
F-TRADE 3.0: An Agent-Based Integrated Framework for Data Mining
Experiments

Peerapol Moemeng, Longbing Cao, Chengqi Zhang
Data Sciences & Knowledge Discovery Research Lab
Faculty of Engineering and Information Technology

University of Technology, Sydney, AUSTRALIA
{peerapol, lbcao, chengqi}@it.uts.edu.au

Abstract

Data mining researches focus on algorithms that mine
valuable patterns from particular domain. Apart from the
theoretical research, experiments take a vast amount of ef-
fort to build. In this paper, we propose an integrated frame-
work that utilises a multi-agent system to support the re-
searchers to rapidly develop experiments. Moreover, the
proposed framework allows extension and integration for
future researches in mutual aspects of agent and data min-
ing. The paper describes the details of the framework and
also presents a sample implementation.

1. Introduction

Agent and data mining integration and interaction
(AMII) is an emerging area[3] due to the constant accep-
tance of agent computing and data mining as well as the
convergence of industries, such as financial market, capi-
tal market, insurance, etc. Regarding data mining research,
apart from the theoretical improvement, the work must be
tested and we realise two difficulties in this scenario: soft-
ware development and testing. (1) Firstly, the wrong person
may be doing the wrong job. Software development may
not be a common skill for all researchers especially expect-
ing the product to be a well-managed one with usability and
reusability. Software reusability is a common concept how-
ever troublesome since it requires a well preparation and
implementation in software development life cycle[9]. (2)
Secondly, algorithm optimisation is a major component in
data mining research. This is a time consuming task as it
takes an unpredictable number of turnarounds to refine pa-
rameters and run the test iteratively. Therefore, a desired
functionality is automatic parameter tuning, which could
enable processes to autonomously perform decisions on pa-
rameter tuning based on a given set of constraints.

With these problematic foundations, we propose a
framework to support data mining and intelligent agent re-
search in an integrated platform. Intelligent agent (agent,
for short) plays an important role in presenting autonomy
and intelligence in several components of the proposed
system. In addition, the system allows extensibility and
reusability by integrating external components into the run-
ning instance without having to interrupt the system and all
those components are stored for future uses.

The main contributions of this work are (1) formulation
of a formal framework for multi-agent systems that allows
allows extensibility, reusability, integrity of system compo-
nents varied upon particular task; (2) providing a platform
for data mining researches which enhances research pro-
cesses; and (3) providing a platform for agent researches to
extend functionalities of the system incorporated with data
mining capability.

2. Related Work

A nature of data mining is that systems are task-oriented.
Adding agents to them requires modifications of agents, for
instances [2, 11]. System implementations are guided by
high-level system architectures which lack of detailed struc-
tures of the agents, which prevents the systems from exten-
sibility and reusability. In this review, we cover two aspects
of AMII: agent-based data mining and vise versa.

IDM[2] is an agent-based data mining system and is
designed to support predefined and ad hoc data access,
data analysis, data presentation, and data mining request
from non-technical users over a data warehouse. IDM dis-
tributed environment is a result of using JATLite[7] which
allows communications of agents through its message rout-
ing scheme which operates over a networked environment.
The IDM’s test system shows that IDM can be applied to a
problem domain. The authors claim that IDM can rapidly
analyse data because it delegates data mining tasks to mul-

tiple agents. A similar system is iJADE[11], which is an
integrated environment implemented with IBM Aglets[10]
and Java Servlets, providing structured layers of system ab-
straction. iJADE can operate over various environments and
configurations.

The other aspect of AMII is data mining-based agent. It
is an agent system that embeds data mining capability into
agents, in this case, agents are able to learn and reason re-
specting the specific domain. A work contributed to the idea
is Agent Academy[12] (AA). AA is an integrated frame-
work that interacts with its users through the system con-
sole application and the Web. It also provides a generic tool
to create an AA system which is very useful as it shortens
time in development. AA’s approach fully utilises data min-
ing intelligence to build better agents. Nevertheless, data
domain used in AA is specific to a particular task. Variation
of the system is made with change in core agent repository
unit and data miner modules.

Our review shows the need for a framework that pro-
vides formal models to pose the system specifications into
components that can be integrated and reused. In our work,
we try to blend both aspects of AMII to create a formal
framework that allows extensibility of both agent and data
mining. System components e.g. algorithms, optimisation
methods, datasets are stored in the repository for later use.

3. F-TRADE 3.0

The earlier version of F-TRADE was discussed in [4]
and shows potential of system extensibility. In this section,
we formulate the framework of F-TRADE 3.0.

3.1. Framework Modelling

The model is described in Z notation[13]. At central of
the system, we introduce 4 basic sets that are central of in-
terests in this universe, namely experiments (EXPE), algo-
rithms (ALGO), datasets (DS), and optimisation methods
(OPME). Universal set [EXPE, ALGO, DS, OPME] is set
up as follows;

EXPE
algo : ALGO, ds : DS, opme : OPME, state : STATE,
cons : CONS, param : PARAM, output : OUTPUT

Where ALGO, DS, and OPME are sets of identifiers re-
ferred to physical objects of the particular system, e.g.

algo == {(package.algorithm.name)}
ds == {(directory.filename)}

Regarding system configuration, we use paired attributes,
keys (KEY) and values (VALUE), defined as follows.

KEY
key : STRING

key = {k : STRING; • k ∈ (dom attribute(ALGO)
∨ dom attribute(OPME))}

VALUE
value : ANY

value = {v : ANY; • v ∈ (ran attribute(ALGO)
∨ ran attribute(OPME))}

A supplement set [PARAM, EVAL, OUTPUT, CONS] con-
tains contains domain values for parameters (PARAM),
evaluations (EVAL), outputs (OUTPUT), and constraints
(CONS). States of experiment (STATE) and operations
(OP) for constraint checking are as follows.

STATE ::= ready | wait | finished | failed
OP ::= ≤|<|≥|>|=|6=|∈|/∈

System configuration sets are described as follows.

EVAL, PARAM, OUTPUT : KEY ↔ VALUE
CONS : KEY ↔ VALUE ↔ OP

These sets are to be instantiated specifically for each exper-
iment, for example eval : EVAL; cons : CONS; param :
PARAM.

SetupEXPE creates a new experiment at store into
EXPE. Initial state of a new experiment is ready and out-
put is empty.

SetupEXPE
∆EXPE
algo? : ALGO, ds? : DATASET, opme? : OPME, state : STATE,
param? : PARAM, cons? : CONS, output : OUTPUT

state = ready
output = ∅
EXPE′ = EXPE∪

{(algo?, ds?, opme?, param?, cons?, state, output)}

The followings are in-line operators. execute executes an al-
gorithm provided with a set of parameters and outputs a set
of OUTPUT. However, algorithm execution must be specif-
ically defined therefore the definition is left blank and yet to
be extended.

evaluate evaluates the provided output against experi-
ment’s constraints and yields an evaluation result.

execute , : ALGO × PARAM → OUTPUT
evaluate , : OUTPUT × CONS → EVAL

fetch takes an experiment from EXPE. However, the detail
specification can be extended as to compile with the system
policy. For example, the system may determine load balanc-
ing in a distributed environment, therefore the behaviour of
fetch is varied.

fetch : EXPE → experiment

experiment ∈ EXPE
EXPE′ = EXPE \ experiment
..specific extension..

tune performs parameter alterations in order to achieve the
experiment’s constraints. It produces a new set of param-
eters from the given experiment. The optimisation method
plays an important role here due to the optimisation compu-
tation determining input parameters with output against the
constraints is performed here, furthermore, historical data
need to be taken into concern. With regard to the extensibil-
ity of tune, its definition must be implemented specifically.

tune : EXPE → PARAM

..specific extension..

satisfy is a binary operation producing a boolean value by
determining whether the provided evaluation results are ac-
cepted by designated operations of the experiment’s con-
straints.

satisfy : EVAL × CONS → BOOLEAN

∀(ek, ev) : EVAL; (ck, cv, op) : CONS • ek = ck ∧ ev op cv

Finally, BackTest runs repeatedly to obtain evaluation re-
sults that satisfy the experiment’s constraints. It outputs a
state of experiment as finished if all evaluation results sat-
isfy, otherwise failed.

BackTest : EXPE → STATE
expe : EXPE, output : OUTPUT, eval : EVAL, state! : STATE

expe = fetch EXPE
state = failed
∀ eval : EVAL; output : OUTPUT •

eval = evaluate output
∧ output = execute expe.algo, expe.param
∧ if eval satisfy expe.cons then

∧ state = finished
else ∧ expe.param′ = tune expe

3.2. System Architecture

Figure 1. F-TRADE 3.0 architecture

Figure 1 shows the architecture of F-TRADE 3.0. The
system is divided into three parts: control zone, optimisa-
tion zone, and repository. Each part contains a collection of
system components, while agents work across these zones.
The system flow starts from the control zone which deter-
mines the direction of the execution flow. Control Zone is
where the user requests for experiment service and uploads
his algorithm to the system, configures parameters, and sub-
mits into an execution queue. Optimisation Zone contains
several instances of optimisation units in which may exe-
cute concurrently. Repository is a collection of system com-
ponents, i.e. data sets, algorithms, and optimisation meth-

ods; furthermore, it can also maintain links to on-line re-
sources, e.g. remote databases. The repository concerns
a high degree of concurrency control and security as some
components are restricted to some particular users.

Figure 1 also shows a group of agents communicating
in a defined sets of channels as described in follows. Rule
agent implements execute() and is responsible for running
an equipped algorithm. Optimiser agent implements eval-
uate() and tune() and prepares experimental data for a rule
agent. Data agent collects requested data for an optimiser
agent since the data may be distributed, partitioned, and spa-
tial, the agent is responsible to collect proper data in which
it may block until collection conditions are met. Spectator
agent keeps an eye on the optimisation zone and periodi-
cally checks for the progress. The agent is also responsible
to alert the user, e.g. e-mail, when alert conditions are met.
Mediator agent implements fetch() and is a single-instance
agent in the system which acts as the optimisation manager.
The agent is responsible in synchronising multiple optimi-
sation zones, instructs a zone to start, pause, or stop. Service
agent is a single-instance agent in the system which deter-
mines the privileges of the user in accessing the services of
the system.

3.3. System Implementation

Figure 2. Sample screen

Figure 2 shows a sample screen of F-Trade 3.0. The sys-
tem interface is a web-based implemented with PHP and
AJAX to enhance usability and the underlying database is
MySQL. JADE[1] is used as the core agent container. Due
to JADE’s FIPA compliance and extensibility, F-TRADE
can be integrated further with other FIPA compliant applica-
tions. Nevertheless, we have integrated standard data min-
ing algorithms from WEKA[14] into our system as to pro-
vide the user with more options. During this development,
F-TRADE is published under GNU Public Licence as to
compile with our regarding tools1.

1DHTMLX (http://www.dhtmlx.com/) provides AJAX components for
advanced Web UI

4. Case Study

In this section, we create an experiment and run a test
by demonstrating how system formulation works. We use
functions available from WEKA into our demonstration;
We refer to John Platt’s sequential minimal optimization
algorithm for training a support vector classifier[8][6], the
algorithm is known as weka.classifiers.functions.SMO in
Weka package, to train a support vector machine on Iris
Plants dataset[5]. The class of of the dataset, class =
{setosa, versicolor, virginica}, and the dataset structure is
iriss =< sl, sw, pl, pw, class >, where sepal length (sl),
sepal width (sw), petal length (pl), and petal width (pw) are
real numbers. WEKA SMO receives a range of parameters
and we have chosen some that relevant as constraints to the
experiment as follows; (1) -C double: the complexity, (2) -
N: Whether to 0=normalize/1=standardize/2=neither, (3) -L
double: the tolerance parameter, (4) -P double: the epsilon
for round-off error, (5) -V double: the number of folds for
the internal cross-validation, and (6) -W double: the ran-
dom number seed.

The kernel for the SVM we choose WEKA’s classifier
function, supportVector.PolyKernel, with following param-
eters: (1) -D: enables debugging output (if available) to be
printed, and (2) -E double: the Exponent to use.

Providing the constraints and parameters, we can now
form the sets for an experiment.

cons == {(−C, 1.0,=), (−L, 0.0010,=),
(−P, 1.0E,=), (−N, 0), (−V,−1), (−W, 1)}

param == {(−C, 250007), (−E, 1.0)}
ds == {(iris.arff)}, algo == {(weka....PolyKernel)},
opme == {(weka.....SMO)}

After creation of a new experiment, mediator agent that pe-
riodically perform fetch operation will eventually receive an
instance of the experiment. Mediator agent then forwards
the instance to a rule agent to perform execution operation.
The results of the experiment are stored in the database as
key-value records as shown in figure 3 which are ready for
further analysis.

Figure 3. Experiment result

5. Conclusions

This work shows significance of agent and data mining
integration and interaction in enhancing complex systems
allowing extensibility, reusability, and intelligence to em-
bed. We will need to investigate and gather further require-
ments to improve the usability and friendliness of the sys-
tem. Finally, this work provides a platform for agent re-
search as a playground of agents incorporating with data
mining capability.

References

[1] F. Bellifemine, G. Caire, and D. Greenwood. Developing
multi-agent systems with JADE. Springer, 2007.

[2] R. Bose and V. Sugumaran. IDM: an intelligent software
agent based data mining environment. Systems, Man, and
Cybernetics, 1998. 1998 IEEE International Conference on,
3, 1998.

[3] L. Cao, C. Luo, and C. Zhang. Agent-Mining Interaction:
An Emerging Area. LECTURE NOTES IN COMPUTER
SCIENCE, 4476:60, 2007.

[4] L. Cao, J. Ni, J. Wang, and C. Zhang. Agent Services-
Driven Plug and Play in the F-TRADE. 17th Australian
Joint Conference on Artificial Intelligence, LNAI, 3339:917–
922, 2004.

[5] R. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7(2):179–188, 1936.

[6] T. Hastie and R. Tibshirani. Classification by pairwise cou-
pling. In M. I. Jordan, M. J. Kearns, and S. A. Solla, ed-
itors, Advances in Neural Information Processing Systems,
volume 10. MIT Press, 1998.

[7] H. Jeon, C. Petrie, and M. Cutkosky. JATLite: A Java Agent
Infrastructure with Message Routing. 2000.

[8] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy.
Improvements to platt’s smo algorithm for svm classifier de-
sign. Neural Computation, 13(3):637–649, 2001.

[9] C. Krueger. Software reuse. ACM Computing Surveys
(CSUR), 24(2):131–183, 1992.

[10] D. Lange and D. Chang. IBM Aglets Workbench—
Programming Mobile Agents in Java. White Paper, IBM
Corporation, Japan, August, 1996.

[11] R. Lee and J. Liu. iJADE eMiner-A Web-Based Min-
ing Agent Based on Intelligent Java Agent Development
Environment (iJADE) on Internet Shopping. Cheung, GJ
Williams, and Q. Li (Eds.): PAKDD, pages 28–40, 2001.

[12] P. Mitkas, D. Kehagias, A. Symeonidis, and I. Athanasiadis.
A framework for constructing multi-agent applications and
training intelligent agents. Proc. of the 4th Int. Workshop on
Agent-Oriented Software Engineering (AOSE-2003), pages
96–109, 2003.

[13] J. Spivey. The Z notation: a reference manual. Prentice-Hall
International Series In Computer Science, page 155, 1989.

[14] I. Witten and E. Frank. Data mining: practical machine
learning tools and techniques with Java implementations.
ACM SIGMOD Record, 31(1):76–77, 2002.

