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Abstract: In recent years, there has been a growing interest in the research of semantic labeling of indoor scenes represented by
3D point clouds. A fundamental problem that has largely been oversighted in the current research is the way of dealing with the
unknown class which collectively includes all the objects that are of no interest to the application developer. In the training stage,
these objects are either completely removed or labeled as unknown, resulting in a trained model which is not fully and fairly
exposed to the actual sample space. In the test stage, the unknown objects are naturally present and provided to the classifier,
causing a significant drop of the classification accuracy— usually 20%∼30%. Simply improving the features or the classifier will
not address the root cause problem. In this paper, we propose a labeling framework combining both Conditional Random Field
(CRF) and PI -SVM to specifically solve the problem caused by the unknown class. First, we use a CRF to model the contextual
relations in the 3D space, for which the parameters for both node potential and edge potential are learned from training data.
Then, we make use of the rejection strategy of the PI -SVM, which estimates an unnormalized probability for each class. Finally,
we reinforce the result of CRF with the belief provided by the PI -SVM, and the labeling result is based on the agreement of the
two classifiers. The proposed method takes advantage of the global optimization of CRF and the advantage of unknown rejection
of PI -SVM. Experimental results on publicly available data set show that this method has improved the classification accuracy
by 10.7% given the accuracy drop of 19.23% caused by the unknown.
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1 Introduction

Understanding the content and the meaning of a perceived
scene is a crucial capability to enable more intelligent au-
tonomous behavior. Semantic scene labeling addresses the
core of this problem, namely to decompose a scene into
meaningful parts and assign semantic labels to them. For
indoor scenes, this is a very challenging task, as they usually
contain a large variety of different objects. Fully labeling all
the objects is almost impossible since there are innumerable
classes. The most commonly used methods manually select
the objective classes and train models without unknown, as
shown in Figure 1 an example from our experimental result.
However, when testing on new scenes, this will cause a drop
of accuracy, as the unknown objects will naturally present.

There is a finite set of known objects in myriad unknown
objects, combinations and configurations − labeling some-
thing new, novel or unknown should always be a valid out-
come. However, it is challenging to model the unknown ob-
jects as one class in the classifier. On one hand, the unknown
class contains many sub-classes which request high general-
ization ability of the classifier. On the other hand, object
classes has infinite potential negative classes which need a
strong specialization of the classifier. Simply improving the
classifier cannot solve the root of this problem, the unknown
class need to be specifically tackled.

According to our knowledge, only a little effort has been
paid on this critical problem. Since 2011, Walter et al. have
been working on the unknown rejection in Support Vector
Machine (SVM) [1]. They define the recognition problem

This work was supported by Zhejiang University Lu Graduate Student
Education Foundation for International Exchange and the National Nature
Science Foundation of China (Grant No.61473258)

Fig. 1: The topmost is the original point cloud which has been over
segmented in the object level, the middle is the ground truth label-
ing where black represents all unwanted segments and the down-
most is the point cloud with predicted labels.

with unknown as “open set” and the traditional recognition
in which all testing classes are known during training are
termed as “closed set”. The result outperformed most of the



Fig. 2: Outline of the proposed framework. (a) The input data to our algorithm. The point cloud is over-segmented in object level as
shown in different colors. (b) First, we extract various features for each segment and segment pair to capture local properties and contextual
relations. The picture here shows the convex hull for each segment. (c) Then we generate two labeling results from both PI -SVM and CRF,
using the features extracted in the last step. (d) The consistent labels of the two classifiers ( the colored segments) are considered as prior
knowledge to conditional decoding in the remaining segments in CRF. (e) The final result is based on the agreement of conditional decoding
with the former PI -SVM. Details about the separate steps are given in section 3.

SVM based classifiers in both binary and multi-class object
recognition. However, their exploration aims at improving
the stand alone SVM classifier which is designed for inde-
pendent and identically distributed data. The state-of-the-art
methods in semantic labeling also incorporates the neigh-
boring information using graphical models to capture mode
information and produce more accurate results. SVM does
not take the neighboring information into account and is im-
proper to be used in the semantic labeling directly. Moti-
vated by the partial success of these two methods in this ap-
plication, we developed a labeling strategy that does not only
consider the neighboring informations but also explicitly re-
ject the unknown or unwanted objects.

Our basic idea is modeling the scene using a Conditional
Random Field (CRF). CRF captures both the local features
and neighboring informations of objects and finds the op-
timal global labeling result. In dealing with the unknown,
CRF has very limited success due to modeling the unknown
as one class, which is hard for the reasons mentioned before.
In this paper, we combine CRF with the PI -SVM, a variation
of SVM proposed in [2] to deal with the multi-class open set
recognition. We test our method on the Cornell office data
set [3], which contains 24 segmented point clouds of differ-
ent office environments. We choose the 17 most commonly
seen objects as target classes and regard the remaining as
unknown. Informative apparent features have been extracted
for each segments (e.g. height, area) and for neighboring
segments (e.g. minimal distance) which are later used in the
classification stage. Experimental results show that the pro-
posed framework has largely improved the drop of labeling
accuracy caused by the unknown.

2 Related Work

There are many studies in the area of semantic labeling
using Conditional Random Filed [4]. The robot learning lab
of Cornell University has done a significant amount of work
([3][5][6][7][8]) in this area. They segment the point cloud
in object level to make full use of contextual relations in the
scene, including both the relations between objects and the

relations between objects and human. Their CRF model has
reached impressive labeling precision, but when testing new
scenes [6], they faced about 30% drop in the recall rate.

The work reported in [9] and [10] uses Random Forest
Tree (RFT) to initialize the unary potentials of a densely con-
nected CRF. RFT can significantly improve the performance
of CRF by increasing the confidence of the more structural
classes. However, in their implementation point clouds are
over-segmented into supervoxels, so that the node scale is
too small to capture informative contextual features. In ad-
dition, when including the unknown class, [9] and [10] re-
ceived a drop of about 30% and 20% in global accuracy re-
spectively.

The advantage of graphical models is that they integrate
both the local features and the global information, but alone
cannot deal with the unknown objects properly. Although,
the Hidden Conditional Random Field [11] can cope with
the unknown as hidden nodes in testing, they assume the
possible states of the hidden nodes are finite and go through
all the potential states to maximize a conditional probabil-
ity. Thus the total number of classes are actually fixed and
known which does not apply in the real world.

Another prevalent technique in scene classification
and object recognition is the Deep Learning framework
([12][13][14][15][16]). The main idea is using a Convolu-
tional Neural Network (CNN) to learn a high dimensional
features for the image (RGB or depth). One advantage of
Deep Learning is that it does not need to manually define
any feature. Feature extraction is learned in a unified opti-
mization framework. However, the downside is that Deep
Learning cannot give a clear explanation to the meaning of
the features, and it is data-consuming, usually need tens of
thousands of training samples. The CNN does not explic-
itly handle the unknown class and according to our knowl-
edge may not be feasible to the large scale unorganized point
clouds used in our experiment.

In the domain of machine learning, efforts have been made
to solve the unknown class problem, for example, the pro-
posed 1-vs-set machine in [17] for independent, identically



distributed data. Based on the work of Support Vector Ma-
chine [18], it models the risk of a sample being far away from
the training data in the feature space and adds another hyper
plane to reject the unknown. It demonstrates better gener-
alization and specialization ability than the binary one-class
SVM [19] which can also reject the unknown class by only
modeling the positive samples. The PI -SVM proposed by
Jain et al in [2] is a multi-class classifier with unknown rejec-
tion considered, and it is built up on single binary classifiers.
To avoid the constraint of the Bayes’ rule, they calculate a
probability in each single classifier separately and leave the
probabilities unnormalized. By comparing these unnormal-
ized posterior probabilities, they find the most probable class
or reject as unknown if all the values are below a thresh-
old. However, all the above-mentioned SVM-based classi-
fiers treat samples as independent cases without incorporat-
ing contextual information. In the scene labeling applica-
tions, each test sample is a part of the whole scene and there-
fore, if they are treated independently, the classifier does not
necessarily exploit all the information.

3 Approach

A general overview on our proposed labeling strategy is
given in Figure 2. Our approach operates on segmented 3D
point clouds. First of all, we extract a feature vector for each
segment and segment pair which captures color, shape and
pose properties. Then the extracted features are fed to a PI -
SVM as well as a CRF to generate a first stage labeling re-
sults. We find the most confident labels according to the
agreement of the two classifiers. The relevant nodes of these
labels are then treated as prior conditions in the same CRF to
relabel the remaining segments. If the relabeled results still
disagree with the PI -SVM, we reject them as unknown. The
following sections describe the separate steps of our frame-
work in more detail.

3.1 Features
There are two kinds of features in our model: node fea-

tures for single segment and edge features between seg-
ments. They both capture color informations and geomet-
ric properties. Table 1 summarizes the features used in our
experiments.

Let’s consider λi0, λi1 and λi2 denote the first three eigen-
values of the scatter matrix, vi0, vi1 and vi2 denote the corre-
sponding principle components. As for the histogram of base
colors, we divide the color space into 10 subspaces−red,
orange, yellow, green, cyan, blue, purple, white, grey and
black, and accumulate colors of every point in the segment
to form the bin. The well-known HOG feature which ef-
ficiently captures borders in images is not adopted in this
work, because in our case the input point clouds are already
segmented based on the smoothness and continuity of 3D
surfaces.

As for the local shape features, λi0 − λi1 (linearness),
λi1 − λi2 (planarness), and λi0 (scatterness) are commonly
used in the spectral analysis of point clouds. These features
do not work effectively in our application. The first two indi-
cators are influenced by the segment size so we change them
to λi0/λi1 (linearness) and λi1/λi2 (planarness). As we have
seen the importance of segment area in point cloud registra-
tion [20], we replace the scatter with the segment area. To

Table 1: FEATURES

Node features for segment i

Description Dimension
Average HSV color values 3
Histogram of base color values 10
Convex hull area 1
Linearness λi0/λi1, planarness λi1/λi2 2
Vertical position of centroid 1
Vertical component of the normal vi2 z 1
Vertical component of the principal direction vi0 z 1
Distance from the scene boundary 1

Edge features between segment i and segment j

Description Dimension
Difference of average HSV color values 3
Minimal distance between two segment dij 1
Angle between normals vi2 · vj2 1
Difference in angle with vertical acos(vi2) −
acos(vj2)

1

Coplanarity 1

estimate area, the 3D points are projected onto the plane per-
pendicular to its normal. Then we extract the convex hull of
the 2D points and the area is estimated as a polygon.

The pose features of the segment are also extracted. The
data is aligned in a way that z−axis is vertical and the ground
is at zero height, so the vertical position of centroid is ex-
actly its height which is very informative in our labeling task.
Other features include the vertical component of normal to
capture horizontal pitch/roll angle, the vertical component of
principle direction to capture vertical deviation angle and the
minimal distance to the scene boundary to capture horizontal
location.

3.2 PI -SVM
PI -SVM [2] is a multi-class classifier with unknown re-

jection option. It is actually a combination of binary SVM
classifiers which can estimate the posterior probability of in-
clusion. Let {(x1, y1), (x2, y2), ..., (xn, yn)} be the training
samples, where xi is the segment feature vector extracted in
the last step and yi is the corresponding label. First, a ker-
nelized SVM h is trained for each single class l, to generate
an uncalibrated hypothesis score s:

s = h(x) =

n∑
i=1

yiαiK(xi, x) + b (1)

where αi are support vectors,K(xi, x) is a radial basis func-
tion kernel, and b a bias term. All the positive training scores
are then fitted with a Weibull distribution [21] to get the sin-
gle class probability distribution parameters θl = [τl, κl, λl].
The estimated posterior probability of class l for the input
x and class label y conditioned on the parameters θl can be
calculated as:

PI(y|x, θl) = ξρ(l)PI(x|l, θl)

= ξρ(l)(1− e−(
x−τl
λl

)
κl

)
(2)



where ρ(l) is the prior probability of class l, and ξ should be
the normalization constant. As the model does not assume
that all the classes are known, so the ξ is set to 1 and the
posterior estimation is left unnormalized.

For multi-class open set recognition, PI -SVM relies on a
minimum threshold δ on class probability to select

y∗ = argmax
y∈C

PI(y|x, θl)

s.t. PI(y
∗|x, θy∗) ≥ δ

(3)

if all the probabilities of inclusion for target classes are be-
low δ, then the corresponding target will be rejected and la-
beled as unknown.

3.3 Conditional Random Field
In this work the 3D structure of a scene is modeled using

a pairwise Conditional Random Field. Given a segmented
point cloud x = (x1, ..., xn) consisting of segments xi, ev-
ery segment is a node in the CRF model. Any two segments
having an intersection in the 3D space will be virtually linked
by an edge in CRF. The label yi for variable xi is determined
by the global observation x. The overall prediction ŷ is opti-
mized as the argmax of a discriminant function fw(x, y)

ŷ = argmax
y

fw(x, y) (4)

where fw(x, y) is consisted of a set of parameterized node
features and edge features and w is the parameter set. The
optimization problem can be efficiently solved using the
Loopy Belief Propagation (LBP) approximation. Let node
features and edge features extracted in section 3.1 be denoted
as φn(i) and φe(i, j) for segment i and edge(i, j) respec-
tively, the discriminant function is:

fw(x, y) =
∑
i∈V

L∑
l=1

yli · ew
l·φn(i)

+
∑

(i,j)∈E

L∑
l=1

L∑
k=1

yliy
k
j · ew

lk·φe(i,j)

(5)

CRF will assign each segment a label as one of the pre-
set target classes. When testing on new scenes, it will make
wrong prediction on all unknown segments.

3.4 Combining CRF and PI -SVM
In this subsection, the proposed framework which com-

bines both the CRF and the PI -SVM will be described. The
similarity between the two classifiers is that they can both
give a probability estimation for each trained class, but CRF
lacks a proper mechanism to reject unknown while PI -SVM
does not have the ability to consider contextual informations.

The proposed framework is illustrated in Figure 3. In the
first step, CRF and PI -SVM separately produce two sets of
labeling results. CRF use both node features and edge fea-
tures. On one hand, it will benefit a lot since segments of
known classes provide more neighboring informations. On
the other hand, the unknown will mislead a larger scale seg-
ments through the edge connections. Result from PI -SVM
is only based on the node features, but it has considered the
unknown in the probability estimation. Although PI -SVM
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Fig. 3: CRF+PI -SVM labeling framework

alone can efficiently reject unknown, relying on a predeter-
mined threshold is risky when features get less distinct. So
firstly we generate a labeling result of PI -SVM according to
the maximum probabilities, no matter how small they are.

In a second step, we find the consistent labels of the two
classifiers and fix these labels down as conditions in the CRF
to conditionally decode the remaining nodes. The consistent
labels have a greater degree of confidence and they can pro-
vide more certain informations for the graph. If the labels
of the remaining nodes have changed to be consistent with
PI -SVM, they will be treated as one of the target classes.
Otherwise they will be rejected and labeled as unknown.

4 Experiments, Results and Discussion

Our approach is designed to improve performance for se-
mantic labeling with unknown. We want to show two things
through our experiments − First, when classifiers do not
consider the unknown during training but test data contain
them, the existence of unknown will cause a big drop of la-
beling accuracy; Second, our proposed method can signifi-
cantly improve the labeling performance with the presence
of unknown objects.

4.1 Data
We label object segments in stitched 3D point clouds of

the Cornell office data as shown in Figure 1. The data con-
tains 24 scenes with a total of 1108 segments. 17 most com-
monly seen objects are chosen as the target classes which in-
clude {wall, floor, tableTop, chairBackRest, cpuFront, mon-
itor, paper, tableLeg, keyboard, chairBase, tableDrawer,
chairBack, printerFront, book, cpuTop, cpuSide, printer-
Side}. These classes have made up 60% of the total data
set, and the remaining 40% segments are unknown to our
model.

4.2 Result and Discussion
In this subsection we report the result of our experiments.

We perform the leave-one-out experiment on the 24 scenes



Table 2: UNKNOWN INFLUENCE IN CRF

Data component Accuracy

Micro P Micro R Macro P Macro R Macro F-score

without unknown class 66.27 66.27 55.93 52.48 54.15

with unknown class 36.46 59.76 28.93 44.05 34.92

Table 3: UNKNOWN INFLUENCE IN PISVM

Data component Accuracy

Micro P Micro R Macro P Macro R Macro F-score

without unknown class 58.73 58.73 51.10 46.49 48.69

with unknown class 36.20 57.84 33.18 44.99 38.19

Table 4: LABELING RESULTS WITH UNKNOWN

Algorithm Accuracy

Micro P Micro R Macro P Macro R Macro F-score

CRF 36.46 59.76 28.93 44.05 34.92

PISVM 36.20 57.84 33.18 44.99 38.19

CRF+PISVM 58.66 48.08 63.00 35.75 45.62

in our implementation, using {micro precision, micro recall,
macro precision, macro recall} described in [6] to analyze
different approaches, and we use the Macro F-score as an
evaluation criteria for different methods.

F -score =
2 · precision · recall
precision+ recall

(6)

Table 2 and Table 3 show the influence of unknown class
in CRF and PI -SVM respectively. We train a CRF and a
PI -SVM for the 17 target classes and then test on two differ-
ent data components, one with unknown segments manually
removed and another one with unknown segments included.
Both models have not consider the unknown during training.
When testing on the data with unknown segments, perfor-
mance of classifiers are supposed to drop significantly com-
pared to the test on the data without unknown, since all the
results of unknown will be false positive. The results have
confirmed it by having dropped both of the precision and re-
call. The Macro F-score drop about 20% in CRF and 10%
in PI -SVM.

Table 4 shows the labeling result of our proposed method
comparing with the results of CRF and PI -SVM. The
CRF+PI -SVM has much better precision but lower recall,
which is reasonable. When the model does not consider the
unknown but the data contains them, the unknown objects
will be wrongly labeled as a targeted class. This influences a
lot on the precision but little on recall, as the results suggest
in Table 2 and Table 3. Our proposed method intends to re-
inforce the strong predictions of the known classes by com-
bining CRF and PI -SVM, and then reject the less confident
segments as unknown. The consistency from two classifiers
is a little bit strict for the known which reduces the misclas-
sification among known classes but rejects more segments
as unknown, thus increased the precision but decreased the
recall. Nevertheless, the Macro F-score has improved about

10%.
Discussion a) The overall labeling accuracy is not high

mainly because of two reasons. First is the influence of data
imbalance. The unknown alone consists of 39% of the data,
but almost all the targeted known classes are below 10% ex-
cept for the wall which is 15.1%, and the least known class
cpuTop only takes a share of 0.7%. Hence test samples are
more likely to be labeled as unknown. The other reason is
that intra-class variation is bigger than inter-class variation
among the known classes. In Figure 4(a), the ground truth of
all the three colored segments are monitors, they are of dif-
ferent shapes and sizes. For example the left-most segment,
it is more like a cpu-front than a monitor. In Figure 4(b), all
the colored segments in the left one are actually wall, while
in Figure 4(c), the green segments are printer-front and the
pink segments are the printer-side, but both of them look like
walls.

Discussion b) CRF is the most traditional way in seman-
tic labeling while PI -SVM is a relatively new idea in deal-
ing with the unknown. When the unknown are manually re-
moved, CRF shows better result since it contains contextual
relations. When considering the unknown, PI -SVM has a
less decrease in F-score since it models the probability of
unknown. The two classifiers have complementary advan-
tages for this particular problem. The proposed approach
makes use of the global knowledge of CRF and the exclu-
siveness of PI -SVM and outperforms both of the classifiers
in F-score. It is a promising attempt in semantic labeling to
remove the unknown, although its recall rate needs further
improving due to the reasons mentioned before.

5 Conclusion

When a robot is required to perform tasks in new scenes,
it will surely face plenty of new objects. In addition, in some
task-related work, robot may care more about certain object



(a) (b) (c)

Fig. 4: Some misclassified objects. (a) all the colored segments are monitors; (b) all the green segments are walls; (c) the green segments
are printerFront and the pink segments are printerSide.

sets in different situations. Being able to reject the unknown
can let robot behave more intelligently and with more flexi-
bility.

In this paper, we addressed the semantic labeling prob-
lem using a combination of CRF and PI -SVM. It has bet-
ter performance than CRF or PI -SVM alone when the test
data contains large percentage of unknown objects. To our
knowledge, this is the first semantic labeling strategy to ex-
plicitly reject the unknown segments. We make full use of
the probability estimation ability of PI -SVM and the global
optimization ability of CRF. We have shown in our experi-
ment that the unknown class does have a big influence on the
labeling result. By using the proposed approach, we have
largely solved this problem and increased the overall label-
ing accuracy.

The main task for our future work is to go further into
modeling the unknown in CRF, to improve the CRF by the
thought of PI -SVM. Establishing a rejection mechanism in
CRF itself seems to be a more fundamental and promising
way in semantic labeling.
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