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Abstract—This paper presents a hybrid adaptive dynamic program-
ming ADP approach (hybrid-ADP) for determining the optimal continu-
ous and discrete control laws of a switched system online, solely from state
observations. The new hybrid-ADP recurrence relationships presented
in this paper are applicable to model-free control of switched hybrid
systems that are possibly nonlinear. The computational complexity and
convergence of the hybrid-ADP algorithm are analyzed, and the method
is validated numerically showing that the optimal controller and value
function can be learned iteratively from state observations.

Index Terms—Adaptive Dynamic Programming, Hybrid Systems,
Switched Systems, Model-free Control, Learning.

I. INTRODUCTION

HYBRID systems consist of time-driven and event-driven kine-
matics. Event-driven dynamics are described by discrete state

and control variables that can be represented by finite alphabets.
Time-driven dynamics are described by differential or difference
equations, in terms of continuous state and control vectors in Eu-
clidean space. An important example of hybrid system that consists
of a collection of subsystems comprised of time-driven dynamics and
selected according to an event-driven switching rule [1], [2]. The
discrete control law determines when to switch between subsystems,
while the continuous control law regulates the subsystem selected by
the switching rule [3].

Several approaches have been proposed to obtain the optimal
discrete and continuous control laws for linear switched systems
with quadratic objective functions [2]–[4]. The optimality conditions
for the optimal control of switched linear-quadratic (LQ) systems
were first derived in [5] using Pontryagin Minimum Principle [6]. A
relaxation framework was proposed in [7] to simplify the computation
of the value function for infinite-horizon switched linear quadratic
regulator (LQR) problems. In [8], a relaxed dynamic programming
(DP) approach was applied to the optimal control and scheduling of
switched systems, by relaxing optimality within pre-specified bounds.

Adaptive dynamic programming (ADP) is an iterative approach
for determining model-free optimal control laws in the presence of
nonlinearities, unmodeled dynamics, control failures, or parameter
variations [9], [10]. This paper presents a new hybrid-ADP approach
that learns the optimal continuous and discrete control laws for a
hybrid switched system online. The approach is based on novel ADP
recurrence relationships that are derived from the switched system
optimality conditions presented in [5]. Based on these relationships
and state observations, the hybrid-ADP approach solves Bellman’s
equation iteratively over time, thereby adapting and optimizing the
continuous and discrete control laws subject to actual system dynam-
ics.

Novel hybrid-ADP recurrence relationships, transversality con-
ditions, and learning algorithm are presented in Section III. The
computational complexity of the hybrid-ADP algorithm is analyzed
in Section III, and a proof of convergence is presented in Section IV.
The hybrid-ADP approach is validated numerically using a switched
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LQ hybrid system for which an optimal solution can be obtained
by solving a switched differential Riccati equation presented in [5].
The simulation results in Section V demonstrate that the hybrid-ADP
approach converges to the optimal solution by learning the continuous
and discrete control laws online from simulated system dynamics.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Switched hybrid systems are commonly used to model processes
in which both discrete and continuous control inputs are crucial to
system performance. The possible values of the discrete state or mode
ξ are taken from a discrete and finite index set E = {1, . . . , E},
where E typically is a small integer. The discrete control ν selects
the next system mode, such that ξ, ν ∈ E . This paper considers a
discrete-time switched dynamical system,

x(k + 1) = fξ[x(k),uξ(k)], ξ(k + 1) = ν(k) (1)

where x ∈ X ⊂ Rn is the continuous state, X is the state space,
uξ ∈ Uξ ⊂ Rm is the continuous control input, and Uξ is the space of
admissible control inputs for mode ξ. For every possible value of ξ,
the system dynamics, described by the function fξ : X×Uξ → X , are
possibly nonlinear. The initial state x(0) = x0 and mode ξ(0) = ξ0
are assumed given, and the final time N is known and finite. The
switched system is also assumed to obey the following assumptions:

Assumption 1. Mode switching can occur at any time step k and is
determined solely by ν with zero cost. k+ is the time after the switch
occurs, such that ξ(k+) = ξ(k + 1) for any k.

Assumption 2. The continuous state x is fully observable and the
measurement error is negligible.

The system performance is represented by the cost function,

J , φ[x(N)] +

N−1∑
j=0

Lξ[x(j),uξ(j), ν(j)] (2)

to be minimized with respect to the continuous and discrete control
laws,

uξ(k) = cξ[x(k), k], ν(k) = a[x(k), ξ(k), k] (3)

respectively, where ξ = 1, . . . , E. Then, the goal of the hybrid-ADP
algorithm is to determine the switched system policy, defined as the
tuple π = {a, cξ : ξ ∈ E}.

III. HYBRID ADP APPROACH

ADP seeks to approximate the policy of an optimal control problem
by using a recurrence relationship to improve the approximations
of the optimal value function and control law over time. The
two function approximations can be obtained through aggregation
functions [11], [12], such as support vector regression, or neural
networks. The value function approximation, commonly referred to
as a critic network, and the controller approximation, referred to as an
actor network, are both optimized based on observations of the state
obtained from the real system or its simulation, assuming the state
is fully observable. In order to accelerate converge to the optimal
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solution, the gradient of the value function with respect to the state
can be used as the critic in lieu of the scalar value function.

This section presents new ADP recurrence relationships and
transversality conditions for solving the switched optimal control
problem presented in Section II iteratively over time. From Bellman’s
principle of optimality [13], the optimization of the objective function
(2) can be embedded in the optimization of a switched system value
function or cost-to-go which, at any time k, is defined as

V [x(k), ξ(k), π, k],φ[x(N)] +

N−1∑
j=k

Lξ[x(j),uξ(j)] (4)

From the above definition, the value function obeys the recurrence
relationship,

V [x(k), ξ(k), π, k] =Lξ[x(k),uξ(k)]

+ V [x(k + 1), ξ(k + 1), π, k + 1] (5)

and, thus, from [14], a necessary optimality condition for an extremal
of (5), denoted by u∗

ξ , is[
∂Lξ[x(k),uξ(k)]

∂uξ(k)
+

(
∂fξ [x(k),uξ(k)]

∂uξ(k)

)T

× ∂V [x(k + 1), ξ(k + 1), k + 1]

∂x(k + 1)

]∣∣∣∣
uξ(k)=u∗

ξ

= 0 (6)

A sufficient condition for the extremal u∗
ξ to be a minimum of the

value function is that the Hessian be positive definite [14]. Since, in
practice, the sufficient condition is easily verified once an extremal
is found [15], hereon (·)∗ will denote optimality.

In order to accelerate evaluation and converge in (6), the critic
network is used to approximate the gradient λ , ∂V/∂x, also known
as costate or adjoint vector [15]. Noting that uξ is a function of x, (5)
is differentiated with respect to x to obtain a recurrence relationship
for the critic shown below in (7) and with boundary condition

λ(N) = ∂φ[x(N)]/∂x (8)

From Assumption 1, before and after a mode switch the Lagrangian
remains constant or,

Lξ[x(k),uξ(k)] = Lξ[x(k
+),uξ(k

+)] (9)

and, thus, from (4) the following holds,

V [x(k), ξ(k), π, k] = V [x(k+), ξ(k+), π, k+]

= V [x(k), ξ(k + 1), π, k] (10)

because x(k+) = x(k) and ξ(k+) = ξ(k + 1). Now, differentiating
(10) with respect to x, the recurrence relationship,

λ[x(k), ξ(k), π, k] = λ[x(k+), ξ(k+), π, k+]

= λ[x(k), ξ(k + 1), π, k] (11)

is obtained for the costate vector during a mode switch. Since λ is
an implicit function of π, the argument will be omitted hereon for
simplicity.

The optimality condition for the discrete control input is found by

introducing the Hamiltonian

H , Lξ[x(k),uξ(k)] + λ[x(k + 1), ν(k), k + 1]fξ[x(k),uξ(k)]

= H[x,uξ,λ, ν, k] (12)

Then, given λ and uξ, the discrete control law can be optimized
using the discrete-time minimum principle [13], or

ν∗ = argmin
ν

H[x,uξ,λ, ν, k] (13)

The optimality conditions (6) and (13), and the recurrence rela-
tionships (7) and (11) are used in the next subsection to obtain
approximations to the optimal control and costate approximations
known as actor and critic networks.

A. Actor and Critic Network Approximations

The optimality conditions and recurrence relationships obtained
in the previous subsection are used to iteratively improve upon
approximations of the continuous and discrete control laws and value
function gradient, until convergence to their optimal counterparts is
obtained, as shown in Section IV. Artificial neural networks (NNs)
are chosen here based on their universal function approximation
properties [16]. Let the NN approximations of the continuous con-
trol law, costate vector, and discrete control law be denoted by
c̃ξ[x(k), k;wξ], λ̃[x(k), ξ(k), k;v], and ã[x(k), ξ(k), k;ω], where
wξ, v, and ω denote vectors of adjustable parameters, and the
remaining arguments denote NN inputs.

At every cycle, l, of the hybrid-ADP algorithm a new improved
NN approximation is obtained by holding the others fixed, such
that the policy (actor) π̃l = {ãl, c̃lξ : ξ ∈ E} and the critic λ̃l,
obtained during the lth cycle, are closer to optimal than those obtained
during previous cycles. As a first step of cycle l, the continuous
actor network is updated to satisfy the optimality condition (6)
while holding the critic from the previous cycle, λ̃(l−1), fixed. By
introducing the vector function,

ΓA =
∂Lξ

∂uξ

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂fξ
∂uξ

)T
∣∣∣∣∣
uξ=c̃l

ξ
(k)

λ̃(l−1)(k + 1) (14)

the continuous actor parameters wξ can be updated to minimize the
squared L2-norm, ‖ΓT

A ΓA‖2, by means of the learning rule,

∆wξ = −ε

(
2ΓT

A
∂ΓA

∂uξ

∂c̃lξ
∂wξ

)T

(15)

where ε is a positive learning rate, and c̃lξ(k) and λ̃(l−1)(k + 1)
are short-hand notations for the continuous actor and the critic
approximations evaluated at k and k + 1, respectively.

As in classical ADP [10], the critic network is updated by holding
the actor network c̃lξ(k) fixed and by using the previous critic network
λ̃(l−1)(·) to approximate the derivative of the cost-to-go in the
recurrence relationship (7). Therefore, as a second step of cycle l

λ[x(k), ξ(k), π, k] =
∂Lξ[x(k),uξ(k)]

∂x(k)
+

(
∂cξ[x(k), k]

∂x(k)

)T
∂Lξ[x(k),uξ(k)]

∂uξ(k)

+

(
∂fξ [x(k),uξ(k)]

∂x(k)
+

∂fξ [x(k),uξ(k)]

∂uξ(k)

∂cξ[x(k), k]

∂x(k)

)T

λ[x(k + 1), ξ(k + 1), π, k + 1] (7)
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in the hybrid-ADP algorithm, a target vector function,

ΓC =
∂Lξ

∂x

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂c̃ξ
∂x

)T
∂Lξ

∂uξ

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂fξ
∂x

+
∂fξ
∂uξ

∂c̃lξ
∂x

)T
∣∣∣∣∣∣
uξ=c̃l

ξ
(k)

λ̃(l−1)(k + 1) (16)

is obtained from (7) and (11), such that the critic parameters v can
be updated to minimize the squared L2-norm, ‖(ΓC − λ̃l(k)‖2, by
means of the learning rule,

∆v =2 η

(
∂λ̃l

∂v

)T
∣∣∣∣∣
k

[
ΓC − λ̃l(k)

]
(17)

where η is a positive learning rate. Finally, as a third step of
cycle l in the hybrid-ADP algorithm, the discrete actor network is
updated according to the optimality condition in (13) by updating the
parameters ω, while holding c̃lξ and λ̃l fixed.

IV. HYBRID-ADP ANALYSIS AND PROOF OF CONVERGENCE

The computational complexity and convergence properties of the
hybrid ADP approach presented in the previous section are analyzed
in this section under the assumption that the value function and NN
approximations have Lipschitz continuous gradient. For continuous
state values x1,x2 ∈ X , V has a Lipschitz continuous gradient if
the inequality ‖∂V/∂x|x=x1 − ∂V/∂x|x=x2‖ ≤ L‖x1 − x2‖ holds
for a constant modulus L [17]. This and other regularity conditions
are common assumptions in the optimization literature that can be
satisfied by a suitable choice of Lagrangian function, provided the
design objectives are not highly nonlinear with respect to the state
and the control [17]–[19].

Assumption 3. Assume gradients ∂V/∂x, ∂x/∂uξ, ∂Lξ/∂uξ,
∂c̃ξ/∂wξ, and ∂λ̃/∂v are Lipschitz continuous with modulus L1,
L2, L3, L4, and L5 respectively.

Let NH and NS denote the number of hidden neurons and training
samples for a critic/actor network. From [20], an approximation error
ε can be guaranteed by choosing NS = vol(X )L/(ε)n, where
vol(X ) is the volume of the state space X ⊂ Rn. Because NNs
are universal function approximators, on a compact space X , ε can
be made arbitrarily small by increasing NH [16], [21]. While an
choice is NH = (n +

√
NS)/NL, where NL is the number of

hidden layers [22], a zero approximation error for gradient and output
training samples can be guaranteed when NH = NS for NL = 1
[23]. In this paper, one critic and one actor are used to approximate
λ and cξ for each mode and, thus, a total of 2E networks are
implemented. Then, the computational complexity of each epoch (15)
or (17) is O(NL

H + nNH), and thus the total complexity of each
hybrid-ADP cycle is O[E(NL

H +nNH)TN ], where T is the number
of epochs. Based on these results, it can be assumed that ε can be
made negligibly small by a suitable choice of NH and NL, with
reasonable computational requirements.

Four lemmas are presented and then used to obtain the hybrid-ADP
proof of convergence. The first two lemmas build connections among
the recurrence relationship, the value function, and updating rules
of the actor and critic networks. The last two lemmas establish the
progression of the policy and value function updates at consecutive
iterations, as schematized in Fig. 1. Then, the hybrid-ADP algorithm
presented in Section III can be guaranteed to converge to a globally
or locally optimal solution.

Lemma 1. Let π̃l denote the policy obtained from the lth cycle of
the hybrid-ADP algorithm. Then, for any (TN) � 1, the critic λ̃l,
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Fig. 1. Actor and critic network hybrid-ADP updates.

obtained from (17) while holding π̃l fixed, satisfies,

λ̃l[x(k), ξ(k), k] =
∂Lξ[x(k),uξ(k)]

∂x(k)

∣∣∣∣
uξ=c̃l

ξ
(k)

+

(
∂c̃lξ[x(k), k]

∂x(k)

)T

× ∂Lξ[x(k),uξ(k)]

∂uξ(k)

∣∣∣∣
uξ=c̃l

ξ
(k)

+

[
∂x(k + 1)

∂uξ(k)

∂c̃lξ[x(k), k]

∂x(k)

+
∂x(k + 1)

∂x(k)

]
λ̃l[x(k + 1), ξ(k + 1), k + 1] (18)

where x(k + 1) and ξ(k + 1) are the state values obtained by
implementing the control policy π̃l in (1).

Proof of Lemma 1. For any x0 ∈ X , the trajectory of x(k), k =
1, . . . , N , obtained by policy π̃l, is fixed. Then, at time step k, the
coefficient of λ̃l(k+1) and the remaining term in (17) are all constant
matrices or vectors evaluated at x(k), and can be denoted as A(k)
and b(k), respectively. Then, the recurrence relationship (7) can be
written as,

λ̃l(k) = A(k)λ̃l(k + 1) + b(k) (19)

which is the kth equation in a linear system of equations, where N th
equation is λ̃l(N) = ∂xφ[x(N)]. Thus, (17) follows the successive
over-relaxation (SOR) method with relaxation factor η [24]. The
eigenvalue of the iteration matrix for this linear system is 1− η, and
thus has an absolute value less than one. Then, when (TN) � 1,
the solution of (19) can be computed by SOR [25], and the resulting
approximation λ̃l satisfies (18).

Remark 1. Any critic λ̃l[x, ξ, k] obtained from (17) also satisfies
the boundary condition λ̃l[x(N), ξ(N), N ] = ∂xφ[x(N)].

Lemma 2. When holding π̃l fixed, the critic network λ̃l[x, ξ, k] and
its corresponding value function V l(x, ξ, k) obey the relationships,

V l[x(k), ξ(k), k] (20)

= Lξ[x(k),uξ(k)] + V l[x(k + 1), ξ(k + 1), k + 1]

V l[x(N), ξ(N), N ] = φ[x(N)] (21)

∂V l[x(k), ξ(k), k]/∂x(k) = λ̃l[x(k), ξ(k), k] (22)

for all x(k) and ξ(k), and at any time step k.

Proof of Lemma 2. Equations (20)-(21) hold from (4), and (22) is
proven by induction for any k ≤ N as follows.

Base case: At k = N , ∂xV
l|N = ∂xφ[x(N)]. Therefore, from

Remark 1,

∂xV
l|N = λ̃l[x(N), ξ(N), N ] (23)

and thus (22) holds for k = N .
Induction step: Let k < N be given and suppose (22) is true at

time instant k + 1, such that

∂xV
l|k+1 = λ̃l[x(k + 1), ξ(k + 1), k + 1]

Substituting the above into the Right-Hand Side (RHS) of (18) it can
be easily shown that the RHS of (18) is equal to ∂xV

l|k, while its
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Left-Hand Side (LHS) is equal to λ̃l(k). It follows that

∂xV
l|k = λ̃l[x(k), ξ(k), k] (24)

and (22) holds for any k ≤ N .
Conclusion: By the principle of induction, (22) is true for any

k ≤ N .

Lemma 3. When holding the critic λ̃l fixed, the control law c̃l+1
ξ

obtained from the learning rule (15) using the learning rate ε =
1/(L1L2 + L3)L4, has a value function,

V l[x(k + 1), ξ(k + 1), k + 1]|ξ(k+1)=ν(k) + Lξ[x(k), c̃
l+1
ξ (k)]

≤ V l[x(k + 1), ξ(k + 1), k + 1]|ξ(k+1)=ν(k) + Lξ[x(k), c̃
l
ξ(k)]

(25)

for all ν(k) ∈ E .

Proof of Lemma 3. When x and ν are given, the control input uξ

is a function of the actor weights obtained at the end of the lth
cycle, denoted by wl

ξ. Thus, the next state x(k + 1) and value
function V l[x(k + 1), ξ(k), k + 1] are also functions of wl

ξ. Let
G , {V l[x(k+1), ξ(k), k+1]+Lξ[x(k), c̃

l
ξ(k)] = G(wl

ξ). Then,
from Assumption (3), G has a Lipschitz continuous gradient with
modulus (L1L2 + L3)L4, because

‖G(wl
ξ)−G(w

(l+1)
ξ )‖ = ‖V l[x(k + 1), ξ(k), k] + Lξ[x(k), c̃

l
ξ(k)]

− V (l+1)[x(k + 1), ξ(k), k]− Lξ[x(k), c̃
(l+1)
ξ (k)]‖

≤ ‖V l[x(k + 1), ξ(k), k]−V (l+1)[x(k + 1), ξ(k), k]‖
+ ‖Lξ[x(k), c̃

l
ξ(k)]− Lξ[x(k), c̃

(l+1)
ξ (k)]‖

≤ (L1L2 + L3)L4 ‖(w(l+1)
ξ −wl

ξ)‖ (26)

From the actor learning rule (15) and the properties of functions with
Lipschitz continuous gradient [26], it also follows that,

G(w
(l+1)
ξ ) ≤ G(wl

ξ)+ < ∂wξG|wξ=wl
ξ
, (w

(l+1)
ξ −wl

ξ) >

+
(L1L2 + L3)L4

2
‖(w(l+1)

ξ −wl
ξ)‖2

= G(wl
ξ)+[(L1L2+L3)L4ε

2/2− ε]‖∇G(wl
ξ)‖2.

where < ·, · > denotes the inner product, and, when ε ≤ 2/(L1L2+

L3)L4, G(w
(l+1)
ξ ) ≤ G(wl

ξ), and, thus, (25) holds.

Remark 2. The equality in (25) holds iff ‖∂wξG|wξ=wl
ξ
‖ = 0,

i.e., iff the optimality condition (6) is satisfied, and the maximum
convergence rate is achieved by setting ε = 1/(L1L2 + L3)L4.

Lemma 4. Let π̃l+1 denote the policy obtained in the (l+1)th cycle
of the hubrid-ADP algorithm, while holding λ̃l fixed. From (13) and
(15) it follows that the value function obeys the inequality,

V (l+1)[x(k + 1), ξ(k + 1), k + 1] + Lξ[x(k), c̃
(l+1)
ξ (k)]

≤ V l[x(k + 1), ξ(k + 1), k + 1] + Lξ[x(k), c̃
l
ξ(k)],

during subsequent cycles l and (l + 1) of the algorithm.

Proof of Lemma 4. From the minimum principle for discrete-time
problems [13], it can be shown that,

V l[x(k), ξ(k), k] = x(k)λ(k)+φ[x(N)]− x(N)λ(N)

+

N−1∑
j=k

{
Hν [x, c̃

(l+1)
ξ ,λ, ν, j]− x(j)λ(j)

}
where only the Hamiltonian Hν [·] is a function of ν. Therefore, ν(k)
obtained from (13) minimizes V l[x(k), ξ(k), k]. Furthermore, from

Lemma 2, for any ν ∈ E the control approximation c̃
(l+1)
ξ has a

value function,

V (l+1)[x(k + 1), ξ(k + 1), k + 1] + Lξ[x(k), c̃
(l+1)
ξ ]

≤ V l[x(k + 1), ξ(k + 1), k + 1] + Lξ[x(k), c̃
l
ξ] (27)

and, thus, π̃(l+1) results in a lower cost.

Theorem 1 (Convergence). At every cycle l of the hybrid-ADP
algorithm, the critic and actor networks obtained from (13)-
(17) are characterized by an improved value function, such that
V (l+1)[x(k), ξ(k), k] ≤ V l[x(k), ξ(k), k], for any (TN) � 1,
x ∈ X , ξ ∈ E , and k = 1, . . . , N . Furthermore, as l → ∞, the actor
networks converge to an extremal policy π∞ = {a∞, c∞ξ : ξ ∈ E},
and the critic converges to a value function V ∞ that is stationary with
respect to the policy. Then, when the Hamiltonian (12) is a convex
function of x and uξ, π∞ is an optimal policy of the switched optimal
control problem (1)-(2).

Proof of Convergence. From Lemma 2, the value function at the lth
cycle can be written as,

V l[x(k), ξ(k), k] = Lξ[x(k), c̃
l
ξ(k)]

+ V l[x(k + 1), ξ(k + 1), k + 1] (28)

and the value function at the (l + 1)th cycle can be written as

V (l+1)[x(k), ξ(k), k] = Lξ[x(k), c̃
(l+1)
ξ (k)]

+ V (l+1)[x(k + 1), ξ(k + 1), k + 1] (29)

Then, subtracting (28) from (29), the change in value function during
one cycle is

V (l+1)[x(k), ξ(k), k]− V l[x(k), ξ(k), k]

= Lξ[x(k), c̃
(l+1)
ξ (k)]− V l[x(k + 1), ξ(k + 1), k + 1]

+ V (l+1)[x(k + 1), ξ(k + 1), k + 1]− Lξ[x(k), c̃
l
ξ(k)]

From Lemma 4, the change in value function during one cycle obeys
the following inequality,

V (l+1)[x(k), ξ(k), k]− V l[x(k), ξ(k), k] (30)

≤ Lξ[x(k), c̃
(l+1)
ξ (k)]− V l[x(k + 1), ξ(k + 1), k + 1]

+ V (l+1)[x(k + 1), ξ(k + 1), k + 1]− Lξ[x(k), c̃
(l+1)
ξ (k)]

= V (l+1)[x(k + 1), ξ(k + 1), k+1]−V l[x(k + 1), ξ(k + 1), k+1]

and from the boundary condition (8) it follows that,

V l[x(N),ξ(N), N ] = V l+1[x(N),ξ(N), N ]

and, thus, it can be concluded that,

V (l+1)[x(k), ξ(k), k]− V l[x(k), ξ(k), k]

≤ V (l+1)[x(N), ξ(N), N ]− V l[x(N), ξ(N), N ] = 0 (31)

for any x ∈ X , ξ ∈ E , and k = 1, . . . , N .
Let inf{V l} denote the lower bound of V l. Since V l[x(k), ξ(k), k]

is non-negative, for any σ > 0, there exists a positive integer s
such that V s < inf{V l} + σ. From Lemma 4, it follows that
‖ inf{V l} − V l‖ ≤ ‖ inf{V l} − V s‖ < σ for all l > s, and,
by definition liml→∞{V l} = inf{V l}, such that as l → ∞ an
extremal policy π∞ is obtained. If H[·] is convex in uξ and x,
for every discrete action c∞ξ minimizes H[·]. Then, from Remark
2, when πl ≈ πl+1, πl+1 → π∞ and π∞ satisfies the optimality
condition (6). Thus, π∞ is a globally optimal solution according to
the discrete-time minimum principle [13]. If H[·] is not convex, if
the Hessian is positive definite in a neighborhood of the extremal
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c∞ξ , π∞ is a locally optimal solution [27]. Thus, convergence
to an optimal policy is guaranteed for ε ≤ 2/(L1L2 + L3)L4

and, from Remark 2, maximum convergence rate is achieved for
ε = 1/(L1L2 + L3)L4.

As example of the above argument, if the Lagrangian is a quadratic
function of x and u for every mode of the switched system, and the
vector function fξ in (1) is an affine function of x and u, then the
Hamiltonian for every mode is convex in x and u. In this case, π∞

is a globally optimal solution. In general, π∞ can only be guaranteed
to be a locally optimal solution, and multiple proper initializations
may be used to search for a better local optimum.

V. NUMERICAL SIMULATIONS AND RESULTS

The hybrid-ADP algorithm presented in Section III is demonstrated
on a switched linear-quadratic (LQ) optimal control problem that can
be solved numerically using the switched differential Riccati equation
(SDRE) derived in [5]. The switched LQ system considered in this
paper consists of a power system with a gasoline-driven mode and
an electric-driven mode that can each be represented by linear time-
invariant (LTI) dynamics with a continuous state vector x = [x ẋ]T ,
where x ∈ R, that is fully observable and error free. The mode of
the power system is represented by a discrete binary state variable
ξ ∈ E , where E = {1, 2}, ξ = 1 denotes the gasoline-driven model,
and ξ = 2 denotes the electric-driven mode. The system can switch
to any of the two modes at any time, and the two power systems are
independent and supplied with sufficient fuel. The system dynamics
under each mode are modeled by an LTI system,

x(k + 1) =

{
A1x(k) +B1u(k), for ν(k) = 1

A2x(k) +B2u(k), for ν(k) = 2
(32)

where u ∈ R is the continuous control input, and the initial
continuous state, x(0) = x0, is given. In gasoline-driven mode the
state-space matrices are,

A1 =

(
1 0.05

−0.05 0.95

)
, and B1 =

(
0

0.05

)
, (33)

and in electric-driven mode they are

A2 =

(
1 0.05

−0.05 0.975

)
, and B2 =

(
0

0.04

)
. (34)

At any time k ∈ {0, . . . , (N − 1)}, the system mode ξ can be
fully controlled at no cost by a switching signal ν ∈ E provided
by the discrete controller. Unlike gain-scheduled designs, the system
performance depends on both the discrete and continuous state and
control histories, and is defined differently between modes. Thus, the
cost function to be minimized is represented by,

J=xT (N)Pfx(N)+

N−1∑
j=0

xT (j)Qξx(j)+uT
ξ (j)Rξuξ(j)

where N = 100, and the weighting matrices of the gasoline-driven
mode are,

Q1 =

(
100 0
0 200

)
, and R1 = 400, (35)

while those of the electric-driven mode are

Q2 =

(
250 0
0 200

)
, and R2 = 50. (36)

The terminal cost is defined by the matrix,

Pf =

(
1500 −1500
−1500 3000

)
(37)

and the initial conditions are x(0) = [0.5596 −0.6387]T and ξ(0) =
1. From [5], the switched differential Riccati Equation is given by,

P(k − 1)−Qξ =

AT
ξ

(
P(k)−P(k)Bξ(Rξ+BT

ξ P(k)Bξ)
−1BT

ξ P(k)
)
Aξ

where the discrete controller is obtained by minimizing the Hamil-
tonian function [13], such that

ν(k) = argmin
ν

{H[P(k),x(k), ξ(k), u(k)]} (38)

The solution obtained by solving the SDRE numerically, using the
approach in [5], is plotted in Fig. 2 where the gasoline-driven mode
is shown by red dashed lines with square markers, and the electric-
driven mode is shown by blue dashed lines with dot markers. The
switching mode and time instants can be identified by the change in
color and curve style, as well as by the symbol “+” on the trajectory.
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Fig. 2. Optimal state trajectory obtained from SDRE solution.

In the proposed hybrid-ADP solution, the critic network is initial-
ized to satisfy the terminal condition on the costate vector,

λ(N) = Pfx(N) = [0 0]T , (39)

while the actor network is initialized to satisfy,

uξ(k) = −
(
Rξ +BT

ξ Bξ

)−1[
BT

ξ (I +Aξ)x(k)
]

(40)

such that (6) holds, given (39). Subsequently, the hybrid-ADP re-
currence relationships presented in Section III are used to adapt the
critic and the actor networks online, while the actor networks are
used to control the power system. Unlike the SDRE approach, the
hybrid-ADP only uses online evaluations of the state and immediate
cost, as could be obtained from a simulation or the real system.
Thus, as shown in Figs. 3-4, the hybrid-ADP updates conducted over
several cycles to learn the optimal policy and critic networks, and
terminates when the recurrence relationships are satisfied within a
desired tolerance.

In this example, the learning rates η and ε are both chosen equal
to 5 × 10−2, and the learning steps are T = 400 and M = 100.
The critic (actor) neural networks have two hidden layer with 30
(10) hyperbolic tangent (or sigmoidal) functions. The value of the
cost function is evaluated at every cycle, and plotted in Fig. 3, where
it is shown to converge to the optimal cost known from the SDRE
solution (dashed line). In this simulation, the learning rates η and ε
are deliberatively chosen greater than 1/(L1L2 +L3)L4 in order to
accelerate convergence, therefore the cost function does not decrease
at every cycle of the algorithm. However, the simulations also show
that when this limit is satisfied, the cost function is improved at every
cycle of the hybrid-ADP algorithm, and thus the approach could also
be applied using state observations obtained from the real system
(e.g., during operation), but with a lower convergence rate. The state
trajectories obtained by the hybrid-ADP algorithm are shown in a
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solid line in Fig. 4 for five cycles. When l = 5, the state trajectories
converge to the optimal state trajectory obtained from the SDRE
solution in Fig. 2, and also shown in Fig. 4 for comparison. For
the trajectory obtained by ADP, the gasoline-driven mode is shown
in red solid lines with diamond markers, the electric-driven mode
is shown in blue solid lines with circle markers, and the switching
mode and instants can be identified by the change in color and curve
style, and “×”, along the trajectory.
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Fig. 3. Hybrid-ADP cost function convergence to the optimal solution
obtained by SDRE.
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Fig. 4. State trajectory optimization for five cycles of the hybrid-ADP
algorithm, and convergence to optimal solution obtained by SDRE.

VI. SUMMARY AND CONCLUSIONS

This paper presents new recurrence relationships, proof of con-
vergence, and computational complexity for a hybrid-ADP approach
applicable to switched hybrid systems that are possibly nonlinear. The
results show that the hybrid-ADP algorithm is capable of learning
the optimal controller and value function for a switched LQ problem
online, using state observations obtained over time from a simulation
of the system. The approach is demonstrated on a switched LQ
optimal control problem that can be solved numerically using an
SDRE off line. Because the algorithm does not rely on the LQ
structure of the system dynamics and cost function, hybrid-ADP
can be similarly applied to nonlinear (and/or time varying) switched
systems, for which SDER solutions are not typically available.
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