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ABSTRACT 

Osmotic membrane bioreactors (OsMBRs) are a recent breakthrough technology designed to 

treat wastewater. Nevertheless, their application in high-salinity wastewater treatment is not 

widespread because of the effects of saline conditions on microbial community activity. In 

response, this study developed an integrated sponge biocarrier-OsMBR system using highly salt-

tolerant microorganisms for treating saline wastewater. Results showed that the sponge 

biocarrier-OsMBR obtained an average water flux of 2 L/m2 h during a 92-day operation when 1 

M MgCl2 was used as the draw solution. The efficiency in removing dissolved organic 

compounds from the proposed system was more than 99%, and nutrient rejection was close to 

100%, indicating excellent performance in simultaneous nitrification and denitrification 

processes in the biofilm layer on the carriers. Moreover, salt-tolerant microorganisms in the 

sponge biocarrier-OsMBR system worked efficiently in salt concentrations of 2.4%. A 

polytetrafluoroethylene MD membrane (pores = 0.45 μm) served to regenerate the diluted draw 

solution in the closed-loop system and produce high-quality water. The moving sponge 

biocarrier-OsMBR/MD hybrid system demonstrated its potential to treat salinity wastewater 

treatment, with 100% nutrient removal and 99.9% conductivity rejection. 
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 1. Introduction 

Saline wastewater containing high amounts of inorganic salt typically originates from industrial 

companies, such as seafood processing and vegetable canning companies. In particular, the 

seafood processing sector produces large volumes of saline wastewater with a high nutrient and 

organic concentration, and converts 95% of the water it consumes into polluted wastewater. 

Several methods, for instance biological and physico-chemical systems can be employed to treat 

saline effluents; however, physico-chemical techniques use large amounts of energy, and their 

start-up and operating costs are high. Therefore, saline wastewater is mostly treated through 

biological processes employing large amounts of microorganisms [1]. Nevertheless, 

microorganism activities are often compromised by a high saline concentration, causing low 

organic and nutrient removal and easy bulking of the activated sludge [2].  

Normal microorganisms in biological treatment plants do not tolerate high-salt conditions 

because a high salt content (TDS > 10 g/L) in wastewater can trigger an outward flow of 

intracellular water and cell dehydration, leading to the loss of cell activity [2, 3]. This presents a 

substantial obstacle for traditional biological processes in high-salinity wastewater treatments 

[2]. Although several specific biological processes (e.g., attached growth, rotating biological 

disc, sequencing batch reactor) and membrane bioreactors have been designed for saline 

wastewater, their rejection efficiencies are low in saline environments [4-6]. Kincannon and 

Gaudy [7] determined that BOD removal efficiency decreased to 30% when adding 30 g/L NaCl 

solution to freshwater sludge, and according to Dinçer and Kargi [8], phosphorus and nitrogen 

removal declined to 62% and 20%, respectively, when the bioreactor salt concentration was 5% 

NaCl. Moreover, membrane fouling in the membrane bioreactor (MBR) system was more severe 

because both extracellular polymeric substances and soluble microbial products were released 

under high-salinity stress conditions [9]. 

Researchers have investigated an innovative MBR with the potential to treat wastewater, the 

osmotic MBR (OsMBR) [10, 11]. The OsMBR is an ideal multi-barrier technology, combining a 

forward osmosis (FO) membrane and biological process that can be used for direct potable and 

indirect reuse applications [12-15]. The OsMBR draws permeate water through osmosis from 

mixed liquids, or through an FO membrane to a draw solution, and offers several valuable 

benefits, including low energy consumption, low fouling propensity, and high contaminant 

rejection [11, 13, 16-18]. Consequently, the OsMBR is considered to be a promising technology 
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for wastewater treatment and water reuse [12]. However, high-salinity wastewater remains a 

large technical challenge for OsMBR systems because it affects biological process treatment, 

and subsequently causes FO membrane fouling during long-term operation and reduces nutrient 

removal. In response, this study developed an integrated moving sponge biocarrier-OsMBR 

system for high-salinity wastewater treatment that uses highly salt-tolerant microorganisms. This 

study investigated the effect of a high saline condition on dissolved organic carbon (DOC), 

nutrient removal, and water flux by using 1 M MgCl2 as a draw solution. Additionally, the 

diluted MgCl2 draw solution was regenerated utilizing a polytetrafluoroethylene (PTFE) MD 

membrane to separate it from the product water. 

2. Materials and Methods 

2.1 Materials and Membranes 

MgCl2 (purity of 99%) was purchased from Imperial Chemical Corp., Taiwan, and the highly 

salt-tolerant microorganisms were supplied by the Soy Sauce Wastewater Treatment Plant in 

southwest Taiwan. The cellulose triacetate nonwoven support (CTA-NW) FO membrane was 

obtained from Hydration Technology Innovations (OsMem™ CTA Membrane 130806, Albany, 

OR, USA), whereas the PTFE MD membrane (pore size = 0.45 μm) was supplied by Ray-E 

Creative Co., Ltd., in Taiwan; the characteristics of both the MD and FO membranes are 

detailed in Table 1. The contact angle of the MD and FO membranes was measured using a 

CAM 100 (Opto-Mechatronics P Ltd., India). The thickness and mean pore size of the FO and 

MD membranes were recorded based on references [19-21].  

 

Table 1. Characteristics of the MD and FO membranes 

Membrane Thickness  Mean pore 

size  

Contact angle ° Effective area per 

module  

PTFE MD   160 μm 0.45 μm 118 ° 100 cm2 

CTA-NW FO 50 μm 0.37 nm 66 ° 130 cm2 

2.2 Feed and Draw Solutions 

Synthetic high-salinity wastewater served as the inoculum for the sponge carriers, and as the 

feed solution for the sponge biocarrier-OsMBR/MD system. It had a salt content of 1.7% NaCl 

(corresponding to an osmotic pressure of 11.5 bar), 300 ± 3 mg/L DOC, 36 ± 2 mg/L NH4
+-N, 

and 22 ± 2 mg/L PO4
3--P. The draw solution was subsequently prepared using 1 M MgCl2 in a 

draw solution tank. 
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2.3 Sponge Biocarrier-OsMBR/MD System Structure and Operation 

The laboratory-scale sponge biocarrier-OsMBR/MD hybrid system comprised a feed tank, an 

aerobic bioreactor with a moving sponge biocarrier, a submerged FO membrane tube, and an 

MD unit, as depicted in Figure 1. Prior to operating the sponge biocarrier-OsMBR, highly salt-

tolerant microorganisms were seeded into the bioreactor-contained sponge carriers (cubic shape 

= 1 cm3); a 40% filling rate by volume was applied to acclimatize the biofilm carriers until many 

microorganisms became attached to the sponge (Figure 2), and the removal efficiency of NH4
+-

N, PO4
3--P, and DOC was stable. After 75 days of acclimatization, the quantity of biomass 

attached on media was 0.86 g/g of sponge. 

In the OsMBR a CTA-NW flat sheet membrane was wrapped and formed into a tube. The FO 

membrane tube had an effective area of 130 cm2 and was vertically immersed in the bioreactor 

tank with the active layer of the membrane facing the feed solution. At the bottom of the 

bioreactor, air diffusers were installed to reduce membrane fouling and the movement of   

sponge. In the sponge biocarrier-OsMBR system, synthetic saline wastewater (1.7%) was 

continuously pumped into the bioreactor tank from a feed reservoir (6 L), with the liquid level in 

the bioreactor tank maintained by connecting an overflow pipe to the feed tank. The MgCl2 draw 

solution was pumped into the FO membrane tube, which caused water from the feed solution to 

permeate the membrane and dilute the draw solution. The feed reservoir was placed on a digital 

scale (BW12KH, Shimadzu, Japan), and the water flux was calculated according to changes in 

the feed tank weight. The theoretical water flux (Jw) through the FO membrane is a product of 

the osmotic pressure gradient (π) and the membrane permeability coefficient (Aw) [22]: 

Jw
  = Aw (πDraw solution - πFeed solution)                                       (1) 

The experimental water flux Jw (L/m2 h) of the FO membrane was calculated by measuring the 

change in the feed tank weight over time:  

tA
VJ w                        (2) 

Salt accumulation in the bioreactor was calculated by monitoring the conductivity of mixed 

liquid in the bioreactor with a conductivity meter (Oakton Instruments, USA). Temperature 

fluctuations in the draw solution during the experiment ranged from 26 °C to 29 °C, and samples 

were collected from the bioreactor and draw solution reservoir to measure the DOC, NH4
+-N, 

and PO4
3−-P. During sponge biocarrier-OsMBR operation, 200 mL of mixed liquid from the 

bioreactor was withdrawn every 24 h and settled for 30 min. Clarified supernatants were then 

discarded and water from the mixed liquid was sampled for analysis.  
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Figure 1. Schematic of the laboratory-scale sponge biocarrier-OsMBR/MD system.   

Figure 2. Acclimation of the sponge in the bioreactor with time using salt-tolerant 

microorganisms. 

Subsequently, a laboratory-scale cross-flow MD membrane cell was applied to regenerate the 

draw solution to its initial concentration (Figure 3). The cell comprised acrylic and consisted of 

two semi-cells, each with a flow channel measuring 10 cm long, 10 cm wide, and 0.3 cm deep. 

The feed and distillate solutions were continuously circulated using peristaltic pumps (Baoding 

Longer Precision Pump Co., Ltd., Taiwan) with a flow rate of 1.5 L/min. The diluted draw 

solution (controlled temperature = 55 ± 1 °C) was pumped from a feed reservoir to the MD 

membrane cell and then returned to the reservoir. The initial distillate stream was deionized 

water (20 ± 1 °C), and circulated from a 1.5 L reservoir through the distillate membrane semi-

cell before returning to the reservoir. Excess permeate water overflowed into a container, which 

was continually recorded on an analytical balance to calculate the water flux of MD. To ensure 

experimental reproducibility, three new MD membranes were used to repeat these experiments. 
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Figure 3. Laboratory-scale MD system for draw solution recovery. 

2.4 Analytical Methods 

The electrical conductivity and pH of the MD distillate, feed, and draw solution were measured 

using a conductivity/pH probe (Sension156, Hach, China). All DOC samples were initially 

filtered using 0.45 μm filter paper and then verified using a total organic carbon analyzer 

(Aurora 1010C, O.I. Analytical Corporation, USA). The dissolved oxygen (DO) in the sponge 

biocarrier-OsMBR system bioreactor was measured daily using a DO meter (OM-51E, Horiba 

Ltd., Japan). Concentrations of PO4
3--P and NH4

+-N were examined using an ultraviolet–visible 

spectrophotometer (DR-4000, Hach, Japan), and viscosity was determined using the Vibro 

Viscometer (AD Company, Japan).   

The draw solution osmolality was measured using an osmometer (Model 3320, Advanced 

Instruments, Inc., USA). It was then converted into osmotic pressure according to the Morse 

equation, as follows:  

 = (  n C) R T          (3) 

where R is the universal gas constant, (  n C) represents total osmolality, and T is the absolute 

temperature.  

3. Results and Discussion 

3.1 Nutrient and Organic Removal in Sponge Biocarrier-OsMBR System 

Removal efficiencies during the sponge biocarrier-OsMBR’s operation were calculated using 

concentrations from the feed and diluted draw solutions, and as depicted in Figure 4a, the system 

removed organic matter efficiently. Initially (first 20 days), DOC removal was nearly 100%; 

after 20 days, the removal efficiency decreased slightly because salinity buildup in the 
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bioreactor affected biological activity. Notably, the average DOC removal efficiency still 

reached 99.1% (Figure 4a), because of the very small (0.37 nm) mean pore size of the CTA-NW 

FO membrane. Thus, almost all organic contaminants (i.e., DOC) remained in the bioreactor 

tank instead of penetrating the membrane. Moreoever, a large biomass of microorganisms 

attached to the sponge could biodegrade these organic compounds, thereby enhancing DOC 

removal. Figure 4b shows that the sponge biocarrier-OsMBR system removed approximately 

98.9% of PO4
3--P in treating high-salinity wastewater. The possible reasons for the high PO4

3--P 

removal percentage include: (1) the steric effect; and (2) electrostatic repulsion of the FO 

membrane. During the system’s operation, the mixed liquid pH was set between 6.5 and 7.0; at 

pH > 6, the CTA-NW FO membrane was negatively charged [23] and repelled negative PO4
3- 

ions, preventing PO4
3--P from crossing through the membrane. Moreover, since only a negligible 

amount of biomass (MLSS of 350 mg/L in bioreactor) was detached from the sponge during the 

92-day sponge biocarrier-OsMBR operation, the presence of phosphorus-accumulating 

organisms in forms of attached growth on sponge carriers in the aerobic and anoxic biofilms, 

leading to increased phosphorus removal [24-26]. 

A key benefit of adding a sponge biocarrier into the OsMBR system is that aerobic and anoxic 

microzones were formed at both the outer layer and inner layer of the biofilm [27]. Thus, 

simultaneous nitrification and denitrification processes occurred in a single reactor, which 

appreciably enhanced nutrient removal (Figure 5). The average removal efficiency of NH4
+-N 

was 99.5%, and the NH4
+-N concentration in the draw solution was very low (< 0.45 mg/L). In 

addition, NO2
--N and NO3

--N concentrations in the bioreactor tank were less than 6.5 mg/L 

during the 92-day operation (Fig. 5b and c), which explained the occurrence of efficient 

denitrification in the anoxic and anaerobic zones of the attached biofilm in the sponge. As a 

result, the average NO2
--N and NO3

--N concentrations in the draw solution were relatively low 

(0.91 and 1.96 mg/L for NO2
--N and NO3

--N, respectively). 
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Figure 4. Removal of (a) DOC, (b) PO4
3--P during moving sponge biocarrier-OsMBR operation. 

Operating conditions: draw solution = MgCl2, draw solution osmotic pressure = 75 bar; feed 

solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of draw solution = 500 

mL/min; membrane orientation = active layer facing the feed solution.   

 
Figure 5. Removal of (a) NH4

+-N, (b) NO2
--N and (c) NO3

--N during moving sponge biocarrier-

OsMBR operation. Operating conditions: draw solution = MgCl2, draw solution osmotic 

pressure = 75 bar; feed solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of 

draw solution = 500 mL/min; membrane orientation = active layer facing the feed solution.   

3.2 Variation of Water Flux and Salt Accumulation in Sponge Biocarrier-OsMBR   

Figure 6a shows water flux as a function of time during the testing of the moving sponge 

biocarrier-OsMBR system, using 1M MgCl2 as the draw solution and high-salinity wastewater 

as the feed solution. The water flux gradually declined from 2.27 to 1.78 L/m2 h, attributable to 

both salinity buildup in the bioreactor and membrane fouling. During sponge biocarrier-OsMBR 

operation, the reverse salt flux of the MgCl2 solution to the bioreactor markedly increased 

salinity in the bioreactor, resulting in a decreased driving force across the FO membrane. Both 

Nguyen et al. [28] and Li et al. [29] have demonstrated that salinity buildup in the bioreactor is 

primarily responsible for the water flux decline. 

Figure 6b illustrates that most of the salt-tolerant microorganism biomasses are attached to the 

inside and outside of sponge biocarriers rather than the FO membrane, which reduced membrane 
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fouling considerably. Moreover, a freely moving sponge in the bioreactor could remove foulants 

attached to the FO membrane tube, which was effectively designed in this study; the remaining 

foulants on the FO membrane could be easily eliminated by the hydraulic shear force generated 

by aeration [30]. Subsequently, no appreciable membrane fouling in the sponge biocarrier-

OsMBR occurred, and the increased salt concentration in the bioreactor over time substantially 

contributed to water flux decline. Changes in experiment temperatures (ranging from 26 °C to 

29 °C) (Figure 6a) were also a reason for the fluctuating water flux during moving sponge 

biocarrier-OsMBR operation [31].   

Figure 6c displays salt accumulation in the bioreactor over time. Within the first 40 days of 

operation, conductivity in the bioreactor gradually increased from 29.9 to 36.3 mS/cm; a 

combination of salt rejection by the FO membrane and salt leakage from the MgCl2 draw 

solution produced an increasing mixed liquid conductivity in the bioreactor [32]. Subsequently, 

the mixed liquid conductivity became relatively stable at approximately 38 mS/cm, as a result of 

the daily discharge of 200 mL of mixed liquid from the bioreactor. Nutrient and organic removal 

remained high, even as the salt concentration in the bioreactor reached 24 g/L, demonstrating 

that salt-tolerant microorganisms in a moving sponge biocarrier-OsMBR system continue to 

work efficiently in high-salinity conditions. 
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Figure 6. (a) Water flux of the moving sponge biocarrier-OsMBR system vs time; (b) Microbial 

community attached to the sponge carrier and FO membrane; (c) Variations of salt accumulation 

during sponge biocarrier-OsMBR operation. Operating conditions: draw solution = MgCl2; draw 

solution osmotic pressure = 75 bar; feed solution = synthetic high-salinity wastewater (17 g 

NaCl/L); flow rate of draw solution = 500 mL/min; membrane orientation = active layer facing 

the feed solution. 

3.3 Recovery of Diluted Draw Solution Using MD 

The submerged FO membrane transferred water from the mixed liquid into the draw solution 

through osmotic pressure; subsequently, the draw solution was diluted from 83 g/L to 77 g/L 

and was sent to an MD system for regeneration. Using a PTFE MD membrane (pore size = 0.45 

μm), the draw solution was returned to its original concentration and continued producing high-

quality water. Figure 7 depicts the MD water flux achieving approximately 4.8 LMH during 180 

h operation under a feed temperature of 55 °C and distillate temperature of 20 °C. The MD 

water flux did not drastically change over time, even when the osmotic pressure of the feed 

solution gradually increased from 71 to 75 bar, indicating that MD does not depend on the 

osmotic pressure of the feed solution. This confirms research by Duong et al. [33] and Wang et 
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al. [34], who have similarly observed that increases in water recovery or feed concentration do 

not affect MD water flux. 

Additionally, a PTFE membrane with 0.45 μm pores rejected almost all ions (> 99.9%) in the 

diluted draw solution during 180 h operation. The high salt rejection can be attributed to the MD 

process, whereby only water vapor is transported through the PTFE membrane pores while 

preventing the permeation of liquid water. As a result, dissolved solutes (i.e. inorganic salts that 

cannot be evaporated) can be completely rejected by MD [35]. The distillate conductivity also 

slightly increased over time because the TDS in feed and wetting membranes caused the 

conductivity of MD permeate water to increase. Notably, the quality of the water produced was 

still sufficiently high for beneficial reuse (distillate conductivity < 60 mg/L). After 180 h 

operation, the feed solution (TDS = 77 g/L) returned to its original concentration (TDS = 83 

g/L), which enabled the draw solution to be reused in the sponge biocarrier-OsMBR system. 

 
Figure 7. Water flux, salt rejection, and feed conductivity in the MD process as a function of 

time. Operating conditions: diluted MgCl2 draw solution as feed; Tfeed = 55°C; Tdistillate = 20 °C; 

distillate flow rate = 1.5 L/min; PTFE MD membrane pore size = 0.45 μm. Error bars are based 

on the standard deviations of three replicate tests. 

4. Conclusions 

The moving sponge biocarrier-OsMBR/MD hybrid system was successfully applied to high-

salinity wastewater by using salt-tolerant microorganisms that efficiently removed organic and 

nutrient compounds. Water flux decreased slightly due to salinity buildup in the bioreactor, and 

FO membrane fouling was minimal because the biomass of most salt-tolerant microorganisms 

was attached to the biocarriers rather than the FO membrane surface. This research also 

demonstrated that salt-tolerant microorganisms still work efficiently in a salt concentration of 
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2.4%, with removal efficiencies of DOC, NH4
+-N, and PO4

3--P at 99.1%, 99.5%, and 98.9%, 

respectively. Finally, the PTFE MD membrane was highly efficient at conductivity removal 

(99.9%), with a final distillate conductivity of 60 μS/cm. 
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Figure Captions 

 

Figure 1. Schematic of the laboratory-scale sponge biocarrier-OsMBR/MD system.   

Figure 2. Acclimation of the sponge in the bioreactor with time using salt-tolerant 

microorganisms. 

Figure 3. Laboratory-scale MD system for draw solution recovery. 

Figure 4. Removal of (a) DOC and (b) PO4
3--P during moving sponge biocarrier-OsMBR 

operation. Operating conditions: draw solution = MgCl2, draw solution osmotic pressure = 75 

bar; feed solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of draw solution 

= 500 mL/min; membrane orientation = active layer facing the feed solution.   

Figure 5. Removal of (a) NH4
+-N, (b) NO2

--N and (c) NO3
--N during moving sponge biocarrier-

OsMBR operation. Operating conditions: draw solution = MgCl2, draw solution osmotic 

pressure = 75 bar; feed solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of 

draw solution = 500 mL/min; membrane orientation = active layer facing the feed solution.   

Figure 6. (a) Water flux of the moveing sponge biocarrier-OsMBR system vs time; (b) 

Microbial community attached to the sponge carrier and FO membrane; (c) Variations of salt 

accumulation during sponge biocarrier-OsMBR operation. Operating conditions: draw solution 

= MgCl2; draw solution osmotic pressure = 75 bar; feed solution = synthetic high-salinity 

wastewater (17 g NaCl/L); flow rate of draw solution = 500 mL/min; membrane orientation = 

active layer facing the feed solution. 

Figure 7. Water flux, salt rejection, and feed conductivity in the MD process as a function of 

time. Operating conditions: diluted MgCl2 draw solution as feed; Tfeed = 55°C; Tdistillate = 20 °C; 

distillate flow rate = 1.5 L/min; PTFE MD membrane pore size = 0.45 μm. Error bars are based 

on the standard deviations of three replicate tests. 
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Tables 

 

Table 1. Characteristics of the MD and FO membranes 

Membrane Thickness  Mean pore 

size  

Contact angle ° Effective area per 

module  

PTFE MD   160 μm 0.45 μm 118 ° 100 cm2 

CTA-NW FO 50 μm 0.37 nm 66 ° 130 cm2 

 

  



  

17 
 

Figures 

 

 
Figure 1. Schematic of the laboratory-scale sponge biocarrier-OsMBR/MD system.  
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Figure 2. Acclimation of the sponge in the bioreactor with time using salt-tolerant 

microorganisms. 
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Figure 3. Laboratory-scale MD system for draw solution recovery. 
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Figure 4. Removal of (a) DOC, (b) PO4
3--P during moving sponge biocarrier-OsMBR operation. 

Operating conditions: draw solution = MgCl2, draw solution osmotic pressure = 75 bar; feed 

solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of draw solution = 500 

mL/min; membrane orientation = active layer facing the feed solution.   
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Figure 5. Removal of (a) NH4

+-N, (b) NO2
--N and (c) NO3

--N during moving sponge biocarrier-

OsMBR operation. Operating conditions: draw solution = MgCl2, draw solution osmotic 

pressure = 75 bar; feed solution = synthetic high-salinity wastewater (17 g NaCl/L); flow rate of 

draw solution = 500 mL/min; membrane orientation = active layer facing the feed solution.   
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Figure 6. (a) Water flux of the moveing sponge biocarrier-OsMBR system vs time; (b) 

Microbial community attached to the sponge carrier and FO membrane; (c) Variations of salt 

accumulation during sponge biocarrier-OsMBR operation. Operating conditions: draw solution 

= MgCl2; draw solution osmotic pressure = 75 bar; feed solution = synthetic high-salinity 

wastewater (17 g NaCl/L); flow rate of draw solution = 500 mL/min; membrane orientation = 

active layer facing the feed solution. 
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Figure 7. Water flux, salt rejection, and feed conductivity in the MD process as a function of 

time. Operating conditions: diluted MgCl2 draw solution as feed; Tfeed = 55°C; Tdistillate = 20 °C; 

distillate flow rate = 1.5 L/min; PTFE MD membrane pore size = 0.45 μm. Error bars are based 

on the standard deviations of three replicate tests. 
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Highlights: 

 Successful design of a novel moving sponge biocarrier-OsMBR/MD system. 

 Water flux declined due to salinity buildup in the bioreactor. 

 The moving sponge in the bioreactor contributed considerably to reduced FO membrane 

fouling. 

 Salt-tolerant microorganisms could work efficiently in salt concentrations of 2.4%. 

 A PTFE MD membrane achieved high draw solution recovery with 99.9% salt rejection. 

 

 


