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Abstract—Pulsed Eddy Current (PEC) sensors possess proven
functionality in measuring ferromagnetic material thickness.
However, most commercial PEC service providers as well as
researchers have investigated and claim functionality of sensors
on homogeneous structural steels (steel grade Q235 for example).
In this paper, we present design steps for a PEC sensing setup to
measure thickness of cast iron, which is unlike steel, is a highly
inhomogeneous and nonlinear ferromagnetic material. The setup
includes a PEC sensor, sensor excitation and reception circuits,
and a unique signal processing method. The signal processing
method yields a signal feature which behaves as a function of
thickness. The signal feature has a desirable characteristic of
being lowly influenced by lift-off. Experimental results show
that the setup is usable for Nondestructive Evaluation (NDE)
applications such as cast iron water pipe assessment.

I. INTRODUCTION

Pulsed Eddy Current (PEC) sensing is widely used for Non-
destructive Evaluation (NDE) of metallic structures to estimate
material thickness remaining under the sensor footprint [1],
[2]. Among different PEC sensor architectures, the detector
coil based architecture has been found in literature to be usable
to detect ferromagnetic material thickness [3], [4], [5], [6].
However, previous research, even recent ones [3], [4], [5], [6]
have been focused on standard structural steels grades such
as Q235. Therefore in this paper, we present design steps to
develop a PEC sensing setup capable of measuring cast iron
thickness up to about 25 mm. Even through we focus on cast
iron, the design steps are generic and applicable to design a
sensor to operate on any desired material.

The motivation for this work was the requirement for NDE
of cast iron critical water pipes [7]. It is generally recognized
worldwide that about 70% of the total asset base of urban
water utilities consists of buried pipes [8]. Currently existent
and aged buried pipes are typically made of gray cast iron,
ductile cast iron and mild steel [2]. Out of these, gray cast
iron pipes were usually laid about a century ago and some of
them are still operational [2]. However, there is a high risk of
these aged cast iron pipes failing in due course causing high
expenditure to water utilities, as pipe walls get rusted and
graphitized due to the typically existent underground environ-
ment [2], [7]. This demands for state of the art developments
in NDE sensor technologies to facilitate condition assessment
of aged ferromagnetic water pipes, especially cast iron.

In this paper, we start by briefly explaining the operating
principle of the detector coil based PEC sensor architecture.

We then proceed sequentially describing the design steps of the
sensor excitation circuit, the PEC sensor and the signal acqui-
sition circuit. Next we present experimental signals captured
from the setup used on gray cast iron and propose a signal
processing method to extract a signal feature which behaves
as a function of thickness. This feature has the characteristic
of having low influence from lift-off, which is highly desired
when considering NDE applications such as pipe inspection.
By calibrating for a particular cast iron, the setup exhibits
its usability for measuring cast iron thickness, and NDE
applications at large.

The paper is structured as follows: Section II explains the
PEC sensor operating principle in relation to the detector
coil based sensor architecture; Section III presents the design
steps of the PEC sensing setup; Section IV presents a unique
signal processing method which yields a signal feature which
behaves as a function of cast iron thickness; Section V
presents experimental results captured from the setup when
used on gray cast iron; and Section VI concludes the paper
by discussing the implications of results and the possibility of
using the setup for cast iron pipe assessment.

II. DETECTOR COIL BASED PEC SENSOR OPERATING
PRINCIPLE

Since we deal with ferromagnetic materials the interest of
this paper is the detector coil based PEC sensor architecture.
This is the architecture literature [3], [6], [4] has identified
to have superior sensitivity to ferromagnetic material thick-
ness, therefore it is the architecture typically used to assess
ferromagnetic material thickness.

As shown in Fig. 1, the detector coil based PEC sensor is
typically composed of two concentrically wound, air cored,
conductive circular coils [3], [6], [4]. Concentrically wound
rectangular coils too are rarely used [2], [9]. One coil behaves
as an exciter coil while the other behaves as a detector coil
which captures the signal. The exciter coil is excited with
a voltage pulse which can theoretically be modeled as a
Heaviside step function. The pulsed excitation causes a rapid
change in the surrounding magnetic field. This change induces
eddy currents in the test piece which the sensor is assessing.
The induced eddy currents will be varying with time and the
net effect of this variation and the excitation pulse induces a
unique time varying voltage in the detector coil. This voltage is
identified as the PEC signal which carries information about



the test piece. The PEC signal V (t) can be modeled as an
infinite summation of exponentials as in Eq. 1 [4] where bi
and ci are constants containing information about properties
of the sensor and the test piece, and its typical shape is an
exponential decay as shown in Fig. 2.

V (t) =

∞∑
i=1

bi exp (−cit) (1)

It has been proven in [2] that the PEC signal feature β
defined as

β = lim
t→∞

∣∣∣∣d ln[V (t)]

dt

∣∣∣∣−1 , (2)

behaves as a function of ferromagnetic material thickness.
Therefore, our objective is to extract the β feature from the
signals produced by our sensor setup when used on cast iron
and examine its functional behavior with thickness.

III. DESIGN STEPS OF THE PEC SENSING SETUP

Fig. 3 shows the basic block diagram of the sensing setup.
It includes a computer (PC), a data acquisition card (DAQ),
an excitation circuit, a reception circuit and a PEC sensor
interacting with a metal test piece (cast iron for our work).

The DAQ we used was an NI USB-6221 Legacy USB DAQ
device which drives the excitation circuit as well as samples
and acquires the PEC signals. The PC communicates and
controls the DAQ while storing the signals. Any PC which
can be interfaced with an NI USB-6221 Legacy USB DAQ
device would have been appropriate for this work; the PC we
used had an Intel(R) Core(TM) i7-3840QM CPU @ 2.80 GHz,

Fig. 1. Cross sectional view of a typical detector coil based PEC sensor.

Fig. 2. A typical PEC Signal: Induced voltage in the detection coil.

Fig. 3. Block diagram of the sensing setup.

16.0 GB RAM and was running on 64-bit Windows operating
system with MATLAB R2013b installed to communicate with
the DAQ via ”Session Based” interface.

Design details about the excitation circuit, PEC sensor and
reception (signal acquisition) are provided from here on in.

A. Excitation Circuit

From literature it can be seen that a PEC signal is captured
for several tens of milliseconds for ferromagnetic material
thickness quantification purposes [4]. Therefore we chose to
excite the sensor with a pulse having a 100 ms period and
50% duty ratio. This enables capturing a signal for a duration
of 50 ms. We used an analog output terminal of the DAQ to
generate the excitation pulse with an amplitude of 5 V peak
to peak. The PC triggers the DAQ via the MATLAB session
based interface to start and stop the excitation signal. Since the
DAQ output terminals can supply only low currents, we send
the pulse through a power amplification stage. Fig. 4 shows
the schematic of the circuit we used for power amplification (a
non inverting amplifier with a voltage gain of 2); Vs denotes
±15 V DC supply voltage, Vi denotes the 5 V peak to peak
voltage pulse (100 ms period, 50% duty) generated by the
DAQ and Vo denotes the amplified pulse. The DAQ generates
the pulse from an analog output terminal in reference to the
DAQ ground (connected as the 0 V common ground for the
whole setup) denoted by GND in Fig. 4. We thus obtained a
voltage pulse with an amplitude of 10 V peak to peak at the
amplifier output. We used the OPA544T operational amplifier
due to its fast slew rate, high output current supply capability
and low output impedance. As we connected the PEC sensor
directly to the amplifier output, a low output impedance was
desirable since it reduces losses and enables maximum power
deliverance to the load which is the PEC sensor in our case.

B. PEC Sensor

We opted to develop a circular PEC sensor having con-
centric air cored coils as the exciter and detector as shown
in Fig. 1 due to its simplicity and it being widely used in
literature for ferromagnetic material assessment [3], [4], [6].
For a fixed excitation, the sensor size has been observed to be a
dominant factor influencing the sensor’s penetration capability
(i.e., the maximum thickness of a particular material the sensor
will be sensitive to) [10]. Therefore, before fabrication we
simulated the sensor interaction with cast iron using Finite
Element Analysis (FEA). We developed a 2D-Axisymmetric
model of the sensor placed on cast iron (shown in Fig. 5)



Fig. 4. Schematic of the power amplification stage of the excitation circuit.

Fig. 5. 2D Axisymmetric model of the PEC sensor placed on a cast iron
block.

using COMSOL Multiphysics R©. The parameters needed for
simulation are given in Table I. Values of fixed parameters (or
constants) we used for simulation are provided in Table II.

For simplicity we took the heights of exciter and detector
coils (he and hd) and vertical offsets of the two coils (loe
and lod) to be fixed. Since we use copper wires to wind
coils, we could use standard permeability and conductivity of
copper (µe, µd, σe and σd) for simulation. In addition, rough
estimates of permeability (µ) and electrical conductivity (σ) of
the material being tested (cast iron in our case) are required.
As given in Table II, the approximated values we used for
cast iron were µ = 4π × 10−5 H/m and σ = 2 × 106 S/m.
If using precise values is desired, coupons of the material
being tested can be extracted and those material properties
can be experimentally measured using a Physical Property
Measurement System (PPMS) [11] or by other suitable means.
Alternatively, an approximation for those properties can be
obtained from literature; reference [12] has published such
information related to cast irons. We also took the amplitude

of the excitation current pulse to be fixed at 200 mA. As
we designed the excitation circuit to produce a voltage pulse
having 10 V amplitude in Subsection III-A, fixing the current
amplitude at 200 mA meant the exciter coil resistance required
to be 50 Ω, i.e., Re = 50Ω. Due to availability we chose
the standard copper wire having 0.315 mm diameter to wind
both exciter and detector coils. Therefore in our simulation
de = dd = 0.315 mm. As we explain in Subsection III-C, we
connect the detector coil output directly to an instrumentation
amplifier having high input impedance. This results in the
effective impedance (Zdl) felt by the detector coil be∞. Now
the objective was to estimate suitable inner and outer radii of
both exciter and detector coils (i.e., rei, reo, rdi and rdo) along
with their respective number of coil turns (i.e., ne and nd) in
order to have cast iron thickness sensitivity from 5 to 25 mm.
Ideally this could have been formulated as an optimization
problem and solved, but due to time constraints we conducted
several trial and error experiments and decided upon the values
provided in Table III to be used for sensor fabrication as those
values yielded the necessary thickness sensitivity.

TABLE I
PARAMETERS REQUIRED FOR SIMULATION.

Symbol Description
rdi Inner radius of detector coil domain
rdo Outer radius of detector coil domain
hd Height of detector coil domain
lod Vertical offset of the detector coil
nd Number of detector coil turns
dd Diameter of the detector coil wire
σd Electrical conductivity of the detector coil
µd Magnetic permeability of the detector coil
rei Inner radius of exciter coil
reo Outer radius of exciter coil
he Height of exciter coil domain
loe Vertical offset of the exciter coil
ne Number of excitation coil turns
de Diameter of the excitation coil wire
Re Resistance of the excitation coil wire
σe Electrical conductivity of the exciter coil
µe Magnetic permeability of the exciter coil
d Plate thickness
σ Electrical conductivity of pipe material
µ Nonlinear magnetic permeability of pipe material
Ie Amplitude or the excitation current pulse
Zdl Load impedance connected to the detector coil

TABLE II
FIXED PARAMETERS (CONSTANTS) USED FOR SIMULATION.

Symbol Value
he = hd 10 mm
loe = lod 2 mm
de = dd 0.315 mm
σe = σd 5.998× 107 S/m as we use copper coils
µe = µd 4π × 10−7 H/m as we use copper coils

σ 2× 106 S/m
µ 4π × 10−5 H/m
Ie 200 mA
Re 50 Ω
Zdl ∞



TABLE III
ESTIMATED PARAMETER VALUES USED TO FABRICATE THE PEC SENSOR.

Symbol Value
rdi 25 mm
rdo 28 mm
nd 300
rei 50 mm
reo 57 mm
ne 600

We used rdi, rdo, hd, lod, rei, reo, he and loe parameters
to design a circular core using the SOLIDWORKS c©software
to hold the coils and 3D printed it using Polylactide (PLA)
biodegradable polyester. We then wound the necessary num-
bers of turns (ne and nd) using copper wire having 0.315 mm
wire diameter. Fig 6 shows the fabricated PEC sensor.

C. Signal Acquisition

The signal induced in the detector coil is in the order of
millivolts, therefore we feed it through an instrumentation
amplifier with a voltage gain of approximately 1000 before
sampling the signal using the DAQ. We used the INA128P in-
strumentation amplifier Integrated Circuit (IC) for the purpose
and Fig. 7 shows the schematic of the circuit we developed.
V+ and V- denote the ±5 V DC supply provided to the IC.
Ref is the reference from which the output voltage (i.e., the
amplified PEC signal) is measured from, as done with the
excitation amplifier (Fig. 4), we use the DAQ ground as the
reference for reception as well.

We allowed the DAQ to sample signals at a rate of 100
kHz. Since we capture a signal for a period of 50 ms, a
single signal results in 5000 samples. To reduce noise of
detected signals, when taking a measurement we decided to
excite the sensor with 10 consecutive pulses and take the
average of the 10 detector coil signals resulting form the 10
falling edges of the pulses. Thus it takes about one second to

Fig. 6. Fabricated PEC sensor.

Fig. 7. Schematic of the instrumentation amplifier circuit for PEC signal
reception, adapted from [13].

acquire a measurement. Averaging signals in this manner is
commonly used in literature for PEC signal noise reduction
[6]. Signals sampled by the DAQ are stored in the PC and the
PC computes averaged responses from 10 signals acquired for
one measurement. We use this averaged response to obtain
the signal feature β presented in Eq. 2 in order to study the
functional behavior between cast iron thickness and the signal
feature.

IV. PEC SIGNAL FEATURE EXTRACTION FROM
EXPERIMENTAL SIGNALS

Shown in Fig. 8 are averaged PEC signals in the form
of ln[V (t)] plotted against time t for different thicknesses
of cast iron. We used cast iron blocks of thickness 7 mm,
11 mm, 15 mm, 19 mm and 21 mm which were machined
from an exhumed gray cast iron pipe. Length and width of
a block was approximately 28 mm and 25 mm respectively.
For comparison, an air signal is included in Fig 8. To examine
repeatability and stability, we performed three measurements
on each thickness and results from all three measurements are
included in Fig. 8. As the thickness increases, we can see
the discrimination between signals reducing as the penetration
limit of the sensor is being reached and we see that the signals
for thicknesses 19 and 21 mm are very close. However, the
feature value β for the two thicknesses are still discriminative
as shown in Section V.

Fig. 8. PEC signals from the setup in the form of ln[V (t)] for different
thicknesses of cast iron.



Though the theory indicates that the β feature has to be
captured as time t tends to ∞ in Eq. 2, as can be seen from
Fig. 8, the signals enter the noise bound (i.e., ln[V (t)] < −5)
of the signal sampling circuitry as time increases. Therefore,
we select the later stage of signals (i.e., −4.5 < ln[V (t)] <
−2) to extract β. In other words, we consider that region of
any signal produced by our setup to indicatively be the t ≈ ∞
region for practical purposes.

By looking at Eq. 2 it can be understood that the feature
β is simply the reciprocal of the absolute of the gradient
of ln[V (t)] when t → ∞. Therefore, to extract β we es-
timate the gradient of the linear region encapsulated within
−4.5 < ln[V (t)] < −2 of our experimental signals. This is
done by running the Random Sample Consensus (RANSAC)
algorithm [14] on the −4.5 < ln[V (t)] < −2 signal region as
it identifies the most linear portion of a given dataset and is
minimally influenced by outliers. Fig. 9 shows the RANSAC
fitted straight lines to all the experimental signals shown in
Fig. 8. Iteration Number = 1000, Distance Threshold = 0.001
and Distance Threshold Ratio = 0.01 were the parameters used
when running the RANSAC algorithm.

V. EXPERIMENTAL RESULTS

By plotting the variation of cast iron thickness d taken in
m against β, it can be seen that the thickness behaves as a
function of the feature. Fig. 10 and Fig. 11 are two examples
on how the function may be characterized. Both figures display
feature values form three measurements performed on each
thickness in order to depict repeatability and stability. The
variation of ln(d) against ln(β) shown in Fig. 10 is fairly
linear indicating that it could be analytically modeled as a
straight line. A nonlinearity can been seen at the high thickness
end due to the sensor’s penetration capability being reached.
The function shown in Fig. 11, i.e., variation of d2 against β
is nonlinear. Such a function may be modeled as a nonlinear
regression function using techniques such as Gaussian Process
(GP) regression as done in [9], [15], [16], [17]. Despite how
a function may be modeled, the prevalence of a functional

Fig. 9. RANSAC fitted lines to estimate the feature value β from the PEC
signal region −4.5 < ln[V (t)] < −2.

behavior between cast iron thickness and the β feature is
the important and desirable aspect. This indicates that the
function can be calibrated for a particular material using
several calibration thicknesses and hence the proposed PEC
sensing setup can be used for cast iron NDE applications.

The β feature was also observed to be lowly influenced
by lift-off. We repeated the experiment on the same cast iron
blocks by placing the sensor on a 12 mm thick layer of perspex
resting on the blocks. This effectively created a 12 mm lift-
off between the sensor and a calibration block. The β values
obtained with liftoff were plotted against thickness as shown

Fig. 10. Cast iron thickness d in m behaving as a function of the feature β
when plotted as ln(d) against ln(β).

Fig. 11. Cast iron thickness d in m behaving as a function of the feature β
when plotted as d2 against β (d2 = 0 corresponds to the air signal).



in Fig. 12. A low average variation of less than 2% in ln(β)
was observed with respect to the zero lift-off case. This is
again desirable as being lowly influenced by lift-off suggest
that the β feature is usable on applications such as in-situ pipe
assessment where pipe surfaces may be covered by a protective
layer, dust, rust or graphitization.

VI. CONCLUSION

Although literature has investigated using PEC sensor for
thickness assessment of structural steels, work investing sensor
performance on cast irons are rare. Therefore in this paper we
presented steps for designing a PEC sensing setup which can
measure cast iron thickness up to about 25 mm and evaluated
its performance. Steps for designing the sensor excitation
circuit, PEC sensor, and the signal acquisition circuit were
presented. We also presented a unique PEC signal processing
method which yields a signal feature which exhibits func-
tion behavior with cast iron thickness. The thickness-feature
function can be characterized and modeled in different ways
and the prevalence of the functional behavior suggests that
PEC sensors can be used for cast iron thickness assessment
provided that the thickness feature function can be calibrated.
The signal feature has a desirable characteristic of being lowly
influenced by lift-off indicating that the developed setup has
usability for NDE applications such as in-situ cast iron water
pipe assessment.
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Fig. 12. Low influence from lift-off on β.
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