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Abstract

Data mining and knowledge discovery have been
applied to datasets in various industries including
biomedical data. Modelling, data mining and visu-
alization in biomedical data address the problem of
extracting knowledge from large and complex biomed-
ical data. The current challenge of dealing with such
data is to develop statistical-based and data mining
methods that search and browse the underlying pat-
terns within the data. In this paper, we employ sev-
eral data reduction methods for visualizing genome–
wide Single Nucleotide Polymorphism (SNP) datasets
based on state–of–art data reduction techniques. Vi-
sualization approach has been selected based on the
trustworthiness of the resultant visualizations. To
deal with large amounts of genetic variation data, we
have chosen to apply different data reduction methods
to deal with the problem induced by high dimension-
ality. Based on the trustworthiness metric we found
that neighbour Retrieval Visualizer (NeRV) outper-
formed other methods. This method optimizes the
retrieval quality of Stochastic neighbour Embedding.
The quality measure of the visualization (i.e. NeRV)
showed excellent results, even though the dataset was
reduced from 13917 to 2 dimensions. The visualiza-
tion results will assist clinicians and biomedical re-
searchers in understanding the systems biology of pa-
tients and how to compare different groups of clusters
in visualizations.
Keywords: biomedical datasets, single nucleotide
polymorphisms, SNP visualization.

1 Introduction

Data mining and knowledge discovery have been
applied to datasets in various industries including
biomedical informatics (Azuaje & Dopazo 2005).
Data mining and visualisation in biomedical infor-
matics addresses the problems of extracting knowl-
edge from data originating from multiple sources,
encoded in different formats or protocols, and pro-
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cessed by multiple systems. As identified by (Bertone
& Gerstein 2001), the problems have only recently
been reviewed in a systematic way (Azuaje & Dopazo
2005). The major challenges in data mining in the
area stem from the fact that biomedical data requires
data structures that are multidimensional. It is our
intention to construct models which incorporate large
amounts of biomedical data in a manner which will
alleviate the error induced by high dimensionality.

Methods and approaches applied in this paper
rely on the information extracted from biomedical
datasets, derived from cancer patients. This data in-
cludes genome–wide single nucleotide polymorphism
genotyping data (genetic variations).

The domain of this paper is Childhood Acute
Lymphoblastic leukaemia (ALL), which is the most
common childhood malignancy. It represents 24%
of all new cancers that occurred in children be-
tween 1995 and 1999 (240 ALL/985 Cancer patients)
(Coates & Tracey 2001). Nearly all children with ALL
achieve an initial clinical remission, so the major ob-
stacle to cure is patient relapse, i.e. the recurrence
of evident disease. The approaches and methods we
apply to ALL data can also be extended to other com-
plex diseases such as heart diseases, diabetes and in-
flammatory diseases.

Information visualization is considered as a direct
way to help browse the datasets. It is possible to com-
bine visual exploration with other data exploration
tools such as clustering analysis and data compar-
isons. The result of data explorations can be con-
firmed on the visualization. The main challenge in
visualizing genetic variation datasets stems from the
high dimensionality of the data, which may includes
tens of thousands of SNPs. In this paper, several
visualization methods will be applied to genetic vari-
ation datasets, for example manifold–based reduction
methods.

Traditional dimensionality reduction techniques
include Principal Components Analysis (PCA)
(Hotelling 1933) which tries to preserve the variance
in the data, and Multidimensional Scaling (MDS)
which tries to preserve pairwise distances between
data points. These methods are used to find a low
space representation of the high dimensionality space
which preserves the global structure of the data.
However, these methods are not adequate to handle
high dimensionality data which could have nonlinear
relationships.

Therefore, in the last decade a large number
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of nonlinear techniques for dimensionality reduction
have been proposed. Some of these methods are used
to find a lower dimensionality manifold of the data or
a nonlinear embedding manifold space in the higher–
dimensional data space. The main advantage of these
methods is that they are able to preserve the local re-
lationships of the data, which can be advantageous
for the task of information visualization. Several of
these methods will be described in section 4. The
main difference between manifold estimation and vi-
sualization is that visualization is limited to two or
three dimensions (Venna & Kaski 2007a). Thus, it is
difficult to know the exact number of dimensions to
uncover the underlaying structure of the data. There-
fore, we need to apply different manifold–based meth-
ods on the given dataset in order to choose the most
appropriate method.

In this work, we will study the results of ap-
plying different dimensionality reduction methods to
genome–wide SNP profiles of leukaemia patients to
determine which is the best method for visualizing
this type of data. The results will be compared based
on measures such as trustworthiness and continuity
of the visualizations.

The rest of this paper is organized as follows. Sec-
tion 2 points to related work that has been applied
for visualizing biomedical data, specifically SNP data.
Section 3 describes the dataset used in this study and
the preprocessing steps applied to the data. Next, in
section 4 we describe methods and techniques that
will be used to visualize the ALL data. Section 5 de-
scribes in detail the experiments and results for dif-
ferent methods. In section 6 we further discuss these
results. Finally, in section 7 we conclude the paper
and describe the future directions for our research.

2 Related Work

The current interest in genetic variation studies is
focused on disease–gene association analyses. Such
analyses are important in identifying which variants
are associated with a specific disease. Identification
of genetic variants that contribute to susceptibility
of diseases such as cancer will assist in the develop-
ment of diagnostic and therapeutics (Carlson, Eberle,
Kruglyak & Nickerson 2004). To identify these mark-
ers, at a statistically significant level, it is necessary
to obtain genetic information from a large scale pop-
ulation sample of affected and unaffected individuals,
which is termed a population based study. However,
recent advances in biomedical technologies and genet-
ics studies have made association studies a powerful
approach for mapping complex–disease genes by con-
ducting studies based on the whole genome. These
studies are called genome–wide association (GWA)
studies, in which a dense set of SNPs across the
genome is genotyped to survey the most common ge-
netic variations for a role in a disease or to identify
the heritable quantitative trait that is a risk factor of
a disease (Hirschhorn & Daly 2005).

Genome–wide association studies are mainly con-
ducted using statistical methods, which are used to
discover genetic factors that contribute to suscepti-
bility to disease. Factors that show a significantly
high statistical level of association are chosen for fur-
ther analyses. However, in this paper, we are heading
in a different direction. Data mining approaches will
be used here. These approaches mainly concentrate
on visualizing genome–wide SNP datasets based on
state–of–art data reduction techniques. The visual-
ization results will assist clinicians and biomedical re-
searchers in understanding the different structure of
patients and how to compare different group of pa-
tients’ clustering in the visualization.

3 Data

In this section we describe in detail the dataset used
and the preprocessing steps applied.

3.1 Single Nucleotide Polymorphism (SNP)
data

The human genome was found to contain a large
amount of genetic variation in the form of sequence
polymorphisms. Polymorphism is a variation of DNA
sequence that has an allele frequency of at least
1% of the population (Cavalli-Sforza 1974). There
are several types of polymorphism in the human
genome: SNPs, repeated polymorphisms and inser-
tions or deletions, ranging from a single base–pair to
thousands of base–pairs in size (Tabor, Risch & Myers
2002). Single Nucleotide polymorphisms (SNPs) are
the simplest but most abundant type of genetic vari-
ation among individuals with between 1 to 10 million
existing in the human genome (Donnelly 2004). These
common SNP are thought to account for around 90%
of human polymorphism (Carlson, Eberle, Rieder,
Smith, Kruglyak & Nickerson 2003, Reich, Gabriel
& Altshuler 2003).

Genetic variations, especially SNPs, are known to
be the key feature of discovering disease–genes. In the
case of complex disease, identifying multiple genetic
variants would be possible by conducting association
analysis between a specific variant and a disease. This
association involves examining all genetic differences
in a large number of affected individuals with unaf-
fected controls (Risch & Merikangas 1996).

3.2 Genetic Variation and Childhood ALL

Chromosomal imbalances have long been known to
be key features of leukaemia. Further, the hu-
man genome was found to contain a large amount
of genetic variation in the form of sequence poly-
morphisms. Non–synonymous (ns)SNPs occurring
within coding regions are those which produce an
amino acid change but are not considered a “mu-
tation” as a functional protein is still transcribed.
Such nsSNPs are known to affect the functional ef-
ficiency of genes (Aplenc & Lange 2004). For ex-
ample, drug metabolism and patient response to
chemotherapy. SNP’s which are found throughout
non–coding intronic genome regions are used in ma-
jor disease linkage and haplotyping studies including
the HapMap Project (Altshuler, Brooks, Chakravarti,
Collins, Daly, Donnelly et al. 2005) whilst identifi-
cation of minor regions of amplification or deletion
within the genome are facilitated through assessment
of SNP copy number (Herr, Grützmann, Matthaei,
Artelt, Schröck, Rump & Pilarsky 2005). However,
genetic variation of the human genome is a promising
resource for studying complex diseases such as cancer.
Large number of genetic variations, scattered across
the human genome, represent a remarkable opportu-
nity to investigate the etiology, inter–individual differ-
ences in treatment response and outcomes of specific
cancer such as leukaemia (Erichsen & Chanock 2004).
Thus, we are in a position of utilizing such a tool
(i.e. SNPs data) to analyze genetic contributions to
complex diseases. Such analyses could have big influ-
ences on the prevention and early intervention strate-
gies of a disease.

3.3 ALL Dataset

Genome–wide SNP data incorporates large scale map-
ping of SNPs and subsequent collation into databases.
Generation of SNP data has been facilitated by high
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throughput microarray–based technologies ((Barker,
Hansen, Faruqi, Giannola, Irsula, Lasken, Latterich,
Makarov, Oliphant, Pinter et al. 2004), (Leykin, Hao,
Cheng, Meyer, Pollak, Smith, Wong, Rosenow &
Li 2005), (Irving, Bloodworth, Bown, Case, Hoga-
rth & Hall 2005)). DNA from a cohort of 139 child-
hood ALL patients are generated with the Illumina
Bead Array system (Fan et al. 2003) using the non–
synonymous beadchip to assess 13,917 SNPs across
the genome within exon–centric loci.

3.4 Data preprocessing

The SNP dataset contains information about 13,917
SNPs which scattered across the whole genome.
These SNPs are classified as non–synonymous (func-
tional) SNPs which affect the functionality of genes.
Each individual’s genome has two alleles of a given
SNP. For most cases there are two alleles for each SNP
(Bi-allelic). At a specific SNP, a person can have one
of the several genotypes. When they are the same
the SNP is called homozygous and when they are dif-
ferent the SNP is called heterozygous. For a single
SNP, one is designated the major allele and the other
the minor allele, based on their observed frequency in
a general population (Crawford & Nickerson 2005).
Each SNP can have four different values (nominal):
two homozygous, one heterozygous or missing. That
is, the four possibilities for alleles A and B of the ith
SNP are two homozygous (AA or BB), one heterozy-
gous (AB) or missing NA (not determined). All SNPs
were transformed into numerical data based on Minor
Allele Frequency, as described in (Price, Patterson,
Plenge, Weinblatt, Shadick & Reich 2006).

Let G be a matrix of genotype data, gij is the
genotype for SNP i and individual j where i = 1 to
M and j = 1 to N . The row mean µi = (

∑
j gij)/N

is subtracted from each entry in each row i, to obtain
row sums equal to 0. Missing entries are excluded
from the computation of µi and are subsequently set
to 0. Each row i is then normalized by dividing each
entry by

√
pi(1− pi) where pi is a posterior estimate

of the unobserved underlying allele frequency of SNP
i defined by

pi = (1 +
∑

j

gij)/(2 + 2N) (1)

with missing entries excluded from the computation.
We denote the resulting matrix as G–normalized. The
new matrix is regarded as normalized version of data
matrix. The mean of each row i is equal to 0.

4 Methods and Approach

In this section, we describe some of the dimensionality
reduction methods for visualizing the similarity rela-
tionship between patients. Firstly, we will describe
the main classical methods for dimensionality reduc-
tion i.e. Principal Component Analysis (PCA), and
Multidimensional Scaling (MDS). Some other meth-
ods based on MDS will be described. Then, other
recently proposed methods that focus on finding the
manifold or embedding of data will be described.
Lastly, we will describe the measures for the good-
ness of visualization that we use in the experiments.

The problem of dimensionality reduction can be
defined as follows. Given a dataset matrix X ∈ <N×d

consisting of N data vectors xi (i ∈ 1, 2, ...,N) with di-
mensionality d which can be considered as points in a
high–dimensional data space. Dimensionality reduc-
tion methods transform the data set X with dimen-
sionality d into a new data set Y ∈ <N×p with dimen-
sionality p (p << d), while preserving the geometry

of the data as much as possible. The low–dimensional
representation of xi is denoted by yi, where yi is the
ith row of the p-dimensional data matrix Y. For visu-
alization purposes the dimensionality representation
of the output space needs to be two or at most three
dimensions, whereas the original space or input space
can be thousands of dimensions.

Generally, the task of visualization methods is to
construct a low-dimensional representation (i.e. out-
put space) yi of the input space, in such a way that
the original relationships (or similarities) of the data
are preserved. However, lower–dimensional represen-
tation of the data in 2 or 3–D dimensions might not
be able to preserve all the information of the origi-
nal (higher–dimensional) datasets and a compromise
must be made by applying different data reduction
methods and then selecting the best method based
on how well a given method preserves the informa-
tion of the original data (Venna & Kaski 2007a).

4.1 Principal Components Analysis

Principal components analysis (PCA) constructs a
low–dimensional representation of the data that max-
imally preserves as much variance in the data as possi-
ble (Hotelling 1933). This is done by finding the linear
projection or direction where the data has maximum
variance. The projection can be found by solving the
eigenvalue problem of the covariance matrix Cx of the
data using the general eigen–decomposition problem

Cxa = λa (2)

It can be shown that the linear projection is formed by
the p principal components of the covariance matrix.
The new representation of data points xi can then be
found by projecting (or mapping) the original data
with

yi = Axi (3)

The low–dimensional data representations yi of the
data point xi are computed by projecting data matrix
X using matrix A, which contains the eigenvectors
corresponding to the two or three largest eigenvalues.
The new representation of the data can be visualized
using the projected matrix Y.

PCA has been successfully applied in a large num-
ber of domains. However, the main limitation of PCA
is that it does not work well when the data lies in a
nonlinear manifold. However, PCA is advantageous
when the variance of the data is mainly concentrated
in a few directions.

4.2 Multidimensional Scaling

Multidimensional Scaling (MDS) (Torgerson 1952)
represents approaches that are commonly used with
nonlinear mapping methods. There are several dif-
ferent variants of MDS (Cox & Cox 2001), but they
all share a common goal which is to find the low–
dimensional representation of the data that preserves
the pairwise distance of the data as much as possible.
The quality of the mapping is represented by a stress
function (or cost function), which tries to minimize
the errors of the pairwise distances between the low–
dimensional and high–dimensional representations of
the data.

The classical version of MDS is very closely related
to PCA. The solution of linear MDS can be found
by solving an eigen–decomposition problem. When
the dimensionality of the sought space is the same
and the distance measure is Euclidean distance, the
projection of the original data using PCA is similar to
the configuration of points that calculated by squared
Euclidean distance matrix of the data (Gower 1966).
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Other variants of MDS which have a more effec-
tive stress function are the raw stress function and
Sammon cost function. The raw stress function can
be defined by

φ(Y ) =
∑
ij

(‖xi − xj‖ − ‖yi − yj‖)2 (4)

where ‖xi − xj‖ is the Euclidean distance between xi
and xj in data points in the original data space, and
‖yi − yj‖ is the Euclidean distance between yi and
yj data points in the low–dimensional space. This
cost function is able to find nonlinear relationships
in the data. The Sammon cost function is slightly
different to the raw stress in that it gives small dis-
tances a larger weight, which emphasises the local
relationships in the data. In addition, there ex-
ist other variants of MDS, called non–metric MDS,
which aim to preserve ordinal relations in data, rather
than the pairwise distance (Kruskal 1964). Neverthe-
less, Multidimensional Scaling has been widely used
for data visualization, such as Functional Magnetic
Resonance Imaging (fMRI) analysis and molecular
modelling (Tagaris, Richter, Kim, Pellizzer, Ander-
sen, Ugurbil & Georgopoulos 1998, Venkatarajan &
Braun 2004). The success of MDS has led to the
proposal of new variants such as Curvilinear Com-
ponent analysis (Demartines & Herault 1997) and
Stochastic neighbours Embedding (SNE) (Hinton &
Roweis 2003). These methods have shown the ca-
pability to produce good quality visualizations. Ex-
tended versions of these methods will be described in
the following sections.

4.3 Stochastic neighbour Embedding

Stochastic neighbour Embedding (SNE) proposed
by (Hinton & Roweis 2003) is a probability–based
embedding method. SNE tries to find the low–
dimensional representation of data points that pre-
serve neighbourhood identities. The SNE algorithm
tries to preserve the probability distribution of the
pairwise distances of data points in the input space,
so that the probability of a data point i being a neigh-
bour of point j in the output space is the same as in
the input space.

For each data point xi and its potential neigh-
bours, Xj , the algorithm starts by computing pij , the
probability that point xi and xj are neighbours in the
input space using

pij =
exp(−d(xi, xj)2)∑

i6=k exp(−d(xi, xk)2)
(5)

where d(xi, xk)2 is the pairwise distance between
data points i and j. The distance can simply be
the squared Euclidean distance or it can be the
scaled squared Euclidean distance if we have a high–
dimensional data

d(xi, xk)2 =
‖xi − xj‖2

2σ2
i

(6)

In low–dimensional output space the images yi of all
data point xi is defined as qij , which express the prob-
ability of the point yi being a neighbour of point yyzj .

qij =
exp(−d(yi, yj)2)∑

i6=k exp(−d(yi, yk)2)
(7)

The aim of the embedding is to match the two prob-
ability distributions pij and qij as well as possible.

The embedding of points yi can be achieved by mini-
mizing a cost function which is the Kullback–Leibler
divergence between the probability distribution of the
input (pij) and output (qij) distribution over neigh-
bours of each data point. The cost function is

Ei[D(pi, qi)] =
∑

i

∑
j

pij log
pij

qij
(8)

Stochastic neighbour Embedding has been success-
fully applied to several datasets (eg. (Nguyen &
Worring 2004) or (Memisevic & Hinton 2005)). Re-
sults show that good optima can be achieved.

Stochastic neighbour Embedding was originally
designed as a data reduction method that tries to
preserve neighbourhood identities. However, SNE
can be also seen as an information retrieval algo-
rithm. A new restructured method called neighbour
Retrieval Visualizer (NeRV) was proposed by (Venna
& Kaski 2007b). This method is motivated by vi-
sual neighbour retrieval, unlike SNE, which tries to
optimize recall (i.e. misses). The method balances
the error caused by precision (i.e. false positive, see
section 4.7).

In information visualization, high precision is more
important than recall. Minimizing precision is asso-
ciated with preserving the neighbourhood of points
in the output space. Recall on the other hand, tries
to preserve the neighbourhood of points in the input
space. Stochastic neighbour Embedding updates the
original SNE method by assigning a relative cost λ
to recall and (1 − λ) to precision. Then, the total
function to be optimized is

E = λEi[D(pi, qi)] + (1− λ)Ei[D(qi, pi)]

= λ
∑
i,j

∑
j

pij log
pij

qij
+

(1− λ)
∑

i

∑
j

qij log
qij

pij
(9)

That is, by setting the parameter λ ∈ [0, 1] the
choice can be focused on either the probabilities that
are high in the input space (recall) or in the output
space (precision). When λ = 1 the method is equal to
SNE and when λ = 0, the method focuses completely
in avoiding false positives (precision). This method
can be described as retrieving points based on the vi-
sualization display. In our experiment we apply this
method with choice of λ that emphasizes the under-
lying structure of the data that maximizes precision.
In addition, SNE will be applied for comparison pur-
poses.

4.4 Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) (Demartines
& Herault 1997) is a variant of MDS. Whereas MDS
tries to find the configuration of points that preserve
the pairwise distances as much as possible, CCA tries
to find the configuration of points that preserve a sub-
set of the distances that are neighbours in the output
space. The cost function of CCA concentrates on pre-
serving the distance of points in the reduced space.
This can be done by introducing a weighted function
F that depends on the distance between the points
in the output space (or visualization), yielding a cost
function

E =
1
2

∑
i

∑
i6=j

(d(xi, xj)− d(yi, yj))2F (d(yi, yj), σi)

(10)
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Generally, F (d(yi, yj), σi) is chosen as a bounded and
monotically decreasing function, in order to favor pre-
serving the local geometry of the data. Decreasing ex-
ponential, sigmoid, or Lorentz functions can be suit-
able choices, and a simple step function can also be
applied.

F (d(yi, yj), σi) =
{

1 Yij ≤ σi
0 Yij > σi

(11)

The minimization of the cost function can be
achieved using a form of stochastic gradient decent
algorithm. During the optimization process, σi is set
to cover all or at least most of the data points (as the
case of MDS), and it is slowly decreased to reach the
optimal value.

Curvilinear Component Analysis has been suc-
cessfully applied to various nonlinear–dimensionality
problems in data representation such as for gene ex-
pression data and computer vision (Buchala, Davey,
Frank & Gale 2004, Venna & Kaski 2007a). An exten-
sion of CCA, Curvilinear Distance Analysis (CDA),
was introduced by (Lee, Lendasse & Verleysen 2004).
The main difference of CDA compared to CCA is to
replace the Euclidean distance used by CCA with
geodesic distance. Geodesic distance is based on
graph theory and uses the minimum spanning tree
to find the distance.

The main drawback of CCA is that the cost func-
tion may have several local optima. Although this
can cause undesired results when applying CCA, so-
lutions found by CCA have showed quite reasonable
results (Venna & Kaski 2007a).

Recently, a method called Local Multidimensional
Scaling (LocalMDS) was proposed (Venna & Kaski
2006). This method is regarded as a derivative of
CCA. Similarly to NeRV, LocalMDS has the indi-
rect ability to control the tradeoff between precision
and recall, which helps for data visualization. The
cost function of CCA tries to preserve the distance
of points that are neighbours in the output space, by
ignoring the error in distance between points that are
far from each other in the reduced space. Thus, CCA
could increase the errors caused by recall, which can
result in lower visualization quality. In LocalMDS,
a term is added to the cost function to increase re-
call. This can be achieved by penalizing the errors
of distance between points that are close by in the
input space. The tradeoff between the two types of
errors helps in having a more efficient display of the
local similarities of the data. The cost function of
LocalMDS is defined as

E =

∑
i

∑
i6=j

[(1− λ)(d(xi, xj)− d(yi, yj))2F (d(yi, yj), σi)

+λ(d(xi, xj)− d(yi, yj))2F (d(xi, xj), σi)](12)

where λ ∈ [0, . . . , 1] controls the tradeoff between
precision and recall. During the optimization the
radius of the area of influence around data point
xi, σi, is slowly reduced to reach the optimal value.
F (d(xi, xj), σi), similarly to CCA, emphasizes the lo-
cal distance in the input space. F is equal to one
when d(xi, xj) < σi and 0 otherwise. The final radius
is set equal to the distance of k–NN of a data point
xi in the orginal space.

When λ = 0 the cost function will be that of the
basic CCA method. A good choice of λ ranges from
0 to 0.5. The cost function can be optimized us-
ing stochastic gradient descent methods similarly to
CCA. In our experiments we apply LocalMDS with s

choice of λ that emphasizes the underlying structure
of the data to maximize precision. In addition, CCA
will be applied for comparison purposes.

4.5 Laplacian Eigenmap

Laplacian Eigenmap (LE) finds a low–dimensional
representation of data by preserving the local struc-
ture of the data (Belkin & Niyogi 2002). Laplacian
Eigenmap is regarded as a geometrically motivated
dimensionality reduction. The output space reflects
the intrinsic geometric structure of the manifold. In
Laplacian Eigenmap, the local structure can be pre-
served by keeping the local structure between each
datapoint and its k nearest neighbours. Therefore,
the local structure of LE algorithms can be relatively
insensitive to outliers and noise, and as a result the
algorithm implicitly emphasizes the natural clusters
in the data (Belkin & Niyogi 2002).

Laplacian Eigenmap computes a low–dimensional
representation of the data in which the nearest neigh-
bours of a datapoint in the original space should be
mapped to nearest neighbours of that datapoint in the
reduced space (He, Yan, Hu, Niyogi & Zhang 2005).
This can be done in a weighted manner applied to
graph partitioning, i.e., using a weighted criterion
such as a heat kernel (Gaussian function) enables us
to choose the weight of the graph in such a way that
keeps the local similarity of the graph. The embed-
ding map is constructed by computing the eigenvec-
tors of the graph Laplacian. The algorithm’s proce-
dures are as follows.

The LE algorithm first constructs the adjacency
graph G in which every node (datapoint) xi is con-
nected to its k nearest neighbours. For all nodes i
and j in the graph G that are connected by an edge,
a weight is calculated using different methods such as
a Gaussian kernel or a simple approach where Wij =
1 if node i and j are connected by an edge. This leads
to a sparse matrix W in which Wij > 0 if node i and
j are connected and Wij = 0 otherwise.

To compute the low–dimensional representation
y = y1, y2, . . . , yn

T , Laplacian Eigenmap minimizes
the following objective function

φ(Y ) =
∑
ij

(yi − yj)2wij = tr(YT LY) (13)

where L = D - W is the Laplacian matrix, D is di-
agonal matrix, with elements Dii =

∑
j Wij being

the column (or row, since W is symmetric) sums of
W. The Laplacian matrix is symmetric and positive
semidefinite.

Minimizing the objective function tries to put dat-
apoints that are connected in the graph G as close
together as possible. There is a trivial solution to the
objective function which collapses all the new rep-
resentations of the graph G into a single location.
This can be prevented by adding an orthogonality
constraint YT DY = 1.

The configuration of points in the low–dimensional
space can be solved by finding the eigenvectors and
eigenvalues of the generalized eigenvector problem

Ly = λDy (14)

The low-dimensional embedding of the original data
points can be formed by the d eigenvectors yi that
correspond to the smallest non–zero eigenvalues, af-
ter discarding the smallest eigenvector that corre-
sponds to the zero eigenvalues, which represent the
case where all data points are represented by a single
location.

Copyright ©2008, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted provided the copyright text at the foot of the first page of each paper is included.



Laplacian Eigenmap has been successfully applied
to number of domains such as clustering and face
recognition (Ng, Jordan & Weiss 2002, Shi & Malik
2000, He et al. 2005). Variants of Laplacian Eigen-
maps have been extended to supervised and semi–
supervised data analysis (Costa & Hero 2005, Belkin
& Niyogi 2004). A linear variant of Laplacian Eigen-
map is proposed by (He & Niyogi 2004).

Laplacian Eigenmap has two main drawbacks.
Firstly, in most applications it is not possible to
see the structure within clusters from the visualiza-
tion. Secondly, this method is mainly used for data
representation or visualization and can not compute
the projection for a new test point. However, this
problem can be solved using techniques proposed by
(Bengio, Paiement & Vincent 2004) called an out–of–
sample extension.

4.6 Locally linear Embedding (LLE)

The LLE algorithm (Roweis & Saul 2000) is similar
to Laplacian Eigenmap, which tries to preserve the
local geometry of the data by finding the local linear
approximation of the manifold. This is based on the
assumption that a data point and its neighbours lie
in or close to a locally linear subspace on the mani-
fold. In LLE, the local geometry of this subspace can
be characterized by calculating the linear coefficients
(weights) that reconstruct each data point from its k
nearest neighbours. In the low–dimensional space of
the data, LLE attempts to retain the reconstruction
weights in the linear combination as much as possible
(van der Maaten, Postma & van den Herik 2007).

The algorithm works in two stages. First, the local
coordinate of each data point is calculated based on
its k nearest neighbours, and the total reconstruction
error to be optimized is then measured by the cost
function

ε(W ) =
N∑

i=1

∣∣∣∣∣∣Xi −
k∑

j=1

WijXj

∣∣∣∣∣∣
2

(15)

which adds up the squared distance between all data
points and their reconstruction. The weight Wij sum-
marizes the contribution of the j th data point to the
ith reconstruction. The reconstruction error is mini-
mized subject to the constraints that Wij = 0 if dat-
apoints i and j are not neighbours and

∑
j Wij = 1.

In the second stage, the task is to find the low–
dimensional representations yi that preserve the local
geometry of the data as described by the local coor-
dinate of each data point. In other words, the recon-
struction weights Wij that reconstruct each datapoint
xi from its neighbours in the high–dimensional data
space also reconstruct each data point yi in the low–
dimensional space. To do so, the p–dimensional re-
duced space Y can be computed based on minimizing
the cost function

ε(Y ) =
N∑

i=1

∣∣∣∣∣∣yi −
k∑

j=1

Wijyj

∣∣∣∣∣∣
2

(16)

(Roweis & Saul 2000) showed that the optimization
function described in (16) can be solved by the eigen-
vectors that correspond to the p nonzero eigenvalues
of matrix M, where M = (I−W)T (I−W) and I is
the identity matrix.

A linear variant of LLE algorithm was proposed
recently (Kokiopoulou & Saad 2005, Kokiopoulou &
Saad 2007).

4.7 Comparing visualisations

As we have discussed, the first step in exploring the
structure of a given dataset is to have the data visual-
ized. In many previous works, visualization methods
are compared through examining the produced fig-
ures. Some quantitative criteria should be designed,
to compare the visualization results without consid-
ering the human as a part of visualization.

One of the crucial tasks in data visualization is how
to assess the quality of produced visualizations or the
tools that are used. The quality measure is used to
assess how well the visualization of a given tool can
represent the underlying data. The local structure of
the data is the most important component of the vi-
sualization. The usability of the visualization can be
measured by how accurately the data is represented
and how readable it is.

The first question that comes to mind is how trust-
worthy is the visualization. The local similarity or
structure of a data is the most crucial part of the vi-
sualization. When looking at the visualization, the
first insight is how points are similar and how points
group together. Looking at a visualization a user can
possibly get insight into some question such as, are
the unknown data points similar to the known ones?
How is the data clustered? Are there denser areas and
more sparse ones? Questions like these cannot be an-
swered without having a visualization that is capable
of answering these questions.

There are a number of methods that have been
implemented to assign a quantity to a visualization.
Some of these methods calculate the correlation co-
efficient between the distance vectors (i.e., the vec-
tors that compare the distance between all pairs of
points) of the original space with that of the lower di-
mensional space. It was proven that this measure can
provide a good measurement of quality of the visual-
ization procedures (Tan, Steinbach & Kumar 2005).

Others methods measure how trustworthy the lo-
cal structure of the visualizations is (Kaski, Nikkila,
Oja, Venna, Toronen & Castren 2003, Venna &
Kaski 2001). Based on these methods the low–
dimensional representation is trustworthy if the k
nearest neighbours of a point in the reduced space
(or in the visualization) are also neighbours of the
point in the original space. The proportion of points
that are in the neighbourhood in the visualization but
not in the original space is quantified as the precision
(or loss of precision, i.e., one minus precision). This
number is usually not informative. However, the mag-
nitude of the error can be used to rank the data points
based on their distance instead of just counting the
number of errors.

Reducing the dimensionality of a data can result
in losing some of the similarity relationships between
data points. Two general errors can be caused in ap-
plying a reduction method. First, data points that
are not neighbours in the input space can be mapped
close by in the reduced space, causing points to be
incorrectly identified as neighbours. These kind of er-
rors can reduce the precision. Secondly, data points
that are neighbours in the input space can be mapped
far away in the reduced space, causing discontinuities
in the mapping and can distort the neighbour rela-
tions. This kind of error is called recall. The two
kind of errors (i.e. precision and recall) are used in
information retrieval literature in which the error is
quantified based on the proportion of the points that
caused the errors.

The main limitation of using precision and recall,
as it is used in information retrieval, is that each of
the errors is equally bad. However, in the visualiza-
tion context this kind of measurement is not intuitive,
whereas the distance between data points are known.
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Intuitively, a data point that comes into the neigh-
bourhood of another from far away causes a larger
error than one that comes from closer. By ranking
data points based on their similarity we can have two
new quality measures: trustworthiness and continu-
ity (Kaski et al. 2003) which quantify the errors of a
visualization tool by the neighbourhood ranks of each
data point.

The trustworthiness of a visualization can be de-
fined as follows. Let N be the number of data samples
and r(xi, xj) be the rank of the sample xj in the or-
dering according to the distance from data sample xi
in the original space. Let Uk(xi) be a set of data sam-
ples of size k that are in the neighbourhood of sample
xi in the visualization space but not in the original
space. The measure of trustworthiness is defined as

MTru(k) = 1−A(k)
N∑

i=1

∑
j∈Uk(i)

(r(xi, xj)− k) (17)

where A(k) = 2/(Nk(2N−3k−1)) scales the measure
between zero and one. The errors reach the max-
imum value when the ranks in the input and out-
put space are reversed. The trustworthiness mea-
sure is closely related the precision (as in informa-
tion retrieval). However, the trustworthiness mea-
sure is a special kind of precision measure for the case
where the objects are ranked based on their relevance
(Venna & Kaski 2006).

On the other hand, discontinuities are used to
quantify whether neighbours in the original space re-
main neighbours in the visualization. If neighbour’s
points are pushed out in the displayed visualization,
discontinuities arise in the visualization. The errors
caused by discontinuities may be quantified similarly
to the errors caused by trustworthiness.

Let Vk(xi) be the set of data samples that are
neighbours of the data sample xi in the original space
but not in the output space and r̂(xi, xj) be the rank
of data sample xj in the ordering according to the
distance from xi in the visualization. The effects of
discontinuities of the mapping are measured by:

Mdisc(k) = 1−A(k)
N∑

i=1

∑
j∈Vk(i)

(r̂(xi, xj)− k) (18)

Therefore, a data sample that is mapped far away
from the neighbourhood in the reduced space will
cause a larger error than a data sample that was
mapped just out of the neighbourhood. In the recall
measure both errors are considered equally severe.

The trustworthiness and continuity measures can
be used to assess the quality of a data reduction
method or to compare the performance of different
data reduction method on a data set for visualization.
Based on the quality results, the best run, method or
parameters for a data set can be selected (Venna &
Kaski 2007b). Comparing the data reduction meth-
ods can be tested on a large range of neighbourhood
size. Small k can be important for the quality of visu-
alization but a range of neighbourhood size can give
an overview of the overall performance of different
methods.

The performance of different data reduction meth-
ods is made by plotting the trustworthiness and con-
tinuity measures as a function of the neighbourhood
size k. In any given data reduction method, a tradeoff
must be made between trustworthiness and continu-
ities. Seeking for a high trustworthiness will typically
lead to a lower continuity and vice versa.

5 Experiments and Results

The purpose of the experiments is to gain insight and
to understand the behavior of different dimensional-
ity reduction methods in biomedical data and, more
specifically, SNP data of children with acute lym-
phoblastic leukaemia. As described above, a dataset
of 139 patients with 13917 non-synonymous SNPs (di-
mensions) was used.

The performance of dimensionality reduction
methods will be compared on visualizing the SNP
dataset. The following methods will be included
in our experiments: Principal Component Analysis
(PCA), Laplacian Eigenmap (LE), Locally Linear
Embedding (LLE) and methods based on Multidi-
mensional scaling, which include an extended version
of Curvilinear Component Analysis (CCA) called Lo-
cal MDS (LocalMDS) (Venna & Kaski 2006) and an
extended version of Stochastic neighbour Embedding
(SNE) called neighbour Retrieval Visualizer (NeRV)
(Venna & Kaski 2007b). In the following subsection,
the experimental settings and the results of experi-
ments on SNP dataset are described.

5.1 Experimental setting

All methods except PCA have a parameter k for set-
ting the number of nearest neighbours. This param-
eter was tested with values of k ranging from 5 to
30. The best k was selected based on the best result.
However, small neighbourhood size can be related to
the data points that are most likely to be relevant.
The performance of the resulting visualizations was
tested based on the trustworthiness and continuities
of the reduced dimension, as described in section 4.7.

Some of the applied methods such as LocalMDS
and NeRV that may fall into local optima were run
several times (in our case 10 times) with different
random initialization and the best run was selected.
Random mapping was computed based on the aver-
age of 10 different random projections. Two types of
distance metric were used to calculate the distance
of data in the input space: Euclidean distance and
Gaussian function. In this study, we employed both
of these with different parameters and we set the di-
mensions of the output space equal to two for visual-
ization purposes.

5.2 Results

Data reduction methods were compared using the
trustworthiness and continuity measures of the re-
sulted visualization. Figure 1 and 2 shows the trust-
worthiness and continuity results of the applied meth-
ods. The following subsection will get insight on dif-
ferent aspect of the results. For visualization pur-
poses, trustworthiness is more important than conti-
nuity. In each case the result with the best trustwor-
thiness was reported.

5.2.1 Trustworthiness and continuity

Trustworthiness and continuity are the first aspects
that we examined. In terms of exploring the result of
a visualization, the local neighbourhood of each data
point is the first insight a human analysis looks at.
Therefore, a visualization is trustworthy if the visu-
alization preserves small neighbourhoods as much as
possible. Thus, attention should be paid to small sizes
of k (e.g. k between 5 and 15). It is clear from figure
1 that, in terms of trustworthiness, the NeRV method
is the best. Unexpectedly, PCA is also quite good at
preserving the locality of the reduced neighbourhood
(Trustworthiness). On the other hand, state–of–art
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data reduction methods such as LLE and LE were
not able to produce reasonable results. In fact, LE
was the worst method compared in our experiments
on this dataset and is the most simialr one to random
mapping. The LLE and LE results suggests that the
minimum number of dimensions that are required to
uncover the manifold of the data is greater than two.

Figure 1: Trustworthiness of the mapping as a func-
tion of k that applied to SNP dataset, where k is
the size of neighbourhood. Small neighbourhood sizes
are the most important ones. PCA: Principal Com-
ponent Analysis, LLE: Locally Linear Embedding,
NeRV: neighbour Retrieval Visualizer, LocalMD: Lo-
cal Multidimensional scaling, LE: Laplacian Eigen-
map rand map: random mapping.

In this initial analysis LocalMDS was expected to
perform similarly to NeRV method but the result
shows slightly different behavior. In this data set
PCA performs similarly to LocalMDS, even though
the original cost function of LocalMDS emphasizes
trustworthiness and should perform better.

In terms of continuity, as can be seen in figure 2,
the result of NeRV method is again the best. But this
time LocalMDS is slightly better than PCA which
is different than the case of Trustworthiness where
both methods are similar. Once more, manifold–
based methods, LLE and LE, perform very badly on
this data set. In section 6 we will suggest reasons why
this occurred.

Figure 2: Continuity of the mapping as a function
of k that applied to SNP dataset, where k is the
size of neighbourhood. Small neighbourhood sizes
are the most important ones. PCA: Principal Com-
ponent Analysis, LLE: Locally Linear Embedding,
NeRV: neighbour Retrieval Visualizer, LocalMDS:
Local Multidimensional scaling, LE: Laplacian Eigen-
map, rand map: random mapping.

For the NeRV method, different parameters were
set to explore the performance of this method on the

dataset. As can be seen in figure 3, we have applied
the NeRV method for different neighbourhood sizes
ranging from 5 to 30. If a small size of neighbour-
hood is considered around each point on the output
space, a neighbourhood size of 5 or 15 produces the
best results on this data. The same results were also
found by LocalMDS, as can be seen on figure 4. Next,
we set k = 15, and ran NeRV on a range of λ = 0 to
1. The result can be seen in figure 5. This shows that
the best trustworthiness occurs when λ equals 0.0 or
0.1. This result confirms the performance of NeRV
compared to SNE, where λ equals one, which is the
case when NeRV is equivalent to SNE, the trustwor-
thiness attains the lowest performance. Thus, NeRV
shows the capability of producing a high trustwor-
thy visualization result which is based on balancing
the tradeoff between the continuity and trustworthi-
ness of visualization. A large value of λ, close to one,
gives a lower trustworthy result and vice versa.

Figure 3: Trustworthiness of NeRV mapping as a
function of k that applied to SNP dataset, where k
is the size of neighbourhood. The neighbourhood size
used by NeRV is ranging from 5 to 30.

Figure 4: Trustworthiness of LocalMDS mapping as
a function of k that applied to SNP dataset, where k
is the size of neighbourhood. The neighbourhood size
used by LocalMDS is ranging from 5 to 30.

5.2.2 Euclidean distance and Gaussian func-
tion

In our experiments two types of dissimilarity measure
were used: Euclidean distance and Gaussian function.
In the case of Gaussian function a parameter σ is used
as a control parameter. The parameter σ was set to
0.001, 0.01, 0.1, 0.5, 1, 10, 100, 200, 500, 1000 and
2000 for different runs. The settings of σ = 0.1 and
0.5 gave the best performance (result not shown). On
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our data set the use of Euclidean distance seems to
give slightly similar results to the Gaussian function.
This is can be due to the high–dimensionality of the
data.

Figure 5: Trustworthiness of NeRV mapping as a
function of k that applied to SNP dataset, where k
is the size of neighbourhood. The Lambda used by
NeRV is ranging from 5 to 30.

5.2.3 Quality of the visualization

The first thought that comes to mind is that reducing
the dimensionality of the data from 13917 down into
just two dimensions will not show how the data points
are similar to each other in the high–dimensional
space. On the other hand, without the use of a qual-
ity measure, we will not be able to assess the quality
of different data reduction methods. In the previous
sections, we summarized the different data reduction
methods that we have employed, with different pa-
rameter settings. The comparison of the produced
results was calculated in term of trustworthiness and
continuity measures. The best method was selected
based on the balance between these two measures and
more emphasis was put on the trustworthiness mea-
sure.

Based on the results of the methods and parameter
settings, the neighbour Retrieval Visualizer method,
with k nearest neighbour equal to 15 and λ = 0.1,
produced the best result. Figure 6 shows the visual-
ization of data with the NeRV method. From the vi-
sualization we can see different clusters of data points
(patients). The left most point in Figure 6 marks two
outliers of patients sitting on top of one another. The
clusters of patients require further scrutiny by domain
experts. In contrast, the visualization produced by
LocalMDS, as can be seen in figure 7, does not show
any kind of structure on the data. This result con-
firms the ability of NeRV to produce better results.

6 Summary and discussions

In Summary, different data reduction methods were
utilized for visualizing genetic variation (SNP) data
as a way to discover the underlying relationships be-
tween patients. State–of–art data reduction methods
have been employed. The result was selected based
on the trustworthiness of the visualizations. The task
of visualization was formulated as an information re-
trieval problem where the result of the visualization
describes the local structure of the data. The qual-
ity measure of the visualization is tested based on a
quantitative error of the number of misses and false
positives.

We tested several different dimensionality reduc-
tion methods. These include PCA, Laplacian Eigen-

Figure 6: Visualization of SNP data using NeRV
method with k = 15 and λ = 0.1.

Figure 7: Visualization of SNP data using LocalMDS
method with k = 15 and λ = 0.2

map (LE) and Locally Linear Embedding (LLE) that
are designed to extract data manifolds and more gen-
erally methods that are designed for dimensionality
reduction, Stochastic neighbour Embedding (SNE)
and Curvilinear Component analysis (CCA). Re-
cently, extended version of the SNE and CCA meth-
ods called neighbour Retrieval Visualizer and Local
MDS methods, respectively, were introduced. These
data reduction methods were run on the data with
different parameter settings. An extended method of
Stochastic neighbour Embedding (SNE) called neigh-
bour Retrieval Visualizer (NeRV) has shown the best
performance on this data set. This method balances
the tradeoff between the trustworthiness and conti-
nuity of the visualization. The result shows that a
neighbourhood of size 15 was the best for our data.
A parameter λ which controls the tradeoff between
trustworthiness and continuity was selected to be 0.1.
This parameter emphasizes the trustworthiness of the
visualization which is more important for visualiza-
tion.

The result did not show any differences be-
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tween using different distance matrices (Euclidean
and Gaussian function) due to high–dimensionality
of the data. Manifold–based data reduction meth-
ods, i.e. LLE and LE, perform surprisingly badly
and the Laplacian Eigenmap method similarly per-
forms worse as random mapping of the data. This
result was not expected for these method due to the
high performance of these methods in other datasets.
We hypothesize that the reason is that these meth-
ods are designed to discover the intrinsic dimension-
ality of the data manifold which can be more than
two dimensions. Lastly, the performance of PCA was
comparable to the result of LocalMDS although the
latter method is considered as a nonlinear dimension-
ality reduction method. This behavior suggests that
the dataset has a linear relationship, which is difficult
to comprehend due to the high–dimensionality of the
data.

7 Conclusion and Future Work

In this paper, we employed several data reduction
methods for visualizing a biomedical dataset. This
dataset describes the genetic variation of Acute Lym-
phoblastic leukaemia patients. Visualization ap-
proaches were compared based on the trustworthi-
ness metric of the resultant visualization. To deal
with large amounts of genetic variation data, we have
chosen to compare the performance of different di-
mensionality reduction methods on the given dataset.
Based on this comparison neighbour Retrieval Visu-
alizer (NeRV) showed the best results and outper-
formed other methods. Even though the dimension-
ality of the dataset was reduced from 13917 to 2 di-
mensions, the quality measure of the visualization
(i.e.NeRV) still shows excellent results. The visual-
ization results will assist clinicians and biomedical re-
searchers in understanding the different structure of
patients and how to compare different group of clus-
tering in the visualization.

The result from using NeRV shows the feasibility
of this method in visualizing genetic variation data.
The main limitation of the employed methods is the
distance measure that has been used (Euclidean dis-
tance or Gaussian function). These methods might
not be appropriate for the given dataset due to the
high–dimensionality of the data. The future direc-
tion of this work is to employ other distance mea-
sures that can be more appropriate in discriminating
the major characteristics of the dataset. In partic-
ular, prior knowledge or domain–driven dissimilarity
measures may improve the performance of the data
reduction methods in the examined dataset.
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