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Traditional methods of quantum state characterization are impractical for systems of more than a few
qubits due to exponentially expensive postprocessing and data storage and lack robustness against
errors and noise. Here, we experimentally demonstrate self-guided quantum tomography performed on
polarization photonic qubits. The quantum state is iteratively learned by optimizing a projection
measurement without any data storage or postprocessing. We experimentally demonstrate robustness
against statistical noise and measurement errors on single-qubit and entangled two-qubit states.
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Quantum technologies require high-fidelity preparation,
control, and characterization of quantum states, for appli-
cation in quantum metrology [1], simulators [2], and
computers [3]. Recent advances in the control of several
qubits have enabled demonstrations of quantum error
correction [4] and boson sampling [5,6]. Standard quantum
tomography (SQT) has been the cornerstone of quantum
state characterization for decades [7–9] and requires
performing and storing data from an exponentially large
number of projection measurements. Additionally, SQT has
an exponential postprocessing cost to perform a state-
estimation inverse problem which requires, for example,
maximum likelihood estimation to avoid unphysical
results. The scaling and additional postprocessing cost
make SQT impractical for the size of quantum states being
prepared today [10,11]. The reliability of SQT for all
system sizes is limited by sensitivity to statistical noise and
experimental errors. Unless modified at additional resource
cost [12], SQT fails in the presence of measurement
errors [13].
Adaptive quantum tomography (AQT) has demonstrated

improved efficiency and precision by using state-dependent
tomographic measurements [14–20]. AQT relies on solving
an optimization problem using previous results to select the
next measurement to be performed. As a result, AQT is as
computationally expensive as SQT and likewise is sensitive
to statistical noise and experimental errors.
Self-guided quantum tomography (SGQT) is an autono-

mous, robust, and precise method for characterizing quan-
tum states [21]. Here, we demonstrate the performance and
robustness of SGQT in several one- and two-qubit experi-
ments. SGQT treats tomography as a projection measure-
ment optimization problem using an iterative stochastic
gradient ascent algorithm [22]. SGQT is therefore robust
against both statistical noise and experimental errors, does
not require the storage of exponentially large data sets, and

does not require any data postprocessing. SGQT avoids

many of the pitfalls of SQTand AQTat the small added cost
in the number of different measurement settings required.
SGQT iteratively learns the quantum state through

maximizing the expectation value of a projection meas-
urement. The algorithm is graphically illustrated in Fig. 1.
The unknown quantum state ρf is shown as a red Bloch
vector, and the current estimate of the state at iteration k is
jϕki, shown as a blue Bloch vector in Fig. 1(a). A direction
Δk is chosen stochastically, and the expectation values of
projectors jϕk � βkΔki are measured, shown as green and
purple Bloch vectors in Fig. 1(b). The expectation values
are measured as

Eðρf; jϕk � βkΔkiÞ ¼ hϕk � βkΔkjρfjϕk � βkΔki; ð1Þ

where βk ¼ ½b=ðkþ 1Þt� controls the gradient estimation
step size, with b and t as algorithm parameters. The
expectation value gradient in the direction Δk is estimated as

gk ¼
Eðρf; jϕk þ βkΔkiÞ − Eðρf; jϕk − βkΔkiÞ

2βk
: ð2Þ

Next, the estimate of the state is updated to jϕkþ1i ¼
jϕk þ αkgkΔki in the direction of the highest expectation
value, where αk ¼ ½a=ðkþ 1þ AÞs� is the step size which
decreases with iteration number k and A, a, and s are
algorithm parameters. The state jϕkþ1i is shown as a blue
Bloch vector in Fig. 1(c), and this process is repeated until
termination at a set number of iterations. The final estimate
of the state is the final projection jϕNi, where the number of
iterations N is chosen from numerical simulation and
experimental trials; however, in principle, one could predict
the necessary number of iterations from the required fidelity,
the size of the quantum system, and the level of noise. Here,
we have not implemented such a method; however, it will
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be included in future work. The algorithm parameters A, a,
b, s, and t can be asymptotically optimized off-line. The
asymptotically optimal values are s ¼ 1 and t ¼ 1=6;
however, it was often found that s ¼ 0.602 and t ¼ 0.101
performed well. In general, the other parameters we kept as
a ¼ 3, b ¼ 0.1, and A ¼ 0. The algorithm is robust against
noisy gradient estimates, and, as such, SGQT is robust
against statistical noise and measurement errors.
We experimentally demonstrate SGQT using polariza-

tion encoded photonic qubits. We generate pairs of
indistinguishable photons from a spontaneous parametric
down-conversion source [23] and prepare heralded
single-qubit and entangled two-qubit states using motor-
controlled rotating wave plates. Projection onto any one- or
two-qubit separable state is implemented using further
motor-controlled wave plates and polarizing beam splitters
(see Supplemental Material [24] for full experimental
details). We calculate the expectation value in Eq. (1) by
measuring the number of photons recorded as a proportion
of the total photon flux for a fixed integration time.
We first demonstrate the robustness of one-qubit SGQT

against statistical noise by reducing our photon count rate
such that, with the minimum integration time, we use on
average seven photons per iteration of the algorithm. In this
regime, Poissonian noise on the photon count is very high
[25]. We perform SGQT on three target states using the

minimum integration time and repeat each run ten times.
On the same target states, we perform SQTwith a range of
integration times to control the total number of photons
used, repeating each measurement ten times.
In order to benchmark our results, we obtain a high-

precision estimate of the target state using SQTwith a high
count rate and long integration time to reduce Poissonian
noise. The total photon count is ∼2 × 105, and we calculate
an expected precision of 99.9%� 0.1%. To benchmark the
performance of SGQT and SQT with a low photon count
rate, we calculated the fidelity to this high-precision
estimate [26]. We emphasize that we do not expect to
see optimal convergence in the fidelity to the benchmark
state, since our estimate is converging toward the true
physical state.
Figure 2(a) shows the route of one SGQT run for each

target state plotted on the Bloch sphere. We set the starting
estimate to be j0i, but this can be any state. Figure 2(b)
shows a log-log plot with the fidelity of SGQT and SQT
against the number of photons used. The red, green, and
purple points are the average fidelity of SGQT for each target
state. The red line is the average fidelity across all target
states, and the band gives one standard deviation of error.
The blue dots are the average fidelity of SQTacross all target
states. SQT on one qubit requires four measurements, and
therefore a minimum of 28 photons are used. For all points,
SGQT records a greater fidelity than SQT, demonstrating
enhanced robustness against high levels of statistical noise.
At the final iteration after ∼280 photons have been used,
SGQT achieves a fidelity of 99.3%� 0.2%, whereas SQT
records a fidelity of 96.7%� 0.6%. To reach the same
fidelity, SQT requires an order of magnitude more photons.
Figure 2(c) shows a table comparing fidelity against number
of photons used for SGQT and SQT. In a high noise regime,
this result demonstrates that SGQT is far more resource
efficient than SQT.
To compare robustness against one-qubit measurement

errors, we perform SGQT and SQT in a regime where we
have a large uncertainty in the projection measurement. We
engineer this level of uncertainty by applying random
errors to the wave plate settings. SQT and AQT require
high precision of each projection measurement setting,
whereas SGQT is robust against independent measurement
errors. We apply four levels of wave plate uncertainty,
perform SGQT and SQT ten times each, and measure the
average fidelities, again benchmarked against long inte-
gration SQT without applied errors.
Figure 3 presents the average fidelity of SGQT and SQT

for each level of error. The results show that SGQT outper-
forms SQT after only ∼10 iterations, and after 40 iterations
the infidelity [1-fidelity (F)] of SGQT is up to 89% lower
than SQT, calculated as ½ðFSGQT − FSQTÞ=ð1 − FSQTÞ�, and
will continue to decrease as numerically studied in Ref. [21].
These results demonstrate the robustness of SGQT to
significant measurement errors. For this demonstration,
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FIG. 1. (a) The unknown quantum state that we want to
characterize is shown as a red Bloch vector, and the current
estimation is shown as a blue Bloch vector. (b) The algorithm
estimates the gradient in a stochastically chosen direction by
performing expectation value measurements with the green and
purple projectors. (c) The algorithm steps in the direction of the
highest expectation value, and the current estimate of the state is
updated. (d)–(f) The gradient is estimated again and the process
repeated for a set number of iterations.
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we reduce statistical noise by increasing the photon count
rate to ∼5 × 103 per iteration; however, in the presence of
both significant statistical noise and measurement errors,
SGQT will still converge with high fidelity.
Extending SGQT to a greater number of qubits simply

requires a parametrization of the projection measurement,
which the algorithm can optimize to find the maximum
overlap with the physical state. In order to be universal, the
algorithm requires any projection measurement, including
entangling measurements, to estimate the gradient from
Eqs. (1) and (2) [21]. We next demonstrate the performance

and robustness of SGQT to characterize a two-qubit
entangled state. However, in this experiment we use only
local measurements which are available in our setup, and,
therefore, we cannot use the expectation value calculated in
Eq. (1) to estimate the gradient. Instead, we perform a
subset of Pauli measurement M at each iteration of the
algorithm, which is insufficient for SQT but gives partial
knowledge of the target state ρf from which we calculate
the fidelity to the current estimate of the state jΦki as

~Fðρf; jΦkiÞ ¼
1

jMj
X

i∈fMg

TrðρfPð2Þ
i Þ

hΦkjPð2Þ
i jΦki

; ð3Þ

where jMj is the number of Pauli measurements per
iteration and Pð2Þ ¼fσI⊗σI;σI⊗σX;σI⊗σY;…;σZ⊗σZg
are the two-qubit Pauli matrices [27,28]. ~Fðρf; ·Þ replaces
Eðρf; ·Þ in Eq. (2) to estimate the gradient. In this context,
existing AQT techniques would select measurements based
on the solution of an optimization problem, whereas SGQT
selects a random set of measurements at each iteration and
is thus much more computationally efficient.
We experimentally demonstrate SGQT on a two-qubit

maximally entangled Bell state jΨ−i ¼ 1=
ffiffiffi
2

p ðj01i − j10iÞ.
We run the algorithm taking a random subset of Pauli
measurements per iteration. Figure 4 presents the results of

FIG. 2. We perform SGQT in a regime where only seven
photons on average are used per iteration of the algorithm. (a) A
single SGQT route for each target state is plotted on the Bloch
sphere. (b) The red, green, and purple points show the average
fidelity of SGQT for each target state. The red line shows the
average fidelity across all target states. The blue points show the
average fidelity of SQT across all target states for different total
photon counts. (c) The table compares the fidelity of SGQTwith
∼280 photons to SQT with ∼280, ∼3.9 × 103 and ∼2 × 105

photons used.

(b)

(a)

FIG. 3. (a) Fidelity of SGQT with varying levels of exper-
imental error. Points are the average of ten repetitions, and the
band gives one standard deviation of error. SQT is performed
with the same levels of experimental error, repeated ten times, and
the fidelities shown as solid lines. (b) Table comparing the fidelity
values for SQT after ten repetitions (40 measurements) and
SGQT after 40 iterations.
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the algorithm. Figures 4(a)–4(e) show the state estimate
throughout the algorithm using eight measurements per
iteration, presented as Pauli measurement expectation
values. Figure 4(f) shows the target state as measured with
long integration SQT, and the fidelity to the final SGQT
estimate is 99.6%� 0.2%. Figure 4(g) presents the fidelity
of SGQT against the iteration number for a range of
measurements per iteration. It is clear that with eight,
six, and four measurements per iteration (red, blue, and
green lines, respectively) the algorithm converges with
high fidelity after 100 iterations; however, with two Pauli
measurements per iteration the algorithm appears not to
converge, which could be a result of an insufficient number
of iterations or insufficient fidelity precision from Eq. (3).
Figure 4(j) presents the final fidelities.
We demonstrate the robustness of two-qubit SGQT

against statistical noise by again reducing the photon count
rate to a regime where on average seven photons are used
per measurement. We also perform SQT using an equiv-
alent total number of photons to allow direct resource
comparison. Figure 4(h) presents the fidelity of SGQT
where eight measurements are used per iteration and SQT
using the same total number of photons. SGQT achieves
68% lower infidelity than SQT, which again requires
around an order of magnitude more photons to achieve
the same level of fidelity. The fidelity values are presented

in Fig. 4(k), demonstrating enhanced robustness of two-
qubit SGQT while using only local measurements.
We finally investigate the robustness against measure-

ment errors on two-qubit SGQT by applying wave plate
uncertainty. With the same four levels of error as the one-
qubit case, we perform SGQT and SQT on the entangled
Bell state. Figure 4(i) presents the fidelity of SGQT against
the iteration number with the experimental error applied.
SQT is repeated with the same total number of measure-
ments and the results averaged. The SQT fidelities are
plotted in Fig. 4(i) as horizontal lines for each level of error.
Using the same total number of measurements, SGQT
achieves up to a 92% lower infidelity than SQT, presented
in Fig. 4(l).
We have demonstrated the advantages of SGQT over

standard techniques for characterizing quantum states in a
range of one- and two-qubit experiments. In experiments
where there is a high level of noise or large experimental
error, SGQT is shown to achieve higher fidelity than with
SQT measurements alone on both single-qubit and two-
qubit entangled states. This method requires only local
projection measurements; however, if entangling projec-
tions are available, then the original form of the algorithm
can be used. In our implementation, the algorithm finds the
pure state with the greatest overlap to the physical state. In
the single-qubit case, the purity can be calculated by
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FIG. 4. We perform SGQTon two-qubit states by taking a random subset of Pauli measurements at each iteration. We present the state
in terms of Pauli measurement expectation values, where element i, j ¼ 1

4
hΦkjPð1Þ

i ⊗ Pð1Þ
j jΦki and Pð1Þ ¼ fσI ; σX; σY; σZg are the one-

qubit Pauli matrices. (a)–(e) The estimate of the state at different points of the algorithm run with eight measurements per iteration. The
fidelity is measured against high-precision SQT. (f) The high-precision estimate of the state measured with SQT using a long integration
time to reduce statistical noise. (g) The algorithm was run with eight, six, four, and two measurements per iteration, and the fidelity of the
state estimate is plotted. The table below compares fidelities. (h) We compare performance of SGQT and SQT in the presence of high
levels of statistical noise and measure the fidelity against the number of photons used. (i) We engineer measurement errors in wave plate
rotations and measure the fidelity of SGQT and SQTwith four levels of error. We repeat SQT to match the number of measurements of
SGQT and average the results. Both (h) and (i) use eight measurements per iteration.
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comparing the photon count at the final projection to the
photon count with an orthogonal projection. While, in this
experiment, the states we prepare are highly pure and this
additional step is unnecessary to achieve high fidelity,
future work will report on extending this technique to larger
systems and demonstrate the performance of SGQT on
arbitrary mixed states.
While the cost of SGQT is still exponential with the

system size in the number of measurements, it does not
require data storage or computationally expensive post-
processing and maximum likelihood estimation to charac-
terize an unknown quantum state. This algorithm can also
be applied to state preparation and quantum device control
[29]. SGQT opens future pathways toward robust charac-
terization of quantum systems with dimensions where
standard tomographic techniques have already become
impractical.
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