
JMLR: Workshop and Conference Proceedings 45:157–172, 2015 ACML 2015

Preference Relation-based Markov Random Fields for
Recommender Systems

Shaowu Liu s.liu@deakin.edu.au
School of Information Technology
Deakin University, Geelong, Australia

Gang Li∗ gang.li@deakin.edu.au
School of Information Technology
Deakin University, Geelong, Australia

Truyen Tran truyen.tran@deakin.edu.au
Pattern Recognition and Data Analytics
Deakin University, Geelong, Australia

Yuan Jiang jiangyuan@nju.edu.cn

National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, 210023, China

Editor: Geoffrey Holmes and Tie-Yan Liu

Abstract

A preference relation-based Top-N recommendation approach, PrefMRF, is proposed to
capture both the second-order and the higher-order interactions among users and items.
Traditionally Top-N recommendation was achieved by predicting the item ratings first,
and then inferring the item rankings, based on the assumption of availability of explicit
feedbacks such as ratings, and the assumption that optimizing the ratings is equivalent
to optimizing the item rankings. Nevertheless, both assumptions are not always true in
real world applications. The proposed PrefMRF approach drops these assumptions by
explicitly exploiting the preference relations, a more practical user feedback. Comparing to
related work, the proposed PrefMRF approach has the unique property of modeling both
the second-order and the higher-order interactions among users and items. To the best
of our knowledge, this is the first time both types of interactions have been captured in
preference relation-based method. Experiment results on public datasets demonstrate that
both types of interactions have been properly captured, and significantly improved Top-N
recommendation performance has been achieved.

Keywords: Preference Relation, Pairwise Preference, Markov Random Fields, Collabora-
tive Filtering, Recommender Systems

1. Introduction

Recommender Systems (RecSys) aim to recommend users with some of their potentially in-
teresting items, which can be virtually anything ranging from movies to tourism attractions.
To identify the appropriate items, RecSys attempts to exploit various information includ-
ing user preferences (Koren et al., 2009) and side information (Balabanović and Shoham,

∗ Corresponding author

c© 2015 S. Liu, G. Li, T. Tran & Y. Jiang.

Liu Li Tran Jiang

1997). By far, Collaborative Filtering (Koren et al., 2009) is one of the most popular RecSys
techniques, which exploits user preferences, especially in form of absolute ratings.

Recently, a considerable literature (Liu et al., 2009; Rendle et al., 2009; Desarkar et al.,
2012; Brun et al., 2010; Shi et al., 2010) has grown up around the theme of relative pref-
erences. The underlying motivation is that relative preferences are often easier to collect
and more reliable as a measure of user preferences. For example, it can be easier for users
to compare two items than provide absolute ratings. Furthermore, studies (Koren and Sill,
2011; Brun et al., 2010) have reported that absolute ratings may not be completely trust-
worthy. For example, rating 4 out of 5 may in general indicate high quality, but it can
mean just OK for critics. In fact, users’ quantitative judgment can be affected by irrelevant
factors such as the mood when rating. While making consistent quantitative judgment is
difficult, the preference relation (PR), as a kind of relative preference, has been considered
more consistent over like-minded users (Brun et al., 2010; Desarkar et al., 2012). By mea-
suring the relative orderings, the PR is usually invariant to irrelevant factors, such as a user
in bad mood may give lower ratings but the relative ordering between items remains the
same. In addition, as the ultimate goal of RecSys, obtaining the item rankings by itself is
to obtain the relative preferences, a more natural input than absolute ratings.

While the PR captures the user preferences in the pairwise form, most existing works
(Koren and Sill, 2011; Liu et al., 2014) take the pointwise approach to exploiting ordinal
properties possessed by absolute ratings. To accept the PR as input and output item rank-
ings, pairwise approaches have emerged in two forms: memory-based (Brun et al., 2010)
and model-based (Liu et al., 2009; Rendle et al., 2009; Desarkar et al., 2012). These studies
show the feasibility of PR-based methods, and demonstrated competitive performance com-
paring to their underlying models, such as memory-based K-Nearest Neighbor (KNN) (Brun
et al., 2010) and model-based Matrix Factorization (MF) (Desarkar et al., 2012).

However, the limitations of these underlying models have constrained the potentials of
their PR extensions. Specifically, both KNN and MF based methods can only capture one
type of information at a time, while both the local and the global information are essential
in achieving good performance (Tran et al., 2009; Koren, 2008; Liu et al., 2014):

Local Structure The strong second-order interactions between similar users (Resnick
et al., 1994) or items (Sarwar et al., 2001) are considered as the local structure (LS).
LS -based approaches ignore the majority of preferences in making predictions, but
often perform surprisingly well when the users/items are highly correlated.

Global Structure The weaker higher-order interactions among all users/items (Koren
et al., 2009) are considered as the global structure (GS). GS -based approaches takes
all preferences into consideration in making predictions, and tend to be more accurate
and efficient (Koren et al., 2009).

Previous studies have suggested that these two structures emphasize different aspect of
preferences and therefore are complementary. (Tran et al., 2009; Koren, 2008; Liu et al.,
2014). However, there is yet no PR-based method that can capture both LS and GS. All
the above reasonings lead to the desired model with the following properties: 1) Accept PR
as input; 2) Capture both LS and GS ; 3) Output item rankings.

Recent advances in Markov Random Fields-based RecSys (Tran et al., 2009; Defazio
and Caetano, 2012; Liu et al., 2014) have made it possible to achieve the above objectives.

158

PrefMRF

MRF -based RecSys was first developed in (Tran et al., 2009) to capture both LS and GS.
Later on, it has been extended in (Liu et al., 2014) to exploit ordinal properties possessed
by absolute ratings. Nevertheless, all of these attempts rely on absolute ratings.

This paper aims to push the MRF -based RecSys one step further by fitting it into the PR
framework, namely the Preference Relation-based Markov Random Fields (PrefMRF). The
remaining part of this paper is organized as follows. Section 2 introduces the concepts of PR-
based RecSys and formalizes the problem, followed by a review of related work. Section 3
is devoted to the proposed PrefMRF model. Benchmark results on Top-N recommendation
are presented in Section 4. Finally, Section 5 concludes this paper by summarizing the main
contributions and envisaging future works.

2. Preliminaries and Related Work

Recommender systems aim at predicting users’ future interest in items, and the task can be
considered as a preference learning problem of constructing a predictive preference model
from observed preference information (Mohri et al., 2012). Existing preference learning
methods are based on different learning to rank approaches (Fürnkranz and Hüllermeier,
2010). Among them, the pointwise approach is the choice of most RecSys (Sarwar et al.,
2001; Koren, 2008), which exploit absolute ratings, though pairwise approach that exploits
PR has been largely overlooked until recently. The rest of this section describes the basic
concepts and formalizes the PR-based RecSys.

2.1. Preference Relation

A preference relation (PR) encodes user preferences in form of pairwise ordering between
items. This representation is a useful alternative to absolute ratings for three reasons.

Firstly, PR is more consistent across like-minded users (Brun et al., 2010; Desarkar
et al., 2012) as it is invariant to many irrelevant factors, such as mood. Secondly, PR
is a more natural and direct input for Top-N recommendation, as both the input and the
output are relative preferences. Finally, and perhaps most importantly, PR can be obtained
implicitly rather than asking the users explicitly. For example, the PR over two Web pages
can be inferred by the stayed time, and consequently applies to the displayed items. This
property is important as not all users are willing to rate their preferences, where collecting
feedbacks implicitly delivers a more user-friendly RecSys. With these potential benefits, we
shall take a closer look at the PR, and investigate how they can be utilized in RecSys.

We formally define the PR as follows. Let U = {u}n and I = {i}m denote the set of n
users and m items, respectively. The preference of a user u ∈ U between items i and j is
encoded as πuij , which indicates the strength of user u’s PR for the ordered item pair (i, j).
A higher value of πuij indicates a stronger preference on the first item over the second item.

Definition 1 (Preference Relation) The preference relation is defined as

πuij =


(2

3 , 1] if i � j (u prefers i over j)

[1
3 ,

2
3] if i ' j (i and j are equally preferable to u)

[0, 1
3) if i ≺ j (u prefers j over i)

(2.1)

where πuij ∈ [0, 1] and πuij = 1− πuji.

159

Liu Li Tran Jiang

This definition is similar to (Desarkar et al., 2012), however, we allocate an interval for
each preference category, i.e., preferred, equally preferred, and less preferred. Indeed, each
preference category can be further break down into more intervals. Similar to (Brun et al.,
2010), the PR can be converted into user-wise preferences over items.

Definition 2 (User-wise Preference) The user-wise preference is defined as

pui =

∑
j∈Iu [[πuij >

2
3]]−

∑
j∈Iu [[πuij <

1
3]]

|Πui|
(2.2)

where [[·]] gives 1 for true and 0 for false, Πui is the set of user u’s PR related to item i.

The user-wise preference pui falls in the interval [−1, 1], where −1 and 1 indicate that
item i is the least or the most preferred item for u, respectively. The user-wise preference
measures the relative position of an item for a particular user.

2.2. Problem Statement

Generally, the task of PR-based RecSys is to take PR as input and output Top-N recom-
mendations. Specifically, let πuij ∈ Π encode the PR of each user u ∈ U . Each πuij is
defined over an ordered item pair (i, j), denoting i ≺ j, i ' j, or i � j. The goal is to
estimate the value of each unknown πuij ∈ Πunknown, such that π̂uij approximates πuij .
This can be considered as an optimization task performs directly on the PR

π̂uij = arg min
π̂uij∈[0,1]

(|πuij − π̂uij |) (2.3)

However, it can be easier to estimate the π̂uij by the difference between the two user-wise
preferences pui and puj , i.e., π̂uij = φ(p̂ui − p̂uj), where φ(·) is a function that bounds the
value into [0, 1] and ensures φ(0) = 0.5. For example, the inverse-logit function φ(x) = ex

1+ex

can be used when user-wise preferences involve large values. Therefore, the objective of this
paper is to solve the following optimization problem:

(p̂ui, p̂uj) = arg min
p̂ui,p̂uj

(|πuij − φ(p̂ui − p̂uj)|) (2.4)

which optimizes the user-wise preferences directly, and Top-N recommendations can be
obtained by simply sorting the estimated user-wise preferences.

2.3. Related Work

User preferences can be modeled in three types: pointwise, pairwise, and listwise. Though
RecSys is not limited to pointwise absolute ratings, the recommendation task is usually
considered as a rating prediction problem. Recently, a considerable literature (Liu et al.,
2009; Rendle et al., 2009; Desarkar et al., 2012; Brun et al., 2010; Shi et al., 2010) has
grown up around the theme of relative preferences, especially the pairwise PR. Meanwhile,
recommendation task is also shifting from rating prediction to item ranking (Weimer et al.,
2007; Shi et al., 2010), in which the ranking itself is also relative preferences.

160

PrefMRF

The use of relative preferences has been widely studied in the field of Information Re-
trieval for learning to rank tasks. Recently, PR-based (Liu et al., 2009; Rendle et al.,
2009; Desarkar et al., 2012; Brun et al., 2010) and listwise-based (Shi et al., 2010) RecSys
have been proposed. Among them, the PR-based approach is the most popular, which
can be further categorized as memory-based methods (Brun et al., 2010) that capture local
structure and model-based methods (Liu et al., 2009; Rendle et al., 2009; Desarkar et al.,
2012) that capture global structure. To the best of our knowledge, there is yet no PR-based
method that can capture both LS and GS.

Advances in Markov Random Fields (MRF) have made it possible to utilize both LS
and GS by taking advantages of MRF’s powerful representation capability. Nevertheless,
exploiting the PR is not an easy task for MRF (Tran et al., 2009; Liu et al., 2014). This
observation leads to a natural extension of unifying the MRF method with the PR-based
methods, to complement their strengths. We summarize the capabilities of the existing and
our proposed PrefMRF methods in Table 1.

Table 1: Capabilities of Different Methods

Method Input Output LS GS

Pointwise Memory-based Ratings Ratings X
Pointwise Model-based Ratings Ratings X
Pointwise Hybrid Ratings Ratings X X
Pairwise Memory-based Preference Relations Item Rankings X
Pairwise Model-based Preference Relations Item Rankings X
PrefMRF Preference Relations Item Rankings 4 4

3. Preference Relation-based Markov Random Fields

In this section, we introduce the Preference Relation-based Markov Random Fields (PrefMRF)
to take PR as input and capture both LS and GS. In this work, LS is exploited in terms
of the item-item correlations. The rest of this section first introduces the concept of the
PrefNMF (Desarkar et al., 2012) that will be our underlying model, and then followed a
detailed discussion of the PrefMRF on issues such as feature design, parameter estimation,
and predictions.

3.1. Preference Relation-based Matrix Factorization

Matrix Factorization (MF) (Koren et al., 2009) is a popular approach to RecSys that has
mainly been applied to absolute ratings. Recently, the PrefNMF (Desarkar et al., 2012)
model was proposed to adopt PR input for MF models. The PrefNMF model aims to
discover a latent factor space shared by users and items, where each user’s taste or item’s
characteristics is represented using a vector in the latent factor space. In this way, a user’s
interest in an item is measured by the inner product of the corresponding vectors.

Formally, each user u and item i are, respectively, represented using a latent feature
vector uu ∈ Rk and vi ∈ Rk, where k is the dimension of the latent factor space. The
attractiveness of items i and j to the user u are u>u vi and u>u vj , respectively. When
u>u vi > u>u vj the item i is said to be more preferable to the user u than the item j, i.e.,
i � j. The strength of this preference relation πuij can be estimated by u>u (vi − vj), and

161

Liu Li Tran Jiang

the inverse-logit function is applied to ensure π̂uij ∈ [0, 1]:

π̂uij =
eu
>
u (vi−vj)

1 + eu
>
u (vi−vj)

(3.1)

The latent feature vectors uu and vi are learned by minimizing regularized squared error
with respect to the set of all known preference relations Π:

min
uu,vi∈Rk

∑
πuij∈Π∧(i<j)

(πuij − π̂uij)2 + λ(‖uu‖2 + ‖vi‖2) (3.2)

where λ is the regularization coefficient.

3.2. Markov Random Fields

Markov Random Fields (MRF) (Tran et al., 2007; Liu et al., 2014; Defazio and Caetano,
2012) consider a set of random variables having Markov property with respect to an undi-
rected graph G. The graph G is made up of a set of vertices V and a set of undirected
edges E connecting the vertices. Each random variable is represented by a vertex, where
the Markov property implies that a vertex is conditionally independent of others given its
adjacent vertices.

The MRF is used in this work to model user-wise preferences and their interactions
respect to the undirected graph of each user. Specifically, each user u has a graph Gu with
a set of vertices Vu and a set of edges Eu. Each vertex in Vu represents a preference pui of
user u on the item i, and each edge in Eu represents a item-item relation. Note that the
term preference is used instead of rating because in the new model the preference is not
interpolated as absolute ratings but user-wise ordering of items.

Here we are interested in the item-item correlations, therefore an edge connects two
preferences co-rated by the same user. Examples graphs of users u and v are shown in
Fig. 1, where each user has a separated graph. However, the edges are corresponding to
item pairs regardless of users, i.e., the edge between pui and puj and the edge between pvi
and pvj are corresponding to the same item-item correlation ψij of item pair i and j.

pui puk

puj pul

ψij

pvi pvk

pvj pvl

ψij

ψij ψij

Figure 1: Graphs of users u and v

Formally, let Iu denote the set of items evaluated by user u and pu = {pui | i ∈ Iu}
denote the joint set of preferences expressed by user u, then the MRF defines a distribution
P (pu) over the graph Gu:

P (pu) =
1

Zu
Ψ(pu) (3.3)

162

PrefMRF

Ψ(pu) =
∏

(ui,uj)∈Eu

ψij(pui, puj) (3.4)

where Zu is the normalization term that ensures
∑

pu
P (pu) = 1, and ψ(·) is a positive

function known as potential.
The potential ψij(pui, puj) captures the correlation between items i and j

ψij(pui, puj) = exp{wijfij(pui, puj)} (3.5)

where fij(·) is the correlation feature function and wij is the corresponding weight. With
the weights estimated from data, the unknown preference pui can be predicted as

p̂ui = arg max
pui∈[−1,1]

P (pui | pu) (3.6)

where P (pui | pu) measures the confidence of the prediction.

3.3. Ordinal Logistic Regression

The original PrefNMF (Desarkar et al., 2012) computes the attractiveness of an item to
a user by the product of their latent feature vectors which results a scalar value. Instead
of computing these point estimates, we wish to have the distributions over ordinal values.
Therefore the Random Utility Models (McFadden, 1980) and the Ordinal Logistic Regres-
sion (McCullagh, 1980) are applied to perform the conversion.

Random Utility Models (McFadden, 1980) assume the existence of a latent utility xui =
µui + εui that captures how much the user u is interested in the item i, where µui captures
the interest and εui is the random noise, and here assumed to follow the logistic distribution
(Koren and Sill, 2011).

The Ordinal Logistic Regression (McCullagh, 1980) is then used to convert the user-wise
preferences pui into ordinal values, which assumes that the preference pui is chosen based
on the interval to which the latent utility belongs

pui = l if xui ∈ (θl−1, θl] for l < L and pui = L if xui > θL−1 (3.7)

where L is the number of ordinal levels and θl are the threshold values of interest. The
probability of receiving a preference l is therefore

Q(pui = l | u, i) =

∫ θl

θl−1

P (xui | θ) dθ = F (θl)− F (θl−1) (3.8)

where F (θl) is the cumulative logistic distribution evaluated at θl with standard deviation
sui

F (xui ≤ l | θl) =
1

1 + exp(− θuil−µui
sui

)
(3.9)

The thresholds θl can be user-specific or item-specific, and this work uses the user-specific
parametrization same as in (Koren and Sill, 2011). Then the thresholds θuil in Eq. 3.9 are
replaced with a set of user-specific thresholds {θul}Ll=1 for each user u. These thresholds are
then estimated from data for each user.

163

Liu Li Tran Jiang

3.4. PrefMRF: Unifying PrefNMF and MRF

The MRF presented above captures the LS in terms of item-item correlations. However, it
does not take PR as a direct input due to the log-linear modeling as shown in Eq. 3.5. The
PrefNMF, on the other hand, can nicely model PR but not the LS. This complementary
leads to a desired model that can combine all advantages.

Essentially, the PrefMRF model considers the agreement between the GS discovered
by the PrefNMF and the LS discovered by the MRF. Specifically, the PrefMRF model
combines the item-item correlations (Eq. 3.5) and the ordinal distributions Q(pui | u, i)
over user-wise preferences obtained from Eq. 3.8.

P (pu) ∝ Ψu(pu)
∏

pui∈pu

Q(pui | u, i) (3.10)

where the potential function Ψu captures the interactions among items evaluated by user
u. The potentials can be further factorized as follows:

Ψu(pu) = exp

 ∑
pui,puj∈pu

wijfij(pui, puj)

 (3.11)

where fij(·) is the correlation feature to be defined shortly in Section 3.4.1, and wij is the
corresponding weight. Put all together, the joint distribution P (pu) for each user u can be
modeled as

P (pu) ∝ exp

 ∑
pui,puj∈pu

wijfij(pui, puj)

 ∏
pui∈pu

Q(pui | u, i) (3.12)

where there is a graph for each user but the weights are optimized by all users.

3.4.1. Feature Design

A feature in MRF is a function f takes n > 1 inputs and maps onto the the unit interval
f : Rn → [0, 1]. Here our inputs are the user-wise preferences. The following feature is
designed to model the item-item correlations

fij(pui, puj) = g(|(pui − p̄i)− (puj − p̄j)|) (3.13)

where g(α) = 1−α/L does normalization with α acts as the deviation. The inputs p̄i and p̄j
are, respectively, the average user-wise preference of items i and j. This correlation feature
captures the intuition that correlated items should be ranked similarly by the same user
after offsetting the goodness of each item.

However, if we allow a correlation feature for each pair of co-rated items, then a large
number of features will be generated and make the model less robust. To reduce the number
of features, the correlations between items are examined and weak features are removed.
Specifically, features of items with Pearson Correlation lower than a user-specified threshold
are removed, resulting the set of strong correlation features fstrong. Note that the correlation
is calculated based on the user-wise preferences generated from PR.

164

PrefMRF

3.4.2. Parameter Estimation

In general, maximum likelihood estimation is not applicable to MRF models, and approx-
imation techniques are often used in practice. For the favor of speed, this study employs
the pseudo-likelihood technique to perform efficient parameter estimation by maximizing
the regularized sum of log local likelihoods

logL(w) =
∑
pui

logP (pui|pu\pui)−
1

2σ2
w>w (3.14)

where wu are the weights related to user u, and 1/2σ2 controls the regularization.
The local likelihood in Eq. 3.14 is computed as

P (pui|pu\pui) =
1

Zui
exp

 ∑
puj∈pu\pui

wijfij(pui, puj)

Q(pui | u, i) (3.15)

where Zui is the normalization term.

Zui =

lmax∑
pui=lmin

exp

 ∑
puj∈pu\pui

wijfij(pui, puj)

Q(pui | u, i) (3.16)

where lmin is the first and lmax is the last interval.
To optimize the parameters, a simple stochastic gradient ascent algorithm can be applied

to iterate through the set of preferences of each user:

wu ← wu + η∇logL(wu) (3.17)

with η as the learning rate. The gradient of the regularized log pseudo-likelihood is used to
update the weight wij for each pui w.r.t. its neighbor puj ∈ pu

∂logL
∂wij

= fij(pui, puj)−
lmax∑

pui=lmin

P (pui | pu\pui)fij(pui, puj)−
wij
σ2

(3.18)

3.4.3. Item Recommendation

The ultimate goal of RecSys is often to rank the items and recommend the Top-N items
to the user. To obtain the item rankings, PrefMRF estimates distributions over user-wise
preferences which can be converted into point estimate by computing the expectation:

p̂ui =

lmax∑
pui=lmin

puiP (pui | pu) (3.19)

where l refers to the intervals of user-wise preferences: from least to most preferred.
Given the predicted user-wise preferences, the items can be sorted and ranked accord-

ingly. Finally, Alg. 1 summarizes the learning and prediction procedures for the PrefMRF.

165

Liu Li Tran Jiang

Algorithm 1 PrefMRF Algorithm

1: Input: PR Π inferred from explicit or implicit feedbacks.
2: Step 1: Predict user-wise preferences p̂ui using Eq. 3.1 and Eq. 2.2.
3: Step 2: Predict distribution for each p̂ui using Eq. 3.8.
4: Step 3: Repeat
5: for each u ∈ U do
6: for each pui ∈ pu do
7: Compute normalization term Zui using Eq. 3.16
8: Compute local likelihood using Eq. 3.15
9: for each puj ∈ pu, i 6= j ∧ fij ∈ fstrong do

10: Compute correlation feature fij using Eq. 3.13
11: Compute gradient for correlation feature fij using Eq. 3.18
12: Update wij with the gradient using Eq. 3.17
13: end for
14: end for
15: end for
16: Until stopping criteria met
17: Predictions:
18: * Predict user-wise preferences using Eq. 3.19.
19: * Select Top-N items according to estimated user-wise preferences.

3.4.4. Computational Complexity

We perform a quick analysis on the computational complexity w.r.t. number of users, items,
and ratings. Given n users and m items each has du and di preferences, respectively. Let us
temporarily ignore the user-specified latent factors. Then the complexity of both PrefNMF
and PrefMRF is O(nd2

u). However, in practice few item co-rated by the same user are
strong neighbors of each other due to the correlation threshold defined in Section 3.4.1.
As a result, the computation time of PrefMRF tends to be O(nduc) where c is a factor of
correlation threshold.

4. Experiment and Analysis

To study the performance of the proposed PrefMRF model, comparisons were done with the
following representative algorithms: a) K-Nearest Neighbors (KNN) (Resnick et al., 1994),
which represents the methods exploiting the LS from absolute ratings; b) Non-negative
Matrix Factorization (NMF) (Koren et al., 2009), which represents the methods exploiting
the GS from absolute ratings; c) Preference Relation-based KNN (PrefKNN) (Brun et al.,
2010), which exploits the LS from PR; d) Preference Relation-based NMF (PrefNMF) (De-
sarkar et al., 2012), which exploits the GS from PR.

4.1. Experimental Settings

4.1.1. Datasets

Ideally, the experiments should be conducted on datasets that contain user preferences in
two forms: PR and absolute ratings. Unfortunately no such a dataset is publicly available

166

PrefMRF

at the moment, therefore we choose to compile the rating-based datasets into the form of
PR. We use the same conversion method as in (Desarkar et al., 2012) by comparing the
ratings of each ordered pair of items co-rated by the same user. For example, 1 is assigned
to the PR πuij if pui > puj ; 0 is assigned if pui < puj , and 0.5 is assigned if pui = puj .

Experiments were conducted on two datasets: the MovieLens-1M 1 and the EachMovie 2

datasets. The MovieLens-1M dataset contains more than 1 million ratings by 6, 040 users
on 3, 900 movies. The EachMovie dataset contains 2.8 million ratings by 72, 916 users on
1, 628 movies. The minimum rating is 1 and we cap the maximum at 5 for both datasets.

For a reliable and fair comparison, each dataset is split into train and test sets, and
the following settings are aligned to related work (Weimer et al., 2007). As the sparsity
levels differ between the MovieLens-1M and the EachMovie datasets, different number of
ratings are reserved for training and the rest for testing. Specifically, for each user in the
MovieLens-1M we randomly select N = 30, 40, 50, 60 ratings for training, and put the rest
for testing. Some users do not have enough ratings thus were excluded from experiments.
The EachMovie has less items but much more users comparing to MovieLens-1M, therefore
it is safe to remove some less active users and we set N = 70, 80, 90, 100 to investigate the
performance on dense dataset.

4.1.2. Evaluation Metrics

Traditional recommender systems aim to optimize RMSE or MAE which emphasizes on ab-
solute ratings. However, the ultimate goal of recommender systems is usually to obtain the
ranking of items (Koren and Sill, 2011), where good performance on RMSE or MAE may
not be translated into good ranking results (Koren and Sill, 2011). Therefore, we employ
two evaluation metrics: Normalized Cumulative Discounted Gain@T (NDCG@T) (Järvelin
and Kekäläinen, 2002) which is popular in academia, and Mean Average Precision@T
(MAP@T) (Chapelle et al., 2009) which is popular in contests 3. Among them, the
NDCG@T metric is defined as

NDCG@T =
1

K(T)

T∑
t=1

2rt − 1

log2 (t+ 1)
(4.1)

where rt is the relevance judgment of the item at position t, and K(T) is the normalization
constant. The MAP@T metric is defined as

MAP@T =
1

|Utest|
∑

u∈Utest

T∑
t=1

Pu(t)

min(mu, t)
(4.2)

where mu is the number relevant items to user u, and Pu(t) is user u’s precision at position
t. Both metrics are normalized to [0, 1], and a higher value indicates better performance.

These metrics, together with other ranking-based metrics, require a set of relevant items
to be defined in the test set such that the predicted rankings can be evaluated against. The
relevant items can be defined in different ways. In this paper, we follow the same selection

1. http://grouplens.org/datasets/movielens
2. http://grouplens.org/datasets/eachmovie
3. KDD Cup 2012 and Facebook Recruiting Competition

167

http://grouplens.org/datasets/movielens
http://grouplens.org/datasets/eachmovie

Liu Li Tran Jiang

criteria used in the related work (Koren, 2008; Brun et al., 2010) to consider items with
the highest ratings as relevant.

4.1.3. Parameter Setting

For a fair comparison, we fix the number of latent factors to 50 for all algorithms, the same
as in related work (Cremonesi et al., 2010). The number of neighbors for KNN algorithms
is set to 50. We vary the minimum correlation threshold to examine the performances with
different number of features. Different values of regularization coefficient are also tested.

4.2. Results and Analysis

4.2.1. Comparison on Top-N Recommendation

Implementations of the benchmark algorithms including ours are publicly available in
GitHub repository. Comparison of these algorithms is conducted by measuring the NDCG
and the MAP metrics on Top-N recommendation tasks. Each experiment is repeated ten
times with different random seeds and we report the mean results with standard deviation
on MovieLens-1M dataset in Table 2 and on EachMovie dataset in Table 3. We also report
the NDCG and MAP values by varying the position T in Fig. 2. The following observations
can be made based on the results.

Table 2: Mean results and standard deviation over ten runs on MovieLens-1M dataset.
Given 30 Given 40

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.3969± 0.0020 0.4081± 0.0029 0.2793± 0.0021 0.2744± 0.0025 0.4108± 0.0040 0.4252± 0.0036 0.2936± 0.0036 0.2877± 0.0034
NMF 0.5232± 0.0057 0.5195± 0.0040 0.3866± 0.0055 0.3549± 0.0037 0.5323± 0.0050 0.5291± 0.0034 0.3976± 0.0045 0.3631± 0.0035
PrefKNN 0.3910± 0.0044 0.4048± 0.0038 0.2745± 0.0043 0.2720± 0.0037 0.4122± 0.0024 0.4283± 0.0024 0.2944± 0.0023 0.2904± 0.0023
PrefNMF 0.5729± 0.0049 0.5680± 0.0041 0.4387± 0.0046 0.3992± 0.0033 0.5773± 0.0037 0.5732± 0.0028 0.4437± 0.0041 0.4019± 0.0032
PrefMRF 0.5970± 0.0050 0.5864± 0.0039 0.4622± 0.0050 0.4194± 0.0036 0.6125± 0.0029 0.6020± 0.0023 0.4784± 0.0025 0.4316± 0.0020

Given 50 Given 60

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.4273± 0.0040 0.4424± 0.0027 0.3078± 0.0038 0.3015± 0.0026 0.4480± 0.0044 0.4622± 0.0035 0.3266± 0.0036 0.3163± 0.0027
NMF 0.5360± 0.0041 0.5326± 0.0036 0.4010± 0.0040 0.3669± 0.0025 0.5462± 0.0068 0.5409± 0.0063 0.4109± 0.0069 0.3734± 0.0055
PrefKNN 0.4326± 0.0027 0.4483± 0.0030 0.3125± 0.0024 0.3070± 0.0022 0.4526± 0.0062 0.4689± 0.0039 0.3301± 0.0051 0.3223± 0.0033
PrefNMF 0.5761± 0.0067 0.5745± 0.0035 0.4424± 0.0064 0.4019± 0.0033 0.5756± 0.0062 0.5733± 0.0048 0.4409± 0.0059 0.4007± 0.0037
PrefMRF 0.6148± 0.0053 0.6082± 0.0032 0.4806± 0.0053 0.4360± 0.0027 0.6311± 0.0037 0.6200± 0.0037 0.5012± 0.0035 0.4500± 0.0026

Table 3: Mean results and standard deviation over ten runs on EachMovie dataset.
Given 70 Given 80

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7088± 0.0020 0.7115± 0.0015 0.6012± 0.0027 0.5767± 0.0017 0.7146± 0.0018 0.7168± 0.0017 0.6070± 0.0021 0.5825± 0.0019
NMF 0.7581± 0.0022 0.7577± 0.0017 0.6524± 0.0026 0.6225± 0.0020 0.7636± 0.0021 0.7638± 0.0018 0.6583± 0.0025 0.6286± 0.0018
PrefKNN 0.7260± 0.0022 0.7307± 0.0018 0.6197± 0.0020 0.5990± 0.0016 0.7337± 0.0028 0.7377± 0.0018 0.6271± 0.0029 0.6057± 0.0021
PrefNMF 0.7408± 0.0033 0.7348± 0.0039 0.6330± 0.0035 0.5800± 0.0038 0.7422± 0.0036 0.7319± 0.0040 0.6329± 0.0039 0.5774± 0.0033
PrefMRF 0.8217± 0.0032 0.8095± 0.0029 0.7312± 0.0039 0.6824± 0.0034 0.8264± 0.0036 0.8132± 0.0030 0.7353± 0.0038 0.6861± 0.0032

Given 90 Given 100

Algorithm NDCG@5 NDCG@10 MAP@5 MAP@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.7191± 0.0022 0.7279± 0.0028 0.6120± 0.0021 0.5933± 0.0013 0.7279± 0.0028 0.7277± 0.0015 0.6238± 0.0032 0.5973± 0.0021
NMF 0.7712± 0.0039 0.7692± 0.0033 0.6663± 0.0043 0.6431± 0.0034 0.7741± 0.0030 0.7717± 0.0028 0.6719± 0.0034 0.6411± 0.0030
PrefKNN 0.7418± 0.0028 0.7421± 0.0015 0.6357± 0.0030 0.6192± 0.0020 0.7505± 0.0019 0.7511± 0.0012 0.6478± 0.0020 0.6231± 0.0014
PrefNMF 0.7456± 0.0031 0.7358± 0.0038 0.6357± 0.0040 0.5819± 0.0036 0.7391± 0.0033 0.7298± 0.0034 0.6318± 0.0039 0.5761± 0.0039
PrefMRF 0.8294± 0.0035 0.8149± 0.0032 0.7374± 0.0037 0.6946± 0.0032 0.8308± 0.0031 0.8167± 0.0030 0.7436± 0.0038 0.6961± 0.0036

Firstly, the KNN and the PrefKNN methods didn’t perform well on MovieLens-1M
comparing with Matrix Factorization based methods. One possible reason is that predic-
tions are made based only on the neighbors, and as a result too much information has
been ignored especially when the dataset is large. However, the performance of KNN -based

168

PrefMRF

methods has improved on the EachMovie dataset as we reserved more ratings for training,
i.e., better neighbors can be found for prediction.

Secondly, PrefNMF outperforms NMF on MovieLens-1M dataset which is consistent
to the results reported in (Desarkar et al., 2012). However, PreNMF does not perform
well on EachMovie where its performance is only slightly better than user-based KNN. The
reason behind could be the EachMovie is much denser than the MovieLens-1M dataset,
which makes the number of PR huge and difficult to tune optimal parameters. Besides, we
observe that PrefNMF in general only achieves a slight improvement with more training
data and even drops a bit with Given 60. Similarly for the EachMovie dataset. With these
observations, it appears that for a given number of users, the PrefNMF can be trained
reasonably well with fewer data.

(a) Mean NDCG@T (b) Mean MAP@T

Figure 2: Performance for different position T (MovieLens-1M, Given 60).

Finally, the proposed PrefMRF has made further improvement on both datasets upon
the PrefNMF through capturing both LS and GS. From Fig. 2 we can see that the algo-
rithms stabilized around position 10 and PrefMRF consistently delivers better performance
than others. It should be noted that the performance of PrefMRF relies on its underlying
model that captures the GS. In other words, the performance may vary when the PrefNMF
is replaced with other alternative methods such as (Liu et al., 2009).

Table 4: Paired t-test for PrefMRF and PrefNMF.

Settings t-test statistics

Dataset Sparsity Metric df t p-value

MovieLens Given 60 NDCG@10 9 15.6998 < 0.00001
MovieLens Given 60 MAP@10 9 23.1577 < 0.00001
EachMovie Given 100 NDCG@10 9 70.4189 < 0.00001
EachMovie Given 100 MAP@10 9 71.7146 < 0.00001

The improvements are confirmed by a paired t-test at a significance level of 0.95, as
reported in Table 4.It can be seen that the performances of methods with and without
considering the LS are statistically different.

169

Liu Li Tran Jiang

4.2.2. Performance on Various Data Sparsity Levels

To thoroughly examine the performance of these algorithms, we compare their performances
under different settings of training set sizes: Given 30, Given 50, and Given 70. Results
are plotted in Fig. 3. It can be observed that in general more training data result in better
performance. However, PrefNMF does not gain much benefit from more data and even
perform slightly worse in Given 60. The PrefMRF on the other hand consistently gains
performance from more data as the LS information can be better captured.

(a) NDCG@10 by Given Size (b) MAP@10 by Given Size

Figure 3: Impact of Sparsity Levels (MovieLens-1M).

4.2.3. Impact of Minimum Correlation Threshold

As described in Section 3.4.1, a minimum correlation threshold is required to control the
number of features in the PrefMRF model. By default, each pair of co-rated items has a
feature which results in a large number of features. However, many of these features are
useless if the item-item correlation are weak. To make the model more robust and with
faster convergence, a minimum correlation threshold is applied to remove weak features.
Specifically, the feature is removed if two items has a correlation measured by Pearson
correlation less than the threshold. Results are plotted in Fig. 4(a).

It can be observed that a smaller correlation threshold delivers better performance, how-
ever, the number of features will also increase. To balance the performance and computation
time, it is wise to select a moderate level of threshold depending on the dataset.

4.2.4. Impact of Regularization Coefficient

As the number of features in PrefMRF can be large, the model might be prone to over-
fitting. Therefore, we investigate the impact of regularization settings as plotted in Fig. 4(b).

We observe that the performance is better when a small regularization penalty applies.
In other words, the PrefMRF can generalize reasonable well without too much regulariza-
tion. This can be explained as the weights of item-item correlations are not user-specific
but shared by all users, thus they cannot over-fit every user perfectly.

170

PrefMRF

(a) NDCG@10 by Threshold (b) NDCG@10 by Reg.

Figure 4: Impact of Parameters (MovieLens-1M)

5. Conclusions and Future Works

In this paper we presented the PrefMRF model, which is capable of modeling both LS and
GS. Experiment results on public datasets demonstrate that types of interactions have been
properly captured, resulting improved Top-N recommendation performance. For future
work, we would like to see how the proposed model performs on real PR-based dataset
generated from from implicit feedbacks such as activity logs. Another extension is improving
the learning speed as the number of preference relations is often much large than the number
of absolute ratings. It is possible to speedup via parallelization as each user has his/her
own set of preference relations which can be learned simultaneously.

Acknowledgement

This work was partially supported by the National Science Foundation of China (61273301)
and the Collaborative Innovation Center of Novel Software Technology and Industrializa-
tion.

References

M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommendation. Com-
mun. ACM, 40(3):66–72, 1997.

A. Brun, A. Hamad, O. Buffet, and A. Boyer. Towards preference relations in recommender
systems. In Preference Learning (PL 2010) ECML/PKDD, 2010.

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded
relevance. In CIKM’09, pages 621–630. ACM, 2009.

P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n
recommendation tasks. In RecSys’10, pages 39–46. ACM, 2010.

171

Liu Li Tran Jiang

A. Defazio and T. Caetano. A graphical model formulation of collaborative filtering neigh-
bourhood methods with fast maximum entropy training. In ICML’12, 2012.

M. S. Desarkar, R. Saxena, and S. Sarkar. Preference relation based matrix factorization
for recommender systems. In UMAP’12, pages 63–75. Springer, 2012.

J. Fürnkranz and E. Hüllermeier. Preference learning. Springer, 2010.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
TOIS, 20(4):422–446, 2002.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In KDD’08, pages 426–434. ACM, 2008.

Y. Koren and J. Sill. Ordrec: an ordinal model for predicting personalized item rating
distributions. In RecSys’11, pages 117–124. ACM, 2011.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. IEEE Computer, 42(8):30–37, 2009.

N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for collaborative
filtering. In CIKM’09, pages 759–766. ACM, 2009.

S. Liu, T. Tran, G. Li, and Y. Jiang. Ordinal random fields for recommender systems. In
ACML’14, pages 283–298. JMLR: workshop and conference proceedings, 2014.

P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society,
Series B, 42(2):109–142, 1980.

D. McFadden. Econometric models for probabilistic choice among products. Journal of
Business, 53(3):S13–S29, 1980.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT
press, 2012.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personal-
ized ranking from implicit feedback. In UAI’09, pages 452–461. AUAI Press, 2009.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. An open architecture for
collaborative filtering of netnews. In CSCW’94, pages 175–186. ACM, 1994.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recom-
mendation algorithms. In WWW’10, pages 285–295. ACM, 2001.

Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix factorization for
collaborative filtering. In RecSys’10, pages 269–272. ACM, 2010.

T. Tran, D. Q. Phung, and S. Venkatesh. Preference networks: Probabilistic models for
recommendation systems. In AusDM’07, pages 195–202. ACS, 2007.

T. Tran, D. Q. Phung, and S. Venkatesh. Ordinal boltzmann machines for collaborative
filtering. In UAI’09, pages 548–556. AUAI Press, 2009.

M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola. Maximum margin matrix factorization
for collaborative ranking. In NIPS’07, pages 1593–1600, 2007.

172

	Introduction
	Preliminaries and Related Work
	Preference Relation
	Problem Statement
	Related Work

	Preference Relation-based Markov Random Fields
	Preference Relation-based Matrix Factorization
	Markov Random Fields
	Ordinal Logistic Regression
	PrefMRF: Unifying PrefNMF and MRF
	Feature Design
	Parameter Estimation
	Item Recommendation
	Computational Complexity

	Experiment and Analysis
	Experimental Settings
	Datasets
	Evaluation Metrics
	Parameter Setting

	Results and Analysis
	Comparison on Top-N Recommendation
	Performance on Various Data Sparsity Levels
	Impact of Minimum Correlation Threshold
	Impact of Regularization Coefficient

	Conclusions and Future Works

