- Nitrogen removal via nitrite in a partial nitrification sequencing 1
- 2 batch biofilm reactor treating high strength ammonia
- wastewater and its greenhouse gas emission 3
- Dong Wei ^a, Keyi Zhang ^a, Huu Hao Ngo ^b, Wenshan Guo ^b, Siyu Wang ^a, Jibin Li ^a, 4
- Fei Han a, Bin Du a*, Qin Wei c 5
- 6 ^a School of Resources and Environment, University of Jinan, Jinan 250022, PR China
- 7 ^b School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW
- 8 2007, Australia
- 9 c Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry
- 10 and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- 11 Abstract
- In present study, the feasibility of partial nitrification (PN) process achievement and 12
- 13 its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor
- (SBBR). After 90 days' operation, the average effluent NH₄⁺-N removal efficiency 14
- and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, 15
- respectively. Both polysaccharide and protein contents were reduced in loosely bound 16
- extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during 17
- 18 the achievement of PN-biofilm. Excitation-emission matrix spectra implied that
- aromatic protein-like, tryptophan protein-like and humic acid-like substances were the 19
- main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to

^{*} Corresponding author. Tel: +86 531 8276 7370; fax: +86 531 8276 7370. E-mail address: dubin61@gmail.com (B. Du)

21	typical cycle, the emission rate of CO_2 had a much higher value than that of N_2O , and
22	their total amounts per cycle were 67.7 and 16.5 mg, respectively. Free ammonia (FA)
23	played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the
24	occurrence of nitrite accumulation.
25	Keywords: Sequencing batch biofilm reactor; Partial nitrification; Extracellular
26	polymeric substances (EPS); Excitation-emission matrix (EEM);
27	Greenhouse gas emission.
28	1. Introduction
29	Biological nitrification-denitrification is typically utilized for nitrogen removal
30	through two individual sequential processes: aerobic nitrification with the terminal
31	conversion of NH ₄ ⁺ -N to NO ₃ ⁻ -N and the subsequent anoxic denitrification with the
32	conversion of NO ₃ ⁻ -N to molecular nitrogen (Adav et al., 2009). Recently, much
33	attention has been paid to partial nitrification (PN) via nitrite process as a novel
34	concept of BNR process. It theoretically saves approximately 25% of oxygen supply
35	for nitrification, 40% of organic carbon as electron donor for denitrification and
36	achieves a lower sludge production (Peng and Zhu, 2006). To date, PN process has
37	been successfully applied for wastewater treatment containing high-nitrogen
38	concentration or low carbon/nitrogen (C/N) ratio, such as municipal wastewater,
39	landfill leachate and anaerobic sludge digester liquor etc (Ge et al., 2014; Qiao et al.,
40	2008; Wang et al., 2010).
41	The main influencing factors to achieve and maintain PN process are including

42	dissolved oxygen (DO), pH value, sludge retention time (SRT), free ammonia (FA)
43	and free nitrous acid (FNA) etc (Wei et al., 2015a). Till now, most of partial
44	nitrification processes are reported by using synthetic wastewater as substrate under
45	well-controlled laboratory-scale activated sludge reactors (Chen et al., 2016).
46	However, little information is available for the achievement and maintenance of PN
47	via nitrite through a biofilm system. Compared to suspended-growth activated sludge,
48	biofilm system has the ability to provide different sub-zones for various types of
49	bacteria, and therefore protect the slow-growing nitrifying bacteria from washout in
50	the competition of heterotrophic bacteria (Yin et al., 2015). Therefore, various biofilm
51	systems, such as sequencing batch biofilm reactor (SBBR), moving bed biofilm
52	reactor (MBBR) and fixed bed biofilm reactor (FBBR) etc, are increasingly being
53	applied for treating various municipal and industrial nitrogen-containing wastewaters
54	(Gilbert et al., 2014; Jin et al., 2012; Zhang et al., 2016). Especially, it is evident that
55	the degradation of pollutants largely depends on the amount and activity of
56	microorganisms, which is attached onto the solid surface of carrier for biofilm
57	formation in the presence of extracellular polymeric substances (EPS) (Czaczyk and
58	Myszka, 2007; Li et al., 2016). Microbial EPS likely have a dynamic double-layered
59	structure of loosely bound EPS (LB-EPS) diffused from the tightly bound EPS
60	(TB-EPS) that surround the cells (Zhao et al., 2015). Moreover, the two kinds of EPS
61	fractions play different roles in maintaining the sludge floc structure and functions
62	(Liu et al., 2010). However, there is still a lack of destructive research to evaluate the
63	changes of EPS in a PN-biofilm achievement, and thus, the major components of

double-layered EPS have not been characterized.

	·
65	Additionally, biological wastewater treatment is recognized as one of the major
66	sources of greenhouse gas (GHG) emissions, particularly carbon dioxide (CO ₂) and
67	nitrous oxide (N_2O) , causing a major challenge to global climate (Kong et al., 2016).
68	It is well reported that CO ₂ and N ₂ O can be produced from the processes of organic
69	matter degradation and biological nitrogen removal, respectively. Especially, N_2O has
70	about 300 times higher global warming potential than that of CO ₂ . As a by-product
71	and intermediate product, N_2O emission from biological wastewater treatment is
72	influenced by various operational parameters, including DO concentration, nitrite,
73	COD/N, temperature and toxic compounds etc (Kampschreur et al., 2009). In
74	particular, nitrite accumulation was considered to be a major parameter for affecting
75	the emission of N_2O in both nitrification and denitrification stages, and therefore
76	mitigate the environmental benefits of PN process (Wei et al., 2014a). Therefore, it is
77	desirable to evaluate the GHG emissions in PN biofilm system in order to provide a
78	better understanding on the basis of PN process.
79	In present study, the feasibility of PN process achievement in a SBBR was
80	evaluated treating high strength ammonia wastewater. For more detailed insights, the
81	changes of LB-EPS and TB-EPS were qualitatively and quantitatively analyzed by
82	using chemical and fluorescence spectroscopic approaches during the PN-biofilm
83	formation. After the PN-SBBR achieving stable operation, the productions of CO ₂ and
84	N_2O were carried out to evaluate the behavior of GHG emissions from wastewater
85	treatment through PN process. The acquired results would help us to fully reveal

86 PN-biofilm process by considering the point of GHG production.

2. Materials and methods

87

88

2.1 SBBR system and operational procedure

89	Fig. S1 shows the schematic diagram of the lab-scale SBBR used in present
90	study, which was made of plexiglas with a working volume of 3.4 L (12 cm in
91	diameter and 30 cm in height) at room temperature (25-27 °C). The SBBR was filled
92	with 40% cylindrical bio-carriers (K3, plastic media), and each carrier with 25 mm in
93	diameter and 12 mm in height, respectively. The specific surface area and bulk density
94	of each carrier were 500 m ² /m ³ and 110 kg/m ³ , respectively. Influent wastewater was
95	prepared in a storage tank (60 L) and introduced to the bottom of the reactor through a
96	water pump. Air was supplied at the bottom of reactor by using an air pump. The
97	reactor was automatically operated through a time controller.
98	The anoxic-aerobic SBBR was sequentially operated at a cycle of 480 min,
99	consisting of 5 min influent, 85 min anoxic phase, 360 min aerobic reaction, 20 min
100	settling and 10 min effluent and idle. Electromagnetic stirrer was used as the mixing
101	method to keep the suspension of sludge during anoxic and aerobic phases. The
102	reactor was operated with a volumetric exchange ratio of 50%, resulting in hydraulic
103	retention time (HRT) of 16 h. Activated sludge was taken from a plant treating soy
104	protein wastewater as the inoculation of biofilm system. The plant was located at
105	Shandong province in China treating high strength ammonia wastewater. The sludge
106	retention time (SRT) and nitrogen loading rate of plant were about 20 day and $0.15\ kg$
107	NH ₄ ⁺ -N/(m ³ ·day), respectively. The initial mixed liquor suspended solids (MLSS)

108	concentration in the reactor was 3.0 g/L.
109	2.2 Synthetic wastewater
110	The compositions of synthetic wastewater were used in the experiment as
111	follows: chemical oxygen demand (COD, as sodium acetate), 600 mg/L; NH ₄ ⁺ -N (as
112	ammonium chloride), 200 mg/L; K_2HPO_4 , 112 mg/L; $CaCl_2$, 40 mg/L; $MgSO_4 \cdot 2H_2O$,
113	20 mg/L; FeSO ₄ ·2H ₂ O, 20 mg/L and trace element solution 1.0 ml/L. The
114	composition of the trace mineral solution was as follows: $H_3BO_30.05$ g/L, $ZnCl_20.05$
115	g/L, CuCl ₂ 0.03 g/L, MnSO ₄ ·H ₂ O 0.05 g/L, (NH ₄) ₆ MoO ₂₄ ·4H ₂ O 0.05 g/L, AlCl ₃ 0.05
116	g/L, CoCl ₂ ·6H ₂ O 0.05 g/L, NiCl ₂ 0.05 g/L. The ratio of bicarbonate to NH ₄ ⁺ -N was
117	kept above 8.0 mg/mg to ensure the growth requirements of nitrifying bacteria, as
118	similarly reported by Shi et al (2009). As a reslut, the influent pH values of
119	wastewater were controlled between 8.0 and 8.5.
120	2.3 EPS extraction and spectra analysis
121	A heating method was used to extract the double-layered EPS from seed sludge
122	and biofilm, including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS),
123	and the detailed procedure could be found in the previous literature (Li and Yang,
124	2007). 3D-EEM spectra were obtained by using a fluorescence luminescence
125	spectrometer (LS-55, Perkin-Elmer Co., USA). EEM spectra were gathered with
126	scanning emission (Em) spectra from 280 to 550 nm at 0.5 nm increments by varying
127	the excitation (Ex) wavelength from 200 to 400 nm at 10 nm increments.
128	Synchronous fluorescence spectra of EPS samples were measured by ranging the
129	excitation wavelengths from 250-550 nm with a constant offset ($\Delta\lambda$) of 60 nm. The

- width of the Ex/Em slit and scanning speed were set to 5.0 nm and 1200 nm/min for
- all the fluorescence measurements, respectively.
- 132 2.4 Analytical methods
- NH₄⁺-N, NO₂⁻-N and NO₃⁻-N were analyzed in accordance with their respective
- standard methods (APHA, 2005). The pH and DO values were monitored by using
- on-line probes (3420i, WTW Company, Germany). The polysaccharide (PS) and
- protein (PRO) contents were measured by using phenol-sulphuric acid method and
- modified Lowry method, and glucose and bovine serum albumin (BSA) were used as
- the respective standards, respectively.
- During stable typical cycle, N₂ and air were supplied into the PN-SBBR
- throughout the anoxic and aerobic phases, and the off-gases were collected into the
- gasbags to quantify the emission amounts of N₂O and CO₂. N₂O and CO₂
- concentrations were measured by using a gas chromatography (7890B, Agilent
- Technologies, USA), and the detailed method could be found in the previous literature
- 144 (Hu et al., 2011).
- The nitrite accumulation ratio (NAR) of the reactor was calculated according to
- the following equation (Eq. (1)):

 $NAR(\%) = \frac{NO_{2}^{-} - N}{NO_{2}^{-} - N + NO_{3}^{-} - N} \times 100\%$ (1)

- The FA and FNA concentrations in the reactor could be calculated by using the
- following expression (Eq. (3) and Eq. (4)) reported by Ford et al. (1980):

151
$$FA (mg/L) = \frac{17}{14} \times \frac{[NH_4 \cdot N] \times 10^{pH}}{\exp[6334/(273+T)] + 10^{pH}}$$
 (2)

152
$$FNA(mg/L) = \frac{46}{14} \times \frac{[NO_{2}^{-} \cdot N]}{\exp[-2300/(273+T)] \times 10^{pH}}$$
(3)

153 3. Results and discussion

3.1 Achievement and maintenance of PN-SBBR

The SBBR was successively operated for more than 90 days for biofilm
formation and nitrite accumulation. As shown in Fig. 1A, the seed sludge in the
reactor quickly adapted to the influent nitrogen-rich wastewater, and $\mathrm{NH_4}^+\text{-}\mathrm{N}$ removal
efficiency generally increased to 99.4% in the start-up period (days 1-6). Afterwards,
the average $\mathrm{NH_4}^+\text{-}\mathrm{N}$ removal efficiency in the effluent was high of 98.2% throughout
the rest period of experiment (days 7-90, $n=32$), and the average effluent NH ₄ ⁺ -N
concentration was less than 5 mg/L. Although the influent water quality had some
fluctuation, the reactor still had an excellent nitrification performance for treating the
synthetic high strength ammonia wastewater, suggesting that the biofilm system had a
strong adaptability to the unstable influent substrate concentrations. Borghei and
Hosseini (2005) also found that MBBR had a good resistance to the toxic shock
loading and the reactor returned to steady state condition within only two or three
cycles of retention time.

Correspondingly, a gradual increase of effluent NAR was observed along with the significant increase of NH_4^+ -N removal efficiency in the start-up of PN system. Afterwards, the effluent NO_2^- -N and NO_3^- -N concentrations were average at 62.8 and 8.83 mg/L (days 64-90, n=10), respectively. As a result, the effluent NAR was average at 87.6%. The result suggested that the activity of nitrite-oxidizing bacteria (NOB)

was completely inhibited in the PN-SBBR system, and nitrite was the main nitrogen
species in the effluents after the biofilm formation. Additionally, TN removal
efficiency in PN-SBBR was average about 61.2% at the same time, which was much
higher than the conventional nitrogen removal via nitrate process (19.9%) reported in
our previous literature (Wei et al., 2014a), suggesting that PN-SBBR could be used as
an effective system for enhanced TN treatment, especially when treating wastewater
with low COD/N ratio. The reason may be attributed to the presence of anoxic zone
inside of the PN biofilm, which may cause the denitrification via nitrite path in
aeration phase through the utilizing of insufficient carbon resource.
The achievement of PN-SBBR was accompanied by not only the changes in
effluent quality, but also by the formation and generation of biofilm. The SBBR
system was started-up by adding suspended activated sludge with a fluffy, irregular,
loose morphology as seed sludge (Fig. S2A). After 10-days inoculation, it can be seen
that a thin biofilm was easily attached onto the surface of bio-carrier (Fig. S2B).
Afterwards, the biofilm thickness was generally developed in the system and therefore
led to an increase in biomass concentration (Fig. S2C). Subsequently, biofilm
entrapped inside the carrier continued to grow till to balance during the stable
operation of PN-system (Fig. S2D), causing the biomass in each carrier was average
about 0.14 g (n =3). At the end of study, the total amounts of biomass in suspended
phase and attached carrier were 0.5 and 5.35 g/L, respectively, suggesting that the
major portion of the biomass was attached onto the carrier in PN-system.
3.2 Variations of EPS contents during PN-SBBR achievement process
EPS production by attached microorganisms is considered as a very complicated
process, which is affected by many operational parameters in the environment

197	(Czaczyk and Myszka, 2007). In present study, the main compositions of EPS,
198	including PRO and PS, were measured and compared in the seed sludge and
199	PN-biofilm. It was observed from Fig. 2 that both contents of PRO and PS in LB-EPS
200	and TB-EPS were reduced after the achievement of PN-biofilm process. PRO and PS
201	contents in TB-EPS were much higher than those in LB-EPS in both seed sludge and
202	PN-biofilm, suggesting that TB-EPS was the main distribution and composition in the
203	double-layered EPS. Yang and Li (2009) also found that LB-EPS have a relatively
204	weak capacity to bind the floc constitutes. However, LB-EPS has been proved to play
205	a significant role for influencing the flocculation, sedimentation and dewaterability of
206	sludge, which is closely related to the sludge-water separation performance as
207	specified by the ESS, SVI and SRT values (Li and Yang, 2007).
208	As shown in Fig. 2, PRO had about 4.8-20.3 times higher contents than those of
209	PS for both kinds of EPS fractions, and the abundance of PRO may be attributed to
210	the presence of a large quantity of exoenzymes in sludge (Fr et al., 1995). After the
211	achievement of PN-SBBR, PS and PN contents decreased by 66.5% and 32.1% in
212	LB-EPS, and by 72.2% and 36.2% in TB-EPS, respectively. The result suggested that
213	PS contents were varied significantly in the attachment of activated sludge to
214	bio-carrier for microbial biofilm formation. Additionally, TB-EPS contents decreased
215	much higher degree than those in LB-EPS, suggesting that TB-EPS likely played a
216	significant role for cell attachment.
217	Generally, the two kinds of EPS fractions play different roles in affecting the
218	properties of microbial aggregates in the flied of wastewater treatment, including
219	adsorption ability, flocculation ability, dewatering and stability etc. It was found that

220	LB-EPS increased significantly to environmental stress (such as low DO, salinity and
221	toxic compound etc) than that of TB-EPS, which may be attributed to LB-EPS in the
222	outer layer acted as the first place at which the biofilm has contact and interacts with
223	toxic compound (You et al., 2015). Wang et al. (2013) evaluated the effect of salinity
224	on EPS fractions of activated sludge in an anoxic-aerobic SBR, indicating that the PS
225	in the LB-EPS is more sensitive to salinity variation than that in the TB-EPS. Zhang
226	et al. (2011) also reported the different characteristics of EPS fractions in a
227	PN-biofilm system, suggesting that a clear release of PS in the LB-EPS fraction was
228	detected during the enhancement of salinity. Moreover, LB-EPS showed stronger
229	binding properties to metallic cations (Zn ²⁺ and Co ²⁺) than TB-EPS, and the main
230	chemical groups involved in the interactions between contaminants were apparently
231	alcohol, carboxyl and amino (Sun et al., 2009). However, TB-EPS exhibited a higher
232	flocculating ability than that of LB-EPS, which could be attributable to high contents
233	of macromolecules (330-1200 kDa) and trivalent cations. (Yu et al. 2009).
234	3.3 Fluorescence spectra of LB-EPS and TB-EPS
235	Fig. 3 shows the EEM spectra of LB-EPS and TB-EPS extracted from seed
236	sludge and PN-biofilm on day 1 and day 90. Table 1 summarizes the fluorescent peak
237	location and intensity of 3D-EEM spectra from the two types of EPS fractions. As
238	shown in Fig. 3, three fluorescent peaks (A, B and C) were obviously observed,
239	suggesting that LB-EPS and TB-EPS had similar chemical compositions regardless of
240	seed sludge and PN-biofilm. Peak A and B were located at Ex/Em wavelengths of
241	289-290/352-360.5 nm and 230/331-360 nm, respectively, relating to the presence of

242	aromatic protein-like and tryptophan protein-like substances (Sheng and Yu, 2006).
243	Peak C was indentified at Ex/Em of 350-360/432.5-447 nm, corresponding to the
244	presence of humic acid-like substances (Wei et al., 2015b). It was also found that the
245	fluorescent intensities of LB-EPS and TB-EPS in seed sludge were significantly
246	higher than those in PN-biofilm. Peak A, B and C were reduced to 19.5, 32.0, and
247	9.56 a.u. in LB-EPS, while those were 547.1, 458.4, 102.8 a.u. in TB-EPS,
248	respectively. Furthermore, there was a slight blue shift in term of emission in TB-EPS,
249	implying the changed chemical structure of fluorophore-related functional groups
250	during the biofilm formation process.
251	Synchronous fluorescence spectra have been developed as an elegant approach to
252	resolve the problem of spectral overlapping problem (Sanchez et al., 1990). Fig. S3
253	displays the synchronous fluorescence spectra of two types of EPS from seed sludge
254	and PN-biofilm. The whole wavelength in synchronous fluorescence spectra could be
255	divided into three ranges of 250-300, 300-380 and 380-550 nm, assigning to the
256	presence of protein-like, fulvic-like, and humic-like fluorescence fractions,
257	respectively (Wei et al., 2016). It was obviously observed that the both LB-EPS and
258	TB-EPS in PN-biofilm had higher fluorescent intensities than those of seed sludge.
259	Moreover, a much higher fluorescent intensity was observed at 285 nm than other two
260	kinds of fractions, suggesting that the protein-like fraction was the predominant
261	component in EPS, as similarly with the result of chemical and EEM analysis.
262	Therefore, synchronous fluorescence spectra could be used as a useful method for
263	EPS characterization.

264	3.4 Typical cycle of PN-SBBR
265	Fig. 4 shows the time-course of nitrogen species and control parameters in a
266	typical PN-SBBR cycle during stable operation. It was found from Fig. 4A that
267	NH ₄ ⁺ -N concentration was quickly reduced from 204.7 to 107.8 mg/L due to the
268	dilution process after the influent addition (0-5 min), and generally changed to 91.0
269	mg/L during the anoxic denitrification phase (5-90 min). The reason of decreased
270	NH ₄ ⁺ -N concentration may be attributed to biosorption process. Correspondingly,
271	both NO ₂ -N and NO ₃ -N were used as electron acceptor for pre-denitrification phase,
272	and their concentrations decreased from 68.7 and 5.49 mg/L to 0.86 and 1.38 mg/L,
273	respectively. Meanwhile, the pH values increased from 8.99 to 9.52 at the same time,
274	as displayed in Fig. 4B.
275	During the subsequently aeration phase (90-450 min), NH ₄ ⁺ -N concentration
276	generally decreased from 91.0 to 0.80 mg/L, and the effluent NH_4^+ -N removal
277	efficiency was high of 99.6%. As a time control parameter for nitrogen removal, the
278	pH value in PN system generally decreased from 9.52 to 8.93 in nitrification process
279	by consuming alkalinity, and next slightly increased to 9.01 due to air stripping of
280	CO ₂ from the system (Fig. 4B). Although the DO concentration was always about 4
281	mg/L during aeration phase, it was obvious observed the nitrite accumulation with
282	low nitrate production in the effluent of PN-SBBR system. More detailed, the NO ₂ -N
283	and NO ₃ ⁻ -N concentrations varied to 66.2 and 9.01 mg/L, respectively. Compared to
284	conventional BNR process, no nitrite peak appeared during the whole cycle,
285	suggesting that the activity of NOB was fully inhibited in PN-biofilm system.
286	High influent FA concentration has been successfully selected as the key control

strategy for PN process achievement and maintenance, especially when treating

nitrogen-rich and high pH value wastewaters (Wei et al., 2014b). It is well accepted
that NOB are more sensitive to the presence of FA than that of ammonia-oxidizing
bacteria (AOB). Anthonisen et al (1976) found that FA concentration could inhibit
Nitrosomonads and Nitrobcaters in the ranges of 10-150 and 0.1-1.0 mg/L,
respectively. It was found from Fig. S4 that the FA concentration was high of 73.6
mg/L after the influent wastewater pumped into the reactor (5 min). Although FA
concentration was generally reduced to 3.7 mg/L due to the ammonium oxidation to
nitrite at 390 min, it was still much higher than the reported inhibitory level (0.1-1.0
mg/L) of NOB. Therefore, nitrite accumulation obviously occurred in the PN-biofilm
system during the aeration phase (Fig. 4A). Additionally, when FA concentration
decreased to 0.41 mg/L, NO ₃ -N concentration rapidly increased from 4.31 to 9.01
mg/L, causing NAR decreased from 93.0% at 390 min to 88.0% at 450 min. The
phenomenon further proved the inhibitory effect of FA on the activity of NOB for the
oxidation of nitrite. Meanwhile, the FNA concentration was always at low level (less
than 0.0006 mg/L), which was much lower than the reported inhibitory levels of
nitrifying organisms (0.22-2.8 mg/L). Therefore, in present study, FA played a
significant role on the inhibition activity of NOB and the occurrence of nitrite
accumulation.

3.5 Greenhouse gas emission of PN-SBBR system

Fig. 5 shows N_2O and CO_2 emission rates during a typical cycle in PN-biofilm system. It was found that CO_2 had much higher emission rate than that of N_2O throughout of the whole cycle. The maximum value of CO_2 emission rate was high of 64.6 μ g/min at 330 min, which was about 4.58 times higher than that of anoxic phase. The CO_2 emission amounts were 2.7 and 65.0 mg in aeration phase and anoxic phase, respectively, causing a total of 67.7 mg CO_2 emission per cycle. It is generally

313	accepted that organic matter oxidation and alkalinity consumption are the two
314	principal sources of CO ₂ production during wastewater treatment (Daigger et al.,
315	2004). When the biodegradable organic matter is stabilized by aerobic treatment, the
316	carbon in the organic matter is converted to CO ₂ . The other principal source of CO ₂
317	production is alkalinity consumption from nitrification, which results in the
318	conversion of inorganic carbon to CO ₂ .
319	As shown in Fig. 5, the N ₂ O emission rate during the whole cycle displayed a
320	similar tendency with CO_2 . It is well accepted that N_2O emission from biological
321	wastewater treatment may be attributed to two possible pathways: autotrophic
322	nitrification and heterotrophic denitrification (Law et al., 2012). The N_2O emission
323	rate was always low throughout of anoxic phase (less than $3~\mu g/min$), and the majority
324	of N_2O was produced from aeration phase. The reason of a relatively higher N_2O
325	emission rate in the initial 30 min may be attributed to the reminding NO ₂ ⁻ -N in the
326	previous cycle. The maximum N_2O emission rates in anoxic phase and aeration phase
327	were 2.52 and 29.9 $\mu g/min$ at 30 and 240 min, respectively. As a result, the total N_2O
328	emission amount per cycle from PN-SBBR system was 16.5 mg, which was
329	approximate 4.79% of removed nitrogen.

4. Conclusions

In summary, PN process was successfully achieved and maintained in a SBBR for treating high ammonia wastewater. High NH₄⁺-N removal efficiency and NAR were observed after PN-biofilm achievement. 3D-EEM and synchronous fluorescence spectra implied the similar chemical compositions LB-EPS and TB-EPS from seed sludge and PN-biofilm. The cycle data suggested that the majority of CO₂ and N₂O were produced from aeration phase, and their total emission amounts per cycle were

- 337 67.7 and 16.5 mg, respectively. The GHG emission result is valuable for
- understanding the process of nitrogen removal via nitrite in a biofilm system.

5. Acknowledgements

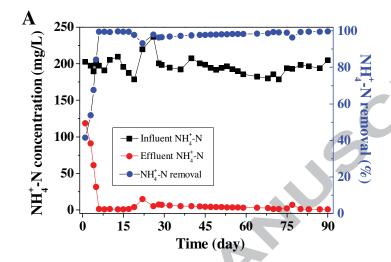
- This study was supported by the Natural Science Foundation of Chinese
- Province (21377046), Special project of independent innovation and achievements
- transformation of Shandong Province (2014ZZCX05101), Science and technology
- development plan project of Shandong province (2014GGH217006), and QW thanks
- 344 the Special Foundation for Taishan Scholar Professorship of Shandong Province and
- 345 UJN (No.ts20130937).

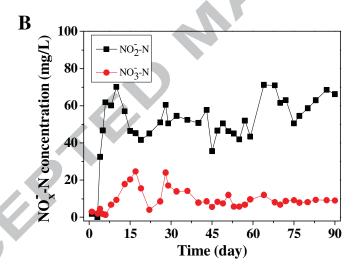
References

- 1. Adav, S.S., Lee, D.J., Lai, J.Y. 2009. Biological nitrification-denitrification with alternating oxic
- and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 84,
- 349 1181-1189.
- 2. Anthonisen, A.C., Srinath, E.G. 1976. Inhibition of Nitrification by Ammonia and Nitrous-Acid.
- 351 J. Water Pollut. Control. Fed. 48, 835-52.
- 352 3. APHA, AWWA, WEF. 2005. Standards methods for the examination of water and wastewater.
- 353 21st ed. Washington, D.C.
- 4. Chen, Z., Wang, X., Yang, Y.Y., Jr, M.W.M., Yuan, Y. 2016. Partial nitrification and
- denitrification of mature landfill leachate using a pilot-scale continuous activated sludge
- process at low dissolved oxygen. Bioresour. Technol. 218, 580-588.
- 5. Czaczyk, K., Myszka, K. 2007. Biosynthesis of Extracellular Polymeric Substances (EPS) and
- Its Role in Microbial Biofilm Formation. Pol J Environ Stud. 16, 799-806.
- 6. Daigger, G., Peterson, R., Witherspoon, J., Allen, E. 2004. Impact of global warming concerns
- on wastewater treatment plant design and operation. in: advances in water and wastewater
- 361 treatment. ASCE Publications. 1-19.
- 7. Ford, D.L., Kachtick, J.W. 1980. Comprehensive Analysis of Nitrification of Chemical Processing Wastewaters. J. Water Pollut. Control. Fed. 52, 2726-2746.
- 8. Fr, B., Griebe, T., Nielsen, P. 1995. Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 43, 755-761.
- 9. Ge, S., Peng, Y., Shuang, Q., Ao, Z., Ren, N. 2014. Complete nitrogen removal from municipal
- 367 wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions
- in a continuous plug-flow step feed process. Water Res. 55, 95-105.
- 369 10. Gilbert, E.M., Agrawal, S., Karst, S.M., Horn, H., Nielsen, P.H., Lackner, S. 2014. Low
- temperature partial nitritation/anammox in a moving bed biofilm reactor treating low

- 371 strength wastewater. Environ. Sci. Technol. 48, 8784-8792.
- 372 11. Hosseini, S.H., Borghei, S.M. 2005. The treatment of phenolic wastewater using a moving bed 373 bio-reactor. Process Biochem. 40, 1027-1031.
- 12. Hu, Z., Zhang, J., Xie, H., Liang, S., Wang, J., Zhang, T. 2011. Effect of anoxic/aerobic phase
- fraction on N₂O emission in a sequencing batch reactor under low temperature. Bioresour. Technol. 102, 5486-5491.
- 377 13. Jin, Y., Ding, D., Feng, C., Tong, S., Suemura, T., Zhang, F. 2012. Performance of sequencing 378 batch biofilm reactors with different control systems in treating synthetic municipal
- 379 wastewater. Bioresour. Technol. 104, 12-8.
- 14. Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S., van Loosdrecht, M. 2009.
 Nitrous oxide emission during wastewater treatment. Water Res. 43, 4093-4103.
- 15. Kong, Q., Wang, Z.B., Niu, P.F., Miao, M.S. 2016. Greenhouse gas emission and microbial
 community dynamics during simultaneous nitrification and denitrification process.
 Bioresour. Technol. 210, 94-100.
- 385 16. Law, Y., Ye, L., Pan, Y., Yuan, Z. 2012. Nitrous oxide emissions from wastewater treatment processes. Philos T R Soc B. 367, 1265-1277.
- 17. Li, H., Shaobin, H., Shaofeng, Z., Pengfei, C., Yongqing, Z. 2016. Study of extracellular
 polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal.
 Appl. Microbiol. Biotechnol. 100, 1-11.
- 18. Li, X.Y., Yang, S.F. 2007. Influence of loosely bound extracellular polymeric substances (EPS)
 on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41,
 1022-30.
- 19. Liu, X.M., Sheng, G.P., Luo, H.W., Zhang, F., Yuan, S.J., Xu, J., Zeng, R.J., Wu, J.G., Yu, H.Q.
 2010. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation.
 Environ. Sci. Technol. 44, 4355-60.
- 20. Peng, Y., Zhu, G. 2006. Biological nitrogen removal with nitrification and denitrification via
 nitrite pathway. Appl. Microbiol. Biotechnol. 73, 15-26.
- 398 21. Qiao, S., Kawakubo, Y., Koyama, T., Furukawa, K. 2008. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics. J. Biosci. Bioeng. 106, 433-441.
- 22. Sanchez, F.G., Rubio, A.L.R., Blanco, C.C., Suarez, R.S. 1990. Three-dimensional
 synchronous fluorescence spectrometry for the analysis of three-component alkaloid
 mixtures. Talanta. 37, 579-584.
- 23. Sheng, G.P., Yu, H.Q. 2006. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 40, 1233-9.
- 24. Shi, X.Y., Yu, H.Q., Sun, Y.J., Xia, H. 2009. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem. Eng. J. 147, 102-109.
- 25. Sun, X.F., Wang, S.G., Zhang, X.M., Chen, J.P., Li, X.M., Gao, B.Y., Ma, Y. 2009.
 Spectroscopic study of Zn²⁺ and Co²⁺ binding to extracellular polymeric substances (EPS)
 from aerobic granules. J. Colloid. Interf. Sci. 335, 11-17.
- 413 26. Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S., Lin, J.G. 2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale

415	landfill-leachate treatment plant. J. Hazard. Mater. 175, 622-628.
416	27. Wei, D., Dong, H., Wu, N., Ngo, H.H., Guo, W., Du, B., Wei, Q. 2016. A Fluorescence
417	Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular
418	Sludge Under the Stress of 2,4-Dichlorophenol. Sci rep. 6, 24444
419	28. Wei, D., Du, B., Zhang, J., Hu, Z., Liang, S., Li, Y. 2015a. Composition of extracellular
420	polymeric substances in a partial nitrification reactor treating high ammonia wastewater
421	and nitrous oxide emission. Bioresour. Technol. 190, 474-479.
422	29. Wei, D., Shi, L., Zhang, G., Wang, Y., Shi, S., Wei, Q., Du, B. 2014a. Comparison of nitrous
423	oxide emissions in partial nitrifying and full nitrifying granular sludge reactors treating
424	ammonium-rich wastewater. Bioresour. Technol. 171, 487-490.
425	30. Wei, D., Wang, B., Ngo, H.H., Guo, W., Han, F., Wang, X., Du, B., Wei, Q. 2015b. Role of
426	extracellular polymeric substances in biosorption of dye wastewater using aerobic
427	granular sludge. Bioresour. Technol. 185, 14-20.
428	31. Wei, D., Xue, X., Yan, L., Sun, M., Zhang, G., Shi, L., Du, B. 2014b. Effect of influent
429	ammonium concentration on the shift of full nitritation to partial nitrification in a
430	sequencing batch reactor at ambient temperature. Chem. Eng. J. 235, 19-26.
431	32. Wang, Z., Gao, M., Wang, Z., She, Z., Chang, Q., Sun, C., Zhang, J., Ren, Y., Yang, N. 2013.
432	Effect of salinity on extracellular polymeric substances of activated sludge from an
433	anoxic-aerobic sequencing batch reactor. Chemosphere. 93, 2789-2795.
434	33. Yang, S.F., Li, X.Y. 2009. Influences of extracellular polymeric substances (EPS) on the
435	characteristics of activated sludge under non-steady-state conditions. Process Biochem.
436	44, 91-96.
437	34. Yin, J., Zhang, P., Li, F., Li, G., Hai, B. 2015. Simultaneous biological nitrogen and
438	phosphorus removal with a sequencing batch reactor-biofilm system. Int. Biodeterior.
439	Biodegrad. 103, 245-261.
440	35. You, G., Hou, J., Xu, Y., Wang, C., Wang, P., Miao, L., Ao, Y., Li, Y., Lv, B. 2015. Effects of
441	CeO ₂ nanoparticles on production and physicochemical characteristics of extracellular
442	polymeric substances in biofilms in sequencing batch biofilm reactor. Bioresour. Technol.
443	194, 91-98.
444	36. Yu, G.H., He, P.J., Shao, L.M. 2009. Characteristics of extracellular polymeric substances
445	(EPS) fractions from excess sludges and their effects on bioflocculability. Bioresour.
446	Technol. 100, 3193-3198.
447	37. Zhang, L., Liu, J., Liu, C., Zhang, J., Yang, J. 2016. Performance of a fixed-bed biofilm reactor
448	with microbubble aeration in aerobic wastewater treatment. Water Sci. Technol. 74,
449	138-146.
450	38. Zhang, Z.J., Chen, S.H., Wang, S.M., Luo, H.Y. 2011. Characterization of extracellular
451	polymeric substances from biofilm in the process of starting-up a partial nitrification
452	process under salt stress. Appl. Microbiol. Biotechnol. 89, 1563-1571.
453	39. Zhao, W., Yang, S., Huang, Q., Peng, C. 2015. Bacterial cell surface properties: Role of


455456


454

loosely bound extracellular polymeric substances (LB-EPS). Colloids Surf B:

Biointerfaces. 128, 600-607.

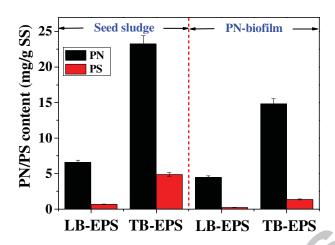
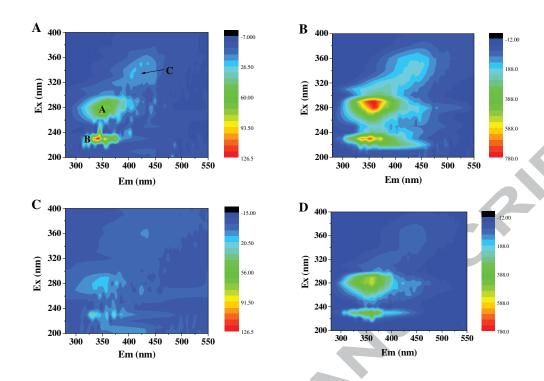

Figure Captions
Fig. 1 Overall performance of PN-SBBR during the whole operation: (A) Influent and
effluent NH ₄ ⁺ -N concentrations, and removal efficiencies; (B) Effluent NO ₂ ⁻ -N and
NO ₃ ⁻ -N concentrations.
Fig. 2 Changes in LB-EPS and TB-EPS contents during the PN-SBBR achievement
process.
Fig. 3 EEM spectra of LB-EPS and TB-EPS extracted from seed sludge and
PN-biofilm: (A) LB-EPS and (B) TB-EPS from seed sludge; (C) LB-EPS and (D)
TB-EPS from PN-biofilm.
Fig. 4 Time-course of nitrogen species and control parameters in a typical PN-SBBR
cycle during stable operation: (A) NH ₄ ⁺ -N, NO ₂ ⁻ -N and NO ₃ ⁻ -N concentrations; (B)
pH and DO values.
Fig. 5 N ₂ O and CO ₂ emission rates during a typical cycle in PN-biofilm system.

Fig. 1 Overall performance of PN-SBBR during the whole operation: (A) Influent and effluent NH₄⁺-N concentrations, and removal efficiencies; (B) Effluent NO₂⁻-N and

476 NO₃-N concentrations.



478

Fig. 2 Changes in LB-EPS and TB-EPS contents during the PN-SBBR achievement

480 process.

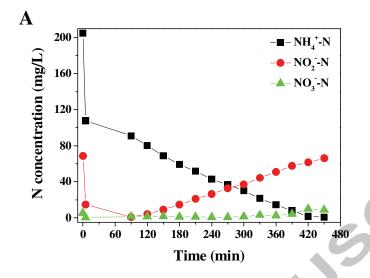


Fig. 3 EEM spectra of LB-EPS and TB-EPS extracted from seed sludge and PN-biofilm: (A) LB-EPS and (B) TB-EPS from seed sludge; (C) LB-EPS and (D) TB-EPS from PN-biofilm.

484 TB-EPS from PN-biofia
485

482

486

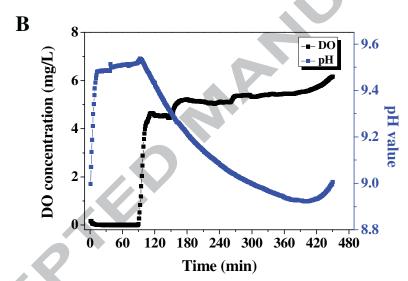
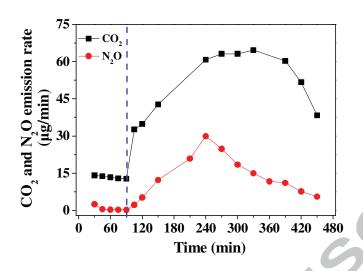



Fig. 4 Time-course of nitrogen species and control parameters in a typical PN-SBBR cycle during stable operation: (A) NH₄⁺-N, NO₂⁻-N and NO₃⁻-N concentrations; (B) pH and DO values.

Fig. 5 N₂O and CO₂ emission rates during a typical cycle in PN-biofilm system.

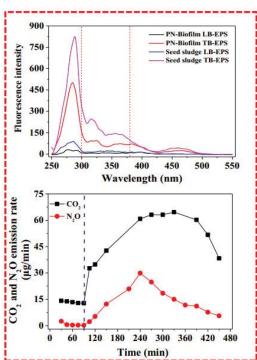


Table 1 Fluorescence spectral parameters of LB-EPS and TB-EPS samples extracted
 from seed sludge and PN-biofilm.

Cimples	Simples	Peak A		Peak B		Peak C	
Simples		Ex/Em	Intensity	Ex/Em	Intensity	Ex/Em	Intensity
seed	LB-EPS	280/352	81.9	230/342	126.4	350/436	21.3
sludge	TB-EPS	290/360	779.2	230/351.5	719.4	350/434	207.9
PN	LB-EPS	280/354	19.5	230/331	32.0	360/432.5	9.56
biofilm	TB-EPS	280/360.5	547.1	230/360	458.4	350/447	102.8

505									
506									
507 Hig	7 Highlights								
508	Partial nitrification was successfully achieved and maintained in a SBBR.								
509	PN and PS contents were reduced during the achievement of PN process.								
510	3D-EEM implied that LB-EPS and TB-EPS had similar chemical compositions.								
511 >	CO_2 and N_2O emission amounts per cycle were 67.7 mg and 16.5 mg.								
512									