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Abstract—This paper presents the fundamental principle of the 

extended finite element method (XFEM) for electromagnetic field 

analysis. This method provides an accurate approximation for 

locally non-smooth features within finite elements, such as 

singularities, discontinuities, and high derivatives. An alternative 

enrichment function is introduced to improve the approximation 

space of the conventional finite element method (CFEM) such 

that non-smooth solutions are modeled independent of the mesh. 

The level set method is employed to describe the interfaces 

among different materials. To demonstrate the advantages, the 

XFEM is compared with CFEM by solving a 1D electrical field 

problem. 
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I. INTRODUCTION 

A large number of applications can be seen that the 
quantities of electromagnetic field change rapidly over length 
scales which are small in comparison to the solution domain. 
Such examples include the exponential current distribution due 
to the skin-effect in a solid conductor subject to a high 
frequency magnetic field [1], and the current and diamagnetic 
characteristics in thin superconducting tapes [2], etc. 

In past decades, the extended finite element method 
(XFEM), which was firstly proposed by Belytschko [3]. 
Aiming to the approximation of non-smooth solutions, the 
traditional approach is to employ the polynomial 
approximation, which depends on meshes that conform to 
discontinuities and are refined near singularities and high 
gradients [4]. However, in XFEM, the strategy is to enrich a 
polynomial approximation space such that the non-smooth 
solutions can be modeled independent of the mesh. 

II. PRINCIPLE OF EXTENDED FINITE ELEMENT METHOD

The level set is to represent design domains and the 
material boundaries by continuum level set function. By 
solving the level set function, interface position is obtained. 

In the discretized domain, I is the set of all nodes, I* is the 

set of the enriched nodes, I*∈I.  

The approximation of a potential function u(X) may be 
defined as [3] 
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where Ni and Ni
* are conventional finite element method 

(CFEM) shape functions, in general, Ni =Ni
*. The coefficients 

ui belong to the CFEM part and ai are additional nodal 

unknowns. The function (X) is called an enrichment function. 

The products Ni (X)·(X) are local enrichment functions. 

The enrichment function for weak discontinuity may be 
chosen as the absolute value of the zero level set function. 

(X- X*) = abs((X- X*)) = |(X- X*) |    (2) 

where  is the level set function, and X* the closest point on 
the interface to the point X. 

III. SIMULATION VERIFICATION OF XFEM

In order to apply the XFEM to electromagnetic field 
analysis, the electric field distributions between parallel plate 
electrodes, which contain two and three dielectrics, are 
calculated by using XFEM, respectively. 

A. Two Dielectrics 

Fig.1 shows the parallel plate electrode system. In Fig.1, 
the distances d1 and d2 are all 9m, the permittivities of two 

dielectrics 1=90 and 2=30, respectively. The imposed 
voltage U0 is 10V. 

Fig.1.  The parallel plate electrode system containing two dielectrics 
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The nodes are numbered as shown in Fig.1. The element is 
denoted as “Element i-j”, in which i and j are the numbers of 
left and right nodes in one element. The Node 5 is used in 
classical FE and ignored in XFEM analysis. The Element 4-6 
is the enriched element in which the interface passes through. 
Elements 3-4 and 6-7 are blending elements.  

The distance function, i.e., the absolute value of level set 

function |(x)|=|x-9|, is chosen as the enrichment function. 
The electrical potential approximation may be written as 

       
*

*= + 9 .h

i i i i
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where shape functions Ni  and Ni
* are defined as the same 

linear interpolation.  

Fig.2 shows the electrical potential distribution calculated 
by XFEM and CFEM.  
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Fig.2. The electrical potential distribution calculated by XFEM and 

CFEM.(Two dielectrics) 

According to Fig.2, the results calculated by using XFEM 
are closely agreed with those by using CEFM. 

B. Three Dielectrics with Thin Layer 

Fig.3 shows another parallel plate electrode system 
containing three dielectrics. The middle of the three dielectrics 
may be regarded as a thin layer material because the width of 
middle dielectric is 6% of that of the others. The permittivities 

of three dielectrics are 1=20, 2=40 and 1=30, respectively. 
The imposed voltage U0 is 10V. 

Fig.3. The parallel plate electrode system containing three dielectrics 

The related error comparison between CFEM and XFEM 
is listed in Table I. 

TABLE I. THE COMPARISON OF NODAL ELECTRICAL POTENTIAL 

No. of 

Node 

Simulation Results 

XFEM Ui(V) CFEM Ui(V) 
Related Error 

(%) 

0 0 0 0.00 

1 1.1662 1.1364 2.62 

2 2.3322 2.2727 2.62 

3 3.38532 3.3523 0.98 

4 5.33556 5.4546 -2.18 

5 7.6678 7.7273 -0.77 

6 10 10 0.00 

The maximum of related errors is less than 3% and the 
results calculated by using XFEM are acceptable from the 
viewpoint of engineering. The accuracy of electrical potentials 
in blending elements may be less than that in enriched element. 
It is suggested that the enrichment function should be modified 
for improvement of the performance of XFEM. 

IV. CONCLUSIONS

In this paper, the XFEM for electromagnetic field is 
presented. The enrichment function, described by using the 
level set function and is associated with the interfaces, may 
improve the standard finite element approximation in the cases 
of discontinuities, singularities, high derivatives, or other non-
smooth properties. One of the advantages of XFEM is that the 
interfaces do not align with the edges of meshes, because the 
enrichment function can deal with the interfaces. The mesh 
refinement technique may not be used for thin layer problem. 
The numerical simulation, based on one dimensional node 
elements to solve the Maxwell equations of electric field in a 
domain containing multi-materials as well thin layer dielectric, 
concluded that XFEM is able to simulate discontinuities and 
thin layer behavior of the electric field on a mesh that is 
independent from the interface location. 
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