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Abstract. Recommender System has become one of the most impor-
tant techniques for businesses today. Improving its performance requires
a thorough understanding of latent similarities among users and items.
This issue is addressable given recent abundance of datasets across do-
mains. However, the question of how to utilize this cross-domain rich
information to improve recommendation performance is still an open
problem. In this paper, we propose a cross-domain recommender as the
first algorithm utilizing both explicit and implicit similarities between
datasets across sources for performance improvement. Validated on real-
world datasets, our proposed idea outperforms the current cross-domain
recommendation methods by more than 2 times. Yet, the more interesting
observation is that both explicit and implicit similarities between datasets
help to better suggest unknown information from cross-domain sources.

Keywords: Cross-Domain learning; Recommendation System; Matrix
Factorization

1 Introduction

Recommender systems have been received increasing attention and popularity
from many products and services providers. Two approaches have been widely
used for building recommender systems: content based [10] and collaborative
filtering (CF) based [7]. A content based approach focuses on users’ profile or
items’ information for making prediction whereas a CF method bases on latent
similarities among users and items for recommending items for particular users.
This paper focuses on improving CF based approaches.

As CF based methods rely on latent similarities among users and items for
making recommendation, they require to have sufficient ratings to achieve a
reliable result. There are two scenarios that may occur. Firstly, newly estab-
lished services may take time to acquire enough ratings. Secondly, even they
have enough ratings for making reliable recommendations, how can recommen-
dation performance be improved using external data sources? Solving these two
problems is our main focus.



2 Quan Do, Wei Liu, Fang Chen

X(1)

X(2)

U(1)

U(2)

[V(0)|V(1)]T

[V(0)|V(2)]T

user of 

domain 1

item

item

user of 

domain 2

Fig. 1. Our Cross-Domain Recommender model. X(1) matches X(2) in their item mode.
Our proposed cross-domain factorization decomposes X(1) into U(1), [V(0)|V(1)] and
X(2) into U(2), [V(0)|V(2)] where V(0) is a common part in coupled mode of both X(1)

and X(2) while V(1) and V(2) are domain specific parts. Note that we also propose to
utilize the columns of non-coupled U(1) and U(2) such that clusters of similar users
(denoted by the same color patterns in their columns) in them are as close as possible.

The above issues are addressable given recent innovations on Internet and
social media that have made many datasets publicly available [2, 9, 11, 5]. It is
therefore easy to find a correlated dataset from another domain. For example,
New South Wales (NSW) state’s crime statistics report can find NSW’s demog-
raphy closely related. These correlations across domains possess explicit similar-
ities, e.g., NSW crime report and NSW demography contain information of the
same local areas, which are conventionally used to coupled analyze them [12, 1].
Nevertheless, datasets across domains also have implicit similarities, for example
demography and crime behavior may have similar hidden patterns. Both similar-
ities, if utilized properly, can provide rich insights to improve recommendation
performance on the above mentioned two scenarios.

Formally, suppose we have rating matrices X(1) and X(2) from two different
domains with only a few entries observed. Suppose X(1) and X(2) are explicitly
coupled in one dimension, i.e., one mode of X(1) and one mode of X(2) are cou-
pled. This is a reasonable assumption as many datasets across domains possess
this characteristic. For instance, X(1) contains population profiles of a country’s
cities and X(2) includes those cities’ crime reports; X(1) and X(2) are coupled
in their first mode (city mode). By joint analyzing cross-domain X(1) and X(2),
we want to learn ratings from observed X(1) and X(2) to predict their missing
entries with high accuracy. In other words, our question is how to utilize the
ratings in a domain to help predicting unknowns in another one and vice versa.
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Table 1. Collaborative factors used by different algorithms for cross-domain recom-
mendation. Our proposed method is the only one that utilizes both similarities.

Algorithm Explicit Similarities Implicit Similarities

CMF [12] X
CBT [8] X

CLFM [4] X
Our proposed CDRec X X

Existing algorithms were trying to solve the above problem by using ex-
plicit similarities to collaborate between datasets. Collective Matrix Factoriza-
tion (CMF) [12] and its extensions [1] suggested both datasets would have the
same factor in their coupled mode. In this case, the low rank common factor
captures the explicit similarities between datasets across domains. Gao et al. [4]
and Li et al. [8] assumed cross-domain datasets would share explicit latent rating
patterns. The ratings’ similarities were then used to collaborate between them.
Nevertheless, just only explicit is not enough to really improve the accuracy.

We propose a Cross-Domain Recommender (CDRec) as the first method
that analyzes both explicit and implicit similarities. One of our key hypothesis,
extended from CMF where both datasets have the same factor in their cou-
pled mode, is that two datasets across domains also possess their own specific
patterns. Our idea is to find a way to combine these unique patterns into the
common factor. One plausible solution is to allow the coupled factors to have
both common and domain-specific parts. Figure 1 illustrates an example of com-
mon V(0) and unique V(1), V(2) in coupled factors.

In addition, our another key hypothesis for implicit similarities, extended
from the concept of factorization as a clustering method [3], is that non-coupled
factors share common clusters. For example, in Figure 1, even though users in
X(1) and X(2) are different, their behaviors may be grouped by latent similarities.
Because of that, we want to align common clusters in U(1) and U(2) to be closer.
One reasonable solution is to regularize the centroids of common clusters in U(1)

and U(2). This solution matches the fundamental concept of CF in which similar
users rate similarly.

In short, our main contributions are:
1) Preserving common and specific parts in the coupled factor (sub-

section 4.1): We extend existing common coupled factor by introducing specific
parts (e.g., factor V in Figure 1.) These common and specific parts better cap-
ture the true explicit characteristics of datasets across domains.

2) Aligning non-coupled factors’ similarities (subsection 4.2): We present
a method to utilize implicit similarities. CDRec is the first factorization method
utilizing both explicit and implicit similarities for cross domain recommender
systems’ performance improvement (Figure 1).

3) Proposing an algorithm that solves optimization problem (subsec-
tion 4.3): We optimize the process of utilizing both similarities following Alter-
nating Least Squared (ALS) (Algorithm 1). Our empirical results on real-world
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datasets suggest our proposed algorithm the best choice for cross-domain rec-
ommendation (section 5).

2 Notations

We denote matrices by boldface capitals, e.g., X; I is the identity matrix. Bold-
face lowercases are for vectors, i.e., u is a column vector and uT is a row vector.
A boldface capital and lowercase with indices in its subscript are used for an
entry of a matrix and a vector, respectively. Transpose of X is denoted by XT.

3 Related work

Joint analyzing cross-domain datasets has attracted huge research effort to ex-
tract more meaningful insights. Many methods were proposed for making accu-
rate recommendations. Some popular algorithms are being discussed below.

Collective Matrix Factorization (CMF) To deal with two datasets coupled
in one of their modes, Singh et al. [12] and later Acar et al. [1] assumed two
datasets had a common low rank subspace in their coupled dimension. Suppose
X1 and X2 are joint in their first mode, the authors modeled this CMF with a
coupled loss function: L = ‖X1 −UVT

1 ‖2 + ‖X2 −UVT
2 ‖2 where common U

represents explicit similarities between two datasets.

CodeBook Transer (CBT) Targeting on improving recommendation on one
domain by utilizing latent rating patterns from another domain, Li et al. [8]
suggested one as a source domain Xsrc and the other one as a target domain
Xtgt. Then the Xsrc was decomposed into tri-factor: Xsrc ≈ UsrcSsrcV

T
src. Rating

patterns (Ssrc) were used as the CodeBook to be transfered from Xsrc to Xtgt.
Thus, Xtgt became Xtgt ≈ UtgtSsrcV

T
tgt. This explicit knowledge transfered from

the source improved the accuracy of recommendation in the target domain.

Cluster-Level Latent Factor Model (CLFM) The assumption that two
datasets from different domains have the same rating patterns is unrealistic
in practice. They may share some common patterns while possess their own
characteristics. This motivated Gao et al. [4] to propose CLFM for cross-domain
recommendation. In specific, the authors partitioned the rating patterns across
domains into common and domain-specific parts:

X1 ≈ U1[S0|S1]VT
1

X2 ≈ U2[S0|S2]VT
2

where S0 ∈ RR1∗C is the common patterns and S1, S2 ∈ RR1∗(R2−C) are domain-
specific parts; C is the number of common columns.

This model allows CLFM to learn the only shared latent space S0, having two
advantages. Firstly, as S0 captures the similar rating patterns across domains, it
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helps to overcome the sparsity of each datasets. Secondly, domain-specific S1 and
S2 contain domains’ discriminant characteristics. As a result, diversity of ratings
in each domain is still preserved, improving recommendation performance.

4 Our proposed Cross-Domain Recommender (CDRec)

We propose a model that utilizes both explicit and implicit similarities between
datasets across domains. Without loss of generality, assume X(1) and X(2) are
coupled in their second mode, i.e. X(1) is a rating matrix from I users for J
items and X(2) is another rating matrix from K users for the same J items.
We follow the CMF model [12] to extract low rank user factors and item ones:
X(1) ≈ U(1)VT and X(2) ≈ U(2)VT. Nevertheless, we make two key extensions:

4.1 Preserving common and domain-specific parts in V

As X(1) and X(2) come from different domains, it is implausible to suggest
them to have the same V. They are highly correlated in a sense that they
have something in common, yet also possess their own domain-specific parts.
We, therefore, propose to include both common and domain-specific parts in V
factors in the coupled loss function:

minL =

∥∥∥∥X(1) −U(1)
[
V(0)|V(1)

]T∥∥∥∥2 +

∥∥∥∥X(2) −U(2)
[
V(0)|V(2)

]T∥∥∥∥2
where V(0) ∈ RJ∗C is the common part and V(1), V(2) ∈ RJ∗(R−C) are domain-
specific parts; C is the number of common columns.

Figure 1 illustrates an example of common V(0) and unique V(1), V(2) in
coupled factors. Common V(0) and domain-specific V(1) and V(2) better capture
the characteristics of datasets across domains.

4.2 Utilizing implicit similarities in U(1) and U(2)

Besides explicit similarities in coupled mode as in subsection 4.1, cross-domain
datasets also correlate in non-coupled mode. Following the concept of factoriza-
tion as a clustering method [3], user groups in X(1) and X(2) are captured in U(1)

and U(2). Although users in X(1) and those in X(2) are different, their behaviors
or preferences can be grouped together. This idea is the fundamental concept
of CF where users rated similarly in observed items will also rate similarly for
unobserved items. As a result, we suggest common clusters among columns of
U(1) and U(2) to be closer. One reasonable solution is to regularize the centroids
of clusters across U(1) and U(2).

minL =

∥∥∥∥X(1)−U(1)
[
V(0)|V(1)

]T∥∥∥∥2+

∥∥∥∥X(2)−U(2)
[
V(0)|V(2)

]T∥∥∥∥2+

∥∥∥∥u(1)
c

T
−u(2)

c

T
∥∥∥∥2

where u
(1)
c

T
and u

(2)
c

T
denotes row vectors of columns’ centroids in U(1) and

U(2), respectively.
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Moreover, we also employ weighted λ-regularization [13] to our model below
to prevent overfitting.

minL =

∥∥∥∥X(1) −U(1)[V(0)|V(1)]T∥∥∥∥2 +

∥∥∥∥X(2) −U(2)[V(0)|V(2)]T∥∥∥∥2
+

∥∥∥∥u(1)
c

T
− u(2)

c

T
∥∥∥∥2 + λθ

(1)

where θ is the L2 regularization term such that

θ = ‖U(1)‖2 + ‖U(2)‖2 + ‖V(0)‖2 + ‖V(1)‖2 + ‖V(2)‖2

4.3 Optimization

Even though (1) is a non-convex function with respect to all parameters, it
is convex with respect to any of them when the others are fixed. Thus, we
apply Alternating Least Square (ALS) algorithm [6] to alternately optimize the
function with respect to one factor while fixing the others as in Algorithm 1.
Moreover, to achieve efficiency, we perform our model optimization on each row
of U and V factors instead of full matrix computation. So we can rewrite (1) as

minL =

I,J∑
i,j

(
X

(1)
i,j − u

(1)
i

T

[
v
(0)
j

v
(1)
j

])2

+

K,J∑
k,j

(
X

(2)
k,j − u

(2)
k

T

[
v
(0)
j

v
(2)
j

])2

+
∥∥u(1)

c

T
− u(2)

c

T∥∥2 + λθ

(2)

Solving U(1) and U(2)

Let v
(01)
j =

[
v
(0)
j

v
(1)
j

]
and v

(02)
j =

[
v
(0)
j

v
(2)
j

]
, then (2) becomes

L =

I,J∑
i,j

(
X

(1)
i,j − u

(1)
i

T
v
(01)
j

)2

+

K,J∑
k,j

(
X

(2)
k,j − u

(2)
k

T
v
(02)
j

)2

+
∥∥u(1)

c − u(2)
c

∥∥2 + λθ

Optimal u
(1)
i

T
can be achieved by setting the derivative of L with respect to

u
(1)
i

T
to zero.

δL

δu
(1)
i

T
= −2

J∑
j

(
X

(1)
i,j − u

(1)
i

T
v
(01)
j

)
v
(01)
j

T
+ 2λu

(1)
i

T
+ 2
(
u
(1)
i

T
− bT)

= −2x
(1)
i,∗

T
V(01) + 2u

(1)
i

T
V(01)TV(01) + 2λu

(1)
i

T
+ 2u

(1)
i

T
− 2bT

where bT = u
(1)
c

T
+ u

(2)
c

T
− u

(1)
i

T
and x

(1)
i,∗

T
is a row vector of all observed

x
(1)
i,j , ∀j ∈ J.
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Let δL
δu

(1)
i

T = 0, we can achieve the update rule for u
(1)
i

T
:

u
(1)
i

T
=

(
V(01)TV(01) + (λ+ 1)I

)−1(
x
(1)
i,∗

T
V(01) + bT

)
(3)

Similarly, optimal u
(2)
k

T
can be derived by:

u
(2)
k

T
=

(
V(02)TV(02) + (λ+ 1)I

)−1(
x
(2)
k,∗

T
V(02) + bT

)
(4)

where bT = u
(1)
c

T
+ u

(2)
c

T
− u

(2)
k

T
and x

(2)
k,∗

T
is a row vector of all observed

x
(2)
k,j , ∀j ∈ J. I is the identity matrix.

Solving common V(0)

Let u
(1)
i

T
=
[
u
(10)
i |u(11)

i

]T
and u

(2)
k

T
=
[
u
(20)
k |u(22)

k

]T
where u

(10)
i

T
, u

(20)
k

T
∈

R1∗C and u
(11)
i

T
, u

(22)
k

T
∈ R1∗R−C, then (1) can be rewritten as:

L =

I,J∑
i,j

(
X

(1)
i,j − u

(10)
i

T
v
(0)
j − u

(11)
i

T
v
(1)
j

)2

+

K,J∑
k,j

(
X

(2)
k,j − u

(02)
k

T
v
(0)
j − u

(22)
k

T
v
(2)
j

)2

+
∥∥u(1)

c − u(2)
c

∥∥2 + λθ

Analogy to solving U(1) and U(2), optimal v
(0)
j can be achieved by setting

the derivative of L with respect to v
(0)
j to zero.

δL
δv

(0)
j

= −2

I∑
i

(
Y

(1)
i,j − u

(10)
i

T
v
(0)
j

)
u
(10)
i − 2

K∑
k

(
Y

(2)
k,j − u

(20)
k

T
v
(0)
j

)
u
(20)
k + 2λv

(0)
j

= −2U(1)Ty
(1)
∗,j + 2U(1)TU(1)v

(0)
j − 2U(2)Ty

(2)
∗,j + 2U(2)TU(2)v

(0)
j + 2λv

(0)
j

The update rule for v
(0)
j can be derived as:

v
(0)
j =

(
U(1)TU(1) + U(2)TU(2) + λI

)−1(
U(1)Ty

(1)
∗,j + U(2)Ty

(2)
∗,j

)
(5)

Solving domain-specific V(1) and V(2)

δL
δv

(0)
j

= −2U(1)Ty
(1)
∗,j + 2U(1)TU(1)v

(1)
j + 2λv

(1)
j = 0

Then the update rule for v
(1)
j can be derived as:

v
(1)
j =

(
U(1)TU(1) + λI

)−1

U(1)Ty
(1)
∗,j (6)

In a similar way, the update rule for v
(2)
j can be achieved by:

v
(2)
j =

(
U(2)TU(2) + λI

)−1

U(2)Ty
(2)
∗,j (7)
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Algorithm 1: CDRec

Input : X(1), X(2), E
Output: U(1),V(0),V(1),U(2),V(2)

1 Randomly initialize all factors
2 Initialize L by a small number

3 repeat
4 PreL = L

5 Solve U(1) while fixing all other factor by minimizing (3)

6 Solve U(2) while fixing all other factor by minimizing (4)

7 Solve common V(0) while fixing all other factor by minimizing (5)

8 Solve domain-specific V(1) while fixing all other factor by minimizing (6)

9 Solve domain-specific V(2) while fixing all other factor by minimizing (7)

10 Compute L following (1)

11 until (PreL−L
PreL < E)

5 Performance Evaluation

To evaluate our proposed idea, we compare CDRec3 with existing algorithms on
how well they utilize observed ratings to recommend unknown information. This
section summaries our experiments’ settings and their results.

5.1 Data for the experiments

Two publicly available datasets: census data from Australian Bureau of Statistics
(ABS) on different states4 and crime statistics from Bureau of Crime Statistics
and Research (BOCSAR)5 are used for our evaluation. Table 2 summarizes these
datasets’ distribution.

Australian Bureau of Statistics (ABS) publishes a comprehensive data about
people and families for all Australia geographic areas. This ABS dataset has
population and family profile within 154 New South Wales (NSW) state’ areas,
so-called “local government areas” (LGA), and within 81 Victoria (VIC) state’
LGAs. We form these into a matrix X(1) of (LGA, population and family profile)
of 154 by 7889 for NSW and a matrix X(2) of 81 by 7889 for VIC. We randomly
select 10% of the data in our experiment and use about its 80% for training and
20% for testing.

BOCSAR’s crime data reports criminal incidents. There are 62 specific of-
fences within 154 LGAs of New South Wales. The counting unit is the rate of
criminal incidents per 100 population. We randomly select 10% of the data and

3 CDRec’s source code is available at https://github.com/quanie/CDRec
4 ABS: http://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks
5 BOCSAR: http://www.bocsar.nsw.gov.au/Pages/bocsar_crime_stats/bocsar_

crime_stats.aspx



Discovering both Explicit and Implicit Similarities 9

Table 2. Dimension and number of known entries for training, validation and testing
of census data on New South Wales (NSW)(X(1)) and Victoria (VIC) (X(2)) states as
well as crime data of NSW (X(3)).

Characteristics X(1) X(2) X(3)

Dimension 154 x 7,889 81 x 7,889 154 x 62
Training 91,069 47,900 661

Validation 4,793 2,521 34
Testing 23,965 12,605 173

include them in a matrix X(3) of (LGA, offences) of 154 by 62. Among this 10%,
we use 80% for training and the rest for testing.

5.2 Baselines and metric for evaluation

We compare our proposed CDRec with existing cross-domain factorization algo-
rithms: CMF [12], CBT [8] and CLFM [4] that leverage explicit similarities. Our
goal is to assess how well these algorithms suggest unknown information based
on the observed cross-domain ratings. For this purpose, we compare them with
a popular Root Mean Squared Error (RMSE) metric.

5.3 Experimental setting

Two scenarios are thoroughly tested with the following settings:

Case #1. States’ demographic similarities in latent sense can help to
collaboratively suggest unknown information in these states

We use X(1) and X(2) which are from different LGAs in NSW and VIC states.
Nevertheless, their demography may share some common characteristics. We
would like to assess how well both explicit similarities in demography dimension
and implicit ones in LGA dimension can help to collaboratively suggest unknown
information in both NSW and VIC.

Case #2. LGAs’ demographic similarities in latent sense can help to
collaboratively suggest unknown crime information

In this case, we cross factorize NSW’s demography X(1) matrix and NSW’s crime
X(3) matrix. Both X(1) and X(3) explicitly have the same LGAs. Nevertheless,
their hidden similarities in demography and crime rate can also help to improve
recommendation performance. We want to assess how these explicit as well as
implicit similarities can help to collaboratively suggest unknown crime rate.

Other than that, all algorithms stop when changes are less than 10−5 which
indicates convergence. In all algorithms, rank of the decomposition is set from
5 to 19. Each algorithm was run 5 times and we report their results’ mean and
standard deviation in the next subsection.
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Table 3. Tested RMSE on ABS NSW and ABS VIC data with different algorithms.
Best results for each rank are in bold.

Dataset Rank CMF CBT CLFM CDRec

ABS NSW

5 0.0226 ±0.0026 0.0839 ±0.0002 0.0838 ±0.0002 0.0132 ±0.0002
7 0.0222 ±0.0009 0.0836 ±0.0004 0.0842 ±0.0006 0.0131 ±0.0003
9 0.0241 ±0.0011 0.0841 ±0.0002 0.0848 ±0.0009 0.0143 ±0.0004
11 0.0265 ±0.0026 0.0846 ±0.0007 0.0841 ±0.0007 0.0143 ±0.0003
13 0.0237 ±0.0024 0.0851 ±0.0002 0.0850 ±0.0005 0.0151 ±0.0004
15 0.0229 ±0.0029 0.0853 ±0.0005 0.0847 ±0.0005 0.0150 ±0.0000

ABS VIC

5 0.0364 ±0.0031 0.0844 ±0.0003 0.0845 ±0.0004 0.0266 ±0.0030
7 0.0428 ±0.0020 0.0845 ±0.0004 0.0849 ±0.0004 0.0239 ±0.0025
9 0.0476 ±0.0040 0.0852 ±0.0003 0.0848 ±0.0003 0.0221 ±0.0019
11 0.0501 ±0.0029 0.0858 ±0.0005 0.0851 ±0.0007 0.0242 ±0.0015
13 0.0489 ±0.0032 0.0860 ±0.0003 0.0852 ±0.0003 0.0227 ±0.0015
15 0.0514 ±0.0041 0.0862 ±0.0002 0.0854 ±0.0006 0.0215 ±0.0005

5.4 Empirical results

Table 3 shows RMSE performance of all models on ABS data for New South
Wales and Victoria states. Both CBT and CLFM that assume two states’ demog-
raphy similarities in latent sense clearly perform the worst. The results demon-
strate that explicit similarities in latent sense does not help both CBT and
CLFM to improve performance. CMF applies another approach to take advan-
tages of explicit correlations between NSW state’s population and family profile
and those of VIC state. As a result, CMF’s assumption on the same population
and family profile factor between NSW and VIC helps improve CMF’s perfor-
mance over CBT’s and CLFM’s almost 4 times in NSW data and 2 times in
VIC data. Nevertheless, the prediction accuracy can be improved even more as
illustrated with our proposed idea of explicit and implicit similarities discov-
ery. Utilizing them help our proposed CDRec to achieve about 2 times higher
accuracy compared with CMF.

The advantages of both explicit and implicit similarities are further con-
firmed in Table 4. In this case, they are applied to other cross domains: ABS
NSW demography and NSW Crime. These datasets have explicit similarities in
their LGA latent factors. At the same time, implicit similarities in demography
profile and crime behaviors are also utilized to collaborate between datasets.
Our proposed CDRec leveraging both of the similarities outperforms existing
algorithms by achieving the lowest RMSEs.

We also show how CDRec works with different number of common column
C parameter in Figure 2 and 3. When there is no explicit similarities (C=0), the
accuracy of VIC (Figure 2b) produced by our proposed method is almost the
same as CMF’s performance whereas that of Crime (Figure 3a) is much worse
than CMF’s one. Nevertheless, as C is larger, both explicit and implicit similar-
ities help to further improve recommendation performance of them. Specifically,
CDRec achieves the best result with C=6 in Figure 2b and C=9 in Figure 3a.
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Table 4. Tested RMSE on ABS NSW demography and BOCSAR NSW crime data
with different algorithms. Best results for each rank are in bold.

Dataset Rank CMF CBT CLFM CDRec

Demography

5 0.0209 ±0.0016 0.0840 ±0.0001 0.0840 ±0.0001 0.0174 ±0.0015
7 0.0223 ±0.0024 0.0840 ±0.0002 0.0855 ±0.0006 0.0143 ±0.0004
9 0.0199 ±0.0027 0.0838 ±0.0002 0.0850 ±0.0008 0.0143 ±0.0003
11 0.0212 ±0.0049 0.0839 ±0.0001 0.0843 ±0.0004 0.0146 ±0.0003
13 0.0194 ±0.0022 0.0837 ±0.0001 0.0837 ±0.0003 0.0149 ±0.0003
15 0.0173 ±0.0014 0.0835 ±0.0001 0.0834 ±0.0002 0.0149 ±0.0002

Crime

5 0.2796 ±0.0204 0.3411 ±0.0035 0.3422 ±0.0071 0.2697 ±0.0073
7 0.2907 ±0.0265 0.3432 ±0.0021 0.3912 ±0.0188 0.2716 ±0.0029
9 0.2813 ±0.0261 0.3562 ±0.0134 0.3722 ±0.0249 0.2648 ±0.0058
11 0.2689 ±0.0143 0.3539 ±0.0061 0.3712 ±0.0199 0.2618 ±0.0012
13 0.2700 ±0.0150 0.3481 ±0.0070 0.3500 ±0.0135 0.2623 ±0.0024
15 0.2647 ±0.0031 0.3485 ±0.0038 0.3580 ±0.0099 0.2625 ±0.0015

Moreover, it is interesting to observe in both figures that RMSE of NSW demog-
raphy reduces a bit to significantly improve that of VIC and NSW crime. This
confirms both explicit and implicit similarities between cross-domain datasets
can be collaborative used to improve both of their recommendation performance.

(a) (b)

Fig. 2. Tested RMSEs under different number of common column C in CDRec. a)
Results on ABS NSW dataset; b) Results on ABS VIC dataset.

6 Conclusion

We have discovered both explicit and implicit similarities between datasets across
domains. In this paper we propose a method to preserving common and specific
parts in coupled factor as well as aligning non-coupled factors’ similarities. More-
over, an algorithm that solves the optimization problem of this method is also
introduced. The advantages of our ideas, validated with real-world datasets, sug-
gest combining both explicit and implicit similarities is the best way to improve
cross-domain recommendation.
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(a) (b)

Fig. 3. Tested RMSEs under different C in CDRec. a) Results on ABS NSW demog-
raphy; b) Results on BOCSAR NSW Crime. At C=9, RMSE of NSW demography
reduces a little to further improve the accuracy of predicting crime information.
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