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Abstract. Outdoor robots such as planetary rovers must be able to navigate
safely and reliably in order to successfully perform missions in remote or hos-
tile environments. Mobility prediction is critical to achieving this goal due to the
inherent control uncertainty faced by robots traversing natural terrain. We pro-
pose a novel algorithm for stochastic mobility prediction based on multi-output
Gaussian process regression. Our algorithm considers the correlation between
heading and distance uncertainty and provides a predictive model that can easily
be exploited by motion planning algorithms. We evaluate our method experimen-
tally and report results from over 30 trials in a Mars-analogue environment that
demonstrate the effectiveness of our method and illustrate the importance of mo-
bility prediction in navigating challenging terrain.

Keywords: mobility prediction, learning, planetary rover, stochastic motion plan-
ning

1 Introduction

Safe and reliable navigation for outdoor robots involves principled consideration of con-
trol uncertainty. We are interested in mobility prediction for systems such as planetary
rovers that are mechanically designed for mobility in natural environments, but which
pose interesting challenges in planning and control due to complex interactions with
rigid or deformable terrain. Addressing these challenges is important in enabling the
application of planetary rovers that operate outside the possibility of human interven-
tion, especially since the most interesting scientific tasks must often be performed in the
most difficult terrain [1]. In recent work [2, 3], we explored mobility prediction using
Gaussian process (GP) regression models where heading (bearing) and distance un-
certainty are treated independently. Here we consider the case where heading distance
uncertainty are coupled, and model this coupling using a multi-output GP.

Mobility prediction is the problem of estimating the likely behaviour of the rover in
response to a given control action on given terrain. The goal is to provide a predictive
model of control uncertainty that can be exploited by planning algorithms to find safe
paths. This idea is different from classical motion planning, which seeks to minimise



time or distance while avoiding obstacles. Safe paths, in contrast, have low likelihood
of leading the robot into unsafe states during execution, such as tipping over and getting
stuck, in addition to collisions. On unstructured terrain, mobility prediction is difficult
due to the complex terramechanics involved [4], and is distinct from the large body of
work in terrain classification [5, 6] which seeks to detect and avoid hazards but does not
attempt to build a predictive model of control uncertainty.

In our recent work [3] we proposed a mobility prediction method that learns a
stochastic transition model from previous experience. This method considers the effects
of terrain interaction on the macroscopic behaviour of the rover without modelling de-
tailed wheel-soil interactions. We demonstrated the effectiveness of this method exper-
imentally in Mars-analogue terrain where path executions were safer and more reliable
in rigid and deformable terrain than paths generated by a classical motion planning
algorithm. The model consists of multiple single-output GP components that predict
heading and distance uncertainty independently.

In this paper, we propose a new mobility prediction method that captures the cor-
relation between heading and distance uncertainty. We model correlated heading and
distance using multi-output GP regression, where the outputs represent the expected
resulting position of the rover with respect to a given control action. We also propose a
new representation of terrain features that improves on our previous method by consid-
ering a larger area of terrain in the intended direction of motion.

We present experimental results that show significant improvement over the single-
output GP method, and compare both results to the no-uncertainty case as a control
condition. First, we evaluate the mobility prediction model in isolation and discuss ter-
rain types where correlated heading and distance uncertainty is beneficial. Then, we
present results from over 30 navigation trials. All experiments were performed using a
six-wheeled planetary rover platform in challenging Mars-analogue terrain. In the con-
trol condition (no uncertainty considered), no trials could be completed successfully
due to rocks and deformable terrain. All trials were successful in the multi-output GP
condition, only one trial failed in the single-output condition, and the multi-output case
resulted in demonstrably safer paths.

The paper is organised as follows. Section 2 discusses related work. Section 3
presents our general mobility prediction approach as background material for complete-
ness. In Secs. 4 and 5 we present our new algorithms and implementation. Experimental
results are reported in Secs. 6 and 7, and Sec. 8 concludes the paper.

2 Related work

Robust terrain traversability estimation and navigation is an important topic of research,
especially in the context of planetary exploration. Traversability analysis is the general
problem of assessing to what degree a robot may traverse given terrain [7]. Typically
this analysis is performed by examining local terrain geometry [8] and soil proper-
ties [9]. Terramechanics is the study of wheel-soil interactions [10], and is difficult
to apply online due to large parameter uncertainty even in homogeneous terrain [11].
Near-to-far learning is an online terrain classification approach where the association
between proprioceptive measurements and the corresponding classes allow remote ter-



rain to be classified based on the rover’s previous experience [12, 5]. Related work in
stochastic mobility prediction typically seeks to reactively compensate for control un-
certainty due to factors such as slip, but assumes a reference path [13, 12].

Our approach is data-driven and relies on Gaussian process regression, a machine
learning technique that has recently gained popularity in robotics applications. GPs are
non-parametric, do not assume an underlying function shape, and provide a continuous
estimate of prediction uncertainty [14]. GPs have natural application to spatially corre-
lated data with sparse datasets. Multi-output GPs, also known as dependent GPs, allow
correlated outputs to be simultaneously learnt [15]. In the context of regression, sev-
eral implementations of multi-output GPs have been proposed [16, 17]. To the best of
our knowledge, multi-output GPs have not previously been applied and experimentally
validated in the context of mobility prediction.

3 Background

In prior work [3], we proposed a path planning approach that accounts for control uncer-
tainty by learning a Stochastic Mobility Prediction Model (SMPM) from experience. In
this paper, we build on this previous work by tackling two main limitations: 1) consid-
ering the control uncertainty in multiple dimensions jointly, rather than each dimension
separately, and 2) taking into account the variability of the paths taken by the rover
when collecting the input information about the terrain. In this section, we summarise
the original technique for planning with control uncertainty using a learned SMPM.

3.1 Stochastic Mobility Prediction Model

Given a rover state s = {x,y,ψ}, where (x,y) is the 2D position of the rover and ψ

its orientation (yaw), the execution of a given action a ∈ A will result in state s′. A
deterministic mobility prediction model is commonly used to represent the transition
from s to s′. However, due to control uncertainty, in practice the resultant state is not
deterministic. This can be accounted for by formulating the state transition function as
a probability density function of the relative transition between states, p(∆s|s,a), with
∆s ≡ s′− s. In this work, ∆s is defined using a polar representation of the state space.
The N components ∆si of ∆s are the vehicle’s heading, distance and yaw:

∆s , {∆shead ,∆sdist ,∆syaw}

, {tan−1(∆y,∆x),
√

(∆x)2 +(∆y)2,∆ψ}.

Since the outcome of an action is strongly correlated with the geometry of the un-
structured terrain the rover has to traverse, the transition model depends on terrain pro-
files λ (s,a), which contain information on terrain geometry. In our prior work, λ (s,a)
encoded the variations of rover’s attitude and configuration angles experienced between
s and s′, predicted using a kinematic model (see [3]). Since the exact path between s and
s′ is not known in advance, these predictions were made at discrete locations along a
straight line drawn between the initial state s and the average resultant state s′ = s+∆sa
for this action in the training data (see Sec. 4.2 for more details).



To learn the SMPM from experience, training data were collected in a representative
environment by performing multiple executions of each action a over a variety of terrain
profiles. Since training can only provide a limited, sampled subset of the feature space,
the SMPM was then learnt using Gaussian Process regression. This consists in learning
the correlations K between the outcomes of each action a and the corresponding terrain
profiles λ (s,a). Once this training is complete, given an action a, we can query the
SMPM for a prediction of the expected control error distribution for any terrain profile
λ∗(s,a) on similar terrain. For each action a ∈ A, the distribution can be written as:

p(∆sa−∆sa|λ (s,a),a), (1)

where ∆sa is the mean value of ∆sa across all executions of action a in the training data.
∆sa −∆sa represents the discrepancy between the actual execution and the expected
action execution (based on the raw training data). Note that with this formulation the
training data for each action has zero mean.

3.2 Single-Output GP Learning

For each action and component ∆si of ∆s, given a training set of n input features
X = {x j| j = 1, ...,n} and their corresponding action outcomes, or targets Z = {z j}, the
GP can provide a predictive distribution g∗ for any query inputs x∗ [14]. g∗ is estimated
as the Gaussian distribution:

p(g∗|X ,Z,x∗)∼N (µ∗,Σ∗), (2)

with predictive mean

µ∗ = K(x∗,X)[K(X ,X)+σ
2
n I]−1Z, (3)

and variance

Σ∗ = K(x∗,x∗)−K(x∗,X)[K(X ,X)+σ
2
n I]−1K(X ,x∗), (4)

where K(X ,x∗) is the covariance function that describes the spatial correlation between
two inputs X and x∗, I is the identity matrix, and σn is the noise variance.

In our prior work each component of ∆si, i ∈ [[1,N]] for each action a ∈ A is esti-
mated by a different GP. The predictive distribution of each GP can be written as:

p(g∗|X ,Z,x∗) = p(∆si,a−∆si,a|λ (s,a),a)∼N (µ∗,Σ∗), (5)

where ∆si,a is the ith component of the change of state ∆s resulting from executing
action a ∈ A, and ∆si,a is the mean value of ∆si across all executions of action a in
the training data. In this implementation of mobility prediction, a training input (or a
query input x∗) is a terrain profile x j = λ (s,a), and a target is the corresponding action
outcome: z = ∆si,a−∆si,a. The uncertainty in each component ∆si is accounted for by
using the full distribution learned from ∆si and the expectation of the other components.
We then use the learnt SMPM as a transition model during planning (see Fig. 1).
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Fig. 1: System outline. The left box shows the training conducted to build the mobility prediction
model, while the planning is shown in the box to the right. During the training stage, training
terrain profiles λtrain are generated from sets of {Φtrain}, representing the attitude and configu-
ration Φtrain of the platform evaluated at regular intervals along the traversed terrain trajectory
when executing action a (see Fig. 2c). This training process produces K, which is used to estimate
continuous SMPM with a GP. Once training is complete, λ∗(s,a) terrain profiles are generated
from the DEM of the terrain that the rover needs to traverse. These are then used to compute the
stochastic transition distribution P(s′|s,a). Given P(s′|s,a) and the reward function R(s′|s,a) for
the terrain to be traversed, DP generates an optimal policy π∗.

3.3 Planning

Various planning methods can be used to exploit our mobility prediction model. We
use a Markov decision process (MDP) formulation of the problem, where the transition
function P(s′|s,a) is provided by the SMPM, and the reward is a function of action cost
and vehicle’s safety over the terrain (represented by a cost Cost(s)). Prior to planning,
a cost map is computed using kinematic modelling predictions on a digital elevation
map (DEM) generated using exteroceptive sensors on the rover. We then compute poli-
cies using dynamic programming to maximise the sum of rewards accumulated over
sequences of actions [18]. In operation, the rover follows the policy: at the end of each
action execution, the policy provides the rover with the next most appropriate action
that it should execute from its current location.

The experiments conducted in [3] considered uncertainty in heading and in distance
travelled, independently. The results indicated that by using our learned SMPM to con-
sider control uncertainty in the planning stage, at the execution we obtained paths with
significantly reduced cost, i.e. safer and more efficient paths. Besides, the impact was
stronger when considering heading uncertainty rather than distance uncertainty. Fig-
ure 1 gives an outline of the implementation of this approach.

4 Enhanced Mobility Prediction Modelling

In this paper, we propose to address two of the main limitations of the previous work.
First, we propose to learn the multiple dimensions of control uncertainty jointly instead
of independently. Second, we enhance the strategy used to collect the features repre-
senting the appropriate terrain profiles.
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Fig. 2: (a) Example of predictions of the end position (s′) of the rover (triangle) after executing
action a, starting from s. The predictions made by the prior approach are shown: in blue when
considering uncertainty in heading only (diamond: best guess, Gaussian: predicted distribution of
heading uncertainty) and in green when considering uncertainty in distance only. The prediction
made by the new approach, which accounts for the correlation between heading and distance un-
certainty, are shown in red, with the ellipse representing 2 standard deviations in both directions.
(b) Illustration of the correlation between heading and distance uncertainty. (c) Single-line fea-
tures strategy used in prior work. The platform configuration, Φ , is evaluated at regular intervals
on a line between s and s′ to form the set of {Φ∗(s)}. (d) Multi-line features used in the new ap-
proach proposed in this paper. The Φ samples are collected along multiple lines to better reflect
the variety of possible outcomes of the action.

4.1 Joint Predictions and Multi-Output Learning

In the prior approach, the SMPM represented the uncertainty in each dimension of ∆s
separately, as illustrated by the blue and green diamonds in Fig 2a. As a result, when
considering the outcome of a given action for a given terrain profile, one dimension was
considered uncertain while the other was considered deterministic. For example, when
accounting for uncertainty in heading, the distance that the rover was expected to travel
during the execution of action a was assumed to be ∆sdist,a, i.e. the average distance
travelled by the rover during all executions of action a in the training data. However, in
practice, the outputs of the prediction process (heading and distance deviations) may be
highly correlated.

Consider the following example. The rover plans to execute the action of going
straight ahead (see Fig. 2b). The terrain is sandy but flat, except for a rock located on the
right hand side of its course, far enough that the rover would not touch it when driving
perfectly straight. The rock is most likely not traversable by the vehicle. In practice,
during the action execution, sometimes the rover will deviate on the right and get stuck
against the rock. In such case, it is clear that the heading deviation experienced by the
rover has a strong impact on the distribution of distance traveled by the rover, illustrating
the correlation between heading and distance uncertainty in mobility prediction.

Figure 2a shows an example of prediction obtained when considering uncertainty
in both heading and distance, and their correlation (in red), compared with the predic-
tions made when considering only one dimension of uncertainty (in blue and green). To



address this issue, in this paper we propose to use multi-output GPs to learn the joint
effects of control uncertainty.

Joint predictions of the correlated outputs are possible by using multi-output learn-
ing, however, defining the covariance matrix K can be difficult while guaranteeing its
positive-definitiveness, required for GP regression. To model the correlated outputs, one
method is to utilise Convolution Processes [17] between a smoothing kernel kq and a
latent function u(z). The set of Q functions, representing the N correlated outputs, can
be written as:

fq(x) = kq(x)∗u(x) =
∫

∞

−∞

kq(x− z)u(z)dz (6)

where x is the input and z is the output (target).
In our approach, the smoothing kernel kq used is the squared exponential function

with heteroscedastic noise:

kq(x− z) =
Sq|Mq|1/2

(2π)p/2 exp[−1
2
(x− z)T Mq(x− z)], (7)

where Mq,Sq and p are hyperparameters of the kernel. This kernel produces very smooth
functions [14], can be integrated against most functions, and is widely used within the
GP learning community.

The influence of noise wq(x) and R latent functions are considered on the function
yq by assuming that each output is independently corrupted. The function yq(x) can be
expressed as:

yq(x) = fq(x)+wq(x) =
R

∑
r=1

∫
∞

−∞

kqr(x− z)ur(z)dz+wq(x). (8)

The Σ∗ and µ∗ values required for generating the predictive distribution (see Eq. (5))
can be computed from yq(x∗). To consider the influence of multiple latent functions on
yq(x), each latent function is assumed to be an independent GP. The covariance between
two functions yq(x) and ys(x) can therefore be written as:

cov[ fq(x), fs(x′)] =
R

∑
r=1

∫
∞

−∞

kqr(x− z)
∫

∞

−∞

ksr(x′− z′)kurur(z,z
′)dz′dz, (9)

where kqr and ksr are the kernel functions for the latent functions, and kurur is the covari-
ance function for ur(z). The correlation between any given output fq(x) and the latent
function ur(z) can be computed as:

cov[ fq(x),ur(z)] =
∫

∞

−∞

kqr(x− z′)kurur(z
′,z)dz′. (10)

Joint predictions that consider more than one output can be calculated by using
Eqs. (9) and (10), as the cross-covariance terms are incorporated into the estimation
process. This enables us to consider the correlated heading and distance uncertainties
jointly in the prediction of Σ∗ and µ∗. In practice, for every action a ∈ A the inputs



are the same as in the single-output GP formulation, however, a target represents the
N-dimensional action outcome:

z = [∆shead −∆shead ,∆sdist −∆sdist ,∆syaw−∆syaw]. (11)

Furthermore, this means that for every action a ∈ A we generate only one multi-output
GP, as the predictive distribution of the multi-output GP estimates the N dimensions of
∆si simultaneously. In this paper, the predictive distributions estimated by the multi-
output GP over the entire state space constitute the SMPM employed in planning.

4.2 Terrain Profiles and Feature Generation

As mentioned previously, the estimation of the outcome of a given action a requires
information about the profile of the terrain that the rover is going to traverse during the
execution of this action (i.e. between the initial state s and the final state s′). In prior
work, this information, which described the variations of the rover’s attitude and con-
figuration angles (Φ), was collected at regularly-spaced discrete positions on a single
straight line in the direction of the initial best guess of the outcome (s′), see Fig. 2c.
However, the prediction of the distribution of end states s′∗ (see the ellipse in Fig. 2a)
shows that the rover may actually follow a path that is quite different from this single
line s to s′, thereby travelling over different terrain geometry than anticipated initially.

Therefore, in this paper, we propose to expand the locations where we collect the
relevant terrain geometry information (see Fig. 2d). We collect this information over
multiple lines (five in practice), all starting from the initial state s, and placed at reg-
ular angular increments around the original single line, whose extremity is s′ (we use
increments of 30◦ in this paper). In order to use a fixed strategy for all queries of ac-
tion outcomes, the extent of that coverage of the terrain was chosen to represent three
standard deviations of the heading uncertainty observed in the training data.

In the next section we will show that features generated using these multiple lines
better capture the possible configurations that the rover may encounter during the ex-
ecution of each action. For convenience, in the remainder of the paper, we will refer
to this new strategy to generate the features representing the appropriate terrain pro-
files as multi-line features, in contrast with the former approach, which uses single-line
features, i.e. features captured over a single straight line.

5 Implementation

This section describes the implementation details of our proposed approach. The plat-
form used in our experimental validation is Mawson, a six-wheeled holonomic rover
prototype with a Rocker-bogie chassis, shown in Fig. 3. It is equipped with two visual
cameras and an RGB-D camera (Microsoft Kinect), used as depth sensor only, mounted
on a mast tilted down 20◦ for DEM generation. Other onboard sensors include three po-
tentiometers to measure the bogie angles and the rocker differential, and an Intersense
IS-1200 VisTracker device, comprising of an inertial measurement unit (IMU) and a
camera, to compute 6-DOF rover localisation with 2cm average accuracy.



(a) Mawson rover (b) Mawson’s Chassis

Fig. 3: The Mawson rover (a) and its attitude and configuration angles Φ = {φ ,θ ,α1,α2}, shown
in (b). ψ represents the yaw of the rover.

We define the same set of primitive actions that the rover can execute as in [3]: 8
crabbing actions, and 2 rotational actions, where crabbing is set at intervals of π/4 for a
distance of about 0.3m, and rotation is set at±π/4. These actions are initially calibrated
on flat terrain, therefore, deviations from the original objective (both in heading and
distance) are expected to happen in practice on rough terrain.

The experimental environment is a Mars-analogue terrain facility located inside the
Sydney Powerhouse Museum in Australia. The terrain considered consists of both solid
and loose soil, slopes of varying degrees, rocks of different sizes and shapes.

The DEMs used in this study are generated with a resolution of 0.05m×0.05m from
point clouds acquired by the depth sensor. Kinematic predictions of attitude and internal
configuration angles Φ were computed using a method similar to [19], allowing for the
computation of features for the terrain profiles as well as cost maps.

As in [3], we define a terrain traversability cost as a function of the attitude and
rocker bogie angles:

costterrain(s) = (φ 2 +θ
2 +0.5(α2

1 −α
2
2 ))2, (12)

where φ and θ are the roll and pitch of the platform, respectively, and (α1,α2) are
internal angles of the rover’s chassis (see Fig. 3b). This cost function captures the mag-
nitudes of the platform’s attitude and configuration during the traversal of the terrain,
which are indicative of the difficulty and risk for the platform to traverse this patch of
terrain. The reward function R(s|s′,a) used to compute the policies is defined as the
average cost of states between the start state s and the resultant state s′, plus an action
execution penalty ξ [3]:

R(s′|s,a) =−ξ − 1
M

M

∑
i=0

costterrain

(
sx +

i
M

(s′x− sx),sy +
i

M
(s′y− sy),sψ +

i
M

(s′ψ − sψ)
)
,

(13)

where M = 20 is the sampling resolution of the path between s and s′, and ξ = 0.003
is the penalty used in our implementation. During policy execution, the potentiometers



Table 1: Training data statistics. Mean values of the ∆si components, by action.

Action:
crab rotate

(0π) (±π/4) (±π/2) (±3π/4) (π) (±π/4)
# samples 72 118 139 114 72 100
∆shead (rad) -0.066 0.679 1.316 2.411 2.494 -
∆sdist (m) 0.231 0.246 0.182 0.256 0.249 -
∆syaw (rad) - - - - - 0.538

and the IMU measurements allow the attitude and internal configuration angles of the
rover to be collected, such that terrain costs integrated over actual executed paths can
be computed for the experimental analysis (see Sec. 7).

The set of most informative features to describe the terrain profiles, which are used
for training and querying the GPs, were selected by performing a Principal Component
Analysis (PCA) over a large variety of features capturing absolute values and variations
within the Φ sets (see [3] for more details). These features, set in the vector λ , were
collected on the terrain over multiple lines (for the proposed approach), or over a single
straight line (for comparison with prior work), as described in Sec. 4.

To collect the required training data, the rover executed each action a ∈ A multiple
times over varying terrain profiles, while recording: the action a, the difference ∆s
between the end state of the rover after action execution s′ and the start state s, and the
platform attitude and configuration angles (Φtrain) during the action execution. Then, in
order to train the GP, the features λ train were systematically computed from Φtrain.

6 Experimental Validation of the Learned Mobility Prediction
Model

In this section we validate the learned mobility prediction model experimentally, specif-
ically demonstrating the benefits of 1) the multi-output GP learning, and 2) the extended
feature set to better describe the relevant terrain profiles.

6.1 Training Data

We used the Mawson rover (see Sec. 5) and the training approach described in Sec. 3
to collect training data from more than 600 action executions, over numerous terrain
profiles, varying from flat surface to rough terrain with significant slope.

Table 1 shows a summary of the training data obtained over all terrain for each
action a. Note that due to the left-right symmetry of the platform, the training data were
combined for symmetric actions. Therefore, only 6 different actions are shown in the
table.

The table shows the average of the ∆si components obtained over all executions of
each action, on all terrain profiles experienced in the training phase. It can be noted that
since the ability of the rocker-bogie chassis to overcome rough terrain depends on the
rover orientation, the mean of ∆si can be quite different for each action.



6.2 Mobility Prediction Model Validation

To cross-validate the proposed approach, we learned the mobility prediction models
using 2/3 of the collected data, and tested the models using the remaining 1/3 of the
data. Firstly, we show the benefits of multi-output learning compared with the state-of-
the-art technique that uses single-output GPs. Secondly, we validate the use of extended
features to capture the relevant terrain information as input of the mobility prediction.

Multi-Output Learning Results Table 2 shows the results obtained when predicting
the outcomes of action a using multi-output GPs with the same strategy to collect in-
formation on terrain profiles as in prior work (i.e. single-line features), compared with
the predictions made using the state-of-the-art approach with single-output GPs (which
considers uncertainty in heading or distance, respectively). The position errors in the
table correspond to the distance between the predicted end position of the rover and
the actual end position given by the ground truth (i.e. the localisation system onboard
the rover). The table provides the mean and standard deviation (std) of these position
errors computed over all executions of each action in the test data. It can be seen that
in all cases the results of the approach proposed in this paper are more accurate and
more consistent than those obtained with the single-output GP that considers uncer-
tainty in heading only. Compared with the single-output GP that considers uncertainty
in distance only, the results are comparably accurate for the first three actions, and more
accurate for crab(±3π/4) and crab(±π). The benefit is particularly significant for the
latter. Figure 4 illustrates an example of execution of Action crab(3π/4), with the cor-
responding predictions generated by the single and multi-output GPs.

Because the state-of-the-art approaches can only consider uncertainty on one di-
mension at a time, the other dimension has to be assumed deterministic. For example,
when considering heading uncertainty, the distance travelled is assumed to be ∆sdist,a
for action a. Similarly, when considering distance uncertainty only, the change in head-
ing to the end position of the rover is assumed to be ∆shead,a for action a. However,
whenever the uncertainty is significant in both dimensions, this can generate large pre-
diction errors, as in the figure. This further shows the benefits of using multi-output
learning to learn the mobility prediction model.

Table 2: Position errors (m) for single-output and multi-output GP predictions, using the single-
line features.

Uncertainty considered:
Single-output GP Multi-output GP

heading distance heading & distance
Action a mean std mean std mean std
crab(0π) 0.0199 0.0200 0.0148 0.0181 0.0148 0.0181
crab(±π/4) 0.0139 0.0241 0.0108 0.0157 0.0108 0.0157
crab(±π/2) 0.0278 0.0290 0.0132 0.0103 0.0132 0.0103
crab(±3π/4) 0.0080 0.0142 0.0063 0.0102 0.0034 0.0040
crab(±π) 0.0261 0.0065 0.0185 0.0062 0.0024 0.0021
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Multi-line Features Table 3 shows the position errors obtained when predicting the
outcomes of each action a using multi-output GPs with the proposed enhanced strategy
to collect features that better represent relevant terrain profiles (i.e. multi-line features),
compared with the predictions made using the state-of-the-art approach with single-
output GPs (which considers uncertainty in heading or distance, respectively). The re-
sults show that, again, the proposed multi-output learning approach is more accurate
than both state-of-the-art single-output techniques.

In addition, comparing the last columns of Tables 2 and 3 shows that the new strat-
egy consisting in capturing features over multiple lines on the terrain rather a single line
leads to more accurate and more consistent mobility predictions. This indicates that the
multi-line features provide more appropriate information on the terrain profiles than the
features computed over a single line.

In summary, the experimental results in this section validate that the learned mobil-
ity prediction model is much more accurate when using: 1) multi-output GPs, and 2)
features capturing terrain profiles characteristics over multiple lines rather a single line.

Table 3: Position errors (m) for single-output and multi-output GP predictions, using the multi-
line features.

Uncertainty considered:
Single-output GP Multi-output GP

heading distance (m) heading & distance (m)
Action a mean std mean std mean std
crab(0π) 0.0198 0.0201 0.0055 0.0106 0.0054 0.0106
crab(±π/4) 0.0132 0.0228 0.0095 0.0170 0.0062 0.0106
crab(±π/2) 0.0266 0.0307 0.0092 0.0083 0.0073 0.0090
crab(±3π/4) 0.0070 0.0141 0.0041 0.0046 0.0030 0.0034
crab(±π) 0.0064 0.0083 0.0189 0.0058 0.0015 0.0020



Table 4: Summary of all experimental runs

Uncertainty considered Total runs Successful runs Failed runs (%)
None (deterministic) 10 0 10 (100%)
Heading 11 10 1 (9.1%)
Joint (proposed) 10 10 0 (0%)

7 Experimental Results - Planning

In this section, we validate the use of the enhanced SMPM in motion planning and
execution, using Mawson on unstructured, partially deformable terrain. We evaluated
the performance of planning and execution using the SMPM learned by the approach
in this paper, which considers the joint heading and distance uncertainties for crabbing
actions, and yaw uncertainty for rotational actions, using multi-output GPs trained with
the new features taken over multiple lines on the terrain.

We compared this performance with one of the state-of-the-art methods, which
learns the SMPM using a single-output GP, trained with features taken over a single
line ahead the rover. In the experiments of this section we use the method that consid-
ers heading uncertainty for crabbing actions, and yaw uncertainty for rotational actions.
We chose to consider heading uncertainty rather than distance uncertainty for this com-
parison because the results in [3] indicated that the former had more impact on the
performance of planning and execution, both in terms of reliability and cost reduction.

For reference, we also compared with a control method that uses a deterministic
mobility prediction model, based on the ∆sa values from the training data (similarly to
the experiments in [3]).

Using a depth sensor, point clouds of the terrain were captured at known locations
to generate a DEM, which allowed for the computation of the cost map and λ features
(both single-line and multi-lines) representing the terrain profiles. We then generated the
SMPMs using the different approaches to be compared. Finally, we defined a common
goal area on the map and built policies to reach this goal, using DP with each type of
SMPM. Once these policies were obtained, an experimental run corresponded to the
rover following the given policy from a starting location s0 on the map. We executed
multiple experimental runs for each type SMPM (i.e. for each policy), to account for
the stochastic nature of the process.

Table 4 summarises the amount of runs performed for each method. Each successful
run corresponds to one full trajectory executed by the rover until it reached the goal.
Failed runs correspond to cases when the rover failed to reach the goal, because it was
stuck on rocks or in a crater (located approximately at (x,y) = [6,0] in Fig. 5), and/or
had its wheels bogged in loose soil. The numbers in parentheses in the table show the
percentage of number of failed runs over the total number of runs.

When no uncertainty was considered, all runs failed. This is because the rover tried
to traverse into loose soil sections of the crater, where wheels often become stuck. Con-
versely, when using both approaches that consider uncertainty the rover successfully
escaped the crater in most cases by traversing parts of the crater with more rocks in the



(a) State-of-the-art approach (heading uncertainty and single-line features)

(b) Proposed approach (joint uncertainty and multi-line features)

Fig. 5: Multiple executed paths obtained when using: (a) the policy generated from the SMPM
learned using the state-of-the-art approach, and (b) the policy generated from the enhanced
SMPM, using the proposed approach. The background shows the cost map, coloured by cost
value (see the colour bar on the top right).

Table 5: Statistics for successful experimental runs

Uncertainty Considered:
Mean length No. Cost No. actions
(m) runs Mean Std Reduction Mean Std

Heading uncertainty 15.87 10 0.2984 0.0935 N/A 67.20 7.66
Joint uncertainty
(proposed method)

16.04 10 0.1810 0.0196 39.34% 46.50 5.323

ground. Note that for each method that considers uncertainty, we used the same number
of successful runs (10) in order to generate comparable statistics.

Figure 5 illustrates a subset of the executed paths, shown over the cost map used
for these experiments. For clarity, we only show five executed paths for each successful
method, chosen randomly. We can observe that the executed paths are fairly spatially
consistent. It appears that there is less spatial variation between the multiple executed
paths when only heading uncertainty was considered, compared with the proposed ap-
proach where joint uncertainty was considered.

The statistics of actual total cost integrated over each executed path, path length, and
number of actions executed for the successful experimental runs are shown in Table 5.
It can be observed that the mean and standard deviation of the total cost accumulated
along the path executions are significantly lower with the proposed approach (39.34%
reduction). This cost reduction can be considered as highly statistically significant, since
performing the significance test from [20] gave a p-value of 0.00005.



The average lengths of executed paths are comparable (15.87m and 16.04m). How-
ever, the rover had to execute a much smaller number of actions when using the pro-
posed approach. This indicates that the action executions were much more efficient in
average. Furthermore, the reduced standard deviation on the number of executed actions
suggests that the action executions were more consistent.

Overall, the experimental results show that the rover greatly benefits from using
SMPMs generated by the proposed approach when planning and executing policies,
especially in terms of cost accumulated over the executed paths, and in terms of action
efficiency in practice.

8 Conclusion and Future Work

We have presented a new method for mobility prediction based on multi-output GP
regression. We evaluated our method experimentally in comparison with our previous
single-output GP method and also a no-uncertainty control condition.

Our experiments show that mobility prediction with multi-output GPs is clearly
beneficial for navigation tasks. In the control condition the rover failed to reach its goal
in all trials, whereas no trials failed in the multi-output condition. The multi-output
condition resulted in better path execution as measured by fewer total actions.

These results further validate the role of mobility prediction in achieving safe, re-
liable navigation for planetary rovers. Important avenues for future work include the
consideration of additional sources of uncertainty, such as localisation.
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