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1 Introduction

The theory of time-homogenous linear scalar diffusions is elegant and classical,
with Borodin and Salminen [4], Itô and McKean [16] and Karlin and Taylor [17]
featuring as prominent references. An important object in this theory is the
infinitesimal operator of such a process. The Laplace transform of the transi-
tion density of a diffusion, as well as the Laplace transforms of its first-passage
time densities, may be expressed in terms of the fundamental solutions of the
eigenvalue problem for this operator.

Section 2 of our paper contains a brief overview of the above theory, in which
we rely heavily on the excellent account of Borodin and Salminen [4, Chap. II],
especially for style and notation. We do, however, add one new ingredient to
the presentation. This is an integral equation of convolution type, described by
Peskir [23] as a “Chapman-Kolmogorov equation of Volterra type”, that relates
the transition density of a diffusion with its first-passage time densities. By
combining this relation with the above-mentioned representations of the Laplace
transforms of the transition density and first-passage time densities, we are able to
derive a number of useful identities by purely formal algebraic manipulation. For
example, the transition densities of diffusions constructed from an original process
by killing or reflecting it at interior points of its state space are readily obtained
in this way—at least, up to Laplace transform. We also present some ancillary
identities for the Laplace transforms of expressions involving first-passage times.
A few of these originate from Davydov and Linetsky [7], but the arguments used
there are different. However, two of the identities are new, and are used later to
obtain expressions for rebate prices.

Section 3 applies the above theory to an important class of diffusions that play a
central role in this paper, namely squared Bessel processes. Although we mainly
summarize results from Borodin and Salminen [4, App. 1.23], Göing-Jaeschke
and Yor [14] and Revuz and Yor [25, Chap. XI], the section does contain a novel
derivation of the transition density of a squared Bessel process of dimension less
than two, killed at the origin. This function is apparently not very well known,
which is surprising, since it is manifestly useful. For example, in our opinion,
it yields the most direct derivations of European option prices for the constant
elasticity of variance (CEV) model of Cox [5]. One of the few places where the
transition density in question does appear is Borodin and Salminen [4, p. 136],
where it was obtained by inverting the appropriate Green’s function. Our deriva-
tion, on the other hand, requires no inversion of a Laplace transform. Instead,
we start with the previously mentioned integral equation, and proceed directly.

Section 4 is devoted to a brief exposition of the minimal market model (MMM).
This is the workhorse of the so-called benchmark approach to contingent claim
valuation, and was originally developed as a concrete model for the growth
optimal portfolio (GOP) of Kelly [18]. A salient feature of the GOP, origi-
nally observed by Long [21], is that all self-financing portfolios are local mar-
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tingales under the real-world probability measure, when denominated in units
of this portfolio. This facilitates a “real-world martingale pricing theory”, in
which the price of a claim is determined by computing the expected value of
its numéraire-denominated payoff under the real-world measure, with the GOP
chosen as numéraire. An obvious advantage of this is that it obviates the need
for heavy change-of-measure machinery, such as Girsanov’s theorem. This is not
insignificant, because although the existence of an equivalent risk-neutral proba-
bility measure is often invoked casually, the justification for such a step is some-
times quite subtle—as demonstrated in Delbaen and Shirakawa [9] and Heath and
Platen [15]—and hinges on the delicate question of whether the putative density
process is a proper martingale, or merely a local martingale. A further advantage
of the benchmark approach is enhanced modelling flexibility. This arises because
the existence of a GOP is necessary, but not sufficient, for the existence of an
equivalent risk-neutral probability measure. In particular, there are models for
which real-world pricing is consistent, even though they do not admit any equiv-
alent risk-neutral probability measures; in fact, the MMM is an example of such.
For a detailed account of the MMM, and the benchmark approach in general, the
reader is directed to Platen and Heath [24].

A crucial feature of the MMM is that it admits a representation as a scaled and
deterministically time-changed squared Bessel process of dimension four. Since
the transition densities and various other analytic properties of squared Bessel
processes are known from Section 3, we are able to obtain convenient pricing
formulae for contingent claims written on a large equity index with MMM dy-
namics. In particular, Sections 5 and 6 examine, respectively, the pricing of
rebates and barrier options whose payoffs are determined by whether or not the
index breaches an exponential barrier before expiry. The barrier we specify is
in fact proportional to the scaling factor in the above-mentioned representation,
implying that the payoffs of the claims in question are dependent upon whether
or not a squared Bessel process of dimension four hits a constant level within
a certain period. The results from Section 2 are thus applicable, allowing us to
derive expressions for the Laplace transforms of the prices of these instruments.
Actual prices are then obtained by numerical inversion of the transformed prices.

While the Laplace transform is perhaps not the most popular tool for analyzing
exotic financial derivatives, there are a number of instances of its use. Probably
the first and most widely cited of these is Geman and Yor [12], where an ex-
pression was obtained for the Laplace transform of the price of an Asian option
on a security following a geometric Brownian motion. The numerical aspects of
inverting this particular expression have been the focus of a number of studies,
including Craddock et al. [6], Fu et al. [10], Geman and Eydeland [11] and Shaw
[26, Chap. 10]. Within the same framework as above, Davydov and Linetsky [8]
also considered double-barrier step options. Once again, option pricing formulae
were derived, up to Laplace transform, and then inverted numerically. Double
barrier options on a security following a geometric Brownian motion were the sub-
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ject of Pelsser [22]. The approach there employed contour integration to perform
analytic inversion, yielding series expansions for the prices of the instruments con-
sidered. Finally, Davydov and Linetsky [7] priced rebates, lookback options and
barrier options on a security with CEV dynamics, by numerical Laplace trans-
form inversion. We acknowledge the influence of the latter article, in particular,
on our work.

The majority of the studies cited above rely on the Euler method, presented in
Abate and Whitt [1], for numerical inversion of Laplace transforms; as do we.
The attraction of this scheme is that it is relatively quick, without appearing to
compromise on accuracy. Nevertheless, one cannot be sure, since there are no
guaranteed error bounds—a drawback of all inversion algorithms. Furthermore,
Craddock et al. [6] have reported that inversion schemes, in general, appear quite
sensitive to model parameters. This apparent lack of robustness, together with
the computational effort required and the absence of error bounds, make us hesi-
tant to endorse numerical Laplace transform inversion unreservedly as a practical
technique for valuing exotic options. Ultimately, one must bear in mind that the
inversion of any unbounded linear operator is inherently an ill-posed problem.
Nevertheless, the approach undoubtedly has a role to play, even if only to com-
pare its results with those of other methods. Furthermore, modern computer
hardware has made the execution times of inversion algorithms a feasible propo-
sition.

2 Laplace Transform Identities for Diffusions

Let X = (Xt)t≥0 be a regular one-dimensional time-homogeneous diffusion pro-
cess, whose state space is an interval I ⊆ R, which is typically R, [0,∞) or (0,∞).
The local behaviour of X is expressed by its infinitesimal generator, which we
take to be a second-order linear differential operator G : Dom(G) → Cb(I), given
by

Gf(x) :=
1

2
σ2(x)f ′′(x) + µ(x)f ′(x),

for all f ∈ Dom(G) and x ∈ ◦
I, where

◦
I denotes the interior of I and Cb(I) is

the space of all bounded continuous functions on I. In the expression above,
σ(·) is the diffusion coefficient of the process, while µ(·) is its drift coefficient.
We assume that these functions are continuous on I, and that σ(x) > 0, for all
x ∈ I. The reader is directed to Borodin and Salminen [4, p. 16] for a detailed
description of the operator’s domain Dom(G) ⊆ Cb(I).

The basic characteristics of X are its speed density m(·) and scale function s(·).
These may be expressed in terms of the drift and diffusion coefficients as follows:

s(x) := exp

(
−

∫ x 2µ(ξ)

σ2(ξ)
dξ

)
and m(x) :=

2

σ2(x)s(x)
,
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for all x ∈ I. We shall denote the transition density of X with respect to its
speed measure by q(· , · , ·), so that

Px[Xt ∈ A] =

∫

A

q(t, x, y)m(y) dy,

for all t ≥ 0 and x ∈ I, and for every Borel set A ∈ B(I). In this expression
Px[ · ] denotes the probability measure under which X starts at x at time zero.

If we fix α > 0, then we may introduce the Green’s function Gα(· , ·) as the
Laplace transform, with respect to time, of the transition density of X:

Gα(x, y) := Lα{q(t, x, y)} =

∫ ∞

0

e−αtq(t, x, y) dt,

for all x, y ∈ I. The Green’s function may be factorized as follows:

Gα(x, y) =

{
w−1

α ψα(x)φα(y) if x ≤ y;

w−1
α ψα(y)φα(x) if x ≥ y.

(1)

Here ψα(·) and φα(·) are, respectively, the unique (up to a multiplicative constant)
increasing and decreasing solutions to the equation

Gu(x) = αu(x), (2)

for all x ∈ ◦
I, subject to appropriate boundary conditions at the endpoints of I.

Furthermore, the Wronskian

wα := ψ′α(x)φα(x)− ψα(x)φ′α(x)

is independent of x ∈ ◦
I.

For any z ∈ I, let
τz := inf{t > 0 : Xt = z}

be the first-passage time of X to z. We shall denote its density with respect to
Lebesgue measure by pz(· , ·), so that

Px[τz ≤ t] =

∫ t

0

pz(x, s) ds.

Suppose now that q̃z(· , · , ·) is the transition density, with respect to speed mea-
sure, of X killed at z, so that

Px[Xt ∈ A, τz > t] =

∫

A

q̃z(t, x, y)m(y) dy,

for all A ∈ B(I). Then the following fundamental relation underlies many of the
derivations in this paper:
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Lemma 2.1. Let x, y, z ∈ I and suppose that t > 0. Then

q(t, x, y) = q̃z(t, x, y) +

∫ t

0

pz(x, s)q(t− s, z, y) ds. (3)

Proof. It follows from the Markov property of X that

Px[Xt ≤ y] = Px[Xt ≤ y, τz > t] + Px[Xt ≤ y, τz ≤ t]

= Px[Xt ≤ y, τz > t] +

∫ t

0

Px[τz ∈ ds]Px[Xt ≤ y | τz = s]

= Px[Xt ≤ y, τz > t] +

∫ t

0

Px[τz ∈ ds]Pz[Xt−s ≤ y | τz = s].

Now differentiate with respect to y and divide through by m(y).

Note that if t > 0 and x ≤ z ≤ y or x ≥ z ≥ y, then q̃z(t, x, y) = 0. In that case
the convolution property of Laplace transforms gives

Lα{q(t, x, y)} = Lα{pz(x, t)}Lα{q(t, z, y)},
from which it follows that

Ex[e
−ατz ] = Lα{pz(x, t)} =

Gα(x, y)

Gα(z, y)
=

{
ψα(x)
ψα(z)

if x ≤ z;
φα(x)
φα(z)

if x ≥ z.
(4)

This well-known formula is derived using a different argument in Itô and McKean
[16, p. 128]. Using standard identities for Laplace transforms, we obtain the
following useful expressions from (4):

Proposition 2.2. Fix α > 0 and let t ≥ 0 and x, z ∈ I. Then

Lα{Px[τz ≤ t]} =

{
1
α

ψα(x)
ψα(z)

if x ≤ z;
1
α

φα(x)
φα(z)

if x ≥ z,
(5)

and

Lα

{
Ex

[
I{τz≤t}e

−βτz
]}

=

{
1
α

ψα+β(x)

ψα+β(z)
if x ≤ z;

1
α

φα+β(x)

φα+β(z)
if x ≥ z,

(6)

for all β > 0. Furthermore,

Ex[(γ + λτz)
−ρ] =

{
1

Γ(ρ)
Lγ

{
sρ−1 ψλs(x)

ψλs(z)

}
if x ≤ z;

1
Γ(ρ)

Lγ

{
sρ−1 φλs(x)

φλs(z)

}
if x ≥ z,

(7)

and

Lα

{
Ex

[
I{τz≤t}(γ + λτz)

−ρ
]}

=

{
1

αΓ(ρ)
Lγ

{
sρ−1 ψα+λs(x)

ψα+λs(z)

}
if x ≤ z;

1
αΓ(ρ)

Lγ

{
sρ−1 φα+λs(x)

φα+λs(z)

}
if x ≥ z,

(8)

for all γ, λ, ρ > 0.
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In order to interpret the above expressions, note that the Laplace transforms on
the left-hand sides of the (5), (6) and (8) are of the form Lα{f(t)} = f̂(α), while
the Laplace transforms on the right-hand sides of (7) and (8) are of the form
Lγ{f(s)} = f̂(γ).

Proof. Equation (5) follows from

Lα{Px[τz ≤ t]} = Lα

{∫ t

0

pz(x, s) ds

}
=

1

α
Lα{pz(x, t)}.

To verify (6), note that

Lα

{
Ex

[
I{τz≤t}e

−βτz
]}

= Lα

{∫ t

0

e−βspz(x, s) ds

}
=

1

α
Lα

{
e−βtpz(x, t)

}

=
1

α
Lα+β{pz(x, t)},

for all β > 0. Now let γ, λ, ρ > 0, and note that

∫ ∞

0

sρ−1e−(γ+λt)s ds =
Γ(ρ)

(γ + λt)ρ
, (9)

where Γ(·) denotes the standard gamma function [see 2, Chap. 6]. Then (7)
follows from

Ex

[
(γ + λτz)

−ρ
]

=

∫ ∞

0

pz(x, t)

(γ + λt)ρ
dt =

∫ ∞

0

pz(x, t)
1

Γ(ρ)

∫ ∞

0

sρ−1e−(γ+λt)s ds dt

=
1

Γ(ρ)

∫ ∞

0

e−γssρ−1

∫ ∞

0

e−λstpz(x, t) dt ds =
1

Γ(ρ)
Lγ

{
sρ−1Lλs{pz(x, t)}}.

A similar argument, using (9) again, gives

Lα

{
Ex

[
I{τz≤t}(γ + λτz)

−ρ
]}

= Lα

{∫ t

0

pz(x, s)

(γ + λs)ρ
ds

}
=

1

α
Lα

{ pz(x, t)

(γ + λt)ρ

}

=
1

α

∫ ∞

0

e−αt pz(x, t)

(γ + λt)ρ
dt =

1

α

∫ ∞

0

e−αtpz(x, t)
1

Γ(ρ)

∫ ∞

0

sρ−1e−(γ+λt)s ds dt

=
1

αΓ(ρ)

∫ ∞

0

e−γssρ−1

∫ ∞

0

e−(α+λs)tpz(x, t) dt ds

=
1

αΓ(ρ)
Lγ

{
sρ−1Lα+λs{pz(x, t)}},

which leads to (8).

We note that (6) was obtained by Davydov and Linetsky [7, Prop. 2] by an appli-
cation of Fubini’s theorem. Also, (7) and (8) may be regarded as instances of the
representation of generalized Stieltjes transforms as iterated Laplace transforms.
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Next, suppose that t > 0 and either x, y ≤ z or x, y ≥ z. Combining (3) with (4)
then yields

G̃z
α(x, y) := Lα{q̃z(t, x, y)} = Lα{q(t, x, y)} −Lα{pz(x, t)}Lα{q(t, z, y)}

=

{
Gα(x, y)− ψα(x)

ψα(z)
Gα(z, y) if x, y ≤ z;

Gα(x, y)− φα(x)
φα(z)

Gα(z, y) if x, y ≥ z

=





w−1
α ψα(x)

(
φα(y)− φα(z)

ψα(z)
ψα(y)

)
if x ≤ y ≤ z;

w−1
α ψα(y)

(
φα(x)− φα(z)

ψα(z)
ψα(x)

)
if y ≤ x ≤ z;

w−1
α

(
ψα(x)− ψα(z)

φα(z)
φα(x)

)
φα(y) if y ≥ x ≥ z;

w−1
α

(
ψα(y)− ψα(z)

φα(z)
φα(y)

)
φα(x) if x ≥ y ≥ z.

(10)

We have thus established the following result:

Lemma 2.3. The fundamental increasing and decreasing solutions to (2) corre-
sponding to a lower killing boundary for X at a ∈ I are

ψ̃a
α(x) := ψα(x)− ψα(a)

φα(a)
φα(x) and φ̃a

α(x) := φα(x), (11)

respectively, for all x ∈ I ∩ [a,∞). The fundamental increasing and decreasing
solutions to (2) corresponding to an upper killing boundary for X at b ∈ I are

ψ̃b
α(x) := ψα(x) and φ̃b

α(x) := φα(x)− φα(b)

ψα(b)
ψα(x), (12)

respectively, for all x ∈ I ∩ (−∞, b]. Finally, if the process is killed upon reaching
either boundary, where a < b, then the relevant solutions to (2) are ψ̃a,b

α (·) := ψ̃a
α(·)

and φ̃a,b
α (·) := φ̃b

α(·). In each case the Laplace transform of the transition density
of the killed diffusion is given by (1), with the appropriate functions replacing
ψα(·) and φα(·).

As an immediate consequence of the above lemma, we can now extend (4) as
follows (see Davydov and Linetsky [7, Prop. 1] for an alternative proof):

Proposition 2.4. Suppose a, b ∈ I satisfy a < b. Then

Ex

[
I{τa<τb}e

−ατa
]

=





ψα(x)
ψα(a)

if x ≤ a;
φα(x)ψα(b)−ψα(x)φα(b)
φα(a)ψα(b)−ψα(a)φα(b)

if a ≤ x ≤ b;

0 if x ≥ b,

(13)

Ex

[
I{τa>τb}e

−ατb
]

=





0 if x ≤ a;
φα(a)ψα(x)−ψα(a)φα(x)
φα(a)ψα(b)−ψα(a)φα(b)

if a ≤ x ≤ b;
φα(x)
φα(b)

if x ≥ b,

(14)
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and

Ex

[
e−α(τa∧τb)

]
=





ψα(x)
ψα(a)

if x ≤ a;
φα(x)(ψα(b)−ψα(a))−ψα(x)(φα(b)−φα(a))

φα(a)ψα(b)−ψα(a)φα(b)
if a ≤ x ≤ b;

φα(x)
φα(b)

if x ≥ b,

(15)

for all x ∈ I.

Proof. To derive (13), let x ∈ I. The case when x ≥ b is obvious, so assume that
x < b. Notice that τ̃ b

a := I{τa<τb}τa + I{τa>τb}∞ is the first-passage time to a for
the diffusion which is killed at b. Thus

Ex

[
I{τa<τb}e

−ατa
]

= Ex

[
e−ατ̃b

a

]
=





ψ̃b
α(x)

ψ̃b
α(a)

if x ≤ a;

φ̃b
α(x)

φ̃b
α(a)

if x ≤ a,

according to (4). The result follows by substituting (12) into the expressions
above. The derivation of (14) is similar, while (15) follows by adding (13) and
(14).

We end this section by analyzing reflecting boundaries. Let q̂z(· , · , ·) denote the
transition density (with respect to speed measure) of X, with reflection at z ∈ I.
Since the reflected diffusion is still a Markov process, the same argument as in
Lemma 2.1 gives

q̂z(t, x, y) = q̃z(t, x, y) +

∫ t

0

pz(x, s)q̂z(t− s, z, y) ds, (16)

for all x, y ∈ I with x, y ≤ z or x, y ≥ z, and all t > 0. The reflecting boundary
condition may be expressed as ∂

∂x
q̂z(t, x, y)

∣∣
x=z

= 0 [see e.g. 17, p. 332], and so
we obtain the following result from (16), by computing Laplace transforms and
differentiating, before applying (4) and (10):

Lα{q̂z(t, z, y)} = −
∂
∂x

Lα{q̃z(t, x, y)}
∣∣
x=z

∂
∂x

Lα{pz(x, t)}
∣∣
x=z

=





w−1
α ψα(y)

(
φα(z)− φ′α(z)

ψ′α(z)
ψα(z)

)
if y ≤ z;

w−1
α

(
ψα(z)− ψ′α(z)

φ′α(z)
φα(z)

)
φα(y) if y ≥ z.
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Combining the above with (16) yields

Ĝz
α(x, y) := Lα{q̂z(t, x, y)} = Lα{q̃z(t, x, y)}+ Lα{pz(x, t)}Lα{q̂z(t, z, y)}

=





G̃z
α(x, y)− w−1

α ψα(y)
(
φα(z)− φ′α(z)

ψ′α(z)
ψα(z)

)
ψα(x)
ψα(z)

if x, y ≤ z;

G̃z
α(x, y)− w−1

α

(
ψα(z)− ψ′α(z)

φ′α(z)
φα(z)

)
φα(y)φα(x)

φα(z)
if x, y ≥ z

=





w−1
α ψα(x)

(
φα(y)− φ′α(z)

ψ′α(z)
ψα(y)

)
if x ≤ y ≤ z;

w−1
α ψα(y)

(
φα(x)− φ′α(z)

ψ′α(z)
ψα(x)

)
if y ≤ x ≤ z;

w−1
α

(
ψα(x)− ψ′α(z)

φ′α(z)
φα(x)

)
φα(y) if y ≥ x ≥ z;

w−1
α

(
ψα(y)− ψ′α(z)

φ′α(z)
φα(y)

)
φα(x) if x ≥ y ≥ z.

We may express this formally as follows:

Lemma 2.5. The fundamental increasing and decreasing solutions to (2) corre-
sponding to a lower reflecting boundary for X at a ∈ I are

ψ̂a
α(x) := ψα(x)− ψ′α(a)

φ′α(a)
φα(x) and φ̂a

α(x) := φα(x),

respectively, for all x ∈ I ∩ [a,∞). The fundamental increasing and decreasing
solutions to (2) corresponding to an upper reflecting boundary for X at b ∈ I are

ψ̂b
α(x) := ψα(x) and φ̂b

α(x) := φα(x)− φ′α(b)

ψ′α(b)
ψα(x),

respectively, for all x ∈ I ∩ (−∞, b]. Finally, if the process is reflected at either
boundary, where a < b, then the relevant solutions to (2) are ψ̂a,b

α (·) := ψ̂a
α(·) and

φ̂a,b
α (·) := φ̂b

α(·). In each case the Laplace transform of the transition density of
the reflected diffusion is given by (1), with the appropriate functions replacing
ψα(·) and φα(·).

It should be noted that the results of Lemma 2.3 and Lemma 2.5 can be obtained
by inspection. This is because the boundary behaviour of the diffusion determines
the boundary conditions that must be imposed on the fundamental solutions of
(2). Since the monotone increasing and decreasing solutions that satisfy these
boundary conditions will be unique (up to a multiplicative constant), we have
enough information to identify them [see 4, pp. 18–19].

3 Squared Bessel Processes

Suppose now that X = (Xt)t≥0 is a squared Bessel process of dimension δ ∈ R
[see 14, 25]. For any x ∈ I, this process is a strong solution of the following
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stochastic differential equation (SDE) under Px[ · ]:

Xt = x + δt + 2

∫ t

0

√
Xs dWs,

for all t ≥ 0, where W = (Wt)t≥0 is a standard Brownian motion. Its infinitesimal
generator is given by

Gf(x) := 2xf ′′(x) + δf ′(x),

for all suitable functions f(·) and all x ∈ I, while its scale function and speed
measure are given by

s(x) :=

{
2

2−δ
x

2−δ
2 if δ 6= 2;

ln x if δ = 2
and m(x) :=

1

2
x

δ−2
2 , (17)

respectively, for all x ∈ I.

Feller’s test indicates that this process has a natural boundary at infinity, and a
boundary at the origin which is absorbing if δ ≤ 0; natural if δ ≥ 2; and regular
if 0 < δ < 2. In the latter case, the behaviour of X at zero must be specified:
if the origin is a killing boundary, then I = (0,∞); while I = [0,∞) if it is a
reflecting boundary. The following fundamental solutions to (2) are provided by
Borodin and Salminen [4, p. 135]:

ψα(x) =

{
x

2−δ
4 I δ−2

2

(√
2αx

)
if δ ≥ 2 or 0 < δ < 2 and 0 is reflecting;

x
2−δ
4 I 2−δ

2

(√
2αx

)
if δ ≤ 0 or 0 < δ < 2 and 0 is killing,

(18)

and

φα(x) = x
2−δ
4 K δ−2

2

(√
2αx

)
, (19)

for all α > 0 and x ≥ 0. Here Iν(·) and Kν(·) denote the modified Bessel functions,
with index ν, of the first and second kinds, respectively [see 2, Chap. 9]. The
associated Wronskian is wα = 1/2.

The recognized authority on squared Bessel processes is Revuz and Yor [25,
Chap. XI], where reflection at zero is the default boundary condition, for all
dimensions 0 < δ < 2. In this case one obtains the following transition density
(with respect to speed measure), for all δ > 0:

q(t, x, y) =





1
t
(xy)

2−δ
4 e−

x+y
2t I δ−2

2

(√
xy

t

)
if x > 0;

2
(2t)δ/2Γ(δ/2)

e−
y
2t if x = 0,

(20)

for all t > 0 and x, y ≥ 0. In the case when 0 < δ < 2, Borodin and Salminen
[4, p. 136] found the transition density of the squared Bessel process killed at
the origin, by Laplace transform inversion of the appropriate Green’s function.
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However, Göing-Jaeschke and Yor [14] derived the following explicit density for
the first-passage time to zero of X, when δ < 2:

p0(x, t) =
1

tΓ
(

2−δ
2

)
( x

2t

) 2−δ
2

e−
x
2t , (21)

for all t > 0 and x ≥ 0. Combining this with (20), we can derive the above-
mentioned transition density, with killing at the origin, directly from (3), without
the need to invert a Laplace transform. We start with a technical lemma, ex-
pressing the modified Bessel function of the second kind as an indefinite integral:

Lemma 3.1. Let ν ∈ R be arbitrary. Then

Kν(z) =
1

2

∫ ∞

0

tν−1e−
1
2
(t+1/t)z dt, (22)

for all z ∈ C with <z > 0.

Proof. Starting with an identity for Kν(z) found in Lebedev [19, p. 119], we
obtain

Kν(z) =

∫ ∞

0

e−z cosh u cosh νu du

=
1

2

∫ ∞

0

e−z cosh ueνu du

︸ ︷︷ ︸
I1

+
1

2

∫ ∞

0

e−z cosh ue−νu du

︸ ︷︷ ︸
I2

These integrals are evaluated as follows:

I1 =

∫ ∞

1

tν−1e−
1
2
(t+1/t)z dt and I2 =

∫ 1

0

tν−1e−
1
2
(t+1/t)z dt,

with the help of the respective substitutions eu 7→ t and e−u 7→ t.

Proposition 3.2. The transition density (with respect to speed measure) of the
squared Bessel process of dimension 0 < δ < 2, killed at the origin, is given by

q̃0(t, x, y) =
1

t
(xy)

2−δ
4 e−

x+y
2t I 2−δ

2

(√
xy

t

)
, (23)

for all t > 0 and x, y ≥ 0.

Proof. It follows from (3), (20) and (21) that

q(t, x, y)− q̃0(t, x, y) =

∫ t

0

p0(x, s)q(t− s, 0, y) ds

=
4

Γ(δ/2)Γ
(

2−δ
2

)x
2−δ
2

∫ t

0

e−
x
2s
− y

2(t−s)

(2s)
4−δ
2

(
2(t− s)

)δ/2
ds

=
4

π
sin

(δ

2
π
)
x

2−δ
2

∫ t

0

e−
x
2s
− y

2(t−s)

(2s)
4−δ
2

(
2(t− s)

)δ/2
ds.
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For the final equality above, we use the reflection formula Γ(z)Γ(1 − z) = π
sin πz

,
which holds for all z ∈ C \ Z [see e.g. 19, p. 3]. Continuing, with the aid of the
transformation (t/s− 1)

√
x/y 7→ ζ, we obtain

q(t, x, y)− q̃0(t, x, y) =
1

π
sin

(δ

2
π
)1

t
(xy)

2−δ
4 e−

x+y
2t

∫ ∞

0

e−
1
2
(ζ+1/ζ)

√
xy

t

ζδ/2
dζ

=
2

π
sin

(δ

2
π
)1

t
(xy)

2−δ
4 e−

x+y
2t K 2−δ

2

(√
xy

t

)
,

from (22). Using the relation Kν(z) = π
2

I−ν(z)−Iν(z)
sin νπ

, which holds if | arg z| < π
and ν /∈ Z [see e.g. 19, p. 108], and bearing in mind that sin 2−δ

2
π = sin δ

2
π, we

finally get

q(t, x, y)− q̃0(t, x, y) =
1

t
(xy)

2−δ
4 e−

x+y
2t

[
I δ−2

2

(√
xy

t

)
− I 2−δ

2

(√
xy

t

)]
.

The desired result follows by subtracting (20) from both sides of this equation.

4 The Minimal Market Model

Let Pt,S[ · ] denote the probability measure under which a global diversified equity
index S∗ = (S∗t+u)u≥0 starts at time t ≥ 0 with value S > 0; we shall on occasion
refer to it as the real-world measure. The dynamics of the index under this
measure are expressed by the following SDE:

S∗t+u = S +

∫ u

0

(
r + ϑ2(t + v, S∗t+v)

)
S∗t+v dv +

∫ u

0

ϑ(t + v, S∗t+v)S
∗
t+v dWv, (24)

for all u ≥ 0. Here r ≥ 0 is a constant risk-free interest rate, while W = (Wu)u≥0

is a standard Brownian motion starting at zero under Pt,S[ · ]. Furthermore, ϑ(· , ·)
is a local volatility function, given by

ϑ(t, S) :=

√
αe(r+η)t

S
, (25)

for all t ≥ 0 and S > 0, where α, η > 0 are fixed parameters.

Together, (24) and (25) constitute a model for a global diversified portfolio, called
the minimal market model (MMM). Among its attractive features, it captures the
observed inverse relationship between price and volatility, dubbed the “leverage
effect” by [3]. It is also relatively parsimonious, with only two free parameters.
We must stress that the MMM is intended as a description of the observable real-
world behaviour of the index—in contradistinction to most literature on stochastic
finance, we are not concerned with risk-neutral dynamics. A detailed study of the
model is presented in Platen and Heath [24, Chap. 13]. We should point out that
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what we have described here is in fact a slightly simplified version of the general
model, referred to as the “stylized” version by Platen and Heath [24, Sec. 13.2].
In general, (24) may contain a third parameter, describing risk aversion.

For any t ≥ 0 and S > 0, let X = (Xu)u≥0 henceforth be a squared Bessel process
of dimension four, starting at e−rtS under Pt,S[ · ]. Using Itô’s formula, we obtain
the following representation for S∗ under this probability measure:

S∗t+u

(d)
= er(t+u)Xϕt(u), (26)

for all u ≥ 0. Here ϕt(·) is a deterministic time transform, given by

ϕt(u) :=
α

4η
eηt(eηu − 1), (27)

for all u ≥ 0. The importance of (26) lies in the fact that the transition density
(20) of X is known explicitly. Consequently, algebraic expressions can often be
derived for the expected values of functionals of S∗. This is particularly relevant
for obtaining pricing formulae for contingent claims written on the index.

In addition to the index, we assume that the market also contains a risk-free
savings account. Under the probability measure Pt,S[ · ], with t ≥ 0 and S > 0,
this is a deterministic process B = (Bt+u)u≥0, given by Bt+u := er(t+u), for all
u ≥ 0. Although the MMM does not admit an equivalent risk-neutral probability
measure [see 24, pp. 499–500], it is nevertheless the case that S∗ is a numéraire
for Pt,S[ · ], in the sense that all self-financing portfolios comprising B and S∗ are
Pt,S[ · ]-local martingales, when denominated in units of S∗ [see e.g. 13]. This has
two important consequences: firstly, it means that the MMM is free of economi-
cally meaningful arbitrage opportunities [see 20, 24, p. 376]; secondly, it paves the
way for a martingale approach to contingent claim pricing under Pt,S[ · ], called
“real-world pricing” [see 24, pp. 325–326].

To understand contingent claim pricing with the MMM, let FW = (FW
u )u≥0

denote the filtration generated by the Brownian motion W , suppose that τ is
an FW -stopping time, and let h(·) be an appropriate Borel-measurable payoff
function. The real-world price at time t ≥ 0 of the claim h(S∗t+τ ) ∈ L1(FW

τ ),
maturing at time t + τ , is then given by

V h(t, S) := S Et,S

[
I{τ<∞}

h(S∗t+τ )

S∗t+τ

]
, (28)

when S∗t = S > 0. It is important to remember that here Et,S[ · ] is the expected
value operator with respect to the real-world probability measure Pt,S[ · ].
Obviously, the indicator function in (28) may be omitted if τ < ∞ a.s. It may also
be dropped if h(·) is bounded, since (26) and the transience of a squared Bessel
process of dimension δ ≥ 3 [see 25, p. 442] together imply that limt→∞ S∗t = ∞
a.s. As mentioned before, (26) and (20) often allow us to derive the pricing
function V h(· , ·) explicitly.
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5 Rebates

We now consider the valuation of a rebate written on the index. This is a claim
that pays $1 as soon as the index hits a certain level, provided this occurs before
a contracted expiry date T > 0. In our case the trigger level for the rebate
is a deterministic barrier Z = (Zt)t≥0, with Zt := zert, for some z > 0. The
fact that it grows at the risk-free rate is economically quite attractive, since it
makes the price of the rebate sensitive to the performance of the index relative to
that of the savings account. This feature is particularly desirable for long-dated
instruments, due to the observed long-term growth of diversified equity portfolios.
The probability of such a portfolio reaching a predetermined fixed level in the
future becomes increasingly remote, with the passage of time.

We start by introducing the stopping times

σz,t := inf{u > 0 |S∗t+u = Zt+u} and τz := inf{u > 0 |Xu = z},

for any t ≥ 0. It then follows from (26) and (27) that

σz,t = inf{u > 0 |Xϕt(u) = z} (d)
= ϕ−1

t (τz) =
1

η
ln

(
1 +

4η

α
e−ηtτz

)
. (29)

First, we consider the valuation of a perpetual rebate, for which T = ∞. Using
(28), (29) and (7), the pricing function R∞,z(· , ·) for this instrument is given by

R∞,z(t, S) = S Et,S

[
1

S∗t+σz,t

]
=

e−rtS

z
Et,S

[
e−rσz,t

]

=
e−rtS

z
Et,S

[
e−rϕ−1

t (τz)
]

=
e−rtS

z
Et,S

[(
1 +

4η

α
e−ηtτz

)−r/η
]

=





x
z

1
Γ(r/η)

∫∞
0

e−ssr/η−1 ψ4η/αe−ηts(x)

ψ4η/αe−ηts(z)
ds if x ≤ z;

x
z

1
Γ(r/η)

∫∞
0

e−ssr/η−1 φ4η/αe−ηts(x)

φ4η/αe−ηts(z)
ds if x ≥ z,

(30)

for all t ≥ 0 and S > 0, with x := e−rtS in the final line, for convenience.

We may test the validity of the above pricing formula by examining a special case.
Suppose for a moment that σz,t = 0, implying that the rebate pays immediately
under Pt,S[ · ]. This only happens if S = Zt = zert, which in turn means that
x = z. It then follows from (30), together with the definition of the gamma
function, that R∞,z(t, S) = 1, as expected.

Computing a perpetual rebate price with (30) necessarily involves numerical
quadrature. This is not a significant obstacle to using the formula, since numerous
quick and accurate schemes exist for one-dimensional quadrature problems—we
have simply used the NIntegrate[. . . ] function in Mathematica 6. To assist with
numerical evaluation, we do, however, recommend first transforming the domain
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Figure 1: The perpetual rebate pricing function R∞,50(· , ·).

of integration into a finite interval, via the change of variables e−s 7→ u. This
results in the following pricing formula:

R∞,z(t, S) =





x
z

1
Γ(r/η)

∫ 1

0
(− ln u)r/η−1 ψ−4η/αe−ηt ln u(x)

ψ−4η/αe−ηt ln u(z)
ds if x ≤ z;

x
z

1
Γ(r/η)

∫ 1

0
(− ln u)r/η−1 φ−4η/αe−ηt ln u(x)

φ−4η/αe−ηt ln u(z)
ds if x ≥ z,

(31)

with x := e−rtS, as before.

Figure 1 presents surface and contour plots of the pricing function R∞,50(· , ·)
for a perpetual rebate with reference level z = 50, by numerical integration of
(31). The parameter values used for the graphs were α = 1, η = 0.05 and
r = 0.04. These are reasonably close to values estimated from historical data for
the S&P500 index.

We turn our attention now to the rebate with finite maturity T < ∞. It follows
from (28) and (29) that the pricing function RT,z(· , ·) of this claim is determined
by

RT,z(t, S) = S Et,S

[
I{t+σz,t≤T}

S∗t+σz,t

]
=

e−rtS

z
Et,S

[
I{σz,t≤T−t}e

−rσz,t
]

=
e−rtS

z
Et,S

[
I{

ϕ−1
t (τz)≤T−t

}e−rϕ−1
t (τz)

]

=
e−rtS

z
Et,S

[
I{τz≤ϕt(T−t)}

(
1 +

4η

α
e−ηtτz

)−r/η
]
.

(32)

We now use (8) to compute the Laplace transform of (32), with respect to trans-
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formed time-to-maturity:

Lβ{RT,z(t, S)} =





x
z

1
βΓ(r/η)

∫∞
0

e−ssr/η−1 ψβ+4η/αe−ηts(x)

ψβ+4η/αe−ηts(z)
ds if x ≤ z;

x
z

1
βΓ(r/η)

∫∞
0

e−ssr/η−1 φβ+4η/αe−ηts(x)

φβ+4η/αe−ηts(z)
ds if x ≥ z,

(33)

for all β > 0, with x := e−rtS.

Pricing a finite maturity rebate thus involves two numerical procedures: first the
integral in (33) must be evaluated by quadrature, and then the Laplace transform
itself must be inverted. For the numerical integration, we proceed as before, by
first performing the substitution e−s 7→ u, so that (33) becomes

Lβ{RT,z(t, S)} =





x
z

1
βΓ(r/η)

∫ 1

0
(− ln u)r/η−1 ψβ−4η/αe−ηt ln u(x)

ψβ−4η/αe−ηt ln u(z)
ds if x ≤ z;

x
z

1
βΓ(r/η)

∫ 1

0
(− ln u)r/η−1 φβ−4η/αe−ηt ln u(x)

φβ−4η/αe−ηt ln u(z)
ds if x ≥ z.

(34)

For the inversion of (34), we recommend the Euler method presented in Abate
and Whitt [1]. This technique employs Euler summation to evaluate the Fourier
inversion integral along the Bromwich contour, and has the advantage of being
uncomplicated and quick. Although there are no guaranteed error bounds, the
same method has been used successfully before, e.g. by Davydov and Linetsky
[7, 8] and Fu et al. [10], to invert Laplace transforms associated with derivative
valuation problems. We also draw the reader’s attention to the comparative study
of numerical schemes for Laplace transform inversion in Craddock et al. [6], which
focused specifically on applications to derivative pricing.

Figure 2 presents surface and contour plots of the pricing function R10,50(· , ·)
for a rebate with maturity T = 10 years and reference level z = 50, using the
same parameter values as before. We see again that RT,z(t, Zt) = 1, as expected.
Furthermore, we see that

lim
t→T

RT,z(t, S) =

{
1 if S = ZT ;

0 otherwise.

This agrees with the economically obvious behaviour of the rebate price close to
maturity.

6 Barrier Options

A barrier option written on the index is another example of a contingent claim
whose payoff is determined by whether or not the index hits a certain level prior
to its maturity T > 0. In this section we consider a European call on the index,
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Figure 2: The rebate pricing function R10,50(· , ·).

with strike price K > 0, which is knocked out if the index breaches the same
deterministic barrier Z as in Section 5, sometime before expiry.

Starting with (28), and using (29), we derive the following expression for the
real-world price of this instrument at time t ∈ [0, T ), given the starting index
value S∗t = S > 0:

Cout
T,K,z(t, S) = S Et,S

[
I{t+σz,t>T}

(S∗T −K)+

S∗T

]

= S Et,S

[
I{σz,t>T−t}

(
1− K

S∗T

)+
]

= S Et,S

[
I{τz>ϕt(T−t)}

(
1− e−rT K

Xϕt(T−t)

)+
]

= S

∫ ∞

e−rT K

(
1− e−rT K

y

)
q̃z

(
ϕt(T − t), e−rtS, y

)
m(y) dy

=
1

2
S

∫ ∞

κ

(y − κ)q̃z(ϕt(T − t), x, y) dy,

(35)

where x := e−rtS and κ := e−rT K. Recall also that the speed measure of a
squared Bessel process of dimension four is given by m(y) := y/2, according to
(17). Computing the Laplace transform of (35), with respect to transformed
time-to-maturity, now yields

Lβ

{
Cout

T,K,z(t, S)
}

=

∫ ∞

0

e−βu

(
1

2
S

∫ ∞

κ

(y − κ)q̃z(u, x, y) dy

)
du

=
1

2
S

∫ ∞

κ

(y − κ)Lβ{q̃z(u, x, y)} dy =
1

2
S

∫ ∞

κ

(y − κ)G̃z
β(x, y) dy.

(36)

for all β > 0.
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For convenience, we now analyze the following two cases separately:

up-and-out call: S ≤ Zt = zert iff x ≤ z;

down-and-out call: S ≥ Zt = zert iff x ≥ z.

In the first case, we may truncate the integral in (36), since x ≤ z implies that
G̃z

β(x, y) = 0, for all y ≥ z. Together with (10), this allows us to express the
Laplace transform of the up-and-out call as follows:

Lβ

{
Cout

T,K,z(t, S)
}

= S

∫ κ∨x

κ

(y − κ)ψβ(y)

(
φβ(x)− φβ(z)

ψβ(z)
ψβ(x)

)
dy

+ S

∫ κ∨z

κ∨x

(y − κ)ψβ(x)

(
φβ(y)− φβ(z)

ψβ(z)
ψβ(y)

)
dy,

(37)

if x ≤ z. In the second case, x ≥ z implies that G̃z
β(x, y) = 0, for all y ≤

z. Combining this with (10) produces the following expression for the Laplace
transform of the down-and-out call:

Lβ

{
Cout

T,K,z(t, S)
}

= S

∫ κ∨x

κ∨z

(y − κ)

(
ψβ(y)− ψβ(z)

φβ(z)
φβ(y)

)
φβ(x) dy

+ S

∫ ∞

κ∨x

(y − κ)

(
ψβ(x)− ψβ(z)

φβ(z)
φβ(x)

)
φβ(y) dy,

(38)

if x ≥ z. Note that the factor 1/2 in (36) has disappeared from (37) and (38),
because wβ = 1/2 for squared Bessel processes.

From the expressions above, we see that computing the price of a barrier option
once again requires two numerical procedures: first the integrals in (37) or (38)
must be evaluated by numerical quadrature, and then the Laplace transform of
the option price must be inverted. Figure 3 presents the results of these proce-
dures, in the form of surface and contour plots for the pricing function Cout

10,20,50(· , ·)
of a knock-out European call with initial maturity T = 10 years, strike K = 20
and barrier reference level z = 50. The values for the model parameters are the
same as for the previous graphs. Firstly, we see that Cout

T,K,z(t, Zt) = 0, which
agrees with the expected behaviour of the option at the knock-out barrier. Sec-
ondly, we observe that

lim
t→T

Cout
T,K,z(t, S) =

{
0 if S = ZT ;

(S −K)+ otherwise,

in line with what we would expect close to maturity. Figure 4 makes this conver-
gence obvious, by presenting a sequence of cross-sections of the pricing surface in
Figure 3.

19



0

5

10Time

0

50

100

Index

0

20

40

60

80

Price

0 2 4 6 8 10
0

20

40

60

80

100

Figure 3: The knock-out European call pricing function Cout
10,20,50(· , ·).

20 40 60 80 100
Index

20

40

60

80

Price

20 40 60 80 100
Index

20

40

60

80

Price

20 40 60 80 100
Index

10

20

30

40

50

60

70

Price

20 40 60 80 100
Index

10

20

30

40

50

60

70

Price

20 40 60 80 100
Index

20

40

60

80

Price

20 40 60 80 100
Index

20

40

60

80

Price

Figure 4: Evolution of the knock-out call pricing function Cout
10,20,50(t, ·), for t = 0,

2.5, 5, 7.5, 9.9 and 9.99 years.

20



Acknowledgements

Thanks to Paavo Salminen for a helpful e-mail exchange on the subject of deriving
transition densities for diffusions with boundary conditions. We also thank Mark
Craddock for several illuminating discussions on the pitfalls of numerical Laplace
transform inversion.

References

[1] Joseph Abate and Ward Whitt. Numerical inversion of Laplace transforms
of probability distributions. ORSA Journal on Computing, 7(1):36–43, 1995.

[2] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables. Dover, 1972.

[3] Fischer Black. Studies in stock price volatility changes. In Proceedings of
the 1976 Business Meeting of the Business and Economic Statistics Section,
pages 177–181. American Statistical Association, 1976.

[4] Andrei N. Borodin and Paavo Salminen. Handbook of Brownian Motion —
Facts and Formulae. Probability and Its Applications. Birkhäuser Verlag,
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