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SMS: A Framework for Service Discovery by
Incorporating Social Media Information
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Abstract—With the explosive growth of services, including Web services, cloud services, APIs and mashups, discovering the
appropriate services for consumers is becoming an imperative issue. The traditional service discovery approaches mainly face two
challenges: 1) the single source of description documents limits the effectiveness of discovery due to the insufficiency of semantic
information; 2) more factors should be considered with the generally increasing functional and nonfunctional requirements of
consumers. In this paper, we propose a novel framework, called SMS, for effectively discovering the appropriate services by
incorporating social media information. Specifically, we present different methods to measure four social factors (semantic similarity,
popularity, activity, decay factor) collected from Twitter. Latent Semantic Indexing (LSI) model is applied to mine semantic information of
services from meta-data of Twitter Lists that contains them. In addition, we assume the target query-service matching function as a
linear combination of multiple social factors and design a weight learning algorithm to learn an optimal combination of the measured
social factors. Comprehensive experiments based on a real-world dataset crawled from Twitter demonstrate the effectiveness of the
proposed framework SMS, through some compared approaches.

Index Terms—Service discovery, social media, weight learning, social factors combination.
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1 INTRODUCTION

W ITH the increasing adoption of Service-Oriented Ar-
chitecture (SOA), services in forms of Web services,

cloud services, APIs, mashups, etc, are becoming popular
in Web and mobile applications, and we can find a rapid
growth in the number of services and their compositions. As
a key component of SOA, service discovery is facing some
challenges due to the explosive growth of services: (i) The
single source of description documents limits the perfor-
mance of service discovery caused by insufficient semantic
information; (ii) More factors should be considered since
consumers place more demands on nonfunctional aspects
(e.g., popularity, personalization) compared with functional
aspects.

Existing service discovery methods are mainly classified
into several categories based on semantic similarity [1]
[2], collaborative filtering (CF) technique [3] [4], quality of
services (QoS) [5] [6], and social network [7] [8]. Most of
these approaches are based on information that services
originally contain or offered by service providers: functional
similarity (semantics), nonfunctional feature (QoS), or so-
cial network generated by the collaboration or relationship
among services, their compositions and consumers. Facing
the rapid expanding of service scale and diversification of
data sources, it is a trend to incorporate knowledge from
other sources to facilitate service discovery [9] [10]. Recently,
service providers tend to run promotions on social media,
based on which, they can get direct feedback information
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and collective knowledge through the interactions on social
media. Therefore, it is feasible to enrich available service
data by leveraging social media information for improving
the performance of service discovery.

Introducing social media information to improve the
performance of search methodology is a popular and novel
strategy, and it has been proved effective in many other
fields, such as information retrieval, social network, rec-
ommender system, etc. Ghosh et al. [11] exploited crowd-
sourcing information to discover topic experts in Twitter
social network. In [12], the author showed the necessity
of applying social tags in music information retrieval. In
this paper, we intend to exploit collective knowledge mined
from social media into the retrieval of RESTful services, i.e.,
APIs. Through the investigation of ProgrammableWeb1, a
well-known service ecosystem, we found that some APIs
have official Twitter accounts managed by their providers.
Thus, we can acquire social media information related to
APIs from Twitter, the worldwide popular online social
network.

There exist various social information in Twitter. Here
we firstly introduce an important and practical characteristic
in Twitter called Twitter Lists. Twitter Lists was proposed in
late 2009 to help users organize the Twitter accounts they
follow [13]. It has been widely used to group sets of users
into topical categories. Generally, a list is created with a
name (required) and description (optional), and the creator
can manage the list members. For a Twitter account, the
names and descriptions of lists including it can be consid-
ered as its semantic labels. Fig.1 shows several lists that
contain LinkedIn, the twitter account of LinkedIn API linked
in ProgrammableWeb. It can be obviously found that most

1. http://www.programmableweb.com
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 @Curtis D Snyder / Social Media
 Social Media, Social Experts and Influences

 @cdel / Career info

 @Jasmine Sandler / Social Media Tools
 Social Media Tools and Channels

 @Elivan Souza / Social Media Essencial
 Tweeps who share  Social Media articles

 @Grindr Labs / Work wizards
 Recruiting + career development experts

Lists following LinkedIn 

List Name

List 

Decription

Fig. 1. Some examples of lists containing LinkedIn

of list names are related to ‘Social Media’ and ‘Career’ along
with the corresponding list descriptions, which distinctly re-
flect the topic of LinkedIn. Except for list information, Fig.1
shows some other social features of LinkedIn, such as tweet
number, follower number, etc. All of these features reflect
status of LinkedIn. For instance, followers of LinkedIn are
users interested in it and the number of followers indicates
the popularity of LinkedIn in this social network.

In this paper, considering the large scale and various
types of information in social media, we try to address the
following issues:

• How to reasonably model each social factor for ser-
vices?

• How to design an effective combination strategy for
social factors to generate service retrieval results with
high accuracy?

In order to address the proposed issues, we propose a
novel framework for Social Media based Service Discovery
called SMS. Based on our previous work [14], list meta-data
(list names and descriptions) offers significant semantic cues
to the topics of involved Twitter accounts. To model the
social factor of semantic information provided by collective
knowledge, we apply Latent Semantic Indexing (LSI) model
to infer services’ semantics by analyzing meta-data of those
lists including services’ Twitter account. LSI maps both the
features extracted from lists and the given queries into a
conceptual space to calculate similarity between services
and queries. Essentially, semantic information mined from
Twitter lists is a kind of functional knowledge, since the
contents of lists could reflect users’ awareness of the func-
tionality of the involved services. To satisfy nonfunctional
demand of service discovery, we introduce another three
social factors respectively generated from tweet number,
follower number and list number: popularity, activity and
decay factor.

To effectively combine the semantic similarity and three
social factors, we design a weight learning method within
the proposed framework SMS. The weight learning method
assumes that the target query-service matching function

is a linear combination of all the social factors. Then a
collection of training triplets are generated based on relative
matching degree of two different services to a query. Finally
the learning method utilizes the training triplets to learn
the optimal combination weights. The learned weights can
facilitate the performance of service search for a coming
query.

Experiments on a real-world dataset crawled from Twit-
ter are implemented for the demonstration of the effective-
ness of SMS. For evaluation, we select 52 sample queries
from 12 categories and introduce P@k, nDCG@k and AR@k
for the accuracy evaluation. Except for the accuracy eval-
uation, we introduce an external data source about service
providers’ ranking to evaluate the popularity mined from
social media.

In particular, the main contributions in this paper are
summarized as follows:

• We propose a social media based service discovery
framework called SMS, where four social factors are
modeled from Twitter for the improvement of service
retrieval.

• We design a weight learning algorithm to train the
optimal weight assignment for the combination of
four social factors.

• We conduct comprehensive experiments on a real-
world dataset crawled from Twitter to demonstrate
the effectiveness of our proposed framework SMS.

The rest of this paper is organized as follows. Section 2
shows some data analysis of social information in Twitter.
Section 3 introduces the proposed service discovery frame-
work SMS, including the architecture of SMS, modeling
method for each social factor, and the weight learning
algorithm for social factors combination. Section 4 presents
the detailed evaluation process of SMS. A case study of the
proposed SMS is showed in Section 5. Section 6 surveys the
related works and Section 7 makes a conclusion of this paper
and discusses the future work.

2 DATA ANALYSIS

This section shows some data analysis of social information
of services managed by Programmable in Twitter, including
list information, tweet number, follower number.

In this work, we crawl 3877 APIs’ official Twitter ac-
counts with lists including them, and some related social
information. Since there are few work about Twitter list so
far, this paper reports some results of the analysis over lists
to show the feasibility of our proposed approach. Fig.2 (a)
shows the distribution of numbers of APIs based on the
number of lists including them. One API could be involved
in multiple lists and the most reaches 84511. About 30.8%
of total APIs are organized by more than 100 lists, and
70.1% are included by at least 10 lists, which reveals that
the list information of most APIs is full of richness. Fig.2 (b)
illustrates the distribution of the number of authors based
on the number of lists created by them. The total number
of authors who created lists for the 3877 APIs is 658,878, of
which only 3.8% created more than 10 lists. It is obvious that
most authors designed lists less than 10 and the sources of
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Fig. 2. Data Analysis on Social Information of Services Collected from Twitter

lists are in a wide range, which indicates the diversity of list
semantics.

In addition, we show some statistics about the social
information collected from Twitter. Fig.2 (c) shows the cor-
relation between the number of lists by which an API is
included and the number of followers that an API has. Gen-
erally, an API considered to be attractive to many consumers
tends to be included in many lists since creating a list can
subscribe status of its members, just like following an API.
Fig.2 (c) shows the strong correlation between the number of
followers and the number of lists. In Fig.2 (d), we show the
correction between the number of lists an API is included
and the number of tweets that an API posts. Different from
the strong relativity showed in Fig.2(c), there only exists
weak correlation between list number and tweet number.
It means that a popular API might not have much dynamic
information, indicating that the API might not be practical
or even has been outdated. From the above, the number of
an API’s followers and the number of tweets posted by an
API could be considered as indicators of API popularity and
activity, respectively.

3 METHODOLOGY

3.1 Problem Formulation

In this section, we formally formulate the problem of social
media based service search.

Definition 1. Query-Service Matching Modeling: Given a
collection of candidate services S and a set of queries Q, the
objective of query-service matching modeling problem is learning
a function f : Q × S → R+, such that f(qi, sj) measures the
matching degree between query qi and service sj .

In our problem, a service is considered to be matched
with a given query if it satisfies the requirements of con-
sumers from multiple aspects. Specifically, we take func-
tional similarity between the service and given query as
a prior consideration. Based on this, we assume that con-
sumers prefer services that are more popular and more
active, since popularity and activity respectively indicate the
practical applicability and availability of services.

A crucial element in Definition 1 is a modeled service
sj ∈ S , which is defined as follows.

Definition 2. Modeled Service: A service sj ∈ S is struc-
tured as a k-dimensional tuple sj = [mj1,mj2, ...,mjk], where
mjl(1 ≤ l ≤ k) is a social feature of service sj .
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In this paper, we intend to exploit multiple social fea-
tures to facilitate service discovery. Specifically, we use
four social features of services extracted from Twitter: list
content, follower number, tweets number, and list number.
These features in general reflect social-level characteristics
of services, including semantic similarity (functional), pop-
ularity, activity, and decay factor (nonfunctional).

3.2 Architecture of SMS
Fig.3 illustrates the architecture of the social media based
service discovery approach SMS. The social media informa-
tion for service retrieval is crawled from Twitter after being
matched with services crawled from ProgrammableWeb.
Generally, the whole process of SMS could be divided into
four parts:

• The first part is measuring the first social factor,
service semantics mined from Twitter lists. This part
consists of data pre-processing, semantic similarity
calculation by utilizing LSI model based on list meta-
data, including list names and descriptions.

• The second part is building functions to measure
the rest three nonfunctional social factors including
popularity, activity and decay factor.

• All the social factors modeled in the first two parts
intend to be used for a proposed weight learning
algorithm in the third part. The goal of the weight
learning algorithm is to find an optimal combination
strategy for social media information.

• In the final part, for a coming query, the new values
of modeled four social factors could be integrated
based on the learned optimal weight assignment, to
generate a list of ranked results.

3.3 Lists based Semantic Similarity
In this section, we model the functional social factor of
semantic similarity based on list information of services. We
first introduce the content and form of Twitter Lists. Then the
preprocessing of semantic similarity modeling is described.
Finally we show the LSI based approach for text similarity
computation.

3.3.1 Leverage Twitter Lists
Lists is introduced for users to manage their followings and
the tweets they post. Users can group a set of accounts
whom they think have the similar topics by creating a list.
A list includes a list name (limited to 25 characters) and a
list description that approximately shows the content of the
list.

Table 1 shows illustrative examples of lists containing
APIs, selected from our dataset (to be detailed in Section
4). As the examples present, Flickr API is included in lists
with the name “Photography & design”, “Photography”,
“Photography websites” and corresponding descriptions.
LinkedIn and lastfm are in the similar situations. It can
be observed that the list names and descriptions provide
valuable semantic cues to the topics of the APIs in the lists.
For instance, according the list meta-data, we can associate
Flickr API with photography or photo topic, LinkedIn API
with social or profession topic, lastfm with music topic.

Thus, lists offer semantic annotations of the APIs included
by them. And the semantic feature is generated by arbitrary
users, which means it reflects the collective knowledge
of crowds. The modeling of the first social factor mainly
considers extracting the semantics contained in the crowd-
sourced lists.

3.3.2 Data Pre-processing
Due to the arbitrariness of list meta-data (names and de-
scription), a pre-processing of lists is needed before applying
LSI model. The detailed strategy of extracting features from
list meta-data consists of the following steps:
1. Tokenization: As list names are limited to 25 charac-

ters, users often combine words using CamelCase (e.g.,
PlayStation). It is essential to separate these into individ-
ual words by tokenization algorithm.

2. Stop Words Removal: Words that are not meaningful
for presenting APIs, such as a, the, about, etc, should be
removed. In addition to the common stop words, a set
of domain-specific stop words also should be filtered out
(e.g., Twitter, Google, List).

3. Nouns & Adjectives Identification: It has been analyzed
in previous work [15] that nouns and adjectives in list
names and descriptions are particularly useful for seman-
tics extraction. Thus we identify nouns and adjectives
using a tagger tool.

4. Stemming: Extracting stem words is another important
process. The stem words can be obtained by removing
the commoner morphological and inflectional endings
from words. For example, travel, traveler, traveling will be
replaced with the same stem travel.

5. Low Frequency Words Filtration: As the definition of
list names and descriptions is arbitrary, some words
with low frequency are regarded as the impurity in the
presentation of APIs and filtered out.

3.3.3 Latent Semantic Indexing
Generally, information is retrieved by literally matching
words in documents with those of the given query. How-
ever, lexical matching may be inaccurate since some words
share the same concept (synonymy) and most words have
multiple meanings (polysemy). Moreover, for list meta-
data, the drawbacks of literal word matching become more
obvious due to personal style and individual differences in
word usage. Thus a better method should permit users to
search information based on conceptual topics or semantics
of documents.

Latent Semantic Indexing (LSI) [16] is a model that maps
queries and documents into a space with latent semantic di-
mensions. In a latent semantic space, high cosine similarity
of a query and a document of which words are conceptually
similar can be obtained even if they do not share any words.
LSI method consists of the following four main steps, of
which the first two steps are also applied in vector space
models and the step of dimension reduction is the critical
part.

A large collection of text is usually represented as a
term-document (t × d) matrix X , with each position xij
corresponding to the frequency with which a term (a row
i) occurs in a document (a column j). Note that the order
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Fig. 3. Architecture of Social Media based Service Discovery

TABLE 1
Example of APIs, the name and description of lists containing them

API Name List Name List Description

Flickr
Photography & design Visual inspiration for my eyes to swallow

Photography The art of drawing with light

Photography websites Twitter accounts related to Photography you should be following

LinkedIn
Social Media Bloggers and social media networks

Professional-Resources Writing and Design for Interactive Media

Recruiters Job Tweets

lastfm
Music Flagging events or new music

DJs, Producers, Labels Music worth listening to

Home Taping Is Killing Music Bands and Music; go on, rock my world

of terms in the document is unconsidered in matrix X on
the basis of “bag of words”. Matrix X is typically sparse
since most documents contain only a small percentage of
total number of unique terms in the whole corpus.

Instead of dealing with raw term frequencies, the entries
in the term-document matrix X are often transformed.
An appropriate weighted technique is TF-IDF which is
widely used as a weighting factor in text mining and other
related fields. TF-IDF value of each word increases with
its frequency in corresponding document, while offsets by
its frequency in the whole collection. In traditional vector
retrieval systems, documents and queries are denoted as
vectors in n-dimensional space, where n is the number
of indexed terms in the collection. And to apply LSI for
document searching, Singular Value Decomposition (SVD)
is used to decompose the term-document matrix Xt×d into
the product of three matrices, Tt×n, a term by dimension
matrix, Sn×n, a singular value matrix, Dd×n, a document
by dimension matrix:

Xt×d = Tt×nSn×nDd×n
T ,

where t denotes the number of terms, d is the number of
documents, n = min(t, d), T and D have orthonormal
columns:

TTT = I,DDT = I.

Suppose the rank of matrix X is r, the diagonal elements of
S are ordered by magnitude,

S = diag(σ1, σ2, ..., σn),

where σi > 0 for 1 ≤ i ≤ r, σi = 0 for j ≥ r + 1.
LSI uses a truncated SVD, keeping the k largest singular

values and their associated vectors, so

X̂t×d = Tt×kSk×kDd×k
T ,

where k is the dimensionality of the reduced space and
k << n. The resulting reduced-dimension SVD representa-
tion is the best k-dimensional approximation to the original
matrix in the least-squares sense. The purpose of dimen-
sion reduction is to reduce the noise in the latent space,
leading to a richer term relationship structure that reveals
latent semantics. Through SVD, each term and document is
represented as a k-dimensional vector in the latent semantic
space. The rows in Tt×k are the term vectors and the rows
in Dd×k are the document vectors in latent semantic space.

When LSI is used for retrieval, a query must be repre-
sented as a vector in k-dimensional latent semantic space
that the document collection is represented in. A query
is seen as a set of words like a document, and it can be
represented by multiplying the transpose of the query’s
term vector with Tt×k and S−1k×k:

q̂ = qTTt×kS
−1

k×k,

where term qTTt×k reflects the sum of these k-dimensional
term vectors, and the right multiplication with S−1k×k weights
the separate dimensions distinguishingly. By representing
query in this way, the distance between documents and
given query can be measured using cosine similarity.
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Thus, the functional social factor measured by semantic
similarity of service si and a given query q inferred from list
meta-data, which could be defined as:

SF 1(q, si) =

∑
j vq,jvi,j√∑

j v
2
q,j

√∑
j v

2
i,j

, (1)

where v denotes the term vector of a document or query in
latent semantic space.

3.4 Modeling of Nonfunctional Social Factors

Essentially, the social factor of semantic information offered
by Twitter lists is a kind of functional knowledge. Based on
this, this paper intends to incorporate other social factors to
reflect the nonfunctional information of services. In this sub-
section, we introduce three nonfunctional social factors and
build functions to measure them for each service. Without
loss of generality, all values are within the range of [0, 1].

3.4.1 Popularity Factor

To satisfy consumers’ demand of popular services, we in-
troduce the popularity factor. We assume that, when faced
with two services providing similar functions, consumers
are more likely to select the more popular one. Based on
Twitter information, we consider the number of a service’s
followers could reflect the degree of being concerned of the
service. Due to the large gap between the follower numbers
of different services, we normalize follower numbers with
their logarithmic form. Thus, we define the popularity of
service si according to its follower number as follows,

SF 2(si) =
log nif − logminf

logmaxf − logminf
, (2)

where nif denotes the follower number of service si, minf
and maxf respectively denote the minimal and maximal
follower numbers.

3.4.2 Activity Factor

Service accounts could post tweets since they are users in
Twitter. Generally, the tweets or retweets posted are about
improvements or updates of services, news and trends
about services, etc. as showed in Fig.4. Thus we consider
a service is active if it posts tweets frequently. In this paper,
we assume that active services are constantly invoked and
more valuable to consumers. Analogous to popularity factor
mentioned above, we define the activity of service si based
on its tweet number, formally,

SF 3(si) =
log nit − logmint

logmaxt − logmint
, (3)

where nit denotes the number of tweets posted by service
si, mint and maxt respectively denote the minimal and
maximal tweet numbers.

3.4.3 Decay Factor

Services included by lists with very high frequency are
likely to be too general for consumers. We try to damp
the contribution of candidate services that included by

Fig. 4. Instance of tweets posed by Google Maps API

too many lists. We build the following decay function to
generate social factor.

SF 4(si) =
kd

kd + abs(kd − log nil)
, (4)

where nil denotes the number of lists containing service si
and parameter kd is designed as the logarithmic form of
average list number.

3.5 Learning Optimal Weights for Social Factors

In the previous subsections, we totally introduce four mod-
eling functions (SF 1, SF 2, SF 3, SF 4) to measure different
social factors for services. The next crucial problem is how
to find the best way to integrate these social factors into
the target query-service matching function. In this work,
we propose a weight learning algorithm to discover the
optimal combination of social information, in which the
target query-service matching function f is assumed as a
linear combination of the multiple modeling functions as
follows,

K(q, si) = w1SF
1(q, si) +

n∑
k=2

wkSF
k(si) (5)

where si is the i-th service and K(q, si) denotes the tar-
get query-service matching function f . SF k represents the
modeling functions for social factors defined under the the
k-th (1 ≤ k ≤ n) social views of services, n is the total
number of social factors, and w ∈ Rn represents the weight
vector.

One direct way to figure out the target query-service
matching function is to manually assign the weights of
different social factors. However, such method has poor
performance in efficiency and hardly finds the best combina-
tion. Therefore, this paper utilizes online learning technique
to learn the optimum combination weights w from streams
of triplets. The main advantages of the weight learning al-
gorithm are that (i) it can reduce the training cost during the
learning process; and (ii) it can figure out more appropriate
combination weights to improve the effectiveness of service
retrieval.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2631521, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XX XXXX 7

3.5.1 Relative Matching Degree Learning
In the training step, we assume a collection of training
instances represented in the form of triplets as follows,

Z = {(qi, s+qi , s
−
qi), i = 1, ...,m}

where each triplet (qi, s
+
qi , s

−
qi) indicates that service s+qi is

better matched with the i-th query qi compared with service
s−qi . m is the total number of queries in the training data.
Our target is to learn the optimum combination weights w,
which lead a higher query-service matching score to service
that is more relevant to the given query qi,

K(qi, s
+
qi) > K(qi, s

−
qi)

Based on such a triplet setting, it is only need to give
the relative order of matching degree rather than an exact
measure of matching score, which is more feasible in most
scenarios.

3.5.2 Weight Learning Algorithm for Social Factors
Based on the side information in the form of triplet as de-
fined above, the weight learning algorithm learns a query-
service matching function K(q, ai), for all triplets in Z
satisfying,

K(qi, s
+
qi) > K(qi, s

−
qi) + ε

where ε is a margin factor which should be positive. We set
ε equal to 1.0 in our experiments. A hinge loss is defined for
each triplet (qi, s

+
qi , s

−
qi) as follows,

h(qi, s
+
qi , s

−
qi) = max{0, ε−K(qi, s

+
qi)−K(qi, s

−
qi)}

= max{0, ε−w · d+
qi + w · d−qi}

where d+
qi = [SF 1(qi, s

+
qi), SF

2(s+qi), SF
3(s+qi), SF

4(s+qi)]
T

and d−qi = [SF 1(qi, s
−
qi), SF

2(s−qi), SF
3(s−qi), SF

4(s−qi)]
T .

We aim to obtain the optimal combination weights w
that minimize the object function,

min
w

λ

2
‖w‖2 +

1

M

∑
h(qi, s

+
qi , s

−
qi) (6)

where M denotes the total number of training instances and
λ is a regularization parameter.

In order to detailedly illustrate the core procedure of the
proposed online weight learning algorithm for solving the
optimization problem described in Eq.(6), we present the
pseudo-code as showed in Algorithm 1. The inputs consist
of a collection of training triplets Z , a regularization param-
eter λ, the number of iterations T , and a learning rate β(0).
Initially, we assign each social factor with the same weight.
The combination weights w could be set as [w

(1)
1 , ...w

(1)
n ],

where each weight w(1)
k = 1/n,∀k = 1, ..., n, n is the

number of social factors. During each training iteration t,
we set the learning rate β(t) = β(0)/(1 + λβ(0)t). Then a
triplet (q

(t)
i , s

+(t)
qi , s

−(t)
qi ) is obtained from collection Z and

we respectively compute d
+(t)
qi and d

−(t)
qi . The objective

function corresponding to this triplet is:

L(t)(w) =
λ

2
‖w‖2 + h(w; (q

(t)
i , s+(t)

qi , s−(t)qi )) (7)

The sub-gradient of L(t)(w) with respect to w is computed
as:

5(t) =
∂L(t)(w)

∂w
=

{
λw(t) if w(t) ·∆d

(t)
qi ≥ ε

λw(t) −∆d
(t)
qi if w(t) ·∆d

(t)
qi < ε

where ∆d
(t)
qi = d

+(t)
qi − d

−(t)
qi .

Then the new combination weights can be updated by
w(t+1) ← w(t) − β(t)5(t), that is,

w(t+1) =

{
(1− β(t)λ)w(t) if w(t) ·∆d

(t)
qi ≥ ε

(1− β(t)λ)w(t) + β(t)∆d
(t)
qi if w(t) ·∆d

(t)
qi < ε

Through T iterations, the final learned weight vec-
tor w(T+1) would be output as the optimal combination
weights for multiple social factors.

Algorithm 1 Weight Learning for Social Factors
Input:

Collection of training triplets Z ;
Regularization parameter λ, learning rate β(0);
Iteration number T

Output: Combination weights wT+1

1: Initialize weights: w(1)
k = 1/n,∀k = 1, ..., n.

2: for t = 1, 2, ..., T do
3: β(t) = β(0)/(1 + λβ(0)t).
4: Get one triplet (q

(t)
i , s

+(t)
qi , s

−(t)
qi ) from collection Z .

5: Compute d
+(t)
qi and d

−(t)
qi .

6: if w(t) · d+(t)
qi −w(t) · d−(t)qi ≥ ε then

7: w(t+1) ← (1− β(t)λ)w(t).
8: else if w(t) · d+(t)

qi −w(t) · d−(t)qi < ε then
9: w(t+1) ← (1− β(t)λ)w(t) + β(t)(d

+(t)
qi − d

−(t)
qi ).

10: end if
11: end for
12: return w(T+1)

The time complexity of weight learning algorithm in-
cludes two parts. The first part is about the generation of
triplets set for training, the time complexity is O(|q|N2),
where |q| is the size of query set and N is the number of
APIs. Another part is weight learning process and its time
complexity is O(T ), where T is the predefined iterations.

4 EVALUATION

4.1 Dataset and Setup

The datasets used in this paper are respectively crawled
from Twitter and ProgrammableWeb, and named as Dp and
Dt. First we crawl 10,850 APIs from PW, then 3,877 API
official Twitter accounts are crawled from Twitter, matching
with APIs in ProgrammableWeb. 414 out of total 3,877 APIs
with no list are removed since the kernel of the modeling of
two social factors is leveraging list meta-data. Dp contains
API name, description, category, while Dt includes API
name, list name, list description, follower number and tweet
number of APIs. The number of lists in Dt reaches 1,015,128
created by totally 658,878 twitter users. Besides, we crawl
a dataset about API provider rank from Alexa 2 as an
evaluation criteria for the ranking of APIs.

2. Alexa: http://www.alexa.com/
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TABLE 2
The 52 Sample Queries for Evaluation

Category Sample queries

Music audio, band, lyrics, singer, sound, music

Travel hotel, tourism, flight, holiday, voyage, travel

Financial stock, investment, price, finance, economics

eCommerce shopping, eCommerce

Mapping GIS, geography, GPS, mapping, traffic

Sports NFL, fitness, sport, running, athlete

Photos photo, image, picture, camera

Government policy, congress, department, government, law

Game player, game

Education education, training, student, school

Enterprise sales, hr, leader, enterprise

Social social network, media, social

All the experiments in this paper are implemented with
Python 2.7, conducted on a MacBook Pro with an 2.2 GHz
Intel Core i7 CPU and 16 GB 1600 MHz DDR3 RAM, running
OS X Yosemite.

4.2 Evaluation Methodology
For evaluation, a method of binary judgment should be
applied to identify whether the returned API is relevant
to the given query. The queries used for evaluation could
be chosen from a given set of 52 sample queries that are
extracted from topics of the 12 categories shown in Table 2.
The idea of binary judgment in the evaluation is: a returned
result for a given query can be judged as relevant once
its category is identical with the category of the query.
Besides binary judgment, we adopt provider rank which
represents the ranking of API provider’s site to estimate the
influence of popularity mined from social media, following
the intuition that an API generated by a provider whose site
is ranked higher would be regarded as the relatively more
popular one. We use the following three metrics to evaluate
the proposed SMS.

4.2.1 Precision@k

Precision measures the proportion of returned documents
that are relevant. Precision at cutoff k (P@k) is calculated as:

P@k(r) =
1

k

k∑
i=1

ri, (8)

where ri indicates the relevance of the ith ranked result
scored as either 0 (not relevant) or 1 (relevant).

4.2.2 nDCG@k

Normalized discounted cumulative gain (nDCG) is an ex-
plicitly rank-weighted metric. For a ranked list retrieved for
the user, the further down the list a result occurs, the more
its value to the user is discounted. If binary relevance is
determined, with R relevant results for a query, the formula
of nDCG@k is:

nDCG@k(r) =

∑k
i=1 ri · wDCG(i)∑min{k,R}
i=1 wDCG(i)

, (9)

where ri indicates the relevance of the ith ranked result, and

wDCG(i) =
1

log2(i+ 1)

4.2.3 Average Rank@k

In our evaluation, Average Rank at cutoff k (AR@k) is
used for measuring popularity of search results. AR@k is
calculated as:

AR@k(r) =
1

k

k∑
i=1

ranki, (10)

where ranki denotes the ranking score of the ith ranked
result, and the value of ranki is obtained from the provider
rank of each API. A lower AR@k indicates a higher rank.

4.3 Experimental Setup
4.3.1 Training Triplets Generation
For the evaluation of the proposed weight learning algo-
rithm, we need to create a collection of triplets for training.
First we randomly select a part of the predefined 52 queries
mentioned in evaluation methodology as training queries.
For each selected query qi, we define amatchsetqi including
APIs whose categories are the same as that of qi. Similarly, a
unmatchsetqi is defined for APIs which belong to categories
different with qi. Next, we randomly sample an API service
s+qi from matchsetqi . Then an API service s−qi is randomly
chosen from set unmatchsetqi . Do the same thing to all
the training queries. Through such process, a collection of
training triplets Z would be generated for combination
weights learning in our experiment.

4.3.2 Compared Methods
We compare the following methods in our experiments:

• PW: Descriptions of APIs in ProgrammableWeb are
used for semantic matching by LSI model. We set this
method as baseline.

• List Only: We leverage Twitter list information of
APIs to compute the semantic similarity using LSI
model for ranking APIs.

• +Pop: We integrate semantic similarity mined from
list information of APIs with popularity factor re-
ferred from APIs’ follower number.

• +Act: We integrate semantic similarity mined from
list information of APIs with activity factor reflected
by APIs’ tweet number.

• +Decay: We integrate semantic similarity mined
from list information of APIs with decay factor gen-
erated from APIs’ list number.

• Uniform: The semantic similarity and three nonfunc-
tional social factors are uniformly combined with the
same weight.

• SMS: We use the proposed weight learning algo-
rithm for integrating the modeled four social factors.
Specifically, we run SMS with β(0) = 10−4, λ = 10−4

and T = 20000.

Note that the way of integration in +Pop, +Act and
+Decay is searching and ranking APIs for query q based
on SF k(si) · SF 1(q, si)(2 ≤ k ≤ 4), where SF k(si) is the
k-th nonfunctional social factors of API si.
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TABLE 3
Comparison of PW and List Only based on 15 test queries

Query
P@10 nDCG@10

PW List Only PW List Only
enterprise 0.20 0.60 0.46 0.97

social 0.80 0.30 0.99 0.46
investment 0.60 0.70 0.84 0.78
economics 0.00 0.60 0.00 0.70

eCommerce 0.40 0.30 0.91 0.59
sound 0.00 0.30 0.00 0.43
music 1.00 0.40 1.00 0.48

voyage 0.00 1.00 0.00 1.00
travel 1.00 1.00 1.00 1.00
traffic 0.20 0.10 0.40 0.39
athlete 0.10 0.50 1.00 0.72
photo 1.00 0.8 1.00 0.82

government 0.20 0.40 0.58 0.92
game 0.70 0.70 0.97 0.87
school 0.10 0.90 0.43 0.98

Average 0.42 0.57 0.64 0.74

4.4 Result Analysis
In the first two evaluation parts, we randomly select 70%
of the 52 queries as the training queries and a collection of
training triplets is generated. The rest 15 queries are used
for testing.

4.4.1 Effectiveness of Twitter Lists
In this part, we compare the performance of PW and List
Only, which have difference in the employed data sources,
to show the effectiveness of Twitter lists. Since neither of the
two methods incorporates factors influencing the popularity
of APIs, we evaluate them in terms of P@10 and nDCG@10.
As showed in Table 3, it can be observed that for most
queries, List Only outperforms PW based on P@10. In terms
nDCG@10, PW performs unstably in each query though it
outperforms List Only on more than half of queries. There
even exist three queries that are not matched with any rele-
vant APIs. On average, the values of P@10 and nDCG@10 of
List Only are higher than those of PW, which indicates that
the crowdsourcing based semantic information provided by
Twitter lists can facilitate the quality of API search. There is
still room to improve the performance of Twitter lists based
method, for which we intend to incorporate some other
social factors and evaluate improved methods in the next
part.

4.4.2 Methods Comparison
We evaluate and compare all the methods listed in Section
4.3.2 in terms of P@k, nDCG@k and AR@k (k ∈ {5, 10, 15}).
Fig.5 shows the top-k API retrieval results based on the
average metric values of 15 test queries, from which we can
draw some observations.

First of all, in terms of P@k and nDCG@k, SMS always
achieves the best performance among all the evaluated
methods. Specifically, we find that (i) compared with Uni-
form, SMS improves P@k and nDCG@k by at least 11%
and 3%, which illustrates the effectiveness of the weight
learning algorithm for social information integration; (ii)
SMS shows its superiority when compared with methods

integrated with one nonfunctional social factor (+Pop, +Act
and +Decay), which caused by the contributions made by
multiple social factors.

Second, compared with the baseline, all other methods
achieve better performances based on all the three metrics,
which shows the superiority of the incorporation of social
information collected from Twitter (list data, follower num-
ber, tweet number). Obviously, different social information
and different combination strategies provide distinguished
improvements for API search performance.

Third, Uniform performs not well as those methods
integrated with one social factor (+Pop, +Act and +Decay).
The possible reason is the inappropriate weight assignment
for lists based semantic information and each nonfunctional
social factor. It indicates that the general weight setting way
does not necessarily lead satisfied result even though it
combines all the social information.

Finally, +Pop, +Act and +Decay outperform List Only in
terms of all the metrics to varying degrees, which indicates
different influences are generated when incorporating dif-
ferent social factors. Among the three methods, +Pop and
+Decay achieve similar performance. The possible reason
is that the two methods respectively leverage API follower
number and list number which have strong correction as
discussed in Section 2. +Act shows the relatively worse
performance and it illustrates that the positive affect gen-
erated by activity factor is weaker than those generated by
popularity and decay factors.

4.4.3 Influence of Social Factors and Combination Strategy
In this part, we specifically evaluate the influence of dif-
ferent social factors and different combination strategies
with respect to different amount of training queries. We
randomly select 20%, 30%, 40%, 50%, 60% and 70% of
the predefined queries as training queries. In order to di-
rectly demonstrate the effectiveness of our proposed weight
learning algorithm, we add the following methods in this
evaluation:

• WL+P: We use the weight learning algorithm for
integrating the semantic similarity with popularity
factor.

• WL+A: We use the weight learning algorithm for in-
tegrating the semantic similarity with activity factor.

• WL+D: We use the weight learning algorithm for
integrating the semantic similarity with decay factor.

Fig.6 reports the API discovery performance when different
social factors and different combination strategies for two
factors are utilized in terms of P@10, nDCG@10 and AR@10.
We can draw some observations from Fig.6.

In terms of P@10 and nDCG@10, WL+P (+A, +D) ob-
viously achieves the best performance compared with List
Only and +Pop (+Act, +Decay), which demonstrates that
the weights learned by the proposed algorithm can more ef-
fectively combine lists based semantic information and one
of the social factors. Though the methods simply multiply
semantic similarity (SF 1(q, si)) with single nonfunctional
social factor (SF k(si)(2 ≤ k ≤ 4)) underperform in a bit,
they still make great progress compared to List Only.

In terms of AR@10, we do not consider the performance
of methods incorporating activity factor since they contain
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Fig. 5. Comparison of API Search Methods in terms of P@k, nDCG@k, and AR@k (the bar in red indicates method with the best performance)

hardly any popularity information. Both of WL+P (+D) and
+Pop (+Decay) outperform List Only. However, +Pop and
+Decay performs better than WL+P and WL+D, which is
quite different with P@10 and nDCG@10 based results. It
probably caused by the weakening of popularity factor as
the weight training algorithm may assign larger weight for
semantic information.

From Fig.6 (a)-(c), according to the blank spaces between
broken lines of List Only and WL+P (+A, +D), it can be eas-
ily found that the popularity factor makes more significant
influence to search result in terms of P@10 compared to the
other social factors. The same conclusions could be drawn
based on nDCG@10 and AR@10 by the rest figures.

There exist some apparent drops of performance on
P@10 and nDCG@10 with the increase of percentage of train-
ing queries , especially when the training queries changes
from 60% to 70%. The possible reason is that the number of
queries for testing are reduced and the proportion of queries

which is inherently hard to find relevant APIs increases.

5 CASE STUDY

This section illustrates retrieval cases for two queries: athlete
and school, in order to better understand the distinction
of the baseline method PW and the proposed SMS that
leverages multiple social media information. For the two
queries, Table 4 reveals the comparison between the top 5
results respectively generated by PW and SMS, along with
the description, category and provider rank.

As showed in Table 4, the top 5 APIs returned for
query athlete by PW method come from various categories,
of which only the first API called Athlinks matches with
the topic of athlete. Since PW method extracts description
information offered by API providers, the semantics can be
discovered is limited. In contrast, 80% of the top 5 APIs
returned by SMS are consistent with the category of athlete
and the extracts from description, such as “running events”,
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Fig. 6. Influence of Different Social Factors and Different Combination Strategies

“learn from route” and “fitness”, show the reasonableness of
results. It is lead by the collective knowledge of crowds
inferred from Twitter lists and its optimal integration with
nonfunctional social factors. For query school, the search
result is similar with the case of query athlete. All of the top
5 APIs of SMS are related to the given query while only one
of top 5 APIs returned by PW method belongs to Education
category.

Furthermore, the provider rank in SMS is overall higher
than that in PW method, which indicates that the incorpo-
ration of social factors improves the popularity of returned
APIs.

6 RELATED WORK

Research in the fields of service discovery has been widely
published in recent years, specially including service rec-
ommendation, ranking and searching, which is the main

work in this paper. In this section, we summarize them into
several categories based on the methods they employ.

Semantic-based approaches: This kind of methods gener-
ally consider the semantic relevance of services. Wu et al. [1]
[17] proposed a clustering approach utilizing both semantics
mined from WSDL documents and tags to improve service
search. Lee et al. [2] showed how to syntactically define and
semantically describe the characteristics of APIs and how to
use these descriptions to easily search and composite APIs.
Chan et al. [18] proposed a practical approach to help users
find usages of APIs given only simple text phrases, starting
with a greedy subgraph search algorithm which returned a
connected subgraph containing nodes with high semantic
similarity to the query phrases. In [19], Dojchinovski et al.
presented a semantics based model of a Web API directory
graph that captured relationships among APIs, mashups,
developers, and categories, based on which, a novel API
selection method were proposed to allow users to get more
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TABLE 4
Top 5 results by PW and SMS for two queries, along with API description, category and provider rank

PW SMS

API Name Extracts from Description Category Rank API Name Extracts from Description Category Rank

Query: athlete

Athlinks results of endurance races,
athlete profiles Sports 76106 Active.com

running events, tennis
tournaments high school

sports ranking data
Sports 4690

Online Courier
Quotes

Australian postage, courier
and shipping rate Shipping 7928056 TrainingPeaks training and nutrition

software, athletes and coaches Sports 28401

TrueSample validation of sample
population, survey data Social 3427166 MapMyRun Plan stride, learn from route,

share your journey Sports 12113

CoPub search and text mining,
MedLine database Science 1111535 HealthTap

online health network,
medical advice, answers to

health questions
Medical 6372

Qualtrics integrate survey functionality,
questions to ask, response Q&A 1447 Life Fitness exercise equipment, fitness,

gyms Sports 114977

Query: school

JamBase live music and concert
information Music 23514 Education.com

school data, academic
performance, student

demographics
Education 6916

A State of
Trance

radio show, plays trance and
progressive rock music Music 4421509 GreatSchools find nearby U.S. schools, see

information about school Education 10608

SecondHandSongs reference database, artists,
songs Music 282017 Schoology classroom and education

management Education 5410

Education.com
school data, academic
performance, student

demographics
Education 6916 Inside Higher

Ed
online news, job listing

provider for higher education Education 17161

SpeakerRate event organizers, attendees,
speakers Events 1125256 Edmodo social network for educators

and students Education 2957

control over their preferences and recommended APIs while
the information about their links with other objects and
preferences can be exploited.

CF-based approaches: Approaches in this category em-
ploy collaborative filtering technique which has been widely
adopted in recommender systems, for API or mashup min-
ing. Zhong et al. [20] proposed a time-aware API recom-
mendation approach for mashup creation with the combina-
tion of service evolution, collaborative filtering and content
matching. A user-group item-based collaborative filtering
method was proposed for personalized Open API recom-
mendation in clouds by [21]. Zheng et al. [22] provided a
QoS value prediction approach for service by combining the
traditional user-based and item-based collaborative filtering
methods. Users can discover suitable services according
QoS information from similar users without service invo-
cations. [23] et al. proposed a hybrid collaborative filter-
ing for service recommendation and an inverse consumer
frequency based user collaborative filtering for consumer
recommendation. Sun et al. [24] designed a new similarity
measure for similarity computation between services and
proposed a normal recovery collaborative filtering approach
to recommend services for consumers.

QoS-based approaches: QoS for Web services refers to
various nonfunctional features such as availability, response
time, throughout, and reliability. The goal of QoS-based
approach is discovering services that meet the nonfunctional
requirements of users. The service selection model proposed
by Yu et al. [5] defined multiple QoS criteria and took global
constraints into consideration. Zhang et al. [6] presented
WSExpress considering QoS characteristics of Web services
for service discovery. In [25], Xu et al. proposed reputation-

enhanced QoS-based model in which a discovery agent
facilitated QoS-based service discovery using the reputation
scores in a service matching, ranking and selection algo-
rithm. Kritikos et al. [26] analyzed all necessary require-
ments for an accurate, effective, and user-assisting QoS-
based service matchmaking and selection process.

Social Network-based approaches: Torres et al. [7] con-
structed collaboration network of APIs and proposed a API
discovery approach based on social information. In [8],
Cao et al. presented an approach to recommend mashup
services, which considered users’ interests mined from their
mashup usage history and the social network based on
relationships of mashup services, Web APIs and tags. An it-
erative approach to find APIs for building mashups was pre-
sented in [27], with the combination of semantic and social
information obtained from the built collaborative social net-
work of APIs. Xu [28] et al. proposed a social-aware service
recommendation approach that utilized multi-dimensional
social relationships among potential users, topics, mashups,
and services.

Others: We also list some work about service discovery
not involved by those types above. Different with these
service (API and mashup) recommendation approach that
implemented in the same library, Zheng et al. [29] tried to
recommend related APIs of different libraries through min-
ing search results of Web search engines. Bianchini et al. [30]
provided a multi-perspective based API search framework
for enterprise mashup design, in which a new perspective
of the web designers’ experience is used together with
other Web API search techniques, relying on classification
features, and technical features, such as the API protocols
and data formats. In [31], Gomadam et al. proposed a
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method for searching and ranking Web APIs that adopts
document classification and faceted search, and the serviut
score is used to rank APIs based on their utilization and
popularity.

Most of these service discovery approaches exploit in-
formation that services originally contain or offered by ser-
vice providers: functional similarity (semantic information),
nonfunctional feature (QoS), or social network generated
by the collaboration or relationship among services, their
compositions and consumers. With the generally increasing
functional and nonfunctional requirements of consumers,
the performance of service discovery might be limited by
the lack of richness and diversity in existing available infor-
mation. Thus, we try to introduce social media information
to facilitate service discovery process. In [14], we proposed
a crowdsourcing based approach that leverages Twitter lists
to infer semantic information for service search. Based on
the previous work, this paper incorporates more factors of
social media and presents a weight learning algorithm to
get an optimal combination of all the social factors.

7 CONCLUSION

With the explosive growth of services, including Web ser-
vices, cloud services, APIs and mashups, discovering the ap-
propriate services for consumers is becoming an imperative
issue. It is feasible to incorporate social media information to
facilitate the quality of service discovery, since the presence
of services in social network is rapidly increasing and direct
feedback information of crowds from social network is more
valuable for the research of service discovery.

In this paper, we propose a novel framework for service
discovery called SMS, which exploits social media informa-
tion collected from Twitter. We propose different methods
to measure four social factors. For the functional social
factor, LSI model is applied to mine semantic information of
services from meta-data of lists that contains them. For the
rest three nonfunctional social factors, we use normalization
method and decay function over list number to measure
them. We present a weight learning algorithm to learn an
optimal combination of the measured social factors. The
target query-service matching function is assumed as a
linear combination of the multiple social factors. Then we
learn the optimal weight assignment based on the generated
collection of training triplets. Finally we use the learned
weights to retrieve services for a coming query.

In the experiment part, we report the evaluation results
on a real-world dataset crawled from Twitter. For evalua-
tion, 52 sample queries of 12 categories are selected. We
design a service category based binary judgment to measure
the accuracy of our proposed SMS. In addition, we adopt
an external data source about rank of service providers
to evaluate the influence of popularity mined from social
media. The evaluation results respectively demonstrate the
effectiveness of social factors and the proposed weight
learning algorithm from different aspects.

In the future, we plan to (i) explore more factors of ser-
vices from social media to further improve the performance
of service discovery; (ii) apply our framework to address
other challenging issues in service discovery, such as similar
service retrieval, service recommendation for composition.
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