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Abstract 
 
The major difficulty in human tracking is the problem 

raised by challenging occlusions where the target person is 
repeatedly and extensively occluded by either the 
background or another moving object. These types of 
occlusions may cause significant changes in the person’s 
shape, appearance or motion, thus making the data 
association problem extremely difficult to solve. Unlike 
most of the existing methods for human tracking that handle 
occlusions by data association of the complete human body, 
in this paper we propose a method that tracks people under 
challenging spatial occlusions based on body part tracking. 
The human model we propose consists of five body parts 
with six degrees of freedom and each part is represented by 
a rich set of features. The tracking is solved using a layered 
data association approach, direct comparison between 
features (feature layer) and subsequently matching between 
parts of the same bodies (part layer) lead to a final decision 
for the global match (global layer). Experimental results 
have confirmed the effectiveness of the proposed method. 
 

1. Introduction 
The interest in video tracking of objects has increased in 

recent times with various emerging applications such as 
surveillance, human-centered computing, anthropocentric 
video analysis, perceptual user interfaces, interactive 
computer games, ambient intelligence and several others. 

Tracking of a moving object implies accurately locating 
it in each frame of a frame sequence. Tracking multiple 
targets simultaneously raises a further problem of 
probabilistic data association [4]: which object is which 
along the frame sequence? This question typically involves 
matching single objects in consecutive frames based on 
coherent models of shape, motion and appearance features. 
However, the problem becomes progressively more 
difficult to solve in the presence of increasing target 
occlusions. Such occlusions mainly occur when the view of 

the target object is obstructed completely or partially either 
by elements of the static scene or other moving objects. 

While dealing with occlusions explicitly or implicitly has 
received considerable attention in the tracking literature, 
tracking humans under challenging occlusions has only 
recently started attracting the attention of the computer 
vision and pattern recognition communities. Not only 
tracking under occlusions must deal with all the problems of 
usual tracking, but also it has to tackle new problem 
dimensions such as frequently and severely occluded views 
and challenging data association. We clarify that the 
objective herein is not that of tracking the articulated human 
body, that is impractical at the typical level of resolution of 
wide-area surveillance videos; rather, that of tracking the 
location of individual people as they move around the field 
of view. 

In recent years, a few survey papers have covered the 
topic of occlusion management. In 2002, Gabriel et al. 
presented a review of existing techniques and systems for 
tracking multiple occluded objects using single or multiple 
cameras [7]. In 2007, these authors have provided a 
comparative review of the main recent (2002-2006) 
tracking methods dealing with significant occlusions [21]. 
Moeslund et al. presented a survey of advances in 
vision-based human motion capture and analysis including 
pixel-based occlusion handling and part-based human 
tracking [10]. Yilmaz et al. in 2006 have provided a 
comprehensive survey on video tracking also addressing 
occlusion handling [20]. In 2002 and 2003, Tao et al. [16] 
and Zhou et al. [26], respectively, have proposed a method 
for tracking objects under occlusions by capturing the 
spatial and the temporal constraints on the shape, motion 
and appearance of the tracking objects in a dynamic layer 
representation. Wu and Nevatia in [18] and [19], proposed a 
human tracking method that takes into account the 
deformable nature of the human body and the effect of 
occlusions by modeling a human by body parts. In this 
paper, we follow a similar rationale by adding further 
emphasis to the data association problem and its solution. In 
2007, Pan and Hu proposed a human tracking algorithm that 
explicitly models the occluder through a multiple-step 
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approach [11].  However, the algorithm’s extensive use of 
template correlation operators may make it difficult for a 
system to meet real-time constraints. 

Possibly, the main limitation across the existing tracking 
literature is that no clear attempts have been made to take 
into account the nature and statistical distribution of 
occlusions in the conceptual development stage of the 
tracking algorithm. While doing so inevitably specializes 
the application, it also makes expectations for accurate 
tracking more realistic. In particular, careful consideration 
must be given to the distribution of occlusions when 
tackling tracking of humans in very crowded environments 
(e.g., train stations, airports and shopping malls). Such 
environments are dominated by typical commuter traffic, 
with dozens of people walking simultaneously along 
various flows of directions (to various trains, exits, gates 
etc). Trajectory patterns tend to be individual i.e. people do 
not walk in formations and, within a common flow; different 
individuals exhibit varied speeds and paths. On the single 
individuals, occlusions tend to be a) repeated and frequent; 
b) partial, with different parts of the individual occluded at 
different times, and c) provided by different occluding 
elements at different times. Because of these conditions, a 
tracking approach cannot rely on even seldom entirely 
unoccluded observations. 

Given the above framework, the main contribution of 
this paper is the definition of a part-based people tracking 
approach suitably mirroring the occlusion distribution of 
crowded environments. The simple part-based model used 
in our approach can support effective tracking through such 
occlusions while at the same time be realistically fitted on 
typical surveillance videos. This model allows us correct 
target association even when only a few parts of a target are 
visible. Moreover, its updating procedure updates the 
model’s parts independently of one another, guaranteeing 
that the overall model can be kept up to date even in the 
absence of completely unoccluded views even for sustained 
periods of time. 

The paper is organized as follows. In section 2, we 
provide an overall structure of the proposed methodology 
and a detailed description of each individual component. 
Section 3 presents the experiments carried out and the 
analysis of the results obtained and Section 4 concludes the 
paper. 

2. Methodology 
The approach we propose in this paper is a solution to the 

problem of effectively tracking people in crowds. The 
approach is based on the adoption of a simplified articulated 
human model to support the various stages of data 
association and tracking. An articulated model for a human 
may range from a minimum of three parts (such as head and 
shoulders, torso and legs) to anatomical degrees of freedom. 

Given that we want to retain use of typical wide-area 
surveillance views, the resolution of each target is of 
low-medium quality. This prevents us from using a high 
number of degrees of freedom in the human model. 
Therefore, we choose to limit the number of parts to a few 
only. Each part is characterized by a feature set including 
appearance (e.g., HSV color histogram etc) and spatial 
features (e.g., centroid of the blob, principal axis of inertia 
etc). Data association is provided by matching the model’s 
parts to those of possible candidates in the current frame. 
We choose to restrict the predictive aspects of our approach 
to quantitities that can be realistically predicted in the crowd 
scenario. The outline of our tracking algorithm can be 
summarized as follows: 

• Segmentation: Obtain object segmentation for the 
current frame by applying background subtraction with a 
Gaussian Mixture background model. Generate the 
foreground image and label all objects present in it. 

• Prediction: For each currently tracked target, ti, based 
on its model, calculate the search range for its possible new 
position in the current frame and select all objects falling 
within the search range (candidates for a match, cij). 

• Alignment of model on candidates: For each tracked 
target, ti, and for each of its candidates, cij, align the model 
on the candidate and divide this into parts; extract the 
relevant features for each part. Manage various occlusion 
cases. 

• Match features: For each pair, ti-cij, match their 
features for each part. Infer global matching from parts’ 
matching. The candidate with sufficient, highest likelihood 
is considered as the current position of the target. 

• Update human model: Update the human model for the 
matched and unmatched parts with separate policies. 

Each of the above steps is explained in detail in the 
following subsections. 

2.1. Segmentation 

The initial process for most object tracking algorithms 
from static camera views consists of background modeling 
and foreground extraction. In our approach, we use a 
Gaussian mixture model at pixel level for the background 
[9]. Foreground regions are extracted by background 
subtraction, then morphologically closed, smoothed by a 
median filter, and labeled by using connected components 
labeling. A size filter is applied to remove noisy small 
regions and holes inside remaining regions are filled. As the 
focus of this algorithm is only human tracking, the size filter 
is also used to remove foreground regions which do not 
correspond to an acceptable human body size. The result 
obtained from this initial step is a set of foreground objects 
or “blobs”. Shadow removal is then applied to such objects 
to filter out foreground shadow pixels and improve the 
blobs correspondence with the actual visual objects [13]. 
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Various types of errors intrinsically affect the segmentation 
stage, such as the case of partial segmentation due to 
occlusions. Such errors are discussed in details in Section 
2.4. 

2.2. The human model 

 

 
The human model adopted in our approach is shown in 

Figure 1. It contains five parts: head, left and right arms, and 
left and right legs. The model has an overall rectangular 
shape and a total of six degrees of freedom in the image 
plane that are chosen as: the top left point, Xtl, Ytl; the blob’s 
centroid, Xc, Yc; and the height, h, and width, w, of the 
rectangle. Such degrees of freedom, together with an 
assumption on the head part’s height, subdivide the overall 
rectangle into five rectangular parts. The head part occupies 
the top and its height is assumed as a fixed percentage of h. 
The remaining four rectangles represent a body part each. 
As illustrated in Figure 1, the torso and the two arms are 
split into two body parts where each part contains one arm 
and one half of the torso. We decided to construct the model 
in this way as the torso component provides some desirable 
stability to the part model by compensating for the 
instability of the arms. A feature set for each part completes 
the model. 

2.2.1 The feature set 

There are many features that can potentially contribute to 
obtain an effective tracking and data association algorithm 
and the choice amongst them is essentially empirical. In our 
case, we aim to select features that are relatively invariant to 
pose and deformation, and also to imprecise fitting of the 
spatial degrees of freedom of the model. They should also 
be lightweight to extract and compare for computational 
reasons. Such requirements tend to exclude appearance 
templates as their cross-correlation is very sensitive to 

alignment and computationally heavy. In light of the above, 
we choose to use the following six features:  

• Area: The area of a segmented body part is measured by 
counting the actual number of foreground pixels in the 
region. 

• Perimeter: The perimeter of a body part is the length of 
its contour inclusive of the intersections between 
rectangular parts.  

• Centroid: The part’s centroid is computed over all its 
foreground pixels. 

• Principal axis of inertia: The moment of inertia, also 
called mass moment of inertia, is the rotational analog of 
mass i.e. the inertia of a rigid rotating body. This feature 
helps with testing the rotation angle of the body part.  

• Color histogram:  Appearance is described by the 
HSV color histogram of the part. We base the measurement 
of color similarity between two HSV histograms upon the 
Minkowski metric [14].  

• Amount of pixel overlap: Despite deformations, we 
expect the same part of a target to show significant overlap 
in closely successive frames. 

We note that all the above features enjoy limited 
variance to small pose changes, deformations, imprecision 
in fitting of the spatial model, and light occlusions. On the 
other hand, major occlusions will cause significant changes 
to their values. Therefore, the chosen feature set, { fi} i=1..M, 
M = 6, promises a good choice towards correct data 
association. 

2.3. Prediction 

The first step in the prediction procedure is to find which 
detected objects are within the range of prediction for a 
target (gating). Within this search range, a matching 
procedure will then select the most likely object. The search 
range is a rectangle area centered at the centroid of the 
human model, with width and height proportional to the 
magnitude of the centroid’s speed. In other words, the 
prediction range is based on motion magnitude only and not 
its direction. In our experiments, the human motion’s 
direction proved not reliably predictable even based on 
nonparametric models such as particle filters [8, 25]. Unlike 
other types of targets, a person can suddenly change its 
motion towards any direction; this is especially the case 
with the relatively low frame rates of typical surveillance 
cameras. 

Overall, the prediction process can be described by the 
following steps: 
1. Estimate the search range based on the current location 

of the target and the magnitude of its centroid’s speed 
filtered and predicted using a Kalman filter. The 
linear/Gaussian assumption of the Kalman filter holds 
well for these features. 

h

(Xc, Yc) 

tltl YX ,  

w  

cc YX ,
 

h

Figure 1. The human model. 
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2. For each blob, determine whether it consists of more 
than one person (under-segmentation) and, if it does, 
apply the head detection procedure described in 
Section 2.4 and [22] in order to separate every person 
included within the blob. 

3. Confirm as candidates for matching only those people 
whose centroids fall within the search range. 

For prediction and tracking, Kalman filters have been 
adopted wherever conditional probabilities appeared to 
respect Gaussian hypotheses and linear propagation. We 
use three separate Kalman filters for separate features as we 
assume they are independent of each other [17]. The first 
Kalman filter, 1KF :  

{ } { }cccccc YXYXYXKF && ,,,;, 1.11 =ΧΖ＝：       (1) 

is used for estimating the centroid of the blob and its speed, 
and deriving the search window size as linearly proportional 
to the speed magnitude. The observation space consists of 

cc YX , and is represented in terms of frame-based 

coordinates. From empirical observations, the speed of a 
blob in the state space appears to be relatively stable. The 
second Kalman filter, 2KF , is used for estimating the height, 

h, and width, w:  

{ } { }whwhwhKF &&,,,;, 222 =ΧΖ ＝：     (2) 

When the target person is side-viewed, as the human 
walking gait is periodic, the correct motion model has to be 
periodic. A basic view estimator can be used to adjust the 
motion model. The third Kalman filter, 3KF , is used to 

estimate the displacement between the top-left corner of the 
bounding box and the centroid.  

ctlc XXh −=           (3) 

ctlc YYw −=           (4) 

{ } { }cccccc whwhwhKF && ,,,;, 3.33 =ΧΖ＝：   (5) 

This estimate is particularly useful to map the human 
model onto an observation blob in the case of under- or 
miss-segmentation. When such situations are detected, the 
centroid is not calculated using the normal approach; rather, 
assuming that the top-left-corner can still be estimated 
based on previous observations. In case of occlusion, the 
observed quantities cannot be reliably observed, thus, the 
predicted values are confirmed by all three Kalman Filters. 
Note that the aforementioned three Kalman filters could be 
straightforwardly combined into a single Kalman filter. 
However, we chose to separate them due to the fact that the 
combined matrix would be blob-based (certain features 
influence only certain state). 

2.4. Occlusion analysis and management 

In our system, the main assumption for handling 
occlusions is that people may frequently occlude each other; 
however, the same parts do not stay occluded for long 

periods of time. More specifically, our methodology does 
not aim to handle long-term occlusions; instead, we 
explicitly focus on the occlusions caused by crowds in 
motion, i.e. short-term, repeated, and on different parts. We 
categorize the occlusion situation into three cases: normal 
segmentation, under-segmentation and partial segmentation. 
The normal segmentation case occurs when the segmented 
blob’s width and height measurements are similar to the 
prediction. The observation in this case is obtained based on 
the actual segmentation. In the under-segmentation case 
multiple physical objects are merged into a single blob. 
Therefore, the segmented blob’s width (height) 
measurement is significantly larger than the predicted width 
(height). In the partial segmentation case, the segmented 
blob’s width (height) measurement is significantly smaller 
than the predicted width (height). We deal with such under- 
or partial segmentation situations by analyzing the blob 
using a head detection algorithm. In our tracking approach, 
the core assumption we make about the scene is that the tops 
of the heads are visible at all times. Such an assumption is 
widely utilized in the tracking literature (e.g., [5]). 
Therefore, we use the head as an anchor for aligning our 
human model onto the candidates for matching. Empirically 
we found that the use of heads as anchors and some basic 
assignment rules between models and blobs provide 
equivalent information to depth ordering. 

To this aim, we need a head detection algorithm that is 
capable of handling significantly variable conditions in 
terms of equatorial viewpoint (i.e. frontal, profile, back 
view, from -180 degrees to +180 degrees), tilt angle (i.e. 
from horizontal to aerial), scale and resolution. We 
presented one such head detector in detail in [22]. Concisely, 
we build a model for the head based on appearance 
distributions and shape constraints. The appearance 
distribution models the colors of hair and skin by sets of 
Gaussian mixtures in the XYZ and HSV color spaces. The 
shape constraint fits an elliptical model to the candidate 
region and compares its parameters with priors based on the 
human anatomy. In this work, we further test the shape 
constraint by use of the Hough transform as the head model 
may provide miss detections in some frames.  

The head detection step provides a list of candidates for 
matching against the model, typically with multiple, close 
responses for a single head. We do not attempt to cluster 
such multiple responses. Instead, we use all of them as 
possible candidates and let the matching procedure choose 
the most likely. This raises a fine point about the feature set 
used in our approach. As stated in Section 2.2.1, the feature 
set is designed to be limitedly variant to pose, deformation 
and imprecise fitting of the spatial model onto a candidate. 
While this design decision supports correct data association 
even in challenging circumstances, an undesirable 
side-effect is that it may lead to inaccurate alignment of the 
model and the candidate. In turn, this causes pollution of the 
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{ fi} i=1..M features values and, in the medium-long term, 
unacceptable model degradation and data association 
failure. Therefore, in order to mitigate the impact of 
inaccurate matches we introduce a correction step after the 
matching procedure has identified the best candidate. The 
head of the human model is used as a template to search for 
the best matching head in the search range by template 
correlation. Given that such templates are very small, the 
correlation operator carries a negligible computational 
overhead. The correction is confirmed only if template 
matching is very good and the distance between the matched 
head and candidate’s head is within a threshold. If the 
correction is confirmed, the model is rebuilt based on the 
new head position, and each of the body part features is 
re-computed. 

Examples of challenging occlusions are provided and 
analyzed in detail in the Experiments section. 

2.5. Matching 

In the proposed system matching is achieved by using a 
layered data association approach. More specifically, direct 
comparison between features (feature layer) and 
subsequently matching between parts of the same bodies 
(part layer) lead to a final decision for the global match 
(global layer). Thus, the matching obtained between tracked 
targets and blobs is referred to as global match whereas the 
matching obtained between the parts of the same bodies is 
referred to as local match.  

The overall matching process can be described by the 
following steps: 
1. For each unoccluded candidate, divide its blob region 

into five parts based on the blob’s bounding box and 
centroid. Extract features for each part. 

2. For each occluded candidate, apply the human model 
onto the candidate and extract part features accordingly. 

3. Apply part-by-part feature comparison between the 
human model and the candidate to estimate local 
matches. 

4. Infer the global match from the local matches. 
5. Choose the candidate that provides the best possible 

global match. The global match must also be above a 
threshold and provide an adequate match ratio with the 
runner-up. 
Local and global matches are further described in the 

following subsections. 

2.5.1 Local match 

For each body part, a comparison can be obtained by 
calculating the difference between the features of the 
potential target with the features of the human model. Each 
difference is set within a boundary to provide a binary score 
or decision. The weighted sum of all the decisions provides 

the final decision for the local match.  
Let us note each feature of the part in the model and the 

observation as
mi

f and 
oi

f , respectively. The score 
if

s  is 

then computed as follows: 

if 
iii fff uthdlth >>  then 1=

if
s , else  0=

if
s    (6) 

m

om

i
i

ii
f f

ff
d

|| −
=                 (7) 

As shown in our experiments in Section 3, this metric 
proved sufficient to cope with the changes occurring 
between feature values in two successive frames, without 
occlusions. When occlusions occur, qualitatively, there are 
two situations: i) the occlusion is minor and features still 
match; ii) the occlusion is major and features don’t match. 
This is a desirable effect in agreement with the feature and 
part rationale underpinning our approach. Instead, we 
decided to leave motion features out of the feature set as 
they appeared unreliable in this respect. We then progress 
from feature matching to part matching by using the scores 

if
s calculated during feature matching. Each body part, jp , 

is given a match score as: 

if 
jj pp thd >  then 1=

jps , else  0=
jps      (8) 

∑
=

=
6

1i

ffp iij
swd                 (9) 

Weights in (8) have been chosen empirically and follow 
the constraint that they sum up to 1: 

∑
=

=
6

1

1
i

f i
w  

The head has double the weight of the other body parts due 
to its role as anchor in our tracking algorithm. 

All weights and thresholds have been tuned empirically 
in our experiments to date. However, learning them 
automatically from labeled training data is the focus of 
future development. 

2.5.2 Global Match 

Global match is performed based on the weighted 
combination of the local matches.  

( )k
k

Dk maxarg* =      (10) 

∑
=

=
5

1l
ppk ll

swD                 (11) 

following the constraint that the weights sum up to 1.  
A strong local match outputs a higher weight than a weak 

local match. The final decision for the data association 
process is made based on the results from the global match 
of all the potential candidates. In general, the person with 
the highest global match likelihood is considered as the 
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current position of the target person. However if multiple 
potential candidates have similar global match likelihoods 
or all the global match likelihoods are too weak, then we do  
not make a decision in the current frame and proceed to the 
next frame. In the next frame, multiple predictions are made 
based on the multiple potential candidates in the previous 
frame and a final decision is made based on the combination 
of the global match likelihoods from two frames.  

2.6. Updating 

The updating process is crucial for our algorithm to 
perform as desired. Correct updates of the human model 
will allow correct prediction and matching, while incorrect 
updates will corrupt the human model and lead to 
significant faults in the prediction and matching processes. 
In general, decision for update is based on both global and 
local match results. Update at the global level involves 
update of the geometrical features 

{ }cccc whwhYX ,,,,, .. . 

The update for body part depends on the body part 
matching decision. If there is a match, then there is a 
complete replacement of the spatial features (centroid and 
position) and partial replacement of the area, perimeter and 
principal axis of inertia features by using a running average 
on the values of the model and the observation. The 
histogram instead is replaced completely or left as before. In 
the case of no match only spatial features are replaced, other 
features remain as they are. Geometrical features, on the 
other hand, are always updated to keep the whole body 
model consistent. These rules apply to all body parts and all 
cases. 

3. Experiments 
While an increasing number of papers have started 

addressing the issue of how to perform quantitative 
comparison of existing algorithms (e.g., [3, 6]), 
performance evaluation of visual surveillance systems is 
still an unresolved issue. There is no commonly agreed 
performance evaluation criteria (i.e., how to perform 
objective/ comprehensive/ comparative evaluation, how to 
represent the complexity and range of issues handled, etc.) 
for tracking in crowds. We thus carried out two experiments 
in order to evaluate the performance and stability of the 
proposed approach under various occlusion conditions 
qualitatively. We tested our tracking algorithm on 
sequences from the CAVIAR dataset [2] and the AVSS 
2007 dataset [1].  

From the CAVIAR dataset we used a sub-sequence from 
the video named "WalkByShop1cor.mpg", where a couple 
is walking along a corridor browsing, and there are persons 
going inside and coming out of stores. There are no 
illumination changes; however there is occurrence of 

occlusions between the target and the rest of the people in 
FOV. 

 

  
(1) fr# 160 (2) fr# 288 

  
(3) fr# 313 (4) fr# 328 

  
(5) fr# 340 (6) fr# 364 

 

 
For our experiment we only used around 368 frames with 

98 frames of background. The length of the occlusion is 
around 80 frames. Representative frames are shown in 
Figure 2. Please note that as we chose to use a subset, the 
frame numbers displayed in the figure do not correspond to 
the actual frame numbers in the dataset. The rectangle 
around the object corresponds to the target and its parts, 
while the bright green rectangle represents the search range. 
The segmented blob and the head candidates are displayed 
from left in the lower right corner of each image. The first 
image shows the target person in full view with the body 
model by parts fitted onto the segmented blob. The second 
image displays the case where the spatial fitting is as desired 
while the target encounters initial stages of occlusion. In the 
third image the target faces significant occlusion and the 
part matching returns low likelihood for the occluded body 
parts. The fourth image shows how the speed of the model 
adaptation is necessarily a tradeoff between stability and 
responsiveness. Therefore, the model gradually 
incorporates occlusions by obtaining a good match for the 
left and right legs despite being occluded, as well as the 
unoccluded body parts of the object, namely, head, left and 
right arms. The fifth image displays how the model 
eventually survives occlusion by another person, and the 

Figure 2. The proposed algorithm handling a challenging 
long-term occlusion from the CAVIAR dataset.  
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sixth image reflects how the model of the person is retrieved 
after occlusions pass.  

 

 

 
In addition to Figure 2, Figure 3 illustrates the data 

association procedure at the feature layer for the CAVIAR 
dataset. The comparison results for the features area, 
perimeter, gradient, and speed in the ideal case should be as 
low as possible. However, the comparison result for color 
histogram similarity and overlapping pixels between the 
candidate and the model, in the ideal case, should be as high 
as possible. In the example demonstrated in Figure 3, the 
head, right arm and right leg are considered as a match, 
whereas the left arm and the left leg are considered as 
not-a-match due to occlusion. Consequently, features that 
are not matched are not updated in the human model. Please 
note that these comparisons are obtained between the model 
and the observation for the same person (i.e. target and 
candidate are the same person). This is clearly demonstrated 
with the speed feature where the comparison always returns 
a match. If the candidate is a different person, then the 
feature comparison will vary significantly. 

We also used a sub-set of the AVSS 2007 dataset for the 
i-Lids bag challenge. This is a dataset for event detection in 
CCTV footage and the event of interest is abandoned 
baggage. For our experiment we only used 489 frames with 
125 frames of background from a sub-sequence of the video 
labeled as "AVSS AB Easy_Divx.avi". The length of 
occlusions within this sub-set is around 20 frames. 
Representative frames are shown in Figure 4 (Please see [1] 
for further details on the dataset). In this sequence the target 
person is occluding another person in the FOV. Again, the 
rectangle around the object corresponds to the target and its 

parts, while the bright green rectangle represents the search 
range. The segmented blob and the head candidates are 
displayed from left in the lower left corner of each image. 
The first image shows the target person in full view with the 
body model by parts fitted onto the segmented blob. The 
second and third images display the cases where the target 
person is occluding another person in the FOV. The fourth 
image displays how the target survives the occlusion 
situation.  

 

  
(1) fr# 127 (2) fr# 131 

  
(3) fr# 135 (4) fr# 142 

 
 
 

It is clear from Figures 2-4 that our method can 
successfully handle repeated, partial and/or challenging 
long-term occlusions. 

4. Conclusions 
In this paper, we presented a method for tracking of 

humans in crowded environments with occlusions that tend 
to be, a) repeated and frequent; b) partial, with different 
parts of the individual occluded at different times, and c) 
provided by different occluding elements at different times. 
Under these assumptions, we defined a part-based human 
tracking approach suitably supporting the various stages of 
data association and tracking by mirroring the occlusion 
distribution of crowded environments. We firstly adopted a 
simplified articulated human model consisting of five body 
parts with six degrees of freedom, and each part represented 
by a rich set of features. We then used a layered data 
association approach, where direct comparison between 
features (feature layer) and subsequently matching between 
parts of the same bodies (part layer) led to a final decision 
for the global match (global layer). 

Overall, we demonstrated with experiments that the 
simple part-based model used supports effective tracking 
through repeated, partial and/or challenging long-term 

Figure 3. Illustration of the data association procedure at the 

feature layer.  Features1f to 6f are area, perimeter, 

gradient, speed, color histogram, and overlapping pixels, 

respectively, and 
6..1

}{
=jjpd is the final match for the body 

part represented as total. 

Figure 4. The proposed algorithm handling a case with 
occlusion from the AVSS 2007 dataset.  

area : 0% 
perimeter : 8% 
gradient : 2% 
speed : 0% 
color : 40% 
pixels : 89% 
total : 100% 

area : 0% 
perimeter : 2% 
gradient : 3% 
speed : 0% 
color : 55% 
pixels : 87%  
total : 100% 

area : 35% 
perimeter : 14% 
gradient : 4% 
speed : 0% 
color : 15% 
pixels : 100% 
total : 55% 

area : 23% 
perimeter : 13% 
gradient : 0%  
speed : 0% 
color : 17% 
pixels : 91% 
total : 55% 

area : 13%  speed : 0% 
perimeter : 4% color : 45% 
gradient : 11%  pixels : 89% 
total : 91% 
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occlusion typically encountered in surveillance videos. This 
model allows us correct target association even when only a 
few parts of a target are visible. Moreover, its updating 
procedure updates the model’s parts independently of one 
another, guaranteeing that the overall model can be kept up 
to date even in the absence of completely unoccluded views 
even for sustained periods of time. However, this algorithm 
is expected to break down wherever medium-size 
occlusions affect most parts (e.g., 4 out of 5) of the model 
for a sustained period of time. Incorrect data association 
might then occur if the features of the occluding object are 
similar to those of the tracked target. 

As future work we intend to extend the system presented 
in this paper in various ways. Firstly, we plan to change the 
semi-automated initialization to be a fully-automated 
initialization procedure. Secondly, the tracking of a single 
target can be extended to tracking multiple targets 
simultaneously. The method presented only handles 
challenging spatial occlusions; it can be extended to handle 
challenging temporal occlusions where the target person 
will be occluded by a single object extensively for a long 
period of time. Additionally, learning the weights and the 
thresholds automatically from labeled training data will also 
be explored. 
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