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Abstract— Sensors play a vital role in monitoring the 

important parameters of critical infrastructure. Failure of such 

sensors causes destabilization to the entire system. In this regard, 

this paper proposes a predictive analytics solution for detecting 

the failure of a sensor that measures surface temperature from 

an urban sewer. The proposed approach incorporates a 

forecasting technique based on the past time series of sparse data 

using an ARIMA model. Based on the 95% forecast interval and 

continuity of faulty data, a criterion was set to detect anomalies 

and to issue a warning for sensor failure. Gaussian distribution 

was implemented on the forecasted and faulty data. By using the 

probability density of the distribution, the mean and variance 

were computed for faulty data to examine the abnormality in the 

variance value of each day to detect the sensor failure. 

Keywords—ARIMA model; forecasting; Gaussian distribution; 

sensor failure detection; surface temperature; time series; sewers.  

I. INTRODUCTION  

Predictive analytics platform integrated with cutting-edge 
sensor technology is an imperative component of smart 
monitoring systems mainly due to the reason that it enables the 
practitioners to foresee the future trends and more squarely it 
answers “What is likely to happen?” based on the historical or 
past sparse data. Recently, the relevance of predictive analytics 
to tackle real-world problems that are emerging from the 
sophisticated mainstream utilities is a paradigm of “How the 
advanced data analytics has taken the ascendency in delivering 
better solutions?”. In this context, this paper provides a 
predictive analytics solution for detecting the sensor failure 
based upon the real-time operational data sourced from urban 
sewers systems. 

In recent years, urban sewerage infrastructures transporting 
wastewater suffers from Hydrogen sulphide (H2S) induced 
concrete corrosion primarily owing to the physical and 
chemical activities of biogenic sulphuric acid producing 
bacteria that lives on the sewer walls [1, 2]. Due to the 
unavailability of technology to measure liable bacteria that 
causes corrosion, researchers have identified temperature as 
one of the three main proxy parameters to predict the rate of 
concrete corrosion [3, 4]. For the aforementioned reason, a 
custom-made sensor system was installed in sewer pipes for 
monitoring the temperature variations on the concrete surface. 

The environmental conditions of the sewer systems make 
hostile for engineers to enter the sewer pipes [5]. For this 
reason, a monitoring station was constructed adjacent to the 
sensor deployment site, where the accessibility to electrical 
power is very limited. This circumstance leads to supplying 
power to the sensors by using DC batteries and due to the 
power consumption of the monitoring system, the batteries 
were swapped once in a week with the recharged ones. If the 
deployed sensors fail, it may downgrade the monitoring system 
and possibly may lead to a total failure or in the worst case 
scenario it may even result in loss of lives [6]. For corrosion 
assessment in sewers, parameters such as H2S, humidity and 
temperature are important. If the contaminated temperature 
data enters the time synchronized loop of other parameters, it 
will affect the monitoring process. Due to this concern, during 
our deployment phase, the temperature data was collected from 
the monitoring station twice in a week to check whether the 
sensor system is running without any malfunctions.  

Currently, the researchers try to detect the anomalies from 
the spare data by manually reading the sensor output. This 
practice in the long-run will involve the failure of researchers 
to recognize the faulty data and may also lead to an extreme 
case. Two approaches can be done for the aforesaid problem. 
One is to forecast the sparse data and another is to detect the 
sensor failure in the event of an occurrence. The two said 
approaches can be beneficial to forecast the sparse data on the 
days when the maintenance of monitoring system happens or 
when the batteries can‟t be swapped due to rainy weather 
conditions, and to address the sensor failure at the time of 
occurrence itself rather waiting till the next scheduled site visit.   

Several sensors were designed and developed for 
monitoring environmental parameters in sewer systems [7-10]. 
Applications such as forecasting the time series data are vital 
for monitoring activities. The existing literature contains 
numerous forecast models such as Exponential Smoothing 
(ETS) [11], TBATS model [12] and Autoregressive and 
Moving Average (ARMA) model [13]. ARMA model is a 
well-known method to investigate the time series data [14]. 
Based on ARMA model, [15] formulated Autoregressive and 
Integrated Moving Average (ARIMA) model for predicting the 
linear time series data by transforming the non-stationary data 
into stationary data before forecasting.  
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ARIMA based forecasting models are widely used to 
forecast weather patterns [16], stock market [14] and electricity 
loads [17, 18]. Also, ARIMA models were used in anomalies 
detection for specific applications in industrial sectors like 
refinery [19] and network security [20]. However, there is no 
literature reported the use of ARIMA model for forecasting and 
sensor failure detection in the wastewater industry. In this 
paper, we propose a predictive analytics solution using 
ARIMA model to forecast the time series of sparse data based 
on the past measurements and thereby detect the event of 
sensor failure occurrence. The spare data is the surface 
temperature measurements that were collected at uniform time 
intervals of one hour from the sewer monitoring station. The 
forecasting results of ARIMA model were compared with the 
results other two popular forecast models for examining the 
prediction performance. By using 95% confidence interval of 
forecasted data, anomalies were detected and a criterion was 
set to issue a warning for sensor failure. Gaussian distribution 
was implemented for the faulty dataset and forecasted dataset. 
Based on the mean and variance of the probability density 
function, the sensor failure was detected.    

The remainder of this paper is structured as follows. The 
methodology for the formulation of predictive analytics using 
ARIMA model is described in Section II. The Section III 
presents and evaluates the results of ARIMA model with 
discussions. Finally, the conclusion is reported in Section IV 
with directions for future work. 

II. FORMULATION OF AUTOREGRESSIVE INTEGRATED MOVING 

AVERAGE MODEL 

This section describes the methodology for the formulation 
of ARIMA model to forecast the time series sparse data 
obtained from the sewer systems. The time series of sparse data 
is given by Xt which has real numbers as in (1)  

 1 2 3, , ,.....tX X X X  for all t >1                  (1) 

The Autoregressive model of order p is denoted as AR(p). 
In AR(p) model, the value of the future variable is assumed to 
be a linear combination of past value p of the variable with a 
constant and white noise [21, 22]. Mathematically, AR(p) 
model is defined as in (2) 
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where c is a constant, i is the parameter of the model, and i    

(1 ≤ i ≤ p) is an integer and t  is the white noise error term. 

The constant term c in (2) can be omitted for simplicity.  Given 
the as time series Xt, the lag operator L can be defined as in (3)  
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substituting (3) in (2) to write AR(p) in terms of a lag operator 
as in (4)  
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re-arranging the expression (4) in terms of t  and given in (5) 
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Therefore, AR(p) model in terms of lag operator L can be 
defined as in (6) 
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The Moving-average model of order q is denoted as MA(q). 
In MA(q) model, the past errors are used as an explanatory 
variable [22, 23] . Mathematically, the MA(q) model is defined 
as in (7) 
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where µ is the expectation of tX often assumed to be zero, i is 

the parameter of the model, and i (1 ≤ i ≤ q) is an integer and 

t  , t i   are the white noise error terms. For the time series of 

t , the lag operator L can be defined as in (8)  
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substituting (8) in (7) to write MA(q) in terms of a lag operator 
in (9)   
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upon the simplification of expression in (9), Xt for MA(q) is 
given in (10) 
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The ARMA model combines the AR(p) autoregressive 
terms of (2) and MA(q) moving-average terms of (7) to form 
ARMA(p,q) [22, 23]. Mathematically, the ARMA(p,q) model is 
defined as in (11) 
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where i are the parameters of the autoregressive part of the 

model AR(p) and i are the parameters of the moving-average 

part of the model MA(q). 

Since the ARMA(p,q)  models are manipulated using the lag 
operator, ARMA(p,q) model combines the AR(p) autoregressive 
terms of (6) and MA(q) moving-average terms of (10) to form 
ARMA(p,q) expression as in (12) 
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As mentioned in Section I, ARMA(p,q) model can only be 
applied for stationary time series data. However, for the 
application reported in this work, we need a model to describe 
the non-stationary time series. For this reason, ARIMA model 
was chosen for analysing the sparse data, which converts    
non-stationary time series to stationary by applying finite 
differencing of data points [23, 24].   

The notation ARIMA(p,d,q) refers to ARIMA model, which 

is same as ARMA(p,q). But, the time series of sparse data tX  

given in ARMA(p,q) in (12) is replaced by (13) to form 
ARIMA(p,d,q) in (14) 

 1      
d

t tX L X                               (13) 

Finally, the ARIMA(p,d,q) which is a generalization of 
ARMA(p,q) is mathematically  defined as in (14) 
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where i are the parameters and p is the order of the 

autoregressive part of the model AR(p), i are the parameters 

and q is the order the moving-average part of the model MA(q), 
d is the order of integrated part of the model.  

The forecast interval, which is also known as confidence 
interval comprises of upper and lower bounds between which 
the predicted values of sparse data is expected to lay within the 
prescribed probability [25]. The forecast interval for 
ARIMA(p,d,q) model is given by (15).  

  |  /2 |
ˆ  T h T T h Ty z v                             (15) 

where |T h Tv   is the variance of 1| y ,.......,T h Ty y , 

 /2 1.96z  for 95% forecast interval (confidence interval). 

Irrespective of parameters and order of ARIMA(p,d,q), for the 
integer h=1, the variance is expressed as in (16) 
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In ARIMA(p,d,q), the value d=1 for most cases as it controls 
the differencing. Based on the p, d and q integers values, the 
ARIMA(p,d,q) model can be reduced to different special cases 
as follows:  

(1) When 0d  , i.e. ARIMA(p,0,q), the model reduces to 

ARMA(p,q).  

(2) When 0p   and 0d  , i.e., ARIMA(0,0,q), the model 

reduces to MA(q).  

(3) When 0q   and 0d  , i.e., ARIMA(p,0,0), the model 

reduces to AR(p).  

(4) When 0p   and 0q  , i.e., ARIMA(0,1,0), the model 

is known as Random Walk model [26].  

(5) When 0p  , 0d  and 0q  , i.e., ARIMA(0,0,0), the 

model is known as white noise model.  

In the reported work, the ARIMA(p,d,q) model was 
implemented in R programming language using the package 
„Forecast‟ [27]. 

III. RESULTS AND DISCUSSIONS 

In this section, the performance of sparse data prediction 
using ARIMA model will be examined and compared with 
other models such as ETS and TBATS. The sparse data from 
the sewer systems were recorded for 30 days from 04

th
 

November 2016 to 03
rd

 December 2016. The total length of 
data points is DPtotal = 720 and the data points of the first 24 
days containing DPtraining = 576 will be used as the training 
data. Remaining data points DPtesting = 144 will be used for 
evaluating the performance of spare data prediction. Fig. 1 
shows the plot of input training data. 

 

Fig. 1. Plot of sparse data for training the forecast model 

Fig. 2 illustrates the time series forecasting of sparse data 

from 00:00 hours of 28
th

 November 2016 to 23:00 hours of 

03
rd

 December 2016 using ARIMA, TBATS and ETS models. 

 

Fig. 2. Forecasted sparse data from the ARIMA, TBATS and ETS model 



To evaluate the performance of the forecast models and to 

choose a suitable model for the sparse data from sewers, 

statistical performance metrics such as Mean Absolute Error 

(MAE), Mean Percentage Error (MPE), Mean Absolute 

Performance Deviation (MAPD) and Root Mean Square Error 

(RMSE) were used to compute the forecast errors.  

Table I lists the statistical performance metrics for the 
different models.  

TABLE I.  STATISTICAL PERFORMANCE METRICS 

Statistical 

Metrics 

Time Series Model 

ARIMA ETS TBATS 
 

MAE (ºC) 

MPE (%) 

MAPD (%) 

RMSE (ºC) 

 

0.0962 

0.3491 

0.4481 

0.1228 

 

0.2194 

1.0087 

1.0203 

0.2722 

 

0.1801 

0.8247 

0.8374 

0.2263 

 

It can be observed from the Table I that the MAE and 

RMSE of TBATS model were smaller than those of ETS 

model. Thence, the prediction performance of TBATS was 

better than ETS. But, the MAE and RMSE of TBATS model 

were higher than those of ARIMA model. So, based on MAE 

and RMSE the prediction performance of ARIMA model was 

better than the other two models. Like aforementioned 

performance metrics, the MPE and MPAD of TBATS model 

were smaller than those of ETS model and higher than those 

of ARIMA model. In summary, based on the four different 

performance metrics for forecasting the sparse data sourced 

from sewers, ARIMA model had better performance and it 

used as a forecasting model to detect the sensor failure. Fig. 3 

displays the 95% confidence interval for the forecasted data of 

ARIMA model. It can be observed from Fig. 3 that the 

forecasted data and the measured data lay within the upper and 

lower bounds of the confidence interval.   

 

Fig. 3. Forecasted data using ARIMA model with 95% confidence interval 

During the sensor testing phase at UTS-CAS Robotics 

Laboratory, the sensor was malfunctioned and a set of faulty 

data was logged. Those faulty data was manually added to the 

time series of sparse data from sewers as a testing dataset for 

the ARIMA model to detect anomalies and sensor failure.   

Fig. 4 illustrates the testing dataset to detect anomalies. 

 

Fig. 4. Testing dataset to detect anomalies using ARIMA model. 

A total of DPfaulty = 28 were used as a faulty data out of 

testing data DPtesting = 144. The data points that are lying 

outside of the 95% confidence interval of the forecasted data 

using ARIMA model were regarded as anomalies. Based on 

the upper and lower bounds of the model, 92.8% of the 

anomalies were detected and 7.2 % of faulty data were lying 

within the 95% confidence interval. A criterion was set to 

issue the sensor failure warning. For each faulty data lying 

outside the 95% confidence interval, weight w = 0.2 value was 

given. For five continuous faulty data, the sensor failure value 

SF = w*n, where n is the number of occurrence of faulty data 

continuously. If the value of SF >= 1, then the sensor failure 

warning is reported. For the testing dataset shown in Fig. 4, 

the sensor failure warning was reported at the following times 

in the Date/Month/Year Hours-Minutes-Seconds format:       

(i) 03/12/2016 04:00:13 (ii) 03/12/2016 11:00:14 and (iii) 

03/12/2016 20:00:12. It can be observed from the Fig. 3 and 

Fig. 4 that the 95% confidence interval tends to widen as the 

time progress. This phenomenon could be reduced when the 

real-time data is supplied to the predictive analytics model 

after each measurement. 

Gaussian distribution, which is also known as normal 
distribution is used for representing the random variables, 
where the distribution of the variables are not known in 
advance [28]. The Gaussian distribution was implemented on 
the faulty data and forecasted data of ARIMA model by using 
the probability density function of the normal distribution in 
[17].  
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where µ is the mean, σ is the standard deviation and σ
2 

is 
the variance of the Gaussian distribution. The µ is a real 
number and the variance is always σ

2 >
 0. The Gaussian 

distribution is noted in terms of N (µ, σ
2
). Fig. 5 displays the 

Gaussian distribution of the faulty data and the forecasted data 
from the ARIMA model from 28-Nov-16 to 03-Dec-16.  

 

Fig. 5. Gaussian distribution of faulty and forecasted data. 

 

Table II presents the mean and variance of faulty data and 
forecasted data from ARIMA model using probability density 
function of the Gaussian distribution. The mean of forecasted 
data and faulty data were denoted as µm and µf, and the 
variance of forecasted and faulty data was denoted as σ

2
m

 
and 

σ
2
f.   

TABLE II.  STATISTICAL ANALYSIS FOR SENSOR FAILURE 

Dates 
Mean and Variance from Gaussian Distribution 

µm µf σ2
m σ2

f 
 

28-Nov-16 

29-Nov-16 

30-Nov-16 

01-Dec-16 

02-Dec-16 

03-Dec-16 

 

21.1301 

21.1969 

21.2569 

21.3170 

21.3773 

21.4377 

 

21.5057 

21.7596 

21.1771 

21.1984 

21.9302 

32.6495 

 

0.0358 

0.0354 

0.0356 

0.3858 

0.0360 

0.0362 

 

4.3514 

8.1305 

0.0292 

0.0290 

11.6694 

87.9919 

 

The N (µ, σ
2
) of training sparse data from 00:00 hours of 

04-Nov-16 to 23:00 hours of 27-Nov-16 is N (20.1984, 
0.4322).  

For the dates 28-Nov-16, 29-Nov-16 and 02-Dec-16, the 
Gaussian distributions of faulty data are N (21.5057, 4.3514),   
N (21.7596, 8.1305), N (21.9302, 11.6694) and the 
distributions of forecasted data are N (21.1301, 0.0358), N 
(21.1969, 0.0354), N (21.3773, 0.0360). Both the Gaussian 
distributions did not possess a similar trend for the previously 
mentioned dates. This effect is due to the presence of faulty 
data in the testing dataset. However, the N (µ, σ

2
) of faulty data 

is not significantly higher than the N (µ, σ
2
) of forecasted data 

and     N (µ, σ
2
) of training data.  

For the dates 30-Nov-16 and 01-Dec-16, the Gaussian 
distribution of faulty data are N (21.1771, 0.0292), N (21.1984, 
0.0290) and the distribution of forecasted data are N (21.2569, 
0.0356), N (21.3170, 0.3858). In the case of those dates, both 
the distributions tend to be similar, which can be observed 
from Fig 5. The reason is due to the fact that there is an 
absence of faulty data in the testing dataset for those dates.  

For the date 03-Dec-2016, the Gaussian distribution of 
faulty data is N (32.6495, 87.9919) and the distribution of 
forecasted data is N (21.4377, 0.0362). In contrast to the 
Gaussian distribution of training data and forecasted data, this 
date has significantly higher mean and variance than any other 
days. While looking the Fig. 5 for the mentioned date, the 
distribution of the faulty data is pretty much flat compared to 
the distribution of the forecasted data for that particular date. 
The abnormal mean and variance on 03-Dec-16 implies the 
possible sensor failure on this day. Henceforth, a predictive 
analytics solution to detect sensor failure was implemented 
based on the forecasting ARIMA model and the Gaussian 
distribution for the sparse data from sewers. 



IV. CONCLUSIONS 

In this paper, we have proposed a predictive analytics 
solution for the time series of sparse data obtained from the 
urban sewer system. The forecasting performance of ARIMA 
model that uses sparse data was examined and compared with 
ETS and TBATS model. MAE, MPE, MAPD and RMSE were 
used as a performance criterion to evaluate the models 
discussed in this paper. Based on the statistical metrics, the 
prediction performance of ARIMA model was better than the 
ETS and TBATS model. Also, the prediction performance of 
TBATS model was better than the ETS model. Overall, this 
paper suggests ARIMA model for forecasting the surface 
temperature measurements obtained from the sewer systems. 
Using ARIMA model, this paper proposes an approach to 
detect the anomalies and issuing sensor failure warning based 
on a criterion set to the 95% confidence interval. Gaussian 
distribution was implemented for the faulty data and the 
forecasted data from ARIMA model. Based on the probability 
density of the distribution, the abnormality in the mean and 
variance was examined for each day of the faulty dataset to 
detect the possible sensor failure. 

As a future work, the authors are intended to develop a 
comprehensive framework for integrating the sparse data and 
predictive analytics platform, where the system gets updated 
with each measurement to form a real-time predictive analytics 
platform for the application motivated in this paper and the 
results will be published in due course. 
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