cls do union(c, c′);

8 for each color c ∈ C do find(c);
/* Master worker sends aggregation to slaves */

9 Broadcast the set of parents of colors in the disjoin-set data
structure (i.e., {(c, parent(c)) | c ∈ C}) to all slave workers;

Merging color is achieved through the aggregator in Pregel
systems, as shown in Algorithm 3. It first collects the sets of
received colors of vertices to the master worker (Lines 1–2),
then conducts the merging at the master worker (Lines 3–
8), and finally sends the aggregated information back to
slave workers (Line 9). To process these merging operations
efficiently, we adopt the union-find algorithm based on the
disjoint-set data structure [5]. We organize the colors into a
set of trees by storing the parent parent(c) of each color c,
such that the root of each tree is the representative color of
all colors in the tree. Initially, each color corresponds to a
singleton tree (i.e., parent(c) = c,∀c ∈ C) (Line 4). For each
set of received colors, cls, we merge the first color c with
every other color c′ ∈ cls (Lines 5–7); that is, we merge the
tree containing c and the tree containing c′. Finally, we apply
the find operation to all colors (Line 8), such that parent(c)
stores the root/representative color of the tree containing c.
Note that, union and find are two standard operations in the
union-find algorithm [5].

89

Algorithm 4: update-color
Input: The set of (c, parent(c)) pairs received at slave workers

1 for each vertex v ∈ V do v.color ← parent(v.color);

Now, we replace each color v.color by its representative
color parent(v.color). This guarantees that all vertices in the
same CC are updated to have the same color. The pseudocode
is given in Algorithm 4, denoted update-color.

v v1 v7 v8 v12 v2 v5 v3 v4 v11 v9 v10 v6
pos 1 2 3 4 5 6 7 8 9 10 11 12
βi 20 21 22 23

(a) Permutation P

V1

(1)

V2 (1)

V3 (1)

V4 (-) V5 (-)

V6 (-)

V7

(7)

V8

(-)

V9

(-)

V10

(-)

V11

(-)

V12

(-)

(b) Superstep 1

V1

(1)

V2 (1)

V3 (1)

V4 (1,7) V5 (7,1)

V6 (7,1)

V7

(7)

V8

(8)

V9

(8)

V10

(-)

V11

(12)

V12

(12)

(c) Superstep 3

V1

(1)

V2 (1)

V3 (1)

V4 (1,7) V5 (7,1)

V6 (7,1)

V7

(7)

V8

(8)

V9

(8)

V10

(8,12)

V11

(12)

V12

(12)

(d) Superstep 4

V1

(1)

V2 (1)

V3 (1)

V4 (1) V5 (1)

V6 (1)

V7

(1)

V8

(8)

V9

(8)

V10

(8)

V11

(8)

V12

(8)

(e) After update-color

Fig. 6: Running example for computing CCs (the numbers in
brackets beside vertex v is v.cls, where the first color is v.color)

Running Example. Consider the graph in Figure 4 with the
random permutation P in Figure 6(a) and β = 2. At superstep
0, no vertex receives colors and v1 is selected as a seed vertex;
thus v1 has color 1, and propagates its color to its neighbors. At
superstep 1, both v2 and v3 receive color 1, and v7 is selected
as a new seed vertex; the result is shown in Figure 6(b). Here,
we show v.cls in brackets, where the first color is v.color.
The process continues. At superstep 3, v4 has color 1 and also
receives color 7; thus v4 adds 7 to its set of received colors,
as shown in Figure 6(c). Note that, in this superstep, neither
v4, v5, nor v6 propagate its newly received colors (i.e., colors,
7, 1, and 1, respectively) to its neighbors.

At superstep 4, all edges have been visited by BFSs; thus,
the graph decomposition ends and the result is shown in
Figure 6(d). Vertices, v4, v5, v6, and v10, have received multiple
colors; thus their sets of received colors are collected at the
master worker for merging. That is, colors 1 and 7 are merged,
and colors 8 and 12 are merged. Assume that the representative
color of 1 and 7 is 1 and the representative color of 8 and 13
is 8, then after update-color the final colors of vertices are
shown in Figure 6(e). We conclude that vertices {v1, . . . , v7}

and {v8, . . . , v12} belong to two CCs, respectively.

C. Correctness and Complexity Analysis

We prove the correctness and give complexity analyses of
our approach.

Correctness. For any color c, let Vc be the set of vertices with
color c. Then, Vc∩Vc′ = ∅,∀c , c′, because after update-color
(Algorithm 4), every vertex has exactly one color. We prove
the correctness of our approach by the following theorem.

Theorem 3.1: For each assigned color c in Algorithm 4,
the subgraph induced by Vc, G[Vc], is a maximal connected

subgraph (thus, it is a connected component). �

Complexity Analyses. Now, we analyze the complexities of
our approach regarding #supersteps, total communication cost,
and total computation cost in the following.

Number of Supersteps. In the worst case, graph-decompose
stops after at most logβ n (i.e., O(log n)) supersteps, because at
that time all vertices would have been selected by the random
seed vertex selection process. Moreover, if the input graph is
connected (or has a giant CC), then graph-decompose termi-
nates after at most O(δ) supersteps (or with high probability),
because at that time all edges would have been visited by BFSs.
In addition, merge-color and update-color take one superstep
each. Thus, #supersteps is bounded by O(min{δ, log n}) (or with
high probability) if the input graph is connected (or has a giant
CC), and it is bounded by O(log n) in the worst case.

Total Communication Cost. The total communication cost of
our approach is O(m), as follows. Firstly, graph-decompose
traverses the input graph only once by visiting each undirected
edge at most twice, and one message is generated for each
visited edge. Secondly, the number of messages collected at
the master worker in Algorithm 3 is at most

∑
v∈V |v.cls| ≤

2 × m. Moreover, to reduce the communication cost, we also
aggregate the messages locally at slave workers before sending
to the master worker, by an algorithm similar to Algorithm 3.
Thus, the communication cost of merge-color is O(p×#colors),
where p is the number of workers and #colors is the total
number of colors generated.

The #colors is the same as the number of selected seed
vertices. To make it small, we implement a heuristic by
choosing the vertex with the maximum degree as the first seed
vertex at superstep 0. Let ∆ be the maximum degree and d
be the average degree. Then, the expected number ni of seed
vertices selected at superstep i is ni = (1− ∆×di−1

n)× (βi − βi−1);
intuitively, ∆× di−1 is the expected number of vertices already
visited by the existing BFSs. Since ∆ is large for real graphs
due to the power-law graph model, ni (thus #colors) usually is
small; for example, in our experiments in Section V, #colors is
only a small fraction (i.e., ≤ 0.4%) of the number of vertices
in a graph (see Figure 11(d)).

Total Computation Cost. The total computation cost of our
approach is O(m + n× #supersteps). Firstly, O(n× #supersteps)
is the inevitable cost due to the Pregel model. Besides, graph-
decompose takes O(m) time similar to the communication
cost as discussed above, merge-color takes time linear to the
size of received messages [5] (thus, bounded by O(m)), and
update-color also takes linear time.

IV. Computing BCCs

In this section, we propose a new vertex labeling technique,
based on graph decomposition, to reduce the total communi-
cation cost for computing BCCs from O(m × #supersteps) to
O(m). We first present the general idea in Section IV-A, and
then illustrate our approach in Section IV-B, while analyses are
given in Section IV-C. In the following, for ease of exposition
we assume that the input graph is connected.

A. Vertex Labeling

Challenge. The main challenge of computing BCCs lies in
the fact that a vertex may belong to several BCCs. Thus,

90

a similar idea to CC computation algorithms (i.e., labeling
each vertex by a color such that each CC corresponds to a
subgraph induced by vertices with the same color) does not
work for BCCs. Nevertheless, it is true that each edge can
only participate in one BCC. Thus, the existing approaches
compute BCCs by labeling edges instead [31], [36]. To do so,
they construct an auxiliary graph G′ for the input graph G
by treating each edge in G as a vertex in G′; this reduces
the problem of labeling edges in G to labeling vertices in
G′. However, the above process incurs O(m × #supersteps)
communication cost.

Intuition of Our Approach. We propose a new approach for
computing BCCs with O(m) communication cost by directly
labeling vertices of the input graph. Our main idea is based
on cycles in a graph.

Definition 4.1: A cycle consists of a sequence of vertices start-
ing and ending at the same vertex, with each two consecutive
vertices in it adjacent to each other in the graph. �

v1

v3

v2
v4

v5

v6

v7

v8

v9 v10

v11

v12

v13

V1(0)

V3(1)V2(1) V4(1)

V5(2) V6(2) V7(2) V8(2)

V9(3) V10(3) V11(3) V12(3) V13(3)

V1

V3V2 V4

V5 V6 V7 V8

V9 V10 V11 V12

Level 0

Level 1

Level 2

Level 3

....

...........

...........

v1

v3v2 v4

v5 v6 v7

v9 v10

v8

v11 v12 v13

v2

v1

v7

v4

v6

v3

v8v5

v12 v13v11v10v9

v2

v1

v7

v4

v6

v3

v8v5

v12 v13v11v10v9

Level 0

Level 1

Level 2

Level 3

....

...........

...........

(a) An example graph

V1

V3

V2 V4

V5

V6

V7

V8

V9 V10

V11

V12

V13

V1(0)

V3(1)V2(1) V4(1)

V5(2) V6(2) V7(2) V8(2)

V9(3) V10(3) V11(3) V12(3) V13(3)

V1

V3V2 V4

V5 V6 V7 V8

V9 V10 V11 V12

Level 0

Level 1

Level 2

Level 3

....

...........

...........

v1

v3v2 v4

v5 v6 v7

v9 v10

v8

v11 v12 v13

v2

v1

v7

v4

v6

v3

v8v5

v12 v13v11v10v9

v2

v1

v7

v4

v6

v3

v8v5

v12 v13v11v10v9

Level 0

Level 1

Level 2

Level 3

....

...........

...........

v1

v3v2 v4

v5 v7

v9

v8

v11 v12 v13

v6

v10

(b) A rooted spanning tree
Fig. 7: An example graph and a spanning tree

For example, in Figure 7(a), (v1, v3, v4, v1) is a cycle. A
cycle can also be represented by the sequence of edges formed
by consecutive vertices. A cycle is simple if there is no
repetition of vertices and edges, other than the repetition of the
starting and ending vertices [9]. For example, in Figure 7(a),
(v1, v3, v1) and (v1, v3, v4, v7, v3, v1) are not simple cycles, while
(v1, v3, v4, v1) is a simple cycle. In the following, we refer
simple cycle as cycle for presentation simplicity.

We have the lemma below for BCCs based on cycles.

Lemma 4.1: Two edges belong to the same BCC if and only
if there is a (simple) cycle containing both edges. �

For example, in Figure 7(a), edges (v2, v5) and (v3, v6)
belong to the same BCC because both appear in the cycle
(v1, v2, v5, v9, v6, v3, v1); edges (v4, v7) and (v8, v11) belong to
different BCCs because there is no cycle containing both edges.

Computing BCCs. Following Lemma 4.1, we can compute
BCCs of a graph by enumerating cycles and building the
relationship among edges, such that two edges have a relation
if and only if they appear together in a cycle. Therefore, the
transitive relationships between edges define the BCCs of the
graph. However, there can be exponential number of cycles in
a graph [5]. To make the above idea of computing BCCs by
enumerating cycles work, we reduce the number of cycles to
m − n + 1 by considering only basic cycles.

Definition 4.2: Given a spanning tree T of a graph G, we
define a basic cycle for a non-tree edge (u, v) ∈ G\T as the
cycle containing (u, v) and the path between u and v in T . �

For example, given the spanning tree in Figure 7(b)
for the graph in Figure 7(a), the basic cycle correspond-
ing to non-tree edge (v6, v9) is (v1, v2, v5, v9, v6, v3, v1); there
are totally six basic cycles corresponding to non-tree edges
(v6, v9), (v7, v10), (v3, v4), (v4, v7), (v11, v12), (v12, v13).

In the following, we assume there is a spanning tree T .
Based on basic cycles, we have the following theorem.

Theorem 4.1: Given any two edges e and e′, they belong to
the same BCC if and only if either 1) there is a basic cycle
containing both e and e′ or 2) there is a chain of basic cycles,
C0, . . . ,Cl, such that Ci and Ci+1 overlap on edges for every
0 ≤ i < l, and e ∈ C0 and e′ ∈ Cl. �

Consider the graph in Figure 7(a) with the spanning tree
depicted by solid edges in Figure 7(b), e1 = (v11, v12) and
e2 = (v12, v8) belong to the same BCC because they appear
in the basic cycle C1 = (v8, v11, v12, v8). e1 and e3 = (v12, v13)
belong to the same BCC, because there exists another basic
cycle C2 = (v8, v12, v13, v8) such that e1 ∈ C1, e3 ∈ C2 and
C1 ∩C2 , ∅.

Labeling Vertices. From Theorem 4.1, we only need to
enumerate basic cycles, which is affordable. To tackle the
challenge stated at the beginning of this subsection, we propose
a vertex labeling technique based on the lemmas below.

Lemma 4.2: Given a rooted spanning tree T of a graph G,
for each vertex u in G, the set of non-tree edges associated
with u and the tree edge (u, p(u)) belong to the same BCC,
where p(u) denotes the parent of u in T . �

Lemma 4.3: Given a rooted spanning tree T of a graph G,
each BCC of G has a unique vertex that is closest to the root
of T (denote it as the root of the BCC), and each vertex can
be a non-root vertex in at most one BCC. �

Therefore, we can label vertices by colors; each vertex
has the color of the unique BCC in which the vertex is a
non-root vertex. The set of all vertices with the same color
and their parents in the spanning tree corresponds to a BCC.
Alternatively, edges can infer their colors as follows: if it is a
non-tree edge, then its color is the same as the color of either
of its two end-points; otherwise, it is a tree edge and its color
is the same as the child vertex of the edge. Consequently, each
BCC of G corresponds to the set of edges with the same color.

Naive Vertex Labeling Algorithm. Given a rooted spanning
tree of a graph G, a naive vertex labeling algorithm is to
enumerate all basic cycles (i.e., decompose G into a set of
basic cycles). For each basic cycle C, we label all vertices in
C, except the unique vertex that is closest to the root, with the
same color. Note that, during labeling vertices in a basic cycle
C, if there are vertices in C that have already been labeled
(i.e., their colors have been set by other basic cycles), then we
collect all colors of such vertices (except the unique vertex that
is closest to the root) and merge these colors, similar to merge-
color and update-color in Section III. However, this is time-
consuming considering the expensive cost of enumerating all
basic cycles and of relabeling vertices. We present an efficient
vertex labeling algorithm in the next subsection.

B. Our Algorithm

We propose an efficient approach for labelling all vertices
in G by traversing the graph in a bottom-up fashion. We first
make the input graph G a layered graph regarding a BFS tree.

Definition 4.3: Given a BFS tree T of a graph G, we make G
a layered graph by assigning a level number to each vertex.
The root vertex in T has a level number 0, and for every other
vertex, its level number is one plus that of its parent in T . �

91

v2

v1

v7

v4

v6

v3

v8v5

v12 v13v11v10v9

Level 0

Level 1

Level 2

Level 3

....

...........

...........

Fig. 8: A layered graph

For example, given the BFS tree in Figure 7(b) for the
graph in Figure 7(a), the corresponding layered graph is shown
in Figure 8. For each vertex in a layered graph, we categorize
its neighbors into upper-level neighbors (i.e., neighbors with
smaller level numbers), same-level neighbors, and lower-level
neighbors (i.e., neighbors with larger level numbers). For a
vertex at level i, all its upper-level neighbors are at level (i−1),
and all its lower-level neighbors are at level (i+1). For example,
for v4 in Figure 8, its upper-level neighbor is v1, its same-level
neighbor is v3, and its lower-level neighbors are v7 and v8.
Note that, each vertex except the root vertex will have at least
one upper-level neighbor including its parent vertex in T and
possible other vertices corresponding to non-tree edges.

Given a layered graph, our algorithm labels vertices level-
by-level in a bottom-up fashion based on the lemma below.

Lemma 4.4: Given a layered graph, (rule-i) each vertex has
the same color as its same-level neighbors; (rule-ii) if a vertex
has at least two upper-level neighbors, then the vertex and all
its upper-level neighbors have the same color. �

Consider the layered graph in Figure 8, v3 and v4 have the
same color since they are same-level neighbors, v9 have the
same color as v5 and v6 since v5 and v6 are two upper-level
neighbors of v9. However, from Lemma 4.4, we do not know
the relationship between colors of v2 and v3 since they are
neither directly connected nor connected through a common
lower-level neighbor. From Theorem 4.1, we know that v2 and
v3 should have the same color. We define a merge operation
below so that we can apply Lemma 4.4 to label all vertices.

Definition 4.4: Given a set S of vertices that are at the same
level and have the same color, the merge operation is to merge
all vertices in S into a single super-vertex. �

For example, in Figure 8, vertices v5 and v6 are at the
same level and have been assigned the same color due to the
common lower-level neighbor v9. We merge them into a super-
vertex, denoted v5,6. Now, v5,6 has two upper-level neighbors,
v2 and v3; thus, according to Lemma 4.4, they have the same
color as v5,6 (i.e., the color of v5 and v6). Therefore, we can
continue this process to label all vertices.

The Algorithm. Armed with Lemma 4.4 and the merge
operation, we present our efficient vertex labeling algorithm in
Algorithm 5, denoted BCC-Labeling. Firstly, we construct a
layered graph (Line 1); that is, we conduct a BFS of G starting
from a random vertex r and assign each vertex in G a BFS
level number.5 Secondly, we compute CCs of the subgraph of
G, consisting of only edges whose two end-points are at the
same level, to label vertices according to rule-i (Line 2). Note
that, all vertices in the same CC (i.e., with the same color
and at the same level) need to be merged into a super-vertex
to iteratively apply rule-ii level-by-level. Instead of physically

5Note that, this directly generalizes to disconnected graphs by first identi-
fying CCs of the graph and then conducting BFS for each CC.

Algorithm 5: BCC-Labeling
Input: A graph G = (V, E)
Output: The BCCs of G

1 Assign each vertex in G a BFS level number by starting BFS
from a random vertex r;

2 Run a CC computation algorithm on the subgraph consisting
of only edges connecting same-level vertices, and let v.sid
denote the super-vertex id of the CC containing v;

3 l← the largest level number of vertices in G;
4 for each vertex v at level l do v.color ← v.sid;
5 while l > 1 do

/* Send colors from level l to level l − 1 */
6 for each vertex v at level l do if v.sid , v.id then
7 Send two of v’s upper-level neighbors to vertex v.sid;

8 for each vertex v at level l do if v.sid = v.id then
9 S ← {all vertices in v’s received messages};

10 S ← S ∪ {v’s upper-level neighbors};
11 if |S | > 1 then Notify all vertices at level l with color

v.color to send v.color to their upper-level neighbors;

/* Assign colors to vertices at level l − 1 */
12 l← l − 1;
13 for each vertex v at level l do
14 Let C be the set of colors v received in messages;
15 if v.sid = v.id then v.cls← C;
16 else if |C| > 0 then Send C to the vertex v.sid;

17 for each vertex v at level l do if v.sid = v.id then
18 v.cls← v.cls ∪ {the colors v received in messages};
19 if |v.cls| = 0 then v.color ← v.sid;
20 else v.color ← the first color in v.cls;
21 Send v.color to all vertices whose super-vertex is v;

22 for each vertex v at level l do if v.sid , v.id then
23 v.color ← the color v received in messages;

24 Run merge-color aggregator with parameter l;
25 for each vertex v at level l do
26 v.color ← parent(v.color); v.sid ← vertexID(v.color);

27 update-color();

assigning all neighbors of vertices in a CC as the neighbors of
the super-vertex, we store in v.sid the id of the super-vertex
containing v while neighbors are still kept at the individual
vertices. The super-vertex id can be the id of any vertex in
the super-vertex, and all vertices in the same super-vertex will
have the same super-vertex id.

Then, we label vertices level-by-level in a bottom-up fash-
ion. For vertices at the bottom level, we label all vertices in
the same CC (indicated by v.sid) by a unique color (i.e., v.sid)
(Line 4). After that, we go to iterations to label other vertices
level-by-level in two phases (Lines 6–26).

(Phase 1) Propagate colors from vertices at level l to vertices
at level l − 1 (Lines 6–11). In order to apply rule-ii in
Lemma 4.4, we need to check whether a super-vertex has at
least two upper-level neighbors. Here, we ensure that vertices
at level l belong to the same super-vertex (i.e., with the
same sid) if and only if they have the same color; that is,
u.sid = v.sid if and only if u.color = v.color. Thus, we use the
vertex with id v.sid to check whether the super-vertex has at
least two upper-level neighbors. However, instead of collecting
all upper-level neighbors to the super-vertex, we only need to
collect up to two neighbors from each vertex in the super-
vertex (Line 7). We put these upper-level neighbors into a set
S (Lines 9–10). If there are at least two upper-level neighbors

92

(i.e., equivalently, |S | > 1), then we notify all vertices at level
l with color v.color (i.e., in the super-vertex) to send their
colors to their upper-level neighbors according to rule-ii in
Lemma 4.4 (Line 11).

(Phase 2) Assign colors to vertices at level l−1 (Lines 12–26).
Line 12 moves up one level higher (i.e., l← l−1); thus, in the
following, we will talk about vertices at level l. A vertex at
level l may receive several colors propagated from vertices at
level l+1. We merge colors such that only one color is assigned
to each super-vertex at level l. There are two cases for merging
colors: 1) colors received by the same vertex should be merged;
2) colors received by vertices in the same CC (i.e., the same
super-vertex) should be merged. Therefore, we send all colors
received by vertices in the same CC to the super-vertex of
the CC for merging (Lines 13–16). For each super-vertex, we
assign one of the received colors to be its color (Lines 17–21)
and this color is also assigned to all vertices in the super-
vertex (i.e., CC) (Lines 22–23). If two super-vertices received
the same color, then they should be merged into a single super-
vertex according to the merge operation. This is achieved by
the merge-color aggregator (Line 24), which will be discussed
shortly. Finally, we update the colors and super-vertex ids of
vertices at level l (Lines 25–26); here, vertexID(c) denotes the
super-vertex id of vertices with color c.

Algorithm 6: update-color
1 Let C be the set of all colors in the disjoint-set data structure;
2 for each color c in C do Find(c);
3 for each vertex v ∈ V do v.color ← parent(v.color);

Note that, in the above bottom-up process, colors assigned
to vertices are only tentative, because some colors assigned to
vertices at lower levels may be merged at higher levels. For
example, in Figure 8 after labeling vertices at level 3, v9 and v10
have colors 9 and 10, respectively; the two colors are merged
into a single color when labeling vertices at level 2 because v6
receives both color 9 and color 10. However, we do not update
colors for vertices at lower levels in this bottom-up process;
instead, we update colors for all vertices in a final updating
process (i.e., Line 27), which is presented in Algorithm 6.

Algorithm 7: merge-color aggregator
Input: The current level number l

1 for each vertex v ∈ V at level l do
2 if |v.cls| > 0 then Send (v.id, v.cls) to the master worker;

3 for each (v.id, v.cls) received by the master worker do
4 for each color c′ in v.cls do
5 if c′ is not in the disjoint data structure then
6 Add c′ into the data structure with

parent(c′) = c′ and vertexID(c′) = v.id;

7 c← an arbitrary color in v.cls;
8 for each color c′ in v.cls do union(c, c′);

9 Let C be the set of colors in the received messages;
10 for each color c′ in C do find(c′);
11 Broadcast {(c, parent(c), vertexID(parent(c))) | c ∈ C} to all

slave workers;

merge-color Aggregator. The aggregator for merging colors
and super-vertices is shown in Algorithm 7, denoted merge-
color. It is similar to Algorithm 3. The only difference is that,
we also merge super-vertices here; that is, two super-vertices

are merged together if their sets of colors overlap. Thus, for
each color c in the disjoint-set data structure, we also assign a
super-vertex id to c, denoted vertexID(c), which is the super-
vertex id of vertices with color c. After running the aggregator,
parent(c) denotes the representative color of c (i.e., color
c should be replaced by parent(c)), and vertexID(parent(c))
denotes the super-vertex id of all vertices at the current level
with color parent(c).

V7 (7)

(-)

V6 (6)

(-)

V5 (5)

(-)

V2 (2)

(-)

V3 (3)

(-)

V8 (8)

(-)

V4 (3)

(-)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(10)

(a) Level 3

1
V7 (7)

(10)

V6 (6)

(9,10)

V5 (5)

(9)

V2 (2)

(-)

V3 (3)

(-)

V8 (8)

(-)

V4 (3)

(-)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(10)

(b) Level 2 (phase 1)

el2P2

parent(10) = 9

V7 (5)

(9)

V6 (5)

(9)

V5 (5)

(9)

V2 (2)

(-)

V3 (3)

(-)

V8 (8)

(8)

V4 (3)

(-)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(10)

(c) Level 2 (phase 2)

P1

parent(10) = 9

V7 (5)

(9)

V6 (5)

(9)

V5 (5)

(9)

V2 (2)

(9)

V3 (3)

(9)

V8 (8)

(8)

V4 (3)

(9)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(10)

(d) Level 1 (phase 1)

parent(10) = 9

V7 (5)

(9)

V6 (5)

(9)

V5 (5)

(9)

V2 (2)

(9)

V3 (2)

(9)

V8 (8)

(8)

V4 (2)

(9)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(10)

(e) Level 1 (phase 2)

olor

V7 (5)

(9)

V6 (5)

(9)

V5 (5)

(9)

V2 (2)

(9)

V3 (2)

(9)

V8 (8)

(8)

V4 (2)

(9)

V1 (1)

(-)

V11 (11)

(11)

V12 (11)

(11)

V13 (11)

(11)

V9 (9)

(9)

V10 (10)

(9)

(f) Update final colors

Fig. 9: Running example for computing BCCs (the number
beside vertex v is v.sid, and that below is v.color or v.cls)

Running Example. Consider the layered graph in Figure 8.
After computing CCs of the subgraph consisting of edges
connecting vertices at the same level, the super-vertex ids
of CCs are assigned as shown in brackets beside vertices
in Figure 9(a); for example, v11 is the super-vertex of the
CC consisting of {v11, v12, v13}. Then, vertices at the bottom
level (i.e., v9, . . . , v13) set their colors as v.sid as shown in
Figure 9(a), where colors are given in brackets below vertices.

In assigning colors to vertices at level 2, we first check
whether a super-vertex at level 3 should propagate its color to
its upper-level neighbors according to rule-ii in Lemma 4.4; if
it is the case, we propagate its color to its neighbors at level 2
(i.e., Phase 1). Here, the super-vertex of {v11, v12, v13} has only
one upper-level neighbor, thus its color is not propagated. Both
v9 and v10 have two upper-level neighbors, thus their colors
are propagated to their upper-level neighbors. The result is
shown in Figure 9(b); v6 receives colors, 9 and 10. Now, at
Phase 2, every super-vertex sets its color either as the first
received color (e.g., v6.cls = {9, 10} and v6.color = 9) or
as its vertex id if it receives no color (e.g., v8.cls = ∅ and
v8.color = 8). Moreover, super-vertices having the same color
need to be merged according to the merge operation, which is
achieved by the merge-color aggregator. Here, the aggregator
collects (5, {9}), (6, {9, 10}), (7, {10}) at the master worker and
conducts the merging. Assume the result of the aggregator is
parent(10) = 9 and vertexID(9) = v5, then the colors and

93

super-vertex ids of vertices at level 2 are updated as shown in
Figure 9(c). For example, the super-vertex ids of v5, v6 and v7
now become 5, since they are merged into a super-vertex due
to having the same color.

Similarly, we assign colors to vertices at level 1. At Phase
1, we propagate colors of vertices at level 2 to their neighbors
at level 1. Since the super-vertex {v5, v6, v7} has three upper-
level neighbors (i.e., v2, v3, and v4), its color is propagated to
level 1; the result is shown in Figure 9(d). At Phase 2, super-
vertices at level 1 collect their received colors and set their
colors accordingly. Also the aggregator conducts the merging,
and the result is shown in Figure 9(e).

Finally, we update colors of all vertices, and the result
is shown in Figure 9(f). BCCs can be identified through the
colors of vertices; that is, the set of vertices with the same
color and their upper-level neighbors corresponds to a BCC.
There are three BCCs, induced by vertices {v1, . . . , v7, v9, v10},
{v4, v8}, and {v8, v11, v12, v13}, respectively.

C. Correctness and Complexity Analysis

We prove the correctness and give complexity analyses of
of our approach.

Correctness. We prove the correctness of our approach by the
following theorem.

Theorem 4.2: Our vertex labeling approach labels all vertices,
except the root vertex, of a BCC by a unique color. �

Thus, Algorithm 5 correctly computes all BCCs of a graph.

Complexity Analyses. Now, we analyze the complexities of
our approach regarding #supersteps, total communication cost,
and total computation cost in the following.

Number of Supersteps. The #supersteps of Algorithm 5 is
O(δ + log n). Firstly, constructing the layered graph at Line 1
takes O(δ) supersteps. Secondly, running our CC computation
algorithm at Line 2 takes at most O(log n) supersteps. Thirdly,
the while loop at Lines 5–26 takes O(δ) supersteps. Finally,
both Algorithm 6 and Algorithm 7 take constant supersteps.

Total Communication Cost. The total communication cost of
Algorithm 5 is O(m). Firstly, constructing the layered graph by
conducting BFS at Line 1 has communication cost O(m). Sec-
ondly, computing CCs at Line 2 by our approach in Section III
has communication cost O(m). Thirdly, the while loop at
Lines 5–26 traverses the layered graph only once in a bottom-
up fashion; thus its communication cost is O(m). Finally,
similar to Section III-C, Algorithm 6 and all invocations to
Algorithm 7 have total communication cost O(m).

Total Computation Cost. Similar to Section III-C, the total
computation cost of our approach is O(m + n× #supersteps).

V. Experiments

We conduct extensive performance studies to evaluate the
efficiency of our graph decomposition based approaches for
computing CCs and for computing BCCs. Regarding comput-
ing CCs, we evaluate the following algorithms:
• S-V: the algorithm proposed in [36].
• hash-min: the algorithm proposed in [23].
• single-pivot: the algorithm proposed in [24].
• GD-CC: our algorithm in Section III.

Regarding computing BCCs, we evaluate algorithms below:
• T-V(S-V): the algorithm proposed in [36].
• T-V(hash-min): the algorithm proposed in [36].
• T-V(single-pivot): the combination of T-V algorithm

in [36] with CC computation algorithm single-pivot.
• GD-BCC: our algorithm in Section IV.

Since most of the existing algorithms in our testings have been
implemented in Pregel+,6 an open source C++ implementation
of the Pregel system, we also implement our algorithms in
Pregel+. Specifically, we implement single-pivot, GD-CC,
GD-BCC, and T-V(single-pivot), while other algorithms are
already in Pregel+. Note that, although T-V(single-pivot) is
not considered in [36], it is very natural to adjust the T-V
algorithm in [36] to use single-pivot for computing CCs.

We compile all algorithms with GNU GCC with the -O3
optimization. Our experiments are conducted on a cluster of up
to 25 Amazon EC2 r3.2xlarge instances (i.e., machines) with
enhanced networking. Each r3.2xlarge instance has 4 cores
and 60GB RAM and runs 4 workers; thus, we have up to 100
total workers. We evaluate the performance of all algorithms
on both real and synthetic graphs as follows.

Graph #Vertices #Edges #CCs max |CC|
TW 41, 652, 230 1, 202, 513, 046 1 41, 652, 230
T-S 92, 288, 289 3, 012, 576, 376 32 50, 634, 118
PL1 264, 464, 510 2, 005, 938, 490 4 66, 123, 323
PL2 529, 005, 705 4, 027, 878, 138 8 66, 142, 392
YH 720, 242, 173 6, 434, 561, 035 2 × 106 701, 814, 265

TABLE I: Statistics of graphs

Graphs. We evaluate the algorithms on three real graphs
and two synthetic graphs. The three real graphs are 1) TW7

(a social network of Twitter users in 2010), 2) T-S (the
combination of TW with a web graph of .sk domain crawled
in 20057), and 3) YH8 (a web graph crawled by yahoo in
2002). The synthetic graphs PL1 and PL2 contain 4 and 8
CCs, respectively, each of which is generated by GTGraph9

following a power-law degree distribution. The diameter of
YH is large while that of other graphs are small. Statistics of
these graphs are shown in Table I.

Evaluating Metric. We evaluate the algorithms in terms of
total running time, computation time, communication time,
communication volume (i.e., the total data message sizes),
and #supersteps; β = 2 by default. The communication time
includes both the data communication time and the commu-
nication time related to the barrier synchronization (see cost
estimation of Pregel algorithms in Section I). We vary the
number of workers (#workers) from 40 to 60, 80, and 100,
with #workers = 60 by default.

A. Experimental Results

Eval-I: Evaluating CC Computation Algorithms. The per-
formance of the four CC computation algorithms on the
four graphs is illustrated in Figure 10. Overall, our GD-CC
approach performs the best and outperforms S-V, hash-min,
single-pivot by up to 56, 5.6, 3.9 times, respectively (see
Figure 10(a)). In Figure 10(b), we overlap the computation
time with the communication time to compare the two costs.
Note that, the entire bar (i.e., the top part + the bottom part)

6http:www.cse.cuhk.edu.hk/pregelplus/
7http://law.di.unimi.it/datasets.php
8https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
9http://www.cse.psu.edu/∼kxm85/software/GTgraph/

94

represents the total length of the dominant cost; that is, if
the communication time dominates, then the entire bar is the
communication time, otherwise it is the computation time.
For example, in the first bar, the entire bar (i.e., the black
part + the white part) represents the total communication time
while the white bar shows the total computation time; in the
fourth bar that represents GD-CC, the entire bar (i.e., the
white part + the bottom part) represents the total computation
time while the bottom part shows the total communication
time. For PL1 and YH, the communication time of our
GD-CC algorithm is similar to the computation time, with the
communication time being slightly larger. We can see that the
communication time is larger than the computation time for
all existing algorithms on all three small-diameter graphs, T-
S, PL1, and PL2 (e.g., communication time is one order of
magnitude larger than computation time for S-V), while the
computation time becomes the dominating factor for hash-min
and single-pivot on the large-diameter graph (i.e., YH) due
to O(n × #supersteps) computation cost. This motives us to
reduce the total communication volume (see Figure 10(c))
while also keeping #supersteps small (see Figure 10(d)). As
a result, both the communication time and computation time
of our approach are much smaller than the existing algorithms
(see Figure 10(b)). Figure 10(d) confirms the O(min{δ, log n})
#supersteps of our approach.

S-V hash-min single-pivot GD-CC

10
1

10
2

10
3

10
4

T-S PL1 PL2 YH

R
u

n
n

in
g

 T
im

e
 (

s
)

(a) Total running time

10
1

10
2

10
3

10
4

T-S PL1 PL2 YH

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

C
o

m
m

u
n

ic
a

ti
o

n
 &

GD-CC GD-CC GD-CC

computation time

(b) Communication&computation time

10
1

10
2

10
3

10
4

T-S PL1 PL2 YH

C
o

m
m

u
n

ic
a

ti
o

n
 (

G
B

)

(c) Communication volume

10
0

10
1

10
2

10
3

10
4

T-S PL1 PL2 YH

#
s
u

p
e

rs
te

p

(d) #supersteps

Fig. 10: Evaluating CC computation algorithms

Eval-II: Influence of β on Our CC Computation Algorithm.
It seems hard to give a theoretical result about the selection
of β for our GD-CC algorithm. Thus, in this testing, we use
experiments to select β, which decides how the number of
selected seed vertices increases along with the supersteps.
The results of running GD-CC with different β values are
shown in Figure 11. In general, for small-diameter graphs, the
total running time, communication volume, and #supersteps of
GD-CC are not sensitive to β; this is because #supersteps on
these graphs are O(δ) and they are small (see Figure 11(c)).
On the large-diameter graph YH, the #supersteps of GD-CC,
which is O(logβ n), decreases with larger β; however, the com-
munication time increases with larger β due to the selection
of more seed vertices. As a result, the total running time of
GD-CC first decreases and then increases with β = 2 as the
turning point. Moreover, the #colors aggregated at the master
worker increases for all graphs when β becomes larger than 2
(see Figure 11(d)). Therefore, we set β = 2 for GD-CC. One
thing to notice is that when β = 2, the #colors aggregated at
the master worker is only a small fraction (i.e., ≤ 0.4%) of
the #vertices; thus, the merging of colors can be done through
aggregator at the master worker.

T-S PL1 PL2 YH

 0

 40

 80

 120

 160

 1 2 4 8

R
u

n
n

in
g

 T
im

e
 (

s
)

(a) Total running time (vary β)

 0

 20

 40

 60

 1 2 4 8

C
o

m
m

u
n

ic
a

ti
o

n
 (

G
B

)

(b) Communication volume (vary β)

 0

 40

 80

 120

 1 2 4 8

#
s
u

p
e

rs
te

p

(c) #supersteps (vary β)

10
-6

10
-4

10
-2

 1 2 4 8

#
c
o

lo
rs

/#
v
e

rt
ic

e
s

(d) #colors
#vertices (vary β)

Fig. 11: Evaluating the impact of β on our GD-CC algorithm

Eval-III: Scalability Testing of CC Computation Algo-
rithms. To evaluate the scalability of CC computation algo-
rithms, we vary the #workers from 40 to 100. The testing
results are shown in Figure 12; S-V cannot finish in two hours
on YH when running on 40 workers. Our GD-CC algorithm as
well as other algorithms scale almost linearly with #workers.
Still, GD-CC consistently outperforms other algorithms.

S-V hash-min single-pivot GD-CC

2
6

2
8

2
10

2
12

40 60 80 100

R
u

n
n

in
g

 T
im

e
 (

s)

(a) PL2 graph (vary #workers)

INF

2
6

2
8

2
10

2
12

40 60 80 100

R
u

n
n

in
g

 T
im

e
 (

s)

(b) YH graph (vary #workers)
Fig. 12: Scalability testing of CC computation algorithms

Eval-IV: Evaluating BCC Computation Algorithms. Similar
to Figure 10, the testing results of running BCC algorithms
are shown in Figure 13, where in Figure 13(b) we overlap the
computation time with communication time to compare the
two costs similar to that in Figure 10(b). Note that, since the
existing algorithms run out-of-memory on PL2 and YH when
running on 60 workers (i.e., 15 machines), we increase the
number of workers to 200 (i.e., 50 machines) for processing
PL2 and YH (denoted as PL2(200) and YH(200), respectively).
Our GD-BCC algorithm consistently outperforms the exist-
ing algorithms (see Figure 13(a)). GD-BCC has significantly
smaller communication volume than the existing algorithms
(see Figure 13(c)); this confirms our O(m) communication cost.
Although GD-BCC has larger #supersteps on YH, GD-BCC
still has similar computation time compared to existing al-
gorithms (see Figure 13(b)), due to our computation cost of
O(m + n × #supersteps). As a result, both the communication
time and computation time of our GD-BCC algorithm are
smaller than the existing algorithms (see Figure 13(b)). Note
that, the running time of T-V(single-pivot) is almost the same
as that of T-V(hash-min). This is because the converting
process (i.e., the T-V algorithm part) has the dominating cost.

T-V(S-V) T-V(hash-min) T-V(single-pivot) GD-BCC

2
6

2
8

2
10

2
12

40 60 80 100

R
u

n
n

in
g

 T
im

e
 (

s)

(a) TW graph (vary #workers)

INF

2
8

2
10

2
12

40 60 80 100

R
u

n
n

in
g

 T
im

e
 (

s)

(b) PL1 graph (vary #workers)

Fig. 14: Scalability testing of BCC computation algorithms

Eval-V: Scalability Testing of BCC Computation Algo-
rithms. Similar to Figure 12, we vary the #workers from 40 to

95

T-V(S-V) T-V(hash-min) T-V(single-pivot) GD-BCC
INF

10
1

10
2

10
3

10
4

TW PL1 PL2 YH PL2 (200) YH (200)

R
u

n
n

in
g

 T
im

e
 (

s)

(a) Total running time

10
1

10
2

10
3

10
4

TW PL1 PL2 (200) YH (200)

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

C
o

m
m

u
n

ic
a

ti
o

n
 &

 GD-BCCcomputation time

(b) Communication&computation time

10
1

10
2

10
3

10
4

TW PL1 PL2 (200) YH (200)

C
o

m
m

u
n

ic
a

ti
o

n
 (

G
B

)

(c) Communication volume

10
1

10
2

10
3

10
4

TW PL1 PL2 (200) YH (200)

#
s
u

p
e

rs
te

p

(d) #supersteps

Fig. 13: Evaluating BCC computation algorithms

100 to evaluate the scalability of BCC computation algorithms.
The results are shown in Figure 14; the existing approaches run
out-of-memory on PL1 when running on 40 workers (i.e., 10
machines). GD-BCC as well as the existing approaches scale
well with the increasing of #workers.

VI. Conclusion
In this paper, we proposed graph decomposition based ap-

proaches for distributed computing CCs and BCCs of a graph.
Unlike existing approaches that have total data communication
cost O(m × #supersteps), our new approaches have total data
communication costs O(m). Moreover, the computation costs
and #supersteps of our techniques are similar to (or even
smaller than) those of the existing techniques, respectively.
Experiments show that our approaches outperform existing
approaches by generating much smaller volumes of messages.
Possible directions of future work are to control the #colors
generated by our algorithms and to reduce #supersteps of our
BCC computation algorithm for large-diameter graphs.

References
[1] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms

for shuffle-exchange network and PRAM. IEEE Trans. Computers,
1987.

[2] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Upfal. Space and
time efficient parallel graph decomposition, clustering and diameter
approximation. In Proc. of SPAA’15, 2015.

[3] A. Ching and C. Kunz. Giraph: Large-scale graph processing infras-
tructure on hadoop. Hadoop Summit, 2011.

[4] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science
and Engineering, 2009.

[5] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proc. of OSDI’04, 2004.

[7] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang. Computing connected
components with linear communication costs in pregel-like systems. In
UNSW-CSE-TR-201508, http://goo.gl/yCPS94.

[8] S. Fortunato. Community detection in graphs. Physics Reports, 2010.
[9] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,

1985.
[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,

and I. Stoica. Graphx: Graph processing in a distributed dataflow
framework. In Proc. of OSDI’14, 2014.

[11] N. Henry, A. Bezerianos, and J. Fekete. Improving the readability of
clustered social networks using node duplication. IEEE Trans. Vis.
Comput. Graph., 2008.

[12] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph
manipulation [H] (algorithm 447). Commun. ACM, 1973.

[13] U. Kang, M. McGlohon, L. Akoglu, and C. Faloutsos. Patterns on the
connected components of terabyte-scale graphs. In Proc. of ICDM’10,
2010.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A peta-scale
graph mining system. In Proc. of ICDM’09, 2009.

[15] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
in the cloud. PVLDB, 2012.

[16] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In Proc. of SIGMOD’10, 2010.

[17] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions
using random shifts. In Proc. of SPAA’13, 2013.

[18] K. Munagala and A. G. Ranade. I/o-complexity of graph algorithms.
In Proc. of SODA’99, 1999.

[19] S. Nanda and D. Kotz. Localized bridging centrality for distributed
network analysis. In Proc. of ICCCN’08, 2008.

[20] N. Przulj, D. Wigle, and I. Jurisica. Functional topology in a network
of protein interactions. Bioinformatics, 2004.

[21] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin. Scalable
big graph processing in mapreduce. In Proc. of SIGMOD’14, 2014.

[22] V. Ramachandran. Parallel open ear decomposition with applications
to graph biconnectivity and triconnectivity. Citeseer, 1992.

[23] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma. Finding
connected components in map-reduce in logarithmic rounds. In Proc.
of ICDE’13, 2013.

[24] S. Salihoglu and J. Widom. Optimizing graph algorithms on pregel-like
systems. PVLDB, 2014.

[25] P. Sanders. Random permutations on distributed, external and hierar-
chical memory. Inf. Process. Lett., 1998.

[26] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Inf.
Process. Lett., 2013.

[27] Y. Shiloach and U. Vishkin. An o(log n) parallel connectivity algorithm.
J. Algorithms, 1982.

[28] G. M. Slota and K. Madduri. Simple parallel biconnectivity algorithms
for multicore platforms. In Proc. of HiPC’14, 2014.

[29] I. Stanton. Streaming balanced graph partitioning algorithms for random
graphs. In Proc. of SODA’14, 2014.

[30] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In Proc. of KDD’12, 2012.

[31] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity
algorithm. SIAM J. Comput., 1985.

[32] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From ”think like a vertex” to ”think like a graph”. PVLDB, 2013.

[33] V. Turau. Computing bridges, articulations, and 2-connected compo-
nents in wireless sensor networks. In Proc. of ALGOSENSORS’06,
2006.

[34] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 1990.

[35] D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer. Topology
patterns of a community network: Guifi.net. In Proc. of WiMob’12,
2012.

[36] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algorithms
for graph connectivity problems with performance guarantees. PVLDB,
2014.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proc.
of NSDI’12, 2012.

ACKNOWLEDGMENT
Lijun Chang is supported by ARC DE150100563 and ARC

DP160101513. Xuemin Lin is supported by NSFC61232006,
ARC DP140103578 and ARC DP150102728. Lu Qin is
supported by ARC DE140100999 and ARC DP160101513.
Wenjie Zhang is supported by ARC DP150103071 and ARC
DP150102728.

96

