
© [2008] IEEE. Reprinted, with permission, from [George Feuerlicht, Considerations of Service Assembly based on
the Analysis of Data Flows between Services, e-Technologies, 2008 International MCETECH Conference on, 23-25
Jan. 2008]. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any
way imply IEEE endorsement of any of the University of Technology, Sydney's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE
by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the
copyright laws protecting it

Considerations of Service Assembly based on the Analysis of Data Flows
between Services

George Feuerlicht
 Faculty of Information Technology,

 University of Technology, Sydney,
 P.O. Box 123 Broadway, Sydney, NSW 2007, Australia

 jiri@it.uts.edu.au

Abstract

Service composition research mostly focuses on the
dynamic (workflow) aspects of compositions. In this
paper we consider the static component of service
composition and focus on analyzing the data flows
between services within a composition. We argue that
compatibility of service interfaces is a necessary
precondition for service composability, and we show
that data flow analysis can be applied to the problem
of service composition design to identify compatible
service interfaces and to minimize data coupling
between services.

1. Introduction

In general, the design of service compositions
consists of two parts: a static part that involves the
definition of services in WSDL, including the service
operations and their interfaces, and a dynamic part that
defines the associated process workflow using
languages such as BPEL (WS-BPEL). It can be
advantageous to treat the design of the static part of
service compositions separately, to ensure that the
services are composable and can be reused in the
context of various process specifications [1]. BPEL
compositions involve implementing higher level
business functions using previously defined Web
Services accessible via partner links and externalizing
the resulting functionality via WSDL interface, i.e. as a
composite Web Service. The BPEL model is a
message-based paradigm and communication between
Web Services involves mapping the results of service
invocations between the outbound and inbound
messages of service interfaces (i.e. signatures of Web
Service operations). We adopt the BPEL composition
model in this paper and discuss composition in the

context of the data flows between services (i.e. the
outbound and inbound messages passed between
service operations). To facilitate composition of
services into higher level business functions, service
interfaces must be compatible, i.e. share common data
parameters. At the same time the granularity of service
operations must be optimized with respect to
composability and reuse. In previous publications we
have described a methodological framework for the
design of services that uses top-down decomposition
based on the data properties of interface parameters to
maximize cohesion and minimize coupling of service
operations [2], [3]. In this paper we focus on the
problem of service assembly via the analysis of data
flows between services. We regard service
composition as a design-time activity with the
objective to ensure that service interfaces are
compatible (and therefore composable), and at the
same time exhibit a high degree of mutual
independence. In the next section (sections 2) we
describe a travel booking scenario and use it to analyze
the data flows between services, we then summarize
the main contributions of this paper in section 3.

2. Analysis of data flows between services

Service-Oriented Architecture (SOA) is
characterized by loosely coupled, coarse-grained
services that typically encapsulate high-level business
processes (e.g. air travel booking, course enrolment,
etc.) and rely on the exchange of composite XML
documents to accomplish business transactions. This
mode of operation is widely adopted by the SOA
practitioners for developing Web Services
applications. For example, travel Web Services based
on the Open Travel Alliance

(http://www.opentravel.org/) specification implement
flight booking business process for a specific itinerary
using two coarse-grained, composite XML
request/response message pairs:
OTA_AirAvailRQ/OTA_AirAvailRQ and
OTA_AirBookRQ/OTA_AirBookRS. We use a
simplified flight booking scenario loosely based on the
OTA specification to illustrate our discussion of

service composition. We make a number of
simplifying assumptions including that the flights are
one-way with no stopovers and that flights for a given
FlightNumber depart every day of the week at the
same time (DepartureTime). Unlike the coarse-grained
message interchange pattern used by the OTA
specification we break down the flight booking
business function into four low granularity operations

IN

OUT

FlightNumber,TravelerName,
DepartureDate,Class

BookFlight
BookingReference

FlightsSchedule
IN

OUT

DepartureCity, DestinationCity, DepartureDate

FlightNumber, DepartureTime, ArrivalTime

FlightNumber, DepartureDate

IN

OUT

FlightNumber, DepartureDate, Class
CheckAvailability

DepartureCity, DestinationCity, DepartureTime,
ArrivalTime, SeatAvailable, AirFare, AirportTax

IN

OUT

BookingReference, CreditCardNumber,
CreditCardExpiry,CreditCardName, TotalAmount

MakePayment
ReceiptNo, PaymentDate

AirFare + AirportTax =
TotalAmount

BookingReference

FlightNumber, DepartureDate, Class

DepartureCity,
DestinationCity,
DepartureDate

TravelerName

CreditCardNumber,
CreditCardExpiry,
CreditCardName

Select

Class

Availability
OK

Figure 1. Flight booking operations and corresponding data flows.

FlightsSchedule, CheckAvailability, BookFlights, and
MakePayment that closely match the requirements of
the flight booking dialogue. The flight booking
dialogue proceeds as follows: The traveler supplies the
values for DepartureCity, DestinationCity, and
DepartureDate as input parameters for the

FlightsSchedule operation. The output of the
FlightsSchedule operation produces a list of scheduled
flights, i.e. corresponding values of FlightNumber,
DepartureTime, and ArrivalTime. The traveler then
selects a suitable flight (i.e. FlightNumber and
DepartureDate) supplies the value of Class (e.g.

economy); the values of FlightNumber, DepartureDate
and Class then form the input for the
CheckAvailability operation. The output of the
CheckAvailability operation includes information
about flight availability (SeatAvailable) and pricing
information (Airfare and AirportTax). Assuming that
seats are available for the selected flight the traveler
proceeds to book the flight using the BookFlight
operation that takes the values of FlightNumber,
DepartureDate, Class, and TravelerName as the input,
and produces BookingReference as the output. Finally,
the traveler makes a payment using the MakePayment
operation supplying, credit card information
(CreditCardNumber, CreditCardExpiry,
CreditCardName). The MakePayment operation
accepts the input parameters BookingReference and
TotalAmount (sum of Airfare and AirportTax)
generated by the BookFlight and SelectFlight
operations, respectively, and produces ReceiptNo and
PaymentDate as the output parameters.

As the payment operation (MakePayment) is
separate from the booking operation (BookFlight) it is
possible to hold the booking without a payment, if this
is permitted by the airline. Furthermore, the
MakePayment operation can be reused in a different
context, e.g. in a hotel booking service.

Although the data used by the flight booking
scenario is typically stored in different databases
belonging to different participants in the business
process (i.e. travel agent, airline, etc.), for the purposes
of this analysis we assume that this data can be
represented by a global database schema. We note here
that we do not make any assumptions about how and
where the data is stored; we simply use the underlying
data structures to reason about the composability of
services.

We also do not consider issues related to state
maintenance, as these are orthogonal to the
considerations of service composability. OTA
specification also assumes that the data transmitted in
XML messages (e.g. as payloads in Web Services
SOAP messages) is stored persistently in the target
databases and provides a number of messages to
synchronize the data across the various participants
(e.g. OTA_UpdateRQ/RS, OTA_DeleteRQ, etc.).

We can now proceed to analyze the underlying data
structures as represented by the data elements in the
interfaces of the service operations. Data analysis of
the content of the interfaces of service operations
FlightsSchedule, CheckAvailability, BookFlights, and
MakePayment produces a set of 5 normalized relations

that constitute the underlying database schema of the
flight booking business function:

Flights(FlightNumber,
DepartureCity,DestinationCity,DepartureTime,ArrivalTime)

Schedule(FlightNumber,DepartureDate, AircraftType)

Availability(FlightNumber,DepartureDate,Class,
SeatAvailable,AirFare,AirportTax)

Bookings(BookingReference,
TravelerName,FlightNumber,DepartureDate,Class,Seat)

Payments(ReceiptNo,
PaymentDate,CreditCardNumber,CreditCardExpiry,
CreditCardName,BookingReference)

Based on this schema we implement the flight booking
service composition as illustrated in Figure 1, showing
the data flows between services (full lines) and the
user inputs (dashed lines). Passing data values between
service operations generates data flows that indicate
the level of data coupling between services. It can be
argued that both reuse and composability of services
improves when the level of data coupling is minimized
[2], so that service design should aim to produce
compatible interfaces that share common data
parameters, but at the same time minimize the level of
data coupling. We can observe that the data flows
between the service operations correspond to the
primary keys of the relations that constitute the
underlying global schema. For example, the composite
key of the Availability relation (FlightNumber,
DepartureDate, Class) forms the data flow between
CheckAvailability and BookFlight operations, and that
the BookingReference (i.e. the primary key of the
Bookings relation) constitutes the data flow between
BookFlight and MakePayment operations. This
indicates that data coupling between the service
operations is minimized as the elimination of any
parameter would invalidate the composition, e.g.
removing Class from the data flow between
CheckAvailability and BookFlight operations would
break the functionality of the flight booking business
function. We can conclude that data flows between
service operations that correspond to key attributes of
the underlying schema, as is the case in Figure 1,
satisfy the condition of minimal data coupling and at
the same time indicate that the composition is based on
compatible service interfaces.

3. Related Work and Conclusions

Service composition can be regarded as a special
category of the software composition problem. In
addition to extensive recent literature on service
composition, the problem of composition has been
investigated in the past in the context of object-
oriented software [5], [6], [7], and in the general area
of software composition [8]. Other researchers have
applied formal methods and developed specialized
composition languages to address the problem of
composition [9], [10], [11], [12].

We have argued in this paper that from the
viewpoint of service reuse and composability, the
static part of service assembly design that involves the
definition of the service interfaces (i.e. service
operations and their interfaces) is of primary
importance.

The main contribution of this paper is to show how
data flow analysis can be applied to the problem of
service composition design. We have shown that in a
well-designed composition the data flows between
service operations correspond to the keys of the
relations in the underlying global schema.

5. References

[1] Thöne S., Depke R and Engels G. Process-Oriented,
Flexible Composition of Web Services with UML, LNCS,
0302-9743 (Print) 1611-3349 (Online), Volume 2784/2003

[2] Feuerlicht, G., Design of Service Interfaces for e-
Business Applications using Data Normalization Techniques,
Journal of Information Systems and e-Business Management,
Springer-Verlag GmbH, 26 July 2005, pages 1-14, ISS:1617-
98

[3] Feuerlicht, G., Meesathit, S., Design Method for
Interoperable Web Services, Proceedings of the 2nd
International Conference on Service Oriented Computing,
New York City, NY, USA, November 15-18, 2004, pages
299-307, ISBN 1-58113-871-7

[4] Juric, M. Poornachandra S, and Mathew B., Business
Process Execution Language for Web Services, 2nd Edition,
Packt Publishing, January 2006; ISBN 1904811817

[5] Nierstrasz, O. and Meijler, T. D. 1995. Research
directions in software composition. ACM Computer. Survey.
27, 2 (Jun. 1995), 262-264.

[6] Georgakopoulos D. Ritter N. Benatallah B. Zirpins C.
Feuerlicht G. Schoenherr M. Hamid R. Motahari-Nezhad
(Eds.) Workshops Proceedings, Service-Oriented
Computing, ICSOC 2006, 4th International Conference,

Chicago, IL, USA, December 4-7, 2006, LNCS 4652, ISBN
978-3-540-75491-6, Book Series Lecture Notes in Computer
Science, Volume 4652/2007 Springer-Verlag Berlin
Heidelberg 2007

[7] Object-Oriented Software Composition, edited by Oscar
Nierstrasz and Dennis Tsichritzis, is available in hardcover
from Prentice Hall International. Published 1995, ISBN 0-
13-220674-9.

[8] Nierstrasz, O. and Meijler, T. D. 1995. Research
directions in software composition. ACM Comput. Surv. 27,
2 (Jun. 1995),
262-264. DOI=http://doi.acm.org/10.1145/210376.210389

[9] CoorSet: A Development Environment for Associatively
Coordinated Components, Book Series Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, ISSN0302-
9743 (Print) 1611-3349 (Online), Volume 2949/2004,
Coordination Models and Languages, ISBN 978-3-540-
21044-3, Pages 216-231, May 13, 2004

[10] Scheben, U. 2005. Hierarchical composition of
industrial components. Sci. Comput. Pro-gram. 56, 1-2 (Apr.
2005), 117-139.
DOI= http://dx.doi.org/10.1016/j.scico.2004.11.008

[11] Weerawarana, S., Curbera, F., Duftler, M. J., Epstein, D.
A., and Kesselman, J. 2001. Bean markup language: a
composition language for JavaBeans components. In
Proceedings of the 6th Conference on USENIX Conference
on Object-Oriented Technologies and Systems - Volume 6
(San Antonia, Texas, January 29 - February 02, 2001).
USENIX Association, Berkeley, CA, 13-13.

[12] Holt, R. C. 1998. Structural Manipulations of Software
Architecture Using Tarski Relational Algebra. In
Proceedings of the Working Conference on Reverse
Engineering (Wcre'98) (October 12 - 14, 1998). WCRE.
IEEE Computer Society, Washington, DC, 210.

